Dendrite-Free and Stable Lithium Metal Battery Achieved by a Model of Stepwise Lithium Deposition and Stripping
Corresponding Author: Yong Wang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 170
Abstract
The uncontrolled formation of lithium (Li) dendrites and the unnecessary consumption of electrolyte during the Li plating/stripping process have been major obstacles in developing safe and stable Li metal batteries. Herein, we report a cucumber-like lithiophilic composite skeleton (CLCS) fabricated through a facile oxidation-immersion-reduction method. The stepwise Li deposition and stripping, determined using in situ Raman spectra during the galvanostatic Li charging/discharging process, promote the formation of a dendrite-free Li metal anode. Furthermore, numerous pyridinic N, pyrrolic N, and CuxN sites with excellent lithiophilicity work synergistically to distribute Li ions and suppress the formation of Li dendrites. Owing to these advantages, cells based on CLCS exhibit a high Coulombic efficiency of 97.3% for 700 cycles and an improved lifespan of 2000 h for symmetric cells. The full cells assembled with LiFePO4 (LFP), SeS2 cathodes and CLCS@Li anodes demonstrate high capacities of 110.1 mAh g−1 after 600 cycles at 0.2 A g−1 in CLCS@Li|LFP and 491.8 mAh g−1 after 500 cycles at 1 A g−1 in CLCS@Li|SeS2. The unique design of CLCS may accelerate the application of Li metal anodes in commercial Li metal batteries.
Highlights:
1 A facile method is adopted to obtain cucumber-like lithiophilic composite skeleton.
2 Massive lithiophilic sites in cucumber-like lithiophilic composite skeleton can promote and guide uniform Li depositions.
3 A unique model of stepwise Li deposition and stripping is determined.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194 (2017). https://doi.org/10.1038/nnano.2017.16
- W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin et al., Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513 (2014). https://doi.org/10.1039/C3EE40795K
- J. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22, 587 (2010). https://doi.org/10.1021/cm901452z
- Z. Ghazi, Z. Sun, C. Sun, F. Qi, B. An et al., Key aspects of lithium metal anodes for lithium metal batteries. Small 15, 1900687 (2019). https://doi.org/10.1002/smll.201900687
- P. Bai, J. Li, F. Brushett, M.Z. Bazant, Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221 (2016). https://doi.org/10.1039/C6EE01674J
- P. Albertus, S. Babinec, S. Litzelman, Newman, Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16 (2018). https://doi.org/10.1038/s41560-017-0047-2
- G. Umeda, E. Menke, M. Richard, K. Stamm, F. Wudl et al., Protection of lithium metal surfaces using tetraethoxysilane. J. Mater. Chem. 21, 1593 (2011). https://doi.org/10.1039/C0JM02305A
- D. Chen, S. Huang, L. Zhong, S. Wang, M. Xiao et al., In situ preparation of thin and rigid COF film on Li anode as artificial solid electrolyte interphase layer resisting li dendrite puncture. Adv. Funct. Mater. 30, 1907717 (2020). https://doi.org/10.1002/adfm.201907717
- E. Kazyak, K. Wood, N. Dasgupta, Improved cycle life and stability of lithium metal anodes through ultrathin atomic layer deposition surface treatments. Chem. Mater. 27, 6457 (2015). https://doi.org/10.1021/acs.chemmater.5b02789
- S. Tung, S. Ho, M. Yang, R. Zhang, N. Kotov et al., A dendrite-suppressing composite ion conductor from aramid nanofibers. Nat. Commun. 6, 6152 (2015). https://doi.org/10.1038/ncomms7152
- J. Kim, D. Kim, S. Joo, B. Choi, A. Cha et al., Hierarchical chitin fibers with aligned nanofibrillar architectures: a nonwoven-mat separator for lithium metal batteries. ACS Nano 11, 6114 (2017). https://doi.org/10.1021/acsnano.7b02085
- W. Luo, L. Zhou, K. Fu, Z. Yang, J. Wan et al., A thermally conductive separator for stable Li metal anodes. Nano Lett. 15, 6149 (2015). https://doi.org/10.1021/acs.nanolett.5b02432
- W. Liu, Y. Mi, Z. Weng, Y. Zhong, Z. Wu et al., Functional metal–organic framework boosting lithium metal anode performance via chemical interactions. Chem. Sci. 8, 4285 (2017). https://doi.org/10.1039/C7SC00668C
- F. Ding, W. Xu, G. Graff, J. Zhang, M. Sushko et al., Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450 (2013). https://doi.org/10.1021/ja312241y
- H. Yang, L. Yin, H. Shi, K. He, H. Cheng et al., Suppressing lithium dendrite formation by slowing its desolvation kinetics. Chem. Commun. 55, 13211 (2019). https://doi.org/10.1039/C9CC07092C
- Q. Liu, Y. Xu, J. Wang, B. Zhao, Z. Li et al., Sustained-release nanocapsules enable long-lasting stabilization of Li anode for practical Li-metal batteries. Nano-Micro Lett. 12, 176 (2020). https://doi.org/10.1007/s40820-020-00514-1
- J.N. Chazalviel, Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 42, 7355 (1990). https://doi.org/10.1103/PhysRevA.42.7355
- C. Monroe, J. Newman, The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396 (2005). https://doi.org/10.1149/1.1850854
- C. Brissot, M. Rosso, J. Chazalviel, P. Baudry, S. Lascaud et al., In situ study of dendritic growth in lithium/PEO-salt/lithium cells. Electrochim. Acta 43, 1569 (1998). https://doi.org/10.1016/S0013-4686(97)10055-X
- W. Huang, Y. Yu, Z. Hou, Z. Liang, Y. Zheng et al., Dendrite-free lithium electrode enabled by graphene aerogels with gradient porosity. Energy Storage Mater. 33, 329 (2020). https://doi.org/10.1016/j.ensm.2020.08.032
- H. Shi, M. Yue, C. Zhang, Y. Dong, P. Lu et al., 3D Flexible, Conductive, and recyclable Ti3C2Tx MXene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode. ACS Nano 14, 8678 (2020). https://doi.org/10.1021/acsnano.0c03042
- R. Zhang, X. Cheng, C. Zhao, H. Peng, J. Shi et al., Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv. Mater. 28, 2155 (2016). https://doi.org/10.1002/adma.201504117
- S. Matsuda, Y. Kubo, K. Uosaki, S. Nakanishi, Lithium-metal deposition/dissolution within internal space of CNT 3D matrix results in prolonged cycle of lithium-metal negative electrode. Carbon 119, 119 (2017). https://doi.org/10.1016/j.carbon.2017.04.032
- X. Zhang, R. Lv, A. Wang, W. Guo, X. Liu et al., MXene aerogel scaffolds for high-rate lithium metal anodes. Angew. Chem. Int. Ed. 57, 15028 (2018). https://doi.org/10.1002/anie.201808714
- M. Chen, J. Zheng, O. Sheng, C. Jin, H. Yuan et al., Sulfur–nitrogen co-doped porous carbon nanosheets to control lithium growth for a stable lithium metal anode. J. Mater. Chem. A 7, 18267 (2019). https://doi.org/10.1039/C9TA05684J
- X. Chen, X. Chen, T. Hou, B. Li, X. Cheng et al., Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes. Sci. Adv. 5, eaau7728 (2019). https://doi.org/10.1126/sciadv.aau7728
- F. Pei, A. Fu, W. Ye, J. Peng, X. Fang et al., Robust Lithium metal anodes realized by lithiophilic 3D porous current collectors for constructing high-energy lithium-sulfur batteries. ACS Nano 13, 8337 (2019). https://doi.org/10.1021/acsnano.9b03784
- J. Luan, Q. Zhang, H. Yuan, Z. Peng, Y. Tang et al., Sn layer decorated copper mesh with superior lithiophilicity for stable lithium metal anode. Chem. Eng. J. 395, 124922 (2020). https://doi.org/10.1016/j.cej.2020.124922
- C. Yang, Y. Yao, S. He, H. Xie, E. Hitz et al., Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode. Adv. Mater. 29, 1702714 (2017). https://doi.org/10.1002/adma.201702714
- H. Ye, Z. Zheng, H. Yao, S. Liu, T. Zuo et al., Guiding uniform Li plating/stripping through lithium-aluminum alloying medium for long-life Li metal batteries. Angew. Chem. Int. Ed. 58, 1094 (2019). https://doi.org/10.1002/anie.201811955
- P. Xue, S. Liu, X. Shi, C. Sun, C. Lai et al., A hierarchical silver-nanowire-graphene host enabling ultrahigh rates and superior long-term cycling of lithium-metal composite anodes. Adv. Mater. 30, 1804165 (2018). https://doi.org/10.1002/adma.201804165
- B. Yu, T. Tao, S. Mateti, S. Lu, Y. Chen et al., Nanoflake arrays of lithiophilic metal oxides for the ultra-stable anodes of lithium-metal batteries. Adv. Funct. Mater. 28, 1803023 (2018). https://doi.org/10.1002/adfm.201803023
- M. Zhu, B. Li, S. Li, Z. Du, Y. Gong et al., Dendrite-free metallic lithium in lithiophilic carbonized metal-organic frameworks. Adv. Energy Mater. 8, 1703505 (2018). https://doi.org/10.1002/aenm.201703505
- S. Wu, Z. Zhang, M. Lan, S. Yang, J. Cheng et al., Lithiophilic Cu-CuO-Ni hybrid structure: advanced current collectors toward stable lithium metal anodes. Adv. Mater. 30, 1705830 (2018). https://doi.org/10.1002/adma.201705830
- K. Yan, Z. Lu, H. Lee, F. Xiong, P. Hsu et al., Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016). https://doi.org/10.1038/nenergy.2016.10
- N. Li, Q. Ye, K. Zhang, H. Yan, C. Shen et al., Normalized lithium growth from the nucleation stage for dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 58, 1 (2019). https://doi.org/10.1002/anie.201911267
- X. Chen, B. Li, C. Zhao, R. Zhang, Q. Zhang, Synergetic coupling of lithiophilic sites and conductive scaffolds for dendrite-free lithium metal anodes. Small Methods 4, 1900177 (2020). https://doi.org/10.1002/smtd.201900177
- Y. He, H. Xu, J. Shi, P. Liu, Z. Tian et al., Polydopamine coating layer modified current collector for dendrite-free Li metal anode. Energy Storage Mater. 23, 418 (2019). https://doi.org/10.1016/j.ensm.2019.04.026
- T. Liu, J. Ge, Y. Xu, L. Lv, W. Sun et al., Organic supramolecular protective layer with rearranged and defensive Li deposition for stable and dendrite-free lithium metal anode. Energy Storage Mater. 32, 261 (2020). https://doi.org/10.1016/j.ensm.2020.07.007
- T. Wang, X. Liu, X. Zhao, P. He, C. Nan et al., Regulating uniform Li plating/stripping via dual-conductive metal-organic frameworks for high-rate lithium metal batteries. Adv. Funct. Mater. 30, 2000786 (2020). https://doi.org/10.1002/adfm.202000786
- P. Ren, Q. Li, T. Song, Y. Yang, Facile fabrication of the Cu-N-C catalyst with atomically dispersed unsaturated Cu-N2 active sites for highly efficient and selective glaser-hay coupling. ACS Appl. Mater. Interfaces 12, 27210 (2020). https://doi.org/10.1021/acsami.0c05100
- X. Zhao, S. Xia, X. Zhang, Y. Pang, F. Xu et al., Highly lithiophilic copper-reinforced scaffold enables stable Li metal anode. ACS Appl. Mater. Interfaces 13, 20240 (2021). https://doi.org/10.1021/acsami.1c04735
- Y. Guan, N. Li, Y. Li, L. Sun, Y. Gao et al., Two dimensional ZIF-derived ultra-thin Cu-N/C nanosheets as high performance oxygen reduction electrocatalysts for high-performance Zn-air batteries. Nanoscale 12, 14259 (2020). https://doi.org/10.1039/D0NR03495A
- T. Liu, J. Hu, C. Li, Y. Wang, Unusual conformal Li plating on alloyable nanofiber frameworks to enable dendrite suppression of Li metal anode. ACS Appl. Energy Mater. 2, 4379 (2019). https://doi.org/10.1021/acsaem.9b00573
- H. Li, D. Chao, B. Chen, X. Chen, C. Chuah et al., Revealing principles for design of lean-electrolyte lithium metal anode via in situ spectroscopy. J. Am. Chem. Soc. 142, 2012 (2020). https://doi.org/10.1021/jacs.9b11774
References
D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194 (2017). https://doi.org/10.1038/nnano.2017.16
W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin et al., Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513 (2014). https://doi.org/10.1039/C3EE40795K
J. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22, 587 (2010). https://doi.org/10.1021/cm901452z
Z. Ghazi, Z. Sun, C. Sun, F. Qi, B. An et al., Key aspects of lithium metal anodes for lithium metal batteries. Small 15, 1900687 (2019). https://doi.org/10.1002/smll.201900687
P. Bai, J. Li, F. Brushett, M.Z. Bazant, Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221 (2016). https://doi.org/10.1039/C6EE01674J
P. Albertus, S. Babinec, S. Litzelman, Newman, Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16 (2018). https://doi.org/10.1038/s41560-017-0047-2
G. Umeda, E. Menke, M. Richard, K. Stamm, F. Wudl et al., Protection of lithium metal surfaces using tetraethoxysilane. J. Mater. Chem. 21, 1593 (2011). https://doi.org/10.1039/C0JM02305A
D. Chen, S. Huang, L. Zhong, S. Wang, M. Xiao et al., In situ preparation of thin and rigid COF film on Li anode as artificial solid electrolyte interphase layer resisting li dendrite puncture. Adv. Funct. Mater. 30, 1907717 (2020). https://doi.org/10.1002/adfm.201907717
E. Kazyak, K. Wood, N. Dasgupta, Improved cycle life and stability of lithium metal anodes through ultrathin atomic layer deposition surface treatments. Chem. Mater. 27, 6457 (2015). https://doi.org/10.1021/acs.chemmater.5b02789
S. Tung, S. Ho, M. Yang, R. Zhang, N. Kotov et al., A dendrite-suppressing composite ion conductor from aramid nanofibers. Nat. Commun. 6, 6152 (2015). https://doi.org/10.1038/ncomms7152
J. Kim, D. Kim, S. Joo, B. Choi, A. Cha et al., Hierarchical chitin fibers with aligned nanofibrillar architectures: a nonwoven-mat separator for lithium metal batteries. ACS Nano 11, 6114 (2017). https://doi.org/10.1021/acsnano.7b02085
W. Luo, L. Zhou, K. Fu, Z. Yang, J. Wan et al., A thermally conductive separator for stable Li metal anodes. Nano Lett. 15, 6149 (2015). https://doi.org/10.1021/acs.nanolett.5b02432
W. Liu, Y. Mi, Z. Weng, Y. Zhong, Z. Wu et al., Functional metal–organic framework boosting lithium metal anode performance via chemical interactions. Chem. Sci. 8, 4285 (2017). https://doi.org/10.1039/C7SC00668C
F. Ding, W. Xu, G. Graff, J. Zhang, M. Sushko et al., Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450 (2013). https://doi.org/10.1021/ja312241y
H. Yang, L. Yin, H. Shi, K. He, H. Cheng et al., Suppressing lithium dendrite formation by slowing its desolvation kinetics. Chem. Commun. 55, 13211 (2019). https://doi.org/10.1039/C9CC07092C
Q. Liu, Y. Xu, J. Wang, B. Zhao, Z. Li et al., Sustained-release nanocapsules enable long-lasting stabilization of Li anode for practical Li-metal batteries. Nano-Micro Lett. 12, 176 (2020). https://doi.org/10.1007/s40820-020-00514-1
J.N. Chazalviel, Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 42, 7355 (1990). https://doi.org/10.1103/PhysRevA.42.7355
C. Monroe, J. Newman, The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396 (2005). https://doi.org/10.1149/1.1850854
C. Brissot, M. Rosso, J. Chazalviel, P. Baudry, S. Lascaud et al., In situ study of dendritic growth in lithium/PEO-salt/lithium cells. Electrochim. Acta 43, 1569 (1998). https://doi.org/10.1016/S0013-4686(97)10055-X
W. Huang, Y. Yu, Z. Hou, Z. Liang, Y. Zheng et al., Dendrite-free lithium electrode enabled by graphene aerogels with gradient porosity. Energy Storage Mater. 33, 329 (2020). https://doi.org/10.1016/j.ensm.2020.08.032
H. Shi, M. Yue, C. Zhang, Y. Dong, P. Lu et al., 3D Flexible, Conductive, and recyclable Ti3C2Tx MXene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode. ACS Nano 14, 8678 (2020). https://doi.org/10.1021/acsnano.0c03042
R. Zhang, X. Cheng, C. Zhao, H. Peng, J. Shi et al., Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv. Mater. 28, 2155 (2016). https://doi.org/10.1002/adma.201504117
S. Matsuda, Y. Kubo, K. Uosaki, S. Nakanishi, Lithium-metal deposition/dissolution within internal space of CNT 3D matrix results in prolonged cycle of lithium-metal negative electrode. Carbon 119, 119 (2017). https://doi.org/10.1016/j.carbon.2017.04.032
X. Zhang, R. Lv, A. Wang, W. Guo, X. Liu et al., MXene aerogel scaffolds for high-rate lithium metal anodes. Angew. Chem. Int. Ed. 57, 15028 (2018). https://doi.org/10.1002/anie.201808714
M. Chen, J. Zheng, O. Sheng, C. Jin, H. Yuan et al., Sulfur–nitrogen co-doped porous carbon nanosheets to control lithium growth for a stable lithium metal anode. J. Mater. Chem. A 7, 18267 (2019). https://doi.org/10.1039/C9TA05684J
X. Chen, X. Chen, T. Hou, B. Li, X. Cheng et al., Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes. Sci. Adv. 5, eaau7728 (2019). https://doi.org/10.1126/sciadv.aau7728
F. Pei, A. Fu, W. Ye, J. Peng, X. Fang et al., Robust Lithium metal anodes realized by lithiophilic 3D porous current collectors for constructing high-energy lithium-sulfur batteries. ACS Nano 13, 8337 (2019). https://doi.org/10.1021/acsnano.9b03784
J. Luan, Q. Zhang, H. Yuan, Z. Peng, Y. Tang et al., Sn layer decorated copper mesh with superior lithiophilicity for stable lithium metal anode. Chem. Eng. J. 395, 124922 (2020). https://doi.org/10.1016/j.cej.2020.124922
C. Yang, Y. Yao, S. He, H. Xie, E. Hitz et al., Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode. Adv. Mater. 29, 1702714 (2017). https://doi.org/10.1002/adma.201702714
H. Ye, Z. Zheng, H. Yao, S. Liu, T. Zuo et al., Guiding uniform Li plating/stripping through lithium-aluminum alloying medium for long-life Li metal batteries. Angew. Chem. Int. Ed. 58, 1094 (2019). https://doi.org/10.1002/anie.201811955
P. Xue, S. Liu, X. Shi, C. Sun, C. Lai et al., A hierarchical silver-nanowire-graphene host enabling ultrahigh rates and superior long-term cycling of lithium-metal composite anodes. Adv. Mater. 30, 1804165 (2018). https://doi.org/10.1002/adma.201804165
B. Yu, T. Tao, S. Mateti, S. Lu, Y. Chen et al., Nanoflake arrays of lithiophilic metal oxides for the ultra-stable anodes of lithium-metal batteries. Adv. Funct. Mater. 28, 1803023 (2018). https://doi.org/10.1002/adfm.201803023
M. Zhu, B. Li, S. Li, Z. Du, Y. Gong et al., Dendrite-free metallic lithium in lithiophilic carbonized metal-organic frameworks. Adv. Energy Mater. 8, 1703505 (2018). https://doi.org/10.1002/aenm.201703505
S. Wu, Z. Zhang, M. Lan, S. Yang, J. Cheng et al., Lithiophilic Cu-CuO-Ni hybrid structure: advanced current collectors toward stable lithium metal anodes. Adv. Mater. 30, 1705830 (2018). https://doi.org/10.1002/adma.201705830
K. Yan, Z. Lu, H. Lee, F. Xiong, P. Hsu et al., Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016). https://doi.org/10.1038/nenergy.2016.10
N. Li, Q. Ye, K. Zhang, H. Yan, C. Shen et al., Normalized lithium growth from the nucleation stage for dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 58, 1 (2019). https://doi.org/10.1002/anie.201911267
X. Chen, B. Li, C. Zhao, R. Zhang, Q. Zhang, Synergetic coupling of lithiophilic sites and conductive scaffolds for dendrite-free lithium metal anodes. Small Methods 4, 1900177 (2020). https://doi.org/10.1002/smtd.201900177
Y. He, H. Xu, J. Shi, P. Liu, Z. Tian et al., Polydopamine coating layer modified current collector for dendrite-free Li metal anode. Energy Storage Mater. 23, 418 (2019). https://doi.org/10.1016/j.ensm.2019.04.026
T. Liu, J. Ge, Y. Xu, L. Lv, W. Sun et al., Organic supramolecular protective layer with rearranged and defensive Li deposition for stable and dendrite-free lithium metal anode. Energy Storage Mater. 32, 261 (2020). https://doi.org/10.1016/j.ensm.2020.07.007
T. Wang, X. Liu, X. Zhao, P. He, C. Nan et al., Regulating uniform Li plating/stripping via dual-conductive metal-organic frameworks for high-rate lithium metal batteries. Adv. Funct. Mater. 30, 2000786 (2020). https://doi.org/10.1002/adfm.202000786
P. Ren, Q. Li, T. Song, Y. Yang, Facile fabrication of the Cu-N-C catalyst with atomically dispersed unsaturated Cu-N2 active sites for highly efficient and selective glaser-hay coupling. ACS Appl. Mater. Interfaces 12, 27210 (2020). https://doi.org/10.1021/acsami.0c05100
X. Zhao, S. Xia, X. Zhang, Y. Pang, F. Xu et al., Highly lithiophilic copper-reinforced scaffold enables stable Li metal anode. ACS Appl. Mater. Interfaces 13, 20240 (2021). https://doi.org/10.1021/acsami.1c04735
Y. Guan, N. Li, Y. Li, L. Sun, Y. Gao et al., Two dimensional ZIF-derived ultra-thin Cu-N/C nanosheets as high performance oxygen reduction electrocatalysts for high-performance Zn-air batteries. Nanoscale 12, 14259 (2020). https://doi.org/10.1039/D0NR03495A
T. Liu, J. Hu, C. Li, Y. Wang, Unusual conformal Li plating on alloyable nanofiber frameworks to enable dendrite suppression of Li metal anode. ACS Appl. Energy Mater. 2, 4379 (2019). https://doi.org/10.1021/acsaem.9b00573
H. Li, D. Chao, B. Chen, X. Chen, C. Chuah et al., Revealing principles for design of lean-electrolyte lithium metal anode via in situ spectroscopy. J. Am. Chem. Soc. 142, 2012 (2020). https://doi.org/10.1021/jacs.9b11774