Radiative Cooling Materials for Extreme Environmental Applications
Corresponding Author: Han Zhou
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 324
Abstract
Radiative cooling is a passive thermal management strategy that leverages the natural ability of materials to dissipate heat through infrared radiation. It has significant implications for energy efficiency, climate adaptation, and sustainable technology development, with applications in personal thermal management, building temperature regulation, and aerospace engineering. However, radiative cooling performance is susceptible to environmental aging and special environmental conditions, limiting its applicability in extreme environments. Herein, a critical review of extreme environmental radiative cooling is presented, focusing on enhancing environmental durability and cooling efficiency. This review first introduces the design principles of heat exchange channels, which are tailored based on the thermal flow equilibrium to optimize radiative cooling capacity in various extreme environments. Subsequently, recent advancements in radiative cooling materials and micro-nano structures that align with these principles are systematically discussed, with a focus on their implementation in terrestrial dwelling environments, terrestrial extreme environments, aeronautical environments, and space environments. Moreover, this review evaluates the cooling effects and anti-environmental abilities of extreme radiative cooling devices. Lastly, key challenges hindering the development of radiative cooling devices for extreme environmental applications are outlined, and potential strategies to overcome these limitations are proposed, aiming to prompt their future commercialization.
Highlights:
1 Heat exchange mechanisms for enhancing cooling performance and environmental tolerance are elucidated.
2 Challenges in extreme environments, along with the corresponding anti-environmental radiative cooling materials and micro-nano structures, are reviewed.
3 Valuable insights into enhancing the next generation of radiative cooling for extreme environmental applications are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Yin, R. Yang, G. Tan, S. Fan, Terrestrial radiative cooling: Using the cold universe as a renewable and sustainable energy source. Science 370(6518), 786–791 (2020). https://doi.org/10.1126/science.abb0971
- D. Zhao, A. Aili, Y. Zhai, J. Lu, D. Kidd et al., Subambient cooling of water: toward real-world applications of daytime radiative cooling. Joule 3(1), 111–123 (2019). https://doi.org/10.1016/j.joule.2018.10.006
- D. Pan, Z. Han, J. Lei, Y. Niu, H. Liu et al., Core-shell structured BN/SiO2 nanofiber membrane featuring with dual-effect thermal management and flame retardancy for extreme space thermal protection. Sci. Bull. 70(5), 722–732 (2025). https://doi.org/10.1016/j.scib.2025.01.005
- C. Lin, K. Li, M. Li, B. Dopphoopha, J. Zheng et al., Pushing radiative cooling technology to real applications. Adv. Mater. (2024). https://doi.org/10.1002/adma.202409738
- R. Xu, T. Ye, X. Yue, Z. Yang, W. Yu et al., Global population exposure to landscape fire air pollution from 2000 to 2019. Nature 621(7979), 521–529 (2023). https://doi.org/10.1038/s41586-023-06398-6
- L. Lin, X. Yi, H. Liu, R. Meng, S. Li et al., The airway microbiome mediates the interaction between environmental exposure and respiratory health in humans. Nat. Med. 29(7), 1750–1759 (2023). https://doi.org/10.1038/s41591-023-02424-2
- J. Wei, J. Wang, Z. Li, S. Kondragunta, S. Anenberg et al., Long-term mortality burden trends attributed to black carbon and PM2·5 from wildfire emissions across the continental USA from 2000 to 2020: a deep learning modelling study. Lancet Planet. Health 7(12), e963–e975 (2023). https://doi.org/10.1016/S2542-5196(23)00235-8
- Y. Ying, J. Yu, B. Qin, M. Zhao, T. Zhou et al., Directional thermal emission covering two atmospheric windows. Laser Photonics Rev. 17(11), 2300407 (2023). https://doi.org/10.1002/lpor.202300407
- R.H. Galib, Y. Tian, Y. Lei, S. Dang, X. Li et al., Atmospheric-moisture-induced polyacrylate hydrogels for hybrid passive cooling. Nat. Commun. 14(1), 6707 (2023). https://doi.org/10.1038/s41467-023-42548-0
- H. Long, S. Lei, F. Wang, S. Yang, H. Ju et al., Superhydrophobic daytime radiative cooling coating incorporated with phase change microcapsules for building thermal regulation. J. Mater. Sci. 59(15), 6459–6475 (2024). https://doi.org/10.1007/s10853-024-09560-1
- S.K. Chamoli, W. Li, Visibly transparent multifunctional camouflage coating with efficient thermal management. Opt. Lett. 48(16), 4340–4343 (2023). https://doi.org/10.1364/OL.494539
- G.M. Hunt, A.B. Peters, J.B. Spicer, M.E. Thomas, High temperature optical performance of MgO: Y2O3 films for space applications. Int. J. Heat Mass Transf. 222, 125114 (2024). https://doi.org/10.1016/j.ijheatmasstransfer.2023.125114
- S. Shrestha, C. Borrero del Pino, U. Malayoglu, Inorganic white thermal-control coatings for extreme space environments. J. Spacecr. Rockets 53(6), 1061–1067 (2016). https://doi.org/10.2514/1.a33508
- L. Xu, D.-W. Sun, Y. Tian, T. Fan, Z. Zhu, Nanocomposite hydrogel for daytime passive cooling enabled by combined effects of radiative and evaporative cooling. Chem. Eng. J. 457, 141231 (2023). https://doi.org/10.1016/j.cej.2022.141231
- Y. Bai, X. Jia, J. Yang, H. Song, Three birds with one stone strategy: a tri-modal radiator based on the cooling-compensation-heating effect. Nano Energy 127, 109770 (2024). https://doi.org/10.1016/j.nanoen.2024.109770
- M. Lian, W. Ding, S. Liu, Y. Wang, T. Zhu et al., Highly porous yet transparent mechanically flexible aerogels realizing solar-thermal regulatory cooling. Nano-Micro Lett. 16(1), 131 (2024). https://doi.org/10.1007/s40820-024-01356-x
- W. Xie, C. Xiao, Y. Sun, Y. Fan, B. Zhao et al., Flexible photonic radiative cooling films: fundamentals, fabrication and applications. Adv. Funct. Mater. 33(46), 2305734 (2023). https://doi.org/10.1002/adfm.202305734
- W. Gao, Z. Lei, K. Wu, Y. Chen, Reconfigurable and renewable nano-micro-structured plastics for radiative cooling. Adv. Funct. Mater. 31(21), 2100535 (2021). https://doi.org/10.1002/adfm.202100535
- H. Zhang, K.C.S. Ly, X. Liu, Z. Chen, M. Yan et al., Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc. Natl. Acad. Sci. U.S.A. 117(26), 14657–14666 (2020). https://doi.org/10.1073/pnas.2001802117
- A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515(7528), 540–544 (2014). https://doi.org/10.1038/nature13883
- Z. Ding, L. Pattelli, H. Xu, W. Sun, X. Li et al., Iridescent daytime radiative cooling with No absorption peaks in the visible range. Small 18(25), 2202400 (2022). https://doi.org/10.1002/smll.202202400
- R. Shanker, P. Ravi Anusuyadevi, S. Gamage, T. Hallberg, H. Kariis et al., Structurally colored cellulose nanocrystal films as transreflective radiative coolers. ACS Nano 16(7), 10156–10162 (2022). https://doi.org/10.1021/acsnano.1c10959
- R. Ali Yalçın, E. Blandre, K. Joulain, J. Drévillon, Colored radiative cooling coatings with nanops. ACS Photonics 7(5), 1312–1322 (2020). https://doi.org/10.1021/acsphotonics.0c00513
- S. Fan, W. Li, Photonics and thermodynamics concepts in radiative cooling. Nat. Photon. 16(3), 182–190 (2022). https://doi.org/10.1038/s41566-021-00921-9
- D. Li, X. Liu, W. Li, Z. Lin, B. Zhu et al., Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat. Nanotechnol. 16(2), 153–158 (2021). https://doi.org/10.1038/s41565-020-00800-4
- Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou et al., Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355(6329), 1062–1066 (2017). https://doi.org/10.1126/science.aai7899
- Y. Xin, C. Li, W. Gao, Y. Chen, Emerging colored and transparent radiative cooling: fundamentals, progress, and challenges. Mater. Today 83, 355–381 (2025). https://doi.org/10.1016/j.mattod.2024.12.012
- X. Wu, J. Li, F. Xie, X.-E. Wu, S. Zhao et al., A dual-selective thermal emitter with enhanced subambient radiative cooling performance. Nat. Commun. 15(1), 815 (2024). https://doi.org/10.1038/s41467-024-45095-4
- B.E. Psiloglou, M. Santamouris, D.N. Asimakopoulos, Predicting the broadband transmittance of the uniformly mixed gases (CO2, CO, N2O, CH4 and O2) in the atmosphere, for solar radiation models. Renew. Energy 6(1), 63–70 (1995). https://doi.org/10.1016/0960-1481(94)00062-B
- T. Fang, General discussion on displacement law on radiation. Int. Commun. Heat Mass Transf. 30(5), 737–743 (2003). https://doi.org/10.1016/S0735-1933(03)00111-8
- X. Sun, Y. Sun, Z. Zhou, M.A. Alam, P. Bermel, Radiative sky cooling: fundamental physics, materials, structures, and applications. Nanophotonics 6(5), 20 (2017). https://doi.org/10.1515/nanoph-2017-0020
- Y. Wu, J. Luo, M. Pu, B. Liu, J. Jin et al., Optically transparent infrared selective emitter for visible-infrared compatible camouflage. Opt. Express 30(10), 17259–17269 (2022). https://doi.org/10.1364/OE.457547
- S. Jiao, K. Zhao, J. Jiang, K. Zhao, Q. Guo et al., Metasurface with all-optical tunability for spatially-resolved and multilevel thermal radiation. Nanophotonics 13(9), 1645–1655 (2024). https://doi.org/10.1515/nanoph-2024-0005
- A. Reicks, A. Tsubaki, M. Anderson, J. Wieseler, L.K. Khorashad et al., Near-unity broadband omnidirectional emissivity via femtosecond laser surface processing. Commun. Mater. 2, 36 (2021). https://doi.org/10.1038/s43246-021-00139-w
- K.-T. Lin, J. Han, K. Li, C. Guo, H. Lin et al., Radiative cooling: Fundamental physics, atmospheric influences, materials and structural engineering, applications and beyond. Nano Energy 80, 105517 (2021). https://doi.org/10.1016/j.nanoen.2020.105517
- D. Han, C. Wang, C.B. Han, Y. Cui, W.R. Ren et al., Highly optically selective and thermally insulating porous calcium silicate composite SiO2 aerogel coating for daytime radiative cooling. ACS Appl. Mater. Interf. 16(7), 9303–9312 (2024). https://doi.org/10.1021/acsami.3c18101
- T.N. Narasimhan, Fourier’s heat conduction equation: History, influence, and connections. Proc. Indian Acad. Sci. (Earth Planet Sci.) 108(3), 117–148 (1999). https://doi.org/10.1007/bf02842327
- R. Hu, Y. Liu, S. Shin, S. Huang, X. Ren et al., Emerging materials and strategies for personal thermal management. Adv. Energy Mater. 10(17), 1903921 (2020). https://doi.org/10.1002/aenm.201903921
- Z. Lu, E. Strobach, N. Chen, N. Ferralis, J.C. Grossman, Passive sub-ambient cooling from a transparent evaporation-insulation bilayer. Joule 4(12), 2693–2701 (2020). https://doi.org/10.1016/j.joule.2020.10.005
- H. Zhu, Q. Li, C. Zheng, Y. Hong, Z. Xu et al., High-temperature infrared camouflage with efficient thermal management. Light. Sci. Appl. 9, 60 (2020). https://doi.org/10.1038/s41377-020-0300-5
- P.-H. Lan, C.-W. Hwang, T.-C. Chen, T.-W. Wang, H.-L. Chen et al., Hierarchical ceramic nanofibrous aerogels for universal passive radiative cooling. Adv. Funct. Mater. 34(52), 2410285 (2024). https://doi.org/10.1002/adfm.202410285
- H. Zhai, C. Liu, D. Fan, Q. Li, Dual-encapsulated nanocomposite for efficient thermal buffering in heat-generating radiative cooling. ACS Appl. Mater. Interfaces 14(51), 57215–57224 (2022). https://doi.org/10.1021/acsami.2c13991
- Y. Du, Y. Chen, J. Liu, Y. Liang, X. Yang et al., Boosting thermoelectric generator (TEG) performance with tandem radiative/evaporative/phase change cooler. Nano Energy 128, 109909 (2024). https://doi.org/10.1016/j.nanoen.2024.109909
- C. Feng, P. Yang, H. Liu, M. Mao, Y. Liu et al., Bilayer porous polymer for efficient passive building cooling. Nano Energy 85, 105971 (2021). https://doi.org/10.1016/j.nanoen.2021.105971
- J. Cao, Y. Huang, Z. Chen, H. Yan, M. Chen, Radiative cooling coupled with latent heat storage for dynamic thermal management. Sol. Energy Mater. Sol. Cells 278, 113173 (2024). https://doi.org/10.1016/j.solmat.2024.113173
- W. Lin, X. Yao, N.M. Kumar, W.K. Lo, S.S. Chopra et al., Camel-fur-inspired graphite-based hygroscopic membrane for passive air cooling with ultrahigh cooling power. Adv. Energy Mater. 14(16), 2303470 (2024). https://doi.org/10.1002/aenm.202303470
- Q. Xin, B. Ma, J. Ru, Y. Zhou, D. Jing, Efficient passive cooling over a novel bifunctional polymer bilayer composite simultaneously possessing radiative and evaporative cooling properties. Adv. Energy Mater. 15(14), 2404122 (2025). https://doi.org/10.1002/aenm.202404122
- J. Li, X. Wang, D. Liang, N. Xu, B. Zhu et al., A tandem radiative/evaporative cooler for weather-insensitive and high-performance daytime passive cooling. Sci. Adv. 8(32), eabq0411 (2022). https://doi.org/10.1126/sciadv.abq0411
- Q. Zhang, T. Wang, R. Du, J. Zheng, H. Wei et al., Highly stable polyimide composite nanofiber membranes with spectrally selective for passive daytime radiative cooling. ACS Appl. Mater. Interf. 16(30), 40069–40076 (2024). https://doi.org/10.1021/acsami.4c09549
- F. Xie, W. Jin, J.R. Nolen, H. Pan, N. Yi et al., Subambient daytime radiative cooling of vertical surfaces. Science 386(6723), 788–794 (2024). https://doi.org/10.1126/science.adn2524
- R. Wu, C. Sui, T.-H. Chen, Z. Zhou, Q. Li et al., Spectrally engineered textile for radiative cooling against urban heat islands. Science 384(6701), 1203–1212 (2024). https://doi.org/10.1126/science.adl0653
- C. Lin, Y. Li, C. Chi, Y.S. Kwon, J. Huang et al., A solution-processed inorganic emitter with high spectral selectivity for efficient subambient radiative cooling in hot humid climates. Adv. Mater. 34(12), 2109350 (2022). https://doi.org/10.1002/adma.202109350
- Y. Tian, X. Liu, J. Li, A. Caratenuto, S. Zhou et al., Scalable, fire-retardant, and spectrally robust melamine-formaldehyde photonic bulk for efficient daytime radiative cooling. Appl. Mater. Today 24, 101103 (2021). https://doi.org/10.1016/j.apmt.2021.101103
- X. Wu, J. Li, Q. Jiang, W. Zhang, B. Wang et al., An all-weather radiative human body cooling textile. Nat. Sustain. 6(11), 1446–1454 (2023). https://doi.org/10.1038/s41893-023-01200-x
- X. Liu, M. Zhang, Y. Hou, Y. Pan, C. Liu et al., Hierarchically superhydrophobic stereo-complex poly (lactic acid) aerogel for daytime radiative cooling. Adv. Funct. Mater. 32(46), 2207414 (2022). https://doi.org/10.1002/adfm.202207414
- H. Liu, J. Yu, S. Zhang, B. Ding, Air-conditioned masks using nanofibrous networks for daytime radiative cooling. Nano Lett. 22(23), 9485–9492 (2022). https://doi.org/10.1021/acs.nanolett.2c03585
- X.-E. Wu, Y. Wang, X. Liang, Y. Zhang, P. Bi et al., Durable radiative cooling multilayer silk textile with excellent comprehensive performance. Adv. Funct. Mater. 34(11), 2313539 (2024). https://doi.org/10.1002/adfm.202313539
- Y. Jung, M. Kim, S. Jeong, S. Hong, S.H. Ko, Strain-insensitive outdoor wearable electronics by thermally robust nanofibrous radiative cooler. ACS Nano 18(3), 2312–2324 (2024). https://doi.org/10.1021/acsnano.3c10241
- J. Li, Y. Liang, W. Li, N. Xu, B. Zhu et al., Protecting ice from melting under sunlight via radiative cooling. Sci. Adv. 8(6), eabj9756 (2022). https://doi.org/10.1126/sciadv.abj9756
- H. Fan, K. Wang, Y. Ding, Y. Qiang, Z. Yang et al., Core–shell composite nanofibers with high temperature resistance, hydrophobicity and breathability for efficient daytime passive radiative cooling. Adv. Mater. 36(40), 2406987 (2024). https://doi.org/10.1002/adma.202406987
- X. Meng, Z. Chen, C. Qian, Q. Li, X. Chen, Durable and mechanically robust superhydrophobic radiative cooling coating. Chem. Eng. J. 478, 147341 (2023). https://doi.org/10.1016/j.cej.2023.147341
- J. Xu, F. Liang, Z. Wang, X. Chao, Y. Gu et al., A durable, breathable, and weather-adaptive coating driven by p self-assembly for radiative cooling and energy harvesting. Nano Energy 124, 109489 (2024). https://doi.org/10.1016/j.nanoen.2024.109489
- G. Li, J. Huang, J. Zhou, Y. Zhang, C. Zhang et al., A flame-retardant wood-based composite with magnesium–aluminium layered double hydroxides for efficient daytime radiative cooling. J. Mater. Chem. A 12(3), 1609–1616 (2024). https://doi.org/10.1039/D3TA06065A
- Z. Cheng, H. Han, F. Wang, Y. Yan, X. Shi et al., Efficient radiative cooling coating with biomimetic human skin wrinkle structure. Nano Energy 89, 106377 (2021). https://doi.org/10.1016/j.nanoen.2021.106377
- W. Heng, S. Yin, J. Min, C. Wang, H. Han et al., A smart mask for exhaled breath condensate harvesting and analysis. Science 385(6712), 954–961 (2024). https://doi.org/10.1126/science.adn6471
- P. Yao, Z. Chen, T. Liu, X. Liao, Z. Yang et al., Spider-silk-inspired nanocomposite polymers for durable daytime radiative cooling. Adv. Mater. 34(51), e2208236 (2022). https://doi.org/10.1002/adma.202208236
- X. Cai, L. Gao, J. Wang, D. Li, MOF-integrated hierarchical composite fiber for efficient daytime radiative cooling and antibacterial protective textiles. ACS Appl. Mater. Interfaces 15(6), 8537–8545 (2023). https://doi.org/10.1021/acsami.2c21832
- B.-B. Li, G.-L. Zhang, Q.-K. Xue, P. Luo, X. Zhao et al., Rational design and fine fabrication of passive daytime radiative cooling textiles integrate antibacterial, UV-shielding, and self-cleaning characteristics. ACS Appl. Mater. Interfaces 16(39), 52633–52644 (2024). https://doi.org/10.1021/acsami.4c10161
- Y. Xin, W. Gao, C. Zhang, Y. Chen, Scalable and sustainable radiative cooling enabled by renewable poplar catkin-derived films. Energy 290, 130186 (2024). https://doi.org/10.1016/j.energy.2023.130186
- Y. Chen, B. Dang, J. Fu, C. Wang, C. Li et al., Cellulose-based hybrid structural material for radiative cooling. Nano Lett. 21(1), 397–404 (2021). https://doi.org/10.1021/acs.nanolett.0c03738
- Y. Li, G. Zhang, K. Xu, M. Wu, H. Guo et al., A micro-sandwich-structured membrane with high solar reflectivity for durable radiative cooling. Matter 7(12), 4297–4308 (2024). https://doi.org/10.1016/j.matt.2024.08.020
- Y. Zhang, X. Du, J. Huangfu, K. Chen, X. Han et al., Self-cleaning PTFE nanofiber membrane for long-term passive daytime radiative cooling. Chem. Eng. J. 490, 151831 (2024). https://doi.org/10.1016/j.cej.2024.151831
- L. Li, Q. Zhang, G. Liu, R. Shi, H. Zhao et al., Durable hybrid metamaterial with hierarchically porous structure for efficient passive daytime radiative cooling. Chem. Eng. J. 498, 155516 (2024). https://doi.org/10.1016/j.cej.2024.155516
- C. Cai, F. Chen, Z. Wei, C. Ding, Y. Chen et al., Large scalable, anti-ultraviolet, strong cellulose film with well-defined dual-pores for longtime daytime radiative cooling. Chem. Eng. J. 476, 146668 (2023). https://doi.org/10.1016/j.cej.2023.146668
- Z. Yang, T. Chen, X. Tang, F. Xu, J. Zhang, Hierarchical fabric emitter for highly efficient passive radiative heat release. Adv. Fiber Mater. 5(4), 1367–1377 (2023). https://doi.org/10.1007/s42765-023-00271-x
- X. Li, L. Pattelli, Z. Ding, M. Chen, T. Zhao et al., A novel BST@TPU membrane with superior UV durability for highly efficient daytime radiative cooling. Adv. Funct. Mater. 34(23), 2315315 (2024). https://doi.org/10.1002/adfm.202315315
- J. Zhou, C. Ding, X. Zhang, D. Li, D. Yang et al., High-durable, radiative-cooling, and heat-insulating flexible films enabled by a bioinspired Dictyophora-like structure. ACS Appl. Mater. Interfaces (2023). https://doi.org/10.1021/acsami.3c14310
- X. Zhou, Y. Xu, D. Zhang, M. Huang, M. Liu, Robust and wear-durable coating based on halloysite nanotubes/polymer composite for passive daytime radiative cooling. Compos. Sci. Technol. 251, 110566 (2024). https://doi.org/10.1016/j.compscitech.2024.110566
- L. Qi, W. Cai, T. Cui, L. Chen, J. Gao et al., Enhanced radiative cooling and flame retardancy through phosphate-linked hollow metal-organic framework spheres. Chem. Eng. J. 507, 160469 (2025). https://doi.org/10.1016/j.cej.2025.160469
- J. Song, W. Zhang, Z. Sun, M. Pan, F. Tian et al., Durable radiative cooling against environmental aging. Nat. Commun. 13, 4805 (2022). https://doi.org/10.1038/s41467-022-32409-7
- J. Xu, X. Wu, Y. Li, S. Zhao, F. Lan et al., High-performance radiative cooling sunscreen. Nano Lett. 24(47), 15178–15185 (2024). https://doi.org/10.1021/acs.nanolett.4c04969
- M. Li, C. Lin, K. Li, W. Ma, B. Dopphoopha et al., A UV-reflective organic–inorganic tandem structure for efficient and durable daytime radiative cooling in harsh climates. Small 19(29), 2301159 (2023). https://doi.org/10.1002/smll.202301159
- Y. Sun, H. He, X. Huang, Z. Guo, Superhydrophobic SiO2-glass bubbles composite coating for stable and highly efficient daytime radiative cooling. ACS Appl. Mater. Interfaces 15(3), 4799–4813 (2023). https://doi.org/10.1021/acsami.2c18774
- X. Li, J. Peoples, P. Yao, X. Ruan, Ultrawhite BaSO4 paints and films for remarkable daytime subambient radiative cooling. ACS Appl. Mater. Interfaces 13(18), 21733–21739 (2021). https://doi.org/10.1021/acsami.1c02368
- S. Li, X. Zhang, Y. Yang, X. Li, H. Xu et al., An inorganic water-based paint for high-durability passive radiative cooling. J. Mater. Chem. C 13(8), 4137–4144 (2025). https://doi.org/10.1039/d4tc04108a
- Y. Liu, X. Bu, T. Yu, X. Wang, M. He et al., Design and scalable fabrication of core-shell nanospheres embedded spectrally selective single-layer coatings for durable daytime radiative cooling. Sol. Energy Mater. Sol. Cells 260, 112493 (2023). https://doi.org/10.1016/j.solmat.2023.112493
- H. Kang, Y. Qiao, Y. Li, W. Qin, X. Wu, Keep cool: polyhedral ZnO@ZIF-8 polymer coatings for daytime radiative cooling. Ind. Eng. Chem. Res. 59(34), 15226–15232 (2020). https://doi.org/10.1021/acs.iecr.0c01178
- J. Zhao, Q. Meng, Y. Li, Z. Yang, J. Li, Structural porous ceramic for efficient daytime subambient radiative cooling. ACS Appl. Mater. Interfaces 15(40), 47286–47293 (2023). https://doi.org/10.1021/acsami.3c10772
- Y. Xin, Q. Wang, C. Fu, S. Du, L. Hou et al., Alumina fiber membrane prepared by electrospinning technology for passive daytime radiative cooling. Adv. Funct. Mater. 35(3), 2413813 (2025). https://doi.org/10.1002/adfm.202413813
- Y. Tian, X. Liu, Z. Wang, J. Li, Y. Mu et al., Subambient daytime cooling enabled by hierarchically architected all-inorganic metapaper with enhanced thermal dissipation. Nano Energy 96, 107085 (2022). https://doi.org/10.1016/j.nanoen.2022.107085
- X. Zhao, T. Li, H. Xie, H. Liu, L. Wang et al., A solution-processed radiative cooling glass. Science 382(6671), 684–691 (2023). https://doi.org/10.1126/science.adi2224
- K. Lin, S. Chen, Y. Zeng, T.C. Ho, Y. Zhu et al., Hierarchically structured passive radiative cooling ceramic with high solar reflectivity. Science 382(6671), 691–697 (2023). https://doi.org/10.1126/science.adi4725
- U. Banik, A. Agrawal, H. Meddeb, O. Sergeev, N. Reininghaus et al., Efficient thin polymer coating as a selective thermal emitter for passive daytime radiative cooling. ACS Appl. Mater. Interfaces 13(20), 24130–24137 (2021). https://doi.org/10.1021/acsami.1c04056
- X. Wang, D. Liu, Z. Wan, Z. Wang, J. Yu et al., A gradient nanoporous radiative cooling ceramic with high spectral selectivity. Chem. Eng. J. 500, 157344 (2024). https://doi.org/10.1016/j.cej.2024.157344
- M.-T. Tsai, S.-W. Chang, Y.-J. Chen, H.-L. Chen, P.-H. Lan et al., Scalable, flame-resistant, superhydrophobic ceramic metafibers for sustainable all-day radiative cooling. Nano Today 48, 101745 (2023). https://doi.org/10.1016/j.nantod.2022.101745
- N.N. Shi, C.-C. Tsai, F. Camino, G.D. Bernard, N. Yu et al., Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science 349(6245), 298–301 (2015). https://doi.org/10.1126/science.aab3564
- C. Ma, Y. Gao, Y. Cao, Y. Yang, W. Wang et al., Hierarchically core-shell nanofiber textiles for personal cooling in hot and humid conditions. Nano Energy 123, 109400 (2024). https://doi.org/10.1016/j.nanoen.2024.109400
- Y. Sun, Y. Ji, M. Javed, X. Li, Z. Fan et al., Preparation of passive daytime cooling fabric with the synergistic effect of radiative cooling and evaporative cooling. Adv. Mater. Technol. 7(3), 2100803 (2022). https://doi.org/10.1002/admt.202100803
- J. Xu, J. Qiu, Effect of global climate change on the sub-ambient radiative cooling performance of ideal coolers in different environments. Int. Commun. Heat Mass Transf. 163, 108705 (2025). https://doi.org/10.1016/j.icheatmasstransfer.2025.108705
- W. Tang, Y. Zhan, J. Yang, X. Meng, X. Zhu et al., Cascaded heteroporous nanocomposites for thermo-adaptive passive radiation cooling. Adv. Mater. 36(36), e2310923 (2024). https://doi.org/10.1002/adma.202310923
- A. Leroy, B. Bhatia, C.C. Kelsall, A. Castillejo-Cuberos, H. Di Capua et al., High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel. Sci. Adv. 5(10), eaat9480 (2019). https://doi.org/10.1126/sciadv.aat9480
- J. Yuan, H. Yin, D. Yuan, Y. Yang, S. Xu, On daytime radiative cooling using spectrally selective metamaterial based building envelopes. Energy 242, 122779 (2022). https://doi.org/10.1016/j.energy.2021.122779
- Z.F. Mira, S.-Y. Heo, D.H. Kim, G.J. Lee, Y.M. Song, Multilayer selective passive daytime radiative cooler optimization utilizing memetic algorithm. J. Quant. Spectrosc. Radiat. Transf. 272, 107774 (2021). https://doi.org/10.1016/j.jqsrt.2021.107774
- H. Yin, H. Yao, Y. Jia, J. Wang, C. Fan, Realization of efficient radiative cooling in thermal emitter with inorganic metamaterials. J. Phys. D Appl. Phys. 54(34), 345501 (2021). https://doi.org/10.1088/1361-6463/ac0659
- Y. Wang, X. Zhang, S. Liu, Y. Liu, Q. Zhou et al., Thermal-rectified gradient porous polymeric film for solar-thermal regulatory cooling. Adv. Mater. 36(26), e2400102 (2024). https://doi.org/10.1002/adma.202400102
- Y. Yu, L. Wei, Z. Pang, J. Wu, Y. Dong et al., Multifunctional wood composite aerogel with integrated radiant cooling and fog–water harvesting for all-day building energy conservation. Adv. Funct. Mater. 35(5), 2414590 (2025). https://doi.org/10.1002/adfm.202414590
- Y. Liu, X. Bu, R. Liu, M. Feng, Z. Zhang et al., Robust fluorinated cellulose composite aerogels incorporating radiative cooling and thermal insulation for regionally adaptable building thermal management. Int. J. Biol. Macromol. 292, 139239 (2025). https://doi.org/10.1016/j.ijbiomac.2024.139239
- H. Zhong, Y. Li, P. Zhang, S. Gao, B. Liu et al., Hierarchically hollow microfibers as a scalable and effective thermal insulating cooler for buildings. ACS Nano 15(6), 10076–10083 (2021). https://doi.org/10.1021/acsnano.1c01814
- M. Qin, H. Han, F. Xiong, Z. Shen, Y. Jin et al., Vapor exchange induced ps-based sponge for scalable and efficient daytime radiative cooling. Adv. Funct. Mater. 33(44), 2304073 (2023). https://doi.org/10.1002/adfm.202304073
- C. Cai, W. Chen, Z. Wei, C. Ding, B. Sun et al., Bioinspired “aerogel grating” with metasurfaces for durable daytime radiative cooling for year-round energy savings. Nano Energy 114, 108625 (2023). https://doi.org/10.1016/j.nanoen.2023.108625
- L. Zhou, J. Rada, H. Zhang, H. Song, S. Mirniaharikandi et al., Sustainable and inexpensive polydimethylsiloxane sponges for daytime radiative cooling. Adv. Sci. 8(23), e2102502 (2021). https://doi.org/10.1002/advs.202102502
- M. Yang, W. Zou, J. Guo, Z. Qian, H. Luo et al., Bioinspired “skin” with cooperative thermo-optical effect for daytime radiative cooling. ACS Appl. Mater. Interfaces 12(22), 25286–25293 (2020). https://doi.org/10.1021/acsami.0c03897
- J. Fei, D. Han, X. Zhang, K. Li, N. Lavielle et al., Ultrahigh passive cooling power in hydrogel with rationally designed optofluidic properties. Nano Lett. 24(2), 623–631 (2024). https://doi.org/10.1021/acs.nanolett.3c03694
- X. Hu, P. Hu, L. Liu, L. Zhao, S. Dou et al., Lightweight and hierarchically porous hydrogels for wearable passive cooling under extreme heat stress. Matter 7(12), 4398–4409 (2024). https://doi.org/10.1016/j.matt.2024.09.008
- Z. Hu, Y. Qiu, J. Zhou, Q. Li, Smart flexible porous bilayer for all-day dynamic passive cooling. Small Sci. 4(3), 2300237 (2024). https://doi.org/10.1002/smsc.202300237
- X. Liu, P. Li, Y. Liu, C. Zhang, M. He et al., Hybrid passive cooling for power equipment enabled by metal-organic framework. Adv. Mater. 36(45), e2409473 (2024). https://doi.org/10.1002/adma.202409473
- C. Fan, Y. Zhang, Z. Long, A. Mensah, Q. Wang et al., Dynamically tunable subambient daytime radiative cooling metafabric with Janus wettability. Adv. Funct. Mater. 33(29), 2300794 (2023). https://doi.org/10.1002/adfm.202300794
- B. Gu, F. Fan, Q. Xu, D. Shou, D. Zhao, A nano-structured bilayer asymmetric wettability textile for efficient personal thermal and moisture management in high-temperature environments. Chem. Eng. J. 461, 141919 (2023). https://doi.org/10.1016/j.cej.2023.141919
- Y. Wang, Z. Wang, H. Huang, Y. Li, W. Zhai, A camel-fur-inspired micro-extrusion foaming porous elastic fiber for all-weather dual-mode human thermal regulation. Adv. Sci. 11(43), 2407260 (2024). https://doi.org/10.1002/advs.202407260
- L. Xu, D.-W. Sun, Y. Tian, L. Sun, Z. Zhu, Cactus-inspired bilayer cooler for high-performance and long-term daytime passive cooling. Chem. Eng. J. 489, 151258 (2024). https://doi.org/10.1016/j.cej.2024.151258
- M. Qin, K. Jia, A. Usman, S. Han, F. Xiong et al., High-efficiency thermal-shock resistance enabled by radiative cooling and latent heat storage. Adv. Mater. 36(25), 2314130 (2024). https://doi.org/10.1002/adma.202314130
- P. Li, Y. Liu, X. Liu, A. Wang, W. Liu et al., Reversed yolk–shell dielectric scatterers for advanced radiative cooling. Adv. Funct. Mater. 34(23), 2315658 (2024). https://doi.org/10.1002/adfm.202315658
- S. Wang, M. Wu, H. Han, R. Du, Z. Zhao et al., Regulating cold energy from the universe by bifunctional phase change materials for sustainable cooling. Adv. Energy Mater. 14(45), 2402667 (2024). https://doi.org/10.1002/aenm.202402667
- Z. Yan, H. Zhai, D. Fan, Q. Li, A trimode textile designed with hierarchical core-shell nanofiber structure for all-weather radiative personal thermal management. Nano Today 51, 101897 (2023). https://doi.org/10.1016/j.nantod.2023.101897
- B. Gu, Z. Dai, H. Pan, D. Zhao, Integration of prolonged phase-change thermal storage material and radiative cooling textile for personal thermal management. Chem. Eng. J. 493, 152637 (2024). https://doi.org/10.1016/j.cej.2024.152637
- W. Jiang, T. Zhu, J. Chen, Q. Liu, Y. Liu et al., Phase change foam with temperature-adaptive radiative cooling feature for all-day building energy saving. Chem. Eng. J. 502, 157862 (2024). https://doi.org/10.1016/j.cej.2024.157862
- X. Zhang, T. Zuo, M. Ai, D. Yu, W. Wang, All-in-one cast-molded hydrophobic silicon dioxide-phase change microcapsule/gelatin-hydroxyethyl cellulose composite aerogel for building cooling. ACS Sustain. Chem. Eng. 12(28), 10423–10435 (2024). https://doi.org/10.1021/acssuschemeng.4c02060
- Z. Zhu, A. Bashir, X. Wu, C. Liu, Y. Zhang et al., Highly integrated phase change and radiative cooling fiber membrane for adaptive personal thermal regulation. Adv. Funct. Mater. 35(9), 2416111 (2025). https://doi.org/10.1002/adfm.202416111
- B. Khalichi, A. Ghobadi, A. Kalantari Osgouei, Z. Rahimian Omam, H. Kocer et al., Phase-change Fano resonator for active modulation of thermal emission. Nanoscale 15(25), 10783–10793 (2023). https://doi.org/10.1039/d3nr00673e
- B. Qin, Y. Zhu, Y. Zhou, M. Qiu, Q. Li, Whole-infrared-band camouflage with dual-band radiative heat dissipation. Light Sci. Appl. 12(1), 246 (2023). https://doi.org/10.1038/s41377-023-01287-z
- X. Wang, Y. Tang, Y. Wang, L. Ke, X. Ye et al., Leather enabled multifunctional thermal camouflage armor. Chem. Eng. Sci. 196, 64–71 (2019). https://doi.org/10.1016/j.ces.2018.12.005
- L. Wang, Y. Yang, X. Tang, B. Li, Y. Hu et al., Combined multi-band infrared camouflage and thermal management via a simple multilayer structure design. Opt. Lett. 46(20), 5224–5227 (2021). https://doi.org/10.1364/OL.441605
- H. Zhu, Q. Li, C. Tao, Y. Hong, Z. Xu et al., Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nat. Commun. 12(1), 1805 (2021). https://doi.org/10.1038/s41467-021-22051-0
- L. Peng, D. Liu, H. Cheng, S. Zhou, M. Zu, A multilayer film based selective thermal emitter for infrared stealth technology. Adv. Opt. Mater. 6(23), 1801006 (2018). https://doi.org/10.1002/adom.201801006
- W. Zhang, G. Xu, J. Zhang, H. Wang, H. Hou, Infrared spectrally selective low emissivity from Ge/ZnS one-dimensional heterostructure photonic crystal. Opt. Mater. 37, 343–346 (2014). https://doi.org/10.1016/j.optmat.2014.06.023
- X. Jiang, H. Yuan, X. He, T. Du, H. Ma et al., Implementing of infrared camouflage with thermal management based on inverse design and hierarchical metamaterial. Nanophotonics 12(10), 1891–1902 (2023). https://doi.org/10.1515/nanoph-2023-0067
- K.C.S. Ly, X. Liu, X. Song, C. Xiao, P. Wang et al., A dual-mode infrared asymmetric photonic structure for all-season passive radiative cooling and heating. Adv. Funct. Mater. 32(31), 2203789 (2022). https://doi.org/10.1002/adfm.202203789
- P. Wang, H. Wang, Y. Sun, M. Zhang, S. Chen et al., Transparent grating-based metamaterials for dynamic infrared radiative regulation smart windows. Phys. Chem. Chem. Phys. 26(22), 16253–16260 (2024). https://doi.org/10.1039/d4cp01245c
- D. Liu, Y. Xu, Y. Xuan, Fabry-Perot-resonator-coupled metal pattern metamaterial for infrared suppression and radiative cooling. Appl. Opt. 59(23), 6861–6867 (2020). https://doi.org/10.1364/AO.392310
- K. Yu, W. Zhang, M. Qian, P. Shen, Y. Liu, Multiband metamaterial emitters for infrared and laser compatible stealth with thermal management based on dissipative dielectrics. Photon. Res. 11(2), 290 (2023). https://doi.org/10.1364/prj.476109
- X. Liu, P. Wang, C. Xiao, L. Fu, H. Zhou et al., A bioinspired bilevel metamaterial for multispectral manipulation toward visible, multi-wavelength detection lasers and mid-infrared selective radiation. Adv. Mater. 35(41), 2302844 (2023). https://doi.org/10.1002/adma.202302844
- Z. Qin, C. Zhang, Z. Liang, D. Meng, X. Shi et al., Thin multispectral camouflage absorber based on metasurfaces with wide infrared radiative cooling window. Adv. Photonics Res. 3(5), 2100215 (2022). https://doi.org/10.1002/adpr.202100215
- X. Liu, P. Wang, C. Xiao, L. Fu, J. Xu et al., Compatible stealth metasurface for laser and infrared with radiative thermal engineering enabled by machine learning. Adv. Funct. Mater. 33(11), 2212068 (2023). https://doi.org/10.1002/adfm.202212068
- S. Dang, H. Ye, A visible-infrared-compatible camouflage photonic crystal with heat dissipation by radiation in 5–8 μm. Cell Rep. Phys. Sci. 2(11), 100617 (2021). https://doi.org/10.1016/j.xcrp.2021.100617
- J. Zhou, Z. Zhan, F. Zhu, Y. Han, Preparation of flexible wavelength-selective metasurface for infrared radiation regulation. ACS Appl. Mater. Interf. 15(17), 21629–21639 (2023). https://doi.org/10.1021/acsami.3c01452
- Z. Deng, W. Hu, P. Zhou, L. Huang, T. Wang et al., Broadband tunable laser and infrared camouflage by wavelength-selective scattering metamaterial with radiative thermal management. Opt. Lett. 49(4), 935–938 (2024). https://doi.org/10.1364/OL.512245
- T. Inamori, N. Ozaki, P. Saisutjarit, H. Ohsaki, Passive radiative cooling of a HTS coil for attitude orbit control in micro-spacecraft. Adv. Space Res. 55(4), 1211–1221 (2015). https://doi.org/10.1016/j.asr.2014.10.035
- K.A.J. Doherty, B. Twomey, S. McGlynn, N. MacAuliffe, A. Norman et al., High-temperature solar reflector coating for the solar orbiter. J. Spacecr. Rockets 53(6), 1077–1084 (2016). https://doi.org/10.2514/1.a33561
- X.-F. Pan, B. Wu, H.-L. Gao, S.-M. Chen, Y. Zhu et al., Double-layer nacre-inspired polyimide-Mica nanocomposite films with excellent mechanical stability for LEO environmental conditions. Adv. Mater. 34(2), 2105299 (2022). https://doi.org/10.1002/adma.202105299
- A.K. Sharma, N. Sridhara, Degradation of thermal control materials under a simulated radiative space environment. Adv. Space Res. 50(10), 1411–1424 (2012). https://doi.org/10.1016/j.asr.2012.07.010
- K.A. Watson, F.L. Palmieri, J.W. Connell, Space environmentally stable polyimides and copolyimides derived from [2, 4-bis(3-aminophenoxy)phenyl] diphenylphosphine oxide. Macromolecules 35(13), 4968–4974 (2002). https://doi.org/10.1021/ma0201779
- Y. Zhang, J. Yu, In situ formation of SiO2 nanospheres on common fabrics for broadband radiative cooling. ACS Appl. Nano Mater. 4(10), 11260–11268 (2021). https://doi.org/10.1021/acsanm.1c02841
- M. Liu, X. Li, L. Li, L. Li, S. Zhao et al., Continuous photothermal and radiative cooling energy harvesting by VO2 smart coatings with switchable broadband infrared emission. ACS Nano 17(10), 9501–9509 (2023). https://doi.org/10.1021/acsnano.3c01755
- G. Chen, Y. Wang, Y. Zou, H. Wang, J. Qiu et al., Hexagonal boron nitride and alumina dual-layer coating for space solar thermal shielding. Chem. Eng. J. 421, 127802 (2021). https://doi.org/10.1016/j.cej.2020.127802
- C. Ibekwe, X. Wang, B.N. Bolzani, C. O’Brien, C.J. Waataja et al., Synthesis, optical performance characterization, and durability of electrospun PTFE-PEO materials for space applications. ACS Appl. Mater. Interfaces 16(25), 32587–32598 (2024). https://doi.org/10.1021/acsami.4c02463
- G. Chen, Y. Wang, J. Qiu, J. Cao, Y. Zou et al., Robust inorganic daytime radiative cooling coating based on a phosphate geopolymer. ACS Appl. Mater. Interf. 12(49), 54963–54971 (2020). https://doi.org/10.1021/acsami.0c15799
- W. Xiao, P. Dai, H.J. Singh, I.A. Ajia, X. Yan et al., Flexible thin film optical solar reflectors with Ta2O5-based multimaterial coatings for space radiative cooling. APL Photonics 8(9), 090802 (2023). https://doi.org/10.1063/5.0156526
- Z. Ding, X. Li, H. Zhang, D. Yan, J. Werlé et al., Robust radiative cooling via surface phonon coupling-enhanced emissivity from SiO2 micropillar arrays. Int. J. Heat Mass Transf. 220, 125004 (2024). https://doi.org/10.1016/j.ijheatmasstransfer.2023.125004
- C. Fu, M. Zhu, D. Liu, D. Zhao, X. Zhang, Multilayer nanop-polymer metamaterial for radiative cooling of the stratospheric airship. Adv. Space Res. 72(2), 541–551 (2023). https://doi.org/10.1016/j.asr.2023.03.004
- Y. Peng, J. Dong, Y. Gu, Y. Zhang, J. Long et al., Smart temperature-adaptive thermal regulation textiles integrating passive radiative cooling and reversible heat storage. Nano Energy 131, 110311 (2024). https://doi.org/10.1016/j.nanoen.2024.110311
- R. Liu, K. Xia, T. Yu, F. Gao, Q. Zhang et al., Multifunctional smart fabrics with integration of self-cleaning, energy harvesting, and thermal management properties. ACS Nano 18(45), 31085–31097 (2024). https://doi.org/10.1021/acsnano.4c08324
- K. Zhu, H. Yao, J. Song, Q. Liao, S. He et al., Temperature-adaptive dual-modal photonic textiles for thermal management. Sci. Adv. 10(41), eadr2062 (2024). https://doi.org/10.1126/sciadv.adr2062
- X.A. Zhang, S. Yu, B. Xu, M. Li, Z. Peng et al., Dynamic gating of infrared radiation in a textile. Science 363(6427), 619–623 (2019). https://doi.org/10.1126/science.aau1217
- Y. Ding, Z. Mei, X. Wu, W. Zhang, Y. Zhang et al., Integrated multispectral modulator with efficient radiative cooling for innovative thermal camouflage. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202500122
- S. Yang, Q. Li, B. Du, Y. Ying, Y. Zeng et al., Photothermal superhydrophobic copper nanowire assemblies: fabrication and deicing/defrosting applications. Int. J. Extrem. Manuf. 5(4), 045501 (2023). https://doi.org/10.1088/2631-7990/acef78
- J. Yong, Q. Yang, J. Huo, X. Hou, F. Chen, Underwater gas self-transportation along femtosecond laser-written open superhydrophobic surface microchannels (<100 µm) for bubble/gas manipulation. Int. J. Extrem. Manuf. 4(1), 015002 (2022). https://doi.org/10.1088/2631-7990/ac466f
- J. Mandal, Y. Fu, A.C. Overvig, M. Jia, K. Sun et al., Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362(6412), 315–319 (2018). https://doi.org/10.1126/science.aat9513
- N. Guo, C. Shi, N. Warren, E.A. Sprague-Klein, B.W. Sheldon et al., Challenges and opportunities for passive thermoregulation. Adv. Energy Mater. 14(34), 2401776 (2024). https://doi.org/10.1002/aenm.202401776
- B.-X. Li, Z. Luo, W.-G. Yang, H. Sun, Y. Ding et al., Adaptive and adjustable MXene/reduced graphene oxide hybrid aerogel composites integrated with phase-change material and thermochromic coating for synchronous visible/infrared camouflages. ACS Nano 17(7), 6875–6885 (2023). https://doi.org/10.1021/acsnano.3c00573
- B.-X. Li, Z. Luo, H. Sun, Q. Quan, S. Zhou et al., Spectral-selective and adjustable patterned polydimethylsiloxane/MXene/nanoporous polytetrafluoroethylene metafabric for dynamic infrared camouflage and thermal regulation. Adv. Funct. Mater. 34(45), 2407644 (2024). https://doi.org/10.1002/adfm.202407644
- Z. Lei, B. Wu, P. Wu, Hierarchical network-augmented hydroglasses for broadband light management. Research 2021, 4515164 (2021). https://doi.org/10.34133/2021/4515164
- Y. Hu, H. Liu, B. Yang, K. Shi, M. Antezza et al., Enhanced near-field radiative heat transfer between core-shell nanops through surface modes hybridization. Fundam. Res. 4(5), 1092–1099 (2024). https://doi.org/10.1016/j.fmre.2023.03.021
- H. Yin, X. Zhou, Z. Zhou, R. Liu, X. Mo et al., Switchable kirigami structures as window envelopes for energy-efficient buildings. Research 6, 0103 (2023). https://doi.org/10.34133/research.0103
- M. Li, D. Liu, H. Cheng, L. Peng, M. Zu, Manipulating metals for adaptive thermal camouflage. Sci. Adv. 6(22), eaba3494 (2020). https://doi.org/10.1126/sciadv.aba3494
- J. Mandal, M. Jia, A. Overvig, Y. Fu, E. Che et al., Porous polymers with switchable optical transmittance for optical and thermal regulation. Joule 3(12), 3088–3099 (2019). https://doi.org/10.1016/j.joule.2019.09.016
- S. Wang, T. Jiang, Y. Meng, R. Yang, G. Tan et al., Scalable thermochromic smart windows with passive radiative cooling regulation. Science 374(6574), 1501–1504 (2021). https://doi.org/10.1126/science.abg0291
- M. Shi, Z. Song, J. Ni, X. Du, Y. Cao et al., Dual-mode porous polymeric films with coral-like hierarchical structure for all-day radiative cooling and heating. ACS Nano 17(3), 2029–2038 (2023). https://doi.org/10.1021/acsnano.2c07293
- S.K. Saju, A.B. Puthirath, S. Wang, T. Tsafack, L.K. Beagle et al., Thermochromic polymer blends. Joule 8(9), 2696–2714 (2024). https://doi.org/10.1016/j.joule.2024.07.020
- K. Sun, W. Xiao, C. Wheeler, M. Simeoni, A. Urbani et al., VO2 metasurface smart thermal emitter with high visual transparency for passive radiative cooling regulation in space and terrestrial applications. Nanophotonics 11(17), 4101–4114 (2022). https://doi.org/10.1515/nanoph-2022-0020
- J.-W. Ma, F.-R. Zeng, X.-C. Lin, Y.-Q. Wang, Y.-H. Ma et al., A photoluminescent hydrogen-bonded biomass aerogel for sustainable radiative cooling. Science 385(6704), 68–74 (2024). https://doi.org/10.1126/science.adn5694
- Y. Zhou, C. Lu, R. Xiong, Hierarchical nanocellulose photonic design for synergistic colored radiative cooling. ACS Nano 19(4), 5029–5039 (2025). https://doi.org/10.1021/acsnano.5c00330
- X. Xue, M. Qiu, Y. Li, Q.M. Zhang, S. Li et al., Creating an eco-friendly building coating with smart subambient radiative cooling. Adv. Mater. 32(42), e1906751 (2020). https://doi.org/10.1002/adma.201906751
- S. Kim, J.H. Park, J.W. Lee, Y. Kim, Y.T. Kang, Self-recovering passive cooling utilizing endothermic reaction of NH4NO3/H2O driven by water sorption for photovoltaic cell. Nat. Commun. 14(1), 2374 (2023). https://doi.org/10.1038/s41467-023-38081-9
- S. Kim, S. Lee, J. Lee, H.W. Choi, W. Choi et al., Passive isothermal film with self-switchable radiative cooling-driven water sorption layer for arid climate applications. Nat. Commun. 15(1), 8000 (2024). https://doi.org/10.1038/s41467-024-52328-z
References
X. Yin, R. Yang, G. Tan, S. Fan, Terrestrial radiative cooling: Using the cold universe as a renewable and sustainable energy source. Science 370(6518), 786–791 (2020). https://doi.org/10.1126/science.abb0971
D. Zhao, A. Aili, Y. Zhai, J. Lu, D. Kidd et al., Subambient cooling of water: toward real-world applications of daytime radiative cooling. Joule 3(1), 111–123 (2019). https://doi.org/10.1016/j.joule.2018.10.006
D. Pan, Z. Han, J. Lei, Y. Niu, H. Liu et al., Core-shell structured BN/SiO2 nanofiber membrane featuring with dual-effect thermal management and flame retardancy for extreme space thermal protection. Sci. Bull. 70(5), 722–732 (2025). https://doi.org/10.1016/j.scib.2025.01.005
C. Lin, K. Li, M. Li, B. Dopphoopha, J. Zheng et al., Pushing radiative cooling technology to real applications. Adv. Mater. (2024). https://doi.org/10.1002/adma.202409738
R. Xu, T. Ye, X. Yue, Z. Yang, W. Yu et al., Global population exposure to landscape fire air pollution from 2000 to 2019. Nature 621(7979), 521–529 (2023). https://doi.org/10.1038/s41586-023-06398-6
L. Lin, X. Yi, H. Liu, R. Meng, S. Li et al., The airway microbiome mediates the interaction between environmental exposure and respiratory health in humans. Nat. Med. 29(7), 1750–1759 (2023). https://doi.org/10.1038/s41591-023-02424-2
J. Wei, J. Wang, Z. Li, S. Kondragunta, S. Anenberg et al., Long-term mortality burden trends attributed to black carbon and PM2·5 from wildfire emissions across the continental USA from 2000 to 2020: a deep learning modelling study. Lancet Planet. Health 7(12), e963–e975 (2023). https://doi.org/10.1016/S2542-5196(23)00235-8
Y. Ying, J. Yu, B. Qin, M. Zhao, T. Zhou et al., Directional thermal emission covering two atmospheric windows. Laser Photonics Rev. 17(11), 2300407 (2023). https://doi.org/10.1002/lpor.202300407
R.H. Galib, Y. Tian, Y. Lei, S. Dang, X. Li et al., Atmospheric-moisture-induced polyacrylate hydrogels for hybrid passive cooling. Nat. Commun. 14(1), 6707 (2023). https://doi.org/10.1038/s41467-023-42548-0
H. Long, S. Lei, F. Wang, S. Yang, H. Ju et al., Superhydrophobic daytime radiative cooling coating incorporated with phase change microcapsules for building thermal regulation. J. Mater. Sci. 59(15), 6459–6475 (2024). https://doi.org/10.1007/s10853-024-09560-1
S.K. Chamoli, W. Li, Visibly transparent multifunctional camouflage coating with efficient thermal management. Opt. Lett. 48(16), 4340–4343 (2023). https://doi.org/10.1364/OL.494539
G.M. Hunt, A.B. Peters, J.B. Spicer, M.E. Thomas, High temperature optical performance of MgO: Y2O3 films for space applications. Int. J. Heat Mass Transf. 222, 125114 (2024). https://doi.org/10.1016/j.ijheatmasstransfer.2023.125114
S. Shrestha, C. Borrero del Pino, U. Malayoglu, Inorganic white thermal-control coatings for extreme space environments. J. Spacecr. Rockets 53(6), 1061–1067 (2016). https://doi.org/10.2514/1.a33508
L. Xu, D.-W. Sun, Y. Tian, T. Fan, Z. Zhu, Nanocomposite hydrogel for daytime passive cooling enabled by combined effects of radiative and evaporative cooling. Chem. Eng. J. 457, 141231 (2023). https://doi.org/10.1016/j.cej.2022.141231
Y. Bai, X. Jia, J. Yang, H. Song, Three birds with one stone strategy: a tri-modal radiator based on the cooling-compensation-heating effect. Nano Energy 127, 109770 (2024). https://doi.org/10.1016/j.nanoen.2024.109770
M. Lian, W. Ding, S. Liu, Y. Wang, T. Zhu et al., Highly porous yet transparent mechanically flexible aerogels realizing solar-thermal regulatory cooling. Nano-Micro Lett. 16(1), 131 (2024). https://doi.org/10.1007/s40820-024-01356-x
W. Xie, C. Xiao, Y. Sun, Y. Fan, B. Zhao et al., Flexible photonic radiative cooling films: fundamentals, fabrication and applications. Adv. Funct. Mater. 33(46), 2305734 (2023). https://doi.org/10.1002/adfm.202305734
W. Gao, Z. Lei, K. Wu, Y. Chen, Reconfigurable and renewable nano-micro-structured plastics for radiative cooling. Adv. Funct. Mater. 31(21), 2100535 (2021). https://doi.org/10.1002/adfm.202100535
H. Zhang, K.C.S. Ly, X. Liu, Z. Chen, M. Yan et al., Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc. Natl. Acad. Sci. U.S.A. 117(26), 14657–14666 (2020). https://doi.org/10.1073/pnas.2001802117
A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515(7528), 540–544 (2014). https://doi.org/10.1038/nature13883
Z. Ding, L. Pattelli, H. Xu, W. Sun, X. Li et al., Iridescent daytime radiative cooling with No absorption peaks in the visible range. Small 18(25), 2202400 (2022). https://doi.org/10.1002/smll.202202400
R. Shanker, P. Ravi Anusuyadevi, S. Gamage, T. Hallberg, H. Kariis et al., Structurally colored cellulose nanocrystal films as transreflective radiative coolers. ACS Nano 16(7), 10156–10162 (2022). https://doi.org/10.1021/acsnano.1c10959
R. Ali Yalçın, E. Blandre, K. Joulain, J. Drévillon, Colored radiative cooling coatings with nanops. ACS Photonics 7(5), 1312–1322 (2020). https://doi.org/10.1021/acsphotonics.0c00513
S. Fan, W. Li, Photonics and thermodynamics concepts in radiative cooling. Nat. Photon. 16(3), 182–190 (2022). https://doi.org/10.1038/s41566-021-00921-9
D. Li, X. Liu, W. Li, Z. Lin, B. Zhu et al., Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat. Nanotechnol. 16(2), 153–158 (2021). https://doi.org/10.1038/s41565-020-00800-4
Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou et al., Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355(6329), 1062–1066 (2017). https://doi.org/10.1126/science.aai7899
Y. Xin, C. Li, W. Gao, Y. Chen, Emerging colored and transparent radiative cooling: fundamentals, progress, and challenges. Mater. Today 83, 355–381 (2025). https://doi.org/10.1016/j.mattod.2024.12.012
X. Wu, J. Li, F. Xie, X.-E. Wu, S. Zhao et al., A dual-selective thermal emitter with enhanced subambient radiative cooling performance. Nat. Commun. 15(1), 815 (2024). https://doi.org/10.1038/s41467-024-45095-4
B.E. Psiloglou, M. Santamouris, D.N. Asimakopoulos, Predicting the broadband transmittance of the uniformly mixed gases (CO2, CO, N2O, CH4 and O2) in the atmosphere, for solar radiation models. Renew. Energy 6(1), 63–70 (1995). https://doi.org/10.1016/0960-1481(94)00062-B
T. Fang, General discussion on displacement law on radiation. Int. Commun. Heat Mass Transf. 30(5), 737–743 (2003). https://doi.org/10.1016/S0735-1933(03)00111-8
X. Sun, Y. Sun, Z. Zhou, M.A. Alam, P. Bermel, Radiative sky cooling: fundamental physics, materials, structures, and applications. Nanophotonics 6(5), 20 (2017). https://doi.org/10.1515/nanoph-2017-0020
Y. Wu, J. Luo, M. Pu, B. Liu, J. Jin et al., Optically transparent infrared selective emitter for visible-infrared compatible camouflage. Opt. Express 30(10), 17259–17269 (2022). https://doi.org/10.1364/OE.457547
S. Jiao, K. Zhao, J. Jiang, K. Zhao, Q. Guo et al., Metasurface with all-optical tunability for spatially-resolved and multilevel thermal radiation. Nanophotonics 13(9), 1645–1655 (2024). https://doi.org/10.1515/nanoph-2024-0005
A. Reicks, A. Tsubaki, M. Anderson, J. Wieseler, L.K. Khorashad et al., Near-unity broadband omnidirectional emissivity via femtosecond laser surface processing. Commun. Mater. 2, 36 (2021). https://doi.org/10.1038/s43246-021-00139-w
K.-T. Lin, J. Han, K. Li, C. Guo, H. Lin et al., Radiative cooling: Fundamental physics, atmospheric influences, materials and structural engineering, applications and beyond. Nano Energy 80, 105517 (2021). https://doi.org/10.1016/j.nanoen.2020.105517
D. Han, C. Wang, C.B. Han, Y. Cui, W.R. Ren et al., Highly optically selective and thermally insulating porous calcium silicate composite SiO2 aerogel coating for daytime radiative cooling. ACS Appl. Mater. Interf. 16(7), 9303–9312 (2024). https://doi.org/10.1021/acsami.3c18101
T.N. Narasimhan, Fourier’s heat conduction equation: History, influence, and connections. Proc. Indian Acad. Sci. (Earth Planet Sci.) 108(3), 117–148 (1999). https://doi.org/10.1007/bf02842327
R. Hu, Y. Liu, S. Shin, S. Huang, X. Ren et al., Emerging materials and strategies for personal thermal management. Adv. Energy Mater. 10(17), 1903921 (2020). https://doi.org/10.1002/aenm.201903921
Z. Lu, E. Strobach, N. Chen, N. Ferralis, J.C. Grossman, Passive sub-ambient cooling from a transparent evaporation-insulation bilayer. Joule 4(12), 2693–2701 (2020). https://doi.org/10.1016/j.joule.2020.10.005
H. Zhu, Q. Li, C. Zheng, Y. Hong, Z. Xu et al., High-temperature infrared camouflage with efficient thermal management. Light. Sci. Appl. 9, 60 (2020). https://doi.org/10.1038/s41377-020-0300-5
P.-H. Lan, C.-W. Hwang, T.-C. Chen, T.-W. Wang, H.-L. Chen et al., Hierarchical ceramic nanofibrous aerogels for universal passive radiative cooling. Adv. Funct. Mater. 34(52), 2410285 (2024). https://doi.org/10.1002/adfm.202410285
H. Zhai, C. Liu, D. Fan, Q. Li, Dual-encapsulated nanocomposite for efficient thermal buffering in heat-generating radiative cooling. ACS Appl. Mater. Interfaces 14(51), 57215–57224 (2022). https://doi.org/10.1021/acsami.2c13991
Y. Du, Y. Chen, J. Liu, Y. Liang, X. Yang et al., Boosting thermoelectric generator (TEG) performance with tandem radiative/evaporative/phase change cooler. Nano Energy 128, 109909 (2024). https://doi.org/10.1016/j.nanoen.2024.109909
C. Feng, P. Yang, H. Liu, M. Mao, Y. Liu et al., Bilayer porous polymer for efficient passive building cooling. Nano Energy 85, 105971 (2021). https://doi.org/10.1016/j.nanoen.2021.105971
J. Cao, Y. Huang, Z. Chen, H. Yan, M. Chen, Radiative cooling coupled with latent heat storage for dynamic thermal management. Sol. Energy Mater. Sol. Cells 278, 113173 (2024). https://doi.org/10.1016/j.solmat.2024.113173
W. Lin, X. Yao, N.M. Kumar, W.K. Lo, S.S. Chopra et al., Camel-fur-inspired graphite-based hygroscopic membrane for passive air cooling with ultrahigh cooling power. Adv. Energy Mater. 14(16), 2303470 (2024). https://doi.org/10.1002/aenm.202303470
Q. Xin, B. Ma, J. Ru, Y. Zhou, D. Jing, Efficient passive cooling over a novel bifunctional polymer bilayer composite simultaneously possessing radiative and evaporative cooling properties. Adv. Energy Mater. 15(14), 2404122 (2025). https://doi.org/10.1002/aenm.202404122
J. Li, X. Wang, D. Liang, N. Xu, B. Zhu et al., A tandem radiative/evaporative cooler for weather-insensitive and high-performance daytime passive cooling. Sci. Adv. 8(32), eabq0411 (2022). https://doi.org/10.1126/sciadv.abq0411
Q. Zhang, T. Wang, R. Du, J. Zheng, H. Wei et al., Highly stable polyimide composite nanofiber membranes with spectrally selective for passive daytime radiative cooling. ACS Appl. Mater. Interf. 16(30), 40069–40076 (2024). https://doi.org/10.1021/acsami.4c09549
F. Xie, W. Jin, J.R. Nolen, H. Pan, N. Yi et al., Subambient daytime radiative cooling of vertical surfaces. Science 386(6723), 788–794 (2024). https://doi.org/10.1126/science.adn2524
R. Wu, C. Sui, T.-H. Chen, Z. Zhou, Q. Li et al., Spectrally engineered textile for radiative cooling against urban heat islands. Science 384(6701), 1203–1212 (2024). https://doi.org/10.1126/science.adl0653
C. Lin, Y. Li, C. Chi, Y.S. Kwon, J. Huang et al., A solution-processed inorganic emitter with high spectral selectivity for efficient subambient radiative cooling in hot humid climates. Adv. Mater. 34(12), 2109350 (2022). https://doi.org/10.1002/adma.202109350
Y. Tian, X. Liu, J. Li, A. Caratenuto, S. Zhou et al., Scalable, fire-retardant, and spectrally robust melamine-formaldehyde photonic bulk for efficient daytime radiative cooling. Appl. Mater. Today 24, 101103 (2021). https://doi.org/10.1016/j.apmt.2021.101103
X. Wu, J. Li, Q. Jiang, W. Zhang, B. Wang et al., An all-weather radiative human body cooling textile. Nat. Sustain. 6(11), 1446–1454 (2023). https://doi.org/10.1038/s41893-023-01200-x
X. Liu, M. Zhang, Y. Hou, Y. Pan, C. Liu et al., Hierarchically superhydrophobic stereo-complex poly (lactic acid) aerogel for daytime radiative cooling. Adv. Funct. Mater. 32(46), 2207414 (2022). https://doi.org/10.1002/adfm.202207414
H. Liu, J. Yu, S. Zhang, B. Ding, Air-conditioned masks using nanofibrous networks for daytime radiative cooling. Nano Lett. 22(23), 9485–9492 (2022). https://doi.org/10.1021/acs.nanolett.2c03585
X.-E. Wu, Y. Wang, X. Liang, Y. Zhang, P. Bi et al., Durable radiative cooling multilayer silk textile with excellent comprehensive performance. Adv. Funct. Mater. 34(11), 2313539 (2024). https://doi.org/10.1002/adfm.202313539
Y. Jung, M. Kim, S. Jeong, S. Hong, S.H. Ko, Strain-insensitive outdoor wearable electronics by thermally robust nanofibrous radiative cooler. ACS Nano 18(3), 2312–2324 (2024). https://doi.org/10.1021/acsnano.3c10241
J. Li, Y. Liang, W. Li, N. Xu, B. Zhu et al., Protecting ice from melting under sunlight via radiative cooling. Sci. Adv. 8(6), eabj9756 (2022). https://doi.org/10.1126/sciadv.abj9756
H. Fan, K. Wang, Y. Ding, Y. Qiang, Z. Yang et al., Core–shell composite nanofibers with high temperature resistance, hydrophobicity and breathability for efficient daytime passive radiative cooling. Adv. Mater. 36(40), 2406987 (2024). https://doi.org/10.1002/adma.202406987
X. Meng, Z. Chen, C. Qian, Q. Li, X. Chen, Durable and mechanically robust superhydrophobic radiative cooling coating. Chem. Eng. J. 478, 147341 (2023). https://doi.org/10.1016/j.cej.2023.147341
J. Xu, F. Liang, Z. Wang, X. Chao, Y. Gu et al., A durable, breathable, and weather-adaptive coating driven by p self-assembly for radiative cooling and energy harvesting. Nano Energy 124, 109489 (2024). https://doi.org/10.1016/j.nanoen.2024.109489
G. Li, J. Huang, J. Zhou, Y. Zhang, C. Zhang et al., A flame-retardant wood-based composite with magnesium–aluminium layered double hydroxides for efficient daytime radiative cooling. J. Mater. Chem. A 12(3), 1609–1616 (2024). https://doi.org/10.1039/D3TA06065A
Z. Cheng, H. Han, F. Wang, Y. Yan, X. Shi et al., Efficient radiative cooling coating with biomimetic human skin wrinkle structure. Nano Energy 89, 106377 (2021). https://doi.org/10.1016/j.nanoen.2021.106377
W. Heng, S. Yin, J. Min, C. Wang, H. Han et al., A smart mask for exhaled breath condensate harvesting and analysis. Science 385(6712), 954–961 (2024). https://doi.org/10.1126/science.adn6471
P. Yao, Z. Chen, T. Liu, X. Liao, Z. Yang et al., Spider-silk-inspired nanocomposite polymers for durable daytime radiative cooling. Adv. Mater. 34(51), e2208236 (2022). https://doi.org/10.1002/adma.202208236
X. Cai, L. Gao, J. Wang, D. Li, MOF-integrated hierarchical composite fiber for efficient daytime radiative cooling and antibacterial protective textiles. ACS Appl. Mater. Interfaces 15(6), 8537–8545 (2023). https://doi.org/10.1021/acsami.2c21832
B.-B. Li, G.-L. Zhang, Q.-K. Xue, P. Luo, X. Zhao et al., Rational design and fine fabrication of passive daytime radiative cooling textiles integrate antibacterial, UV-shielding, and self-cleaning characteristics. ACS Appl. Mater. Interfaces 16(39), 52633–52644 (2024). https://doi.org/10.1021/acsami.4c10161
Y. Xin, W. Gao, C. Zhang, Y. Chen, Scalable and sustainable radiative cooling enabled by renewable poplar catkin-derived films. Energy 290, 130186 (2024). https://doi.org/10.1016/j.energy.2023.130186
Y. Chen, B. Dang, J. Fu, C. Wang, C. Li et al., Cellulose-based hybrid structural material for radiative cooling. Nano Lett. 21(1), 397–404 (2021). https://doi.org/10.1021/acs.nanolett.0c03738
Y. Li, G. Zhang, K. Xu, M. Wu, H. Guo et al., A micro-sandwich-structured membrane with high solar reflectivity for durable radiative cooling. Matter 7(12), 4297–4308 (2024). https://doi.org/10.1016/j.matt.2024.08.020
Y. Zhang, X. Du, J. Huangfu, K. Chen, X. Han et al., Self-cleaning PTFE nanofiber membrane for long-term passive daytime radiative cooling. Chem. Eng. J. 490, 151831 (2024). https://doi.org/10.1016/j.cej.2024.151831
L. Li, Q. Zhang, G. Liu, R. Shi, H. Zhao et al., Durable hybrid metamaterial with hierarchically porous structure for efficient passive daytime radiative cooling. Chem. Eng. J. 498, 155516 (2024). https://doi.org/10.1016/j.cej.2024.155516
C. Cai, F. Chen, Z. Wei, C. Ding, Y. Chen et al., Large scalable, anti-ultraviolet, strong cellulose film with well-defined dual-pores for longtime daytime radiative cooling. Chem. Eng. J. 476, 146668 (2023). https://doi.org/10.1016/j.cej.2023.146668
Z. Yang, T. Chen, X. Tang, F. Xu, J. Zhang, Hierarchical fabric emitter for highly efficient passive radiative heat release. Adv. Fiber Mater. 5(4), 1367–1377 (2023). https://doi.org/10.1007/s42765-023-00271-x
X. Li, L. Pattelli, Z. Ding, M. Chen, T. Zhao et al., A novel BST@TPU membrane with superior UV durability for highly efficient daytime radiative cooling. Adv. Funct. Mater. 34(23), 2315315 (2024). https://doi.org/10.1002/adfm.202315315
J. Zhou, C. Ding, X. Zhang, D. Li, D. Yang et al., High-durable, radiative-cooling, and heat-insulating flexible films enabled by a bioinspired Dictyophora-like structure. ACS Appl. Mater. Interfaces (2023). https://doi.org/10.1021/acsami.3c14310
X. Zhou, Y. Xu, D. Zhang, M. Huang, M. Liu, Robust and wear-durable coating based on halloysite nanotubes/polymer composite for passive daytime radiative cooling. Compos. Sci. Technol. 251, 110566 (2024). https://doi.org/10.1016/j.compscitech.2024.110566
L. Qi, W. Cai, T. Cui, L. Chen, J. Gao et al., Enhanced radiative cooling and flame retardancy through phosphate-linked hollow metal-organic framework spheres. Chem. Eng. J. 507, 160469 (2025). https://doi.org/10.1016/j.cej.2025.160469
J. Song, W. Zhang, Z. Sun, M. Pan, F. Tian et al., Durable radiative cooling against environmental aging. Nat. Commun. 13, 4805 (2022). https://doi.org/10.1038/s41467-022-32409-7
J. Xu, X. Wu, Y. Li, S. Zhao, F. Lan et al., High-performance radiative cooling sunscreen. Nano Lett. 24(47), 15178–15185 (2024). https://doi.org/10.1021/acs.nanolett.4c04969
M. Li, C. Lin, K. Li, W. Ma, B. Dopphoopha et al., A UV-reflective organic–inorganic tandem structure for efficient and durable daytime radiative cooling in harsh climates. Small 19(29), 2301159 (2023). https://doi.org/10.1002/smll.202301159
Y. Sun, H. He, X. Huang, Z. Guo, Superhydrophobic SiO2-glass bubbles composite coating for stable and highly efficient daytime radiative cooling. ACS Appl. Mater. Interfaces 15(3), 4799–4813 (2023). https://doi.org/10.1021/acsami.2c18774
X. Li, J. Peoples, P. Yao, X. Ruan, Ultrawhite BaSO4 paints and films for remarkable daytime subambient radiative cooling. ACS Appl. Mater. Interfaces 13(18), 21733–21739 (2021). https://doi.org/10.1021/acsami.1c02368
S. Li, X. Zhang, Y. Yang, X. Li, H. Xu et al., An inorganic water-based paint for high-durability passive radiative cooling. J. Mater. Chem. C 13(8), 4137–4144 (2025). https://doi.org/10.1039/d4tc04108a
Y. Liu, X. Bu, T. Yu, X. Wang, M. He et al., Design and scalable fabrication of core-shell nanospheres embedded spectrally selective single-layer coatings for durable daytime radiative cooling. Sol. Energy Mater. Sol. Cells 260, 112493 (2023). https://doi.org/10.1016/j.solmat.2023.112493
H. Kang, Y. Qiao, Y. Li, W. Qin, X. Wu, Keep cool: polyhedral ZnO@ZIF-8 polymer coatings for daytime radiative cooling. Ind. Eng. Chem. Res. 59(34), 15226–15232 (2020). https://doi.org/10.1021/acs.iecr.0c01178
J. Zhao, Q. Meng, Y. Li, Z. Yang, J. Li, Structural porous ceramic for efficient daytime subambient radiative cooling. ACS Appl. Mater. Interfaces 15(40), 47286–47293 (2023). https://doi.org/10.1021/acsami.3c10772
Y. Xin, Q. Wang, C. Fu, S. Du, L. Hou et al., Alumina fiber membrane prepared by electrospinning technology for passive daytime radiative cooling. Adv. Funct. Mater. 35(3), 2413813 (2025). https://doi.org/10.1002/adfm.202413813
Y. Tian, X. Liu, Z. Wang, J. Li, Y. Mu et al., Subambient daytime cooling enabled by hierarchically architected all-inorganic metapaper with enhanced thermal dissipation. Nano Energy 96, 107085 (2022). https://doi.org/10.1016/j.nanoen.2022.107085
X. Zhao, T. Li, H. Xie, H. Liu, L. Wang et al., A solution-processed radiative cooling glass. Science 382(6671), 684–691 (2023). https://doi.org/10.1126/science.adi2224
K. Lin, S. Chen, Y. Zeng, T.C. Ho, Y. Zhu et al., Hierarchically structured passive radiative cooling ceramic with high solar reflectivity. Science 382(6671), 691–697 (2023). https://doi.org/10.1126/science.adi4725
U. Banik, A. Agrawal, H. Meddeb, O. Sergeev, N. Reininghaus et al., Efficient thin polymer coating as a selective thermal emitter for passive daytime radiative cooling. ACS Appl. Mater. Interfaces 13(20), 24130–24137 (2021). https://doi.org/10.1021/acsami.1c04056
X. Wang, D. Liu, Z. Wan, Z. Wang, J. Yu et al., A gradient nanoporous radiative cooling ceramic with high spectral selectivity. Chem. Eng. J. 500, 157344 (2024). https://doi.org/10.1016/j.cej.2024.157344
M.-T. Tsai, S.-W. Chang, Y.-J. Chen, H.-L. Chen, P.-H. Lan et al., Scalable, flame-resistant, superhydrophobic ceramic metafibers for sustainable all-day radiative cooling. Nano Today 48, 101745 (2023). https://doi.org/10.1016/j.nantod.2022.101745
N.N. Shi, C.-C. Tsai, F. Camino, G.D. Bernard, N. Yu et al., Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science 349(6245), 298–301 (2015). https://doi.org/10.1126/science.aab3564
C. Ma, Y. Gao, Y. Cao, Y. Yang, W. Wang et al., Hierarchically core-shell nanofiber textiles for personal cooling in hot and humid conditions. Nano Energy 123, 109400 (2024). https://doi.org/10.1016/j.nanoen.2024.109400
Y. Sun, Y. Ji, M. Javed, X. Li, Z. Fan et al., Preparation of passive daytime cooling fabric with the synergistic effect of radiative cooling and evaporative cooling. Adv. Mater. Technol. 7(3), 2100803 (2022). https://doi.org/10.1002/admt.202100803
J. Xu, J. Qiu, Effect of global climate change on the sub-ambient radiative cooling performance of ideal coolers in different environments. Int. Commun. Heat Mass Transf. 163, 108705 (2025). https://doi.org/10.1016/j.icheatmasstransfer.2025.108705
W. Tang, Y. Zhan, J. Yang, X. Meng, X. Zhu et al., Cascaded heteroporous nanocomposites for thermo-adaptive passive radiation cooling. Adv. Mater. 36(36), e2310923 (2024). https://doi.org/10.1002/adma.202310923
A. Leroy, B. Bhatia, C.C. Kelsall, A. Castillejo-Cuberos, H. Di Capua et al., High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel. Sci. Adv. 5(10), eaat9480 (2019). https://doi.org/10.1126/sciadv.aat9480
J. Yuan, H. Yin, D. Yuan, Y. Yang, S. Xu, On daytime radiative cooling using spectrally selective metamaterial based building envelopes. Energy 242, 122779 (2022). https://doi.org/10.1016/j.energy.2021.122779
Z.F. Mira, S.-Y. Heo, D.H. Kim, G.J. Lee, Y.M. Song, Multilayer selective passive daytime radiative cooler optimization utilizing memetic algorithm. J. Quant. Spectrosc. Radiat. Transf. 272, 107774 (2021). https://doi.org/10.1016/j.jqsrt.2021.107774
H. Yin, H. Yao, Y. Jia, J. Wang, C. Fan, Realization of efficient radiative cooling in thermal emitter with inorganic metamaterials. J. Phys. D Appl. Phys. 54(34), 345501 (2021). https://doi.org/10.1088/1361-6463/ac0659
Y. Wang, X. Zhang, S. Liu, Y. Liu, Q. Zhou et al., Thermal-rectified gradient porous polymeric film for solar-thermal regulatory cooling. Adv. Mater. 36(26), e2400102 (2024). https://doi.org/10.1002/adma.202400102
Y. Yu, L. Wei, Z. Pang, J. Wu, Y. Dong et al., Multifunctional wood composite aerogel with integrated radiant cooling and fog–water harvesting for all-day building energy conservation. Adv. Funct. Mater. 35(5), 2414590 (2025). https://doi.org/10.1002/adfm.202414590
Y. Liu, X. Bu, R. Liu, M. Feng, Z. Zhang et al., Robust fluorinated cellulose composite aerogels incorporating radiative cooling and thermal insulation for regionally adaptable building thermal management. Int. J. Biol. Macromol. 292, 139239 (2025). https://doi.org/10.1016/j.ijbiomac.2024.139239
H. Zhong, Y. Li, P. Zhang, S. Gao, B. Liu et al., Hierarchically hollow microfibers as a scalable and effective thermal insulating cooler for buildings. ACS Nano 15(6), 10076–10083 (2021). https://doi.org/10.1021/acsnano.1c01814
M. Qin, H. Han, F. Xiong, Z. Shen, Y. Jin et al., Vapor exchange induced ps-based sponge for scalable and efficient daytime radiative cooling. Adv. Funct. Mater. 33(44), 2304073 (2023). https://doi.org/10.1002/adfm.202304073
C. Cai, W. Chen, Z. Wei, C. Ding, B. Sun et al., Bioinspired “aerogel grating” with metasurfaces for durable daytime radiative cooling for year-round energy savings. Nano Energy 114, 108625 (2023). https://doi.org/10.1016/j.nanoen.2023.108625
L. Zhou, J. Rada, H. Zhang, H. Song, S. Mirniaharikandi et al., Sustainable and inexpensive polydimethylsiloxane sponges for daytime radiative cooling. Adv. Sci. 8(23), e2102502 (2021). https://doi.org/10.1002/advs.202102502
M. Yang, W. Zou, J. Guo, Z. Qian, H. Luo et al., Bioinspired “skin” with cooperative thermo-optical effect for daytime radiative cooling. ACS Appl. Mater. Interfaces 12(22), 25286–25293 (2020). https://doi.org/10.1021/acsami.0c03897
J. Fei, D. Han, X. Zhang, K. Li, N. Lavielle et al., Ultrahigh passive cooling power in hydrogel with rationally designed optofluidic properties. Nano Lett. 24(2), 623–631 (2024). https://doi.org/10.1021/acs.nanolett.3c03694
X. Hu, P. Hu, L. Liu, L. Zhao, S. Dou et al., Lightweight and hierarchically porous hydrogels for wearable passive cooling under extreme heat stress. Matter 7(12), 4398–4409 (2024). https://doi.org/10.1016/j.matt.2024.09.008
Z. Hu, Y. Qiu, J. Zhou, Q. Li, Smart flexible porous bilayer for all-day dynamic passive cooling. Small Sci. 4(3), 2300237 (2024). https://doi.org/10.1002/smsc.202300237
X. Liu, P. Li, Y. Liu, C. Zhang, M. He et al., Hybrid passive cooling for power equipment enabled by metal-organic framework. Adv. Mater. 36(45), e2409473 (2024). https://doi.org/10.1002/adma.202409473
C. Fan, Y. Zhang, Z. Long, A. Mensah, Q. Wang et al., Dynamically tunable subambient daytime radiative cooling metafabric with Janus wettability. Adv. Funct. Mater. 33(29), 2300794 (2023). https://doi.org/10.1002/adfm.202300794
B. Gu, F. Fan, Q. Xu, D. Shou, D. Zhao, A nano-structured bilayer asymmetric wettability textile for efficient personal thermal and moisture management in high-temperature environments. Chem. Eng. J. 461, 141919 (2023). https://doi.org/10.1016/j.cej.2023.141919
Y. Wang, Z. Wang, H. Huang, Y. Li, W. Zhai, A camel-fur-inspired micro-extrusion foaming porous elastic fiber for all-weather dual-mode human thermal regulation. Adv. Sci. 11(43), 2407260 (2024). https://doi.org/10.1002/advs.202407260
L. Xu, D.-W. Sun, Y. Tian, L. Sun, Z. Zhu, Cactus-inspired bilayer cooler for high-performance and long-term daytime passive cooling. Chem. Eng. J. 489, 151258 (2024). https://doi.org/10.1016/j.cej.2024.151258
M. Qin, K. Jia, A. Usman, S. Han, F. Xiong et al., High-efficiency thermal-shock resistance enabled by radiative cooling and latent heat storage. Adv. Mater. 36(25), 2314130 (2024). https://doi.org/10.1002/adma.202314130
P. Li, Y. Liu, X. Liu, A. Wang, W. Liu et al., Reversed yolk–shell dielectric scatterers for advanced radiative cooling. Adv. Funct. Mater. 34(23), 2315658 (2024). https://doi.org/10.1002/adfm.202315658
S. Wang, M. Wu, H. Han, R. Du, Z. Zhao et al., Regulating cold energy from the universe by bifunctional phase change materials for sustainable cooling. Adv. Energy Mater. 14(45), 2402667 (2024). https://doi.org/10.1002/aenm.202402667
Z. Yan, H. Zhai, D. Fan, Q. Li, A trimode textile designed with hierarchical core-shell nanofiber structure for all-weather radiative personal thermal management. Nano Today 51, 101897 (2023). https://doi.org/10.1016/j.nantod.2023.101897
B. Gu, Z. Dai, H. Pan, D. Zhao, Integration of prolonged phase-change thermal storage material and radiative cooling textile for personal thermal management. Chem. Eng. J. 493, 152637 (2024). https://doi.org/10.1016/j.cej.2024.152637
W. Jiang, T. Zhu, J. Chen, Q. Liu, Y. Liu et al., Phase change foam with temperature-adaptive radiative cooling feature for all-day building energy saving. Chem. Eng. J. 502, 157862 (2024). https://doi.org/10.1016/j.cej.2024.157862
X. Zhang, T. Zuo, M. Ai, D. Yu, W. Wang, All-in-one cast-molded hydrophobic silicon dioxide-phase change microcapsule/gelatin-hydroxyethyl cellulose composite aerogel for building cooling. ACS Sustain. Chem. Eng. 12(28), 10423–10435 (2024). https://doi.org/10.1021/acssuschemeng.4c02060
Z. Zhu, A. Bashir, X. Wu, C. Liu, Y. Zhang et al., Highly integrated phase change and radiative cooling fiber membrane for adaptive personal thermal regulation. Adv. Funct. Mater. 35(9), 2416111 (2025). https://doi.org/10.1002/adfm.202416111
B. Khalichi, A. Ghobadi, A. Kalantari Osgouei, Z. Rahimian Omam, H. Kocer et al., Phase-change Fano resonator for active modulation of thermal emission. Nanoscale 15(25), 10783–10793 (2023). https://doi.org/10.1039/d3nr00673e
B. Qin, Y. Zhu, Y. Zhou, M. Qiu, Q. Li, Whole-infrared-band camouflage with dual-band radiative heat dissipation. Light Sci. Appl. 12(1), 246 (2023). https://doi.org/10.1038/s41377-023-01287-z
X. Wang, Y. Tang, Y. Wang, L. Ke, X. Ye et al., Leather enabled multifunctional thermal camouflage armor. Chem. Eng. Sci. 196, 64–71 (2019). https://doi.org/10.1016/j.ces.2018.12.005
L. Wang, Y. Yang, X. Tang, B. Li, Y. Hu et al., Combined multi-band infrared camouflage and thermal management via a simple multilayer structure design. Opt. Lett. 46(20), 5224–5227 (2021). https://doi.org/10.1364/OL.441605
H. Zhu, Q. Li, C. Tao, Y. Hong, Z. Xu et al., Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nat. Commun. 12(1), 1805 (2021). https://doi.org/10.1038/s41467-021-22051-0
L. Peng, D. Liu, H. Cheng, S. Zhou, M. Zu, A multilayer film based selective thermal emitter for infrared stealth technology. Adv. Opt. Mater. 6(23), 1801006 (2018). https://doi.org/10.1002/adom.201801006
W. Zhang, G. Xu, J. Zhang, H. Wang, H. Hou, Infrared spectrally selective low emissivity from Ge/ZnS one-dimensional heterostructure photonic crystal. Opt. Mater. 37, 343–346 (2014). https://doi.org/10.1016/j.optmat.2014.06.023
X. Jiang, H. Yuan, X. He, T. Du, H. Ma et al., Implementing of infrared camouflage with thermal management based on inverse design and hierarchical metamaterial. Nanophotonics 12(10), 1891–1902 (2023). https://doi.org/10.1515/nanoph-2023-0067
K.C.S. Ly, X. Liu, X. Song, C. Xiao, P. Wang et al., A dual-mode infrared asymmetric photonic structure for all-season passive radiative cooling and heating. Adv. Funct. Mater. 32(31), 2203789 (2022). https://doi.org/10.1002/adfm.202203789
P. Wang, H. Wang, Y. Sun, M. Zhang, S. Chen et al., Transparent grating-based metamaterials for dynamic infrared radiative regulation smart windows. Phys. Chem. Chem. Phys. 26(22), 16253–16260 (2024). https://doi.org/10.1039/d4cp01245c
D. Liu, Y. Xu, Y. Xuan, Fabry-Perot-resonator-coupled metal pattern metamaterial for infrared suppression and radiative cooling. Appl. Opt. 59(23), 6861–6867 (2020). https://doi.org/10.1364/AO.392310
K. Yu, W. Zhang, M. Qian, P. Shen, Y. Liu, Multiband metamaterial emitters for infrared and laser compatible stealth with thermal management based on dissipative dielectrics. Photon. Res. 11(2), 290 (2023). https://doi.org/10.1364/prj.476109
X. Liu, P. Wang, C. Xiao, L. Fu, H. Zhou et al., A bioinspired bilevel metamaterial for multispectral manipulation toward visible, multi-wavelength detection lasers and mid-infrared selective radiation. Adv. Mater. 35(41), 2302844 (2023). https://doi.org/10.1002/adma.202302844
Z. Qin, C. Zhang, Z. Liang, D. Meng, X. Shi et al., Thin multispectral camouflage absorber based on metasurfaces with wide infrared radiative cooling window. Adv. Photonics Res. 3(5), 2100215 (2022). https://doi.org/10.1002/adpr.202100215
X. Liu, P. Wang, C. Xiao, L. Fu, J. Xu et al., Compatible stealth metasurface for laser and infrared with radiative thermal engineering enabled by machine learning. Adv. Funct. Mater. 33(11), 2212068 (2023). https://doi.org/10.1002/adfm.202212068
S. Dang, H. Ye, A visible-infrared-compatible camouflage photonic crystal with heat dissipation by radiation in 5–8 μm. Cell Rep. Phys. Sci. 2(11), 100617 (2021). https://doi.org/10.1016/j.xcrp.2021.100617
J. Zhou, Z. Zhan, F. Zhu, Y. Han, Preparation of flexible wavelength-selective metasurface for infrared radiation regulation. ACS Appl. Mater. Interf. 15(17), 21629–21639 (2023). https://doi.org/10.1021/acsami.3c01452
Z. Deng, W. Hu, P. Zhou, L. Huang, T. Wang et al., Broadband tunable laser and infrared camouflage by wavelength-selective scattering metamaterial with radiative thermal management. Opt. Lett. 49(4), 935–938 (2024). https://doi.org/10.1364/OL.512245
T. Inamori, N. Ozaki, P. Saisutjarit, H. Ohsaki, Passive radiative cooling of a HTS coil for attitude orbit control in micro-spacecraft. Adv. Space Res. 55(4), 1211–1221 (2015). https://doi.org/10.1016/j.asr.2014.10.035
K.A.J. Doherty, B. Twomey, S. McGlynn, N. MacAuliffe, A. Norman et al., High-temperature solar reflector coating for the solar orbiter. J. Spacecr. Rockets 53(6), 1077–1084 (2016). https://doi.org/10.2514/1.a33561
X.-F. Pan, B. Wu, H.-L. Gao, S.-M. Chen, Y. Zhu et al., Double-layer nacre-inspired polyimide-Mica nanocomposite films with excellent mechanical stability for LEO environmental conditions. Adv. Mater. 34(2), 2105299 (2022). https://doi.org/10.1002/adma.202105299
A.K. Sharma, N. Sridhara, Degradation of thermal control materials under a simulated radiative space environment. Adv. Space Res. 50(10), 1411–1424 (2012). https://doi.org/10.1016/j.asr.2012.07.010
K.A. Watson, F.L. Palmieri, J.W. Connell, Space environmentally stable polyimides and copolyimides derived from [2, 4-bis(3-aminophenoxy)phenyl] diphenylphosphine oxide. Macromolecules 35(13), 4968–4974 (2002). https://doi.org/10.1021/ma0201779
Y. Zhang, J. Yu, In situ formation of SiO2 nanospheres on common fabrics for broadband radiative cooling. ACS Appl. Nano Mater. 4(10), 11260–11268 (2021). https://doi.org/10.1021/acsanm.1c02841
M. Liu, X. Li, L. Li, L. Li, S. Zhao et al., Continuous photothermal and radiative cooling energy harvesting by VO2 smart coatings with switchable broadband infrared emission. ACS Nano 17(10), 9501–9509 (2023). https://doi.org/10.1021/acsnano.3c01755
G. Chen, Y. Wang, Y. Zou, H. Wang, J. Qiu et al., Hexagonal boron nitride and alumina dual-layer coating for space solar thermal shielding. Chem. Eng. J. 421, 127802 (2021). https://doi.org/10.1016/j.cej.2020.127802
C. Ibekwe, X. Wang, B.N. Bolzani, C. O’Brien, C.J. Waataja et al., Synthesis, optical performance characterization, and durability of electrospun PTFE-PEO materials for space applications. ACS Appl. Mater. Interfaces 16(25), 32587–32598 (2024). https://doi.org/10.1021/acsami.4c02463
G. Chen, Y. Wang, J. Qiu, J. Cao, Y. Zou et al., Robust inorganic daytime radiative cooling coating based on a phosphate geopolymer. ACS Appl. Mater. Interf. 12(49), 54963–54971 (2020). https://doi.org/10.1021/acsami.0c15799
W. Xiao, P. Dai, H.J. Singh, I.A. Ajia, X. Yan et al., Flexible thin film optical solar reflectors with Ta2O5-based multimaterial coatings for space radiative cooling. APL Photonics 8(9), 090802 (2023). https://doi.org/10.1063/5.0156526
Z. Ding, X. Li, H. Zhang, D. Yan, J. Werlé et al., Robust radiative cooling via surface phonon coupling-enhanced emissivity from SiO2 micropillar arrays. Int. J. Heat Mass Transf. 220, 125004 (2024). https://doi.org/10.1016/j.ijheatmasstransfer.2023.125004
C. Fu, M. Zhu, D. Liu, D. Zhao, X. Zhang, Multilayer nanop-polymer metamaterial for radiative cooling of the stratospheric airship. Adv. Space Res. 72(2), 541–551 (2023). https://doi.org/10.1016/j.asr.2023.03.004
Y. Peng, J. Dong, Y. Gu, Y. Zhang, J. Long et al., Smart temperature-adaptive thermal regulation textiles integrating passive radiative cooling and reversible heat storage. Nano Energy 131, 110311 (2024). https://doi.org/10.1016/j.nanoen.2024.110311
R. Liu, K. Xia, T. Yu, F. Gao, Q. Zhang et al., Multifunctional smart fabrics with integration of self-cleaning, energy harvesting, and thermal management properties. ACS Nano 18(45), 31085–31097 (2024). https://doi.org/10.1021/acsnano.4c08324
K. Zhu, H. Yao, J. Song, Q. Liao, S. He et al., Temperature-adaptive dual-modal photonic textiles for thermal management. Sci. Adv. 10(41), eadr2062 (2024). https://doi.org/10.1126/sciadv.adr2062
X.A. Zhang, S. Yu, B. Xu, M. Li, Z. Peng et al., Dynamic gating of infrared radiation in a textile. Science 363(6427), 619–623 (2019). https://doi.org/10.1126/science.aau1217
Y. Ding, Z. Mei, X. Wu, W. Zhang, Y. Zhang et al., Integrated multispectral modulator with efficient radiative cooling for innovative thermal camouflage. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202500122
S. Yang, Q. Li, B. Du, Y. Ying, Y. Zeng et al., Photothermal superhydrophobic copper nanowire assemblies: fabrication and deicing/defrosting applications. Int. J. Extrem. Manuf. 5(4), 045501 (2023). https://doi.org/10.1088/2631-7990/acef78
J. Yong, Q. Yang, J. Huo, X. Hou, F. Chen, Underwater gas self-transportation along femtosecond laser-written open superhydrophobic surface microchannels (<100 µm) for bubble/gas manipulation. Int. J. Extrem. Manuf. 4(1), 015002 (2022). https://doi.org/10.1088/2631-7990/ac466f
J. Mandal, Y. Fu, A.C. Overvig, M. Jia, K. Sun et al., Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362(6412), 315–319 (2018). https://doi.org/10.1126/science.aat9513
N. Guo, C. Shi, N. Warren, E.A. Sprague-Klein, B.W. Sheldon et al., Challenges and opportunities for passive thermoregulation. Adv. Energy Mater. 14(34), 2401776 (2024). https://doi.org/10.1002/aenm.202401776
B.-X. Li, Z. Luo, W.-G. Yang, H. Sun, Y. Ding et al., Adaptive and adjustable MXene/reduced graphene oxide hybrid aerogel composites integrated with phase-change material and thermochromic coating for synchronous visible/infrared camouflages. ACS Nano 17(7), 6875–6885 (2023). https://doi.org/10.1021/acsnano.3c00573
B.-X. Li, Z. Luo, H. Sun, Q. Quan, S. Zhou et al., Spectral-selective and adjustable patterned polydimethylsiloxane/MXene/nanoporous polytetrafluoroethylene metafabric for dynamic infrared camouflage and thermal regulation. Adv. Funct. Mater. 34(45), 2407644 (2024). https://doi.org/10.1002/adfm.202407644
Z. Lei, B. Wu, P. Wu, Hierarchical network-augmented hydroglasses for broadband light management. Research 2021, 4515164 (2021). https://doi.org/10.34133/2021/4515164
Y. Hu, H. Liu, B. Yang, K. Shi, M. Antezza et al., Enhanced near-field radiative heat transfer between core-shell nanops through surface modes hybridization. Fundam. Res. 4(5), 1092–1099 (2024). https://doi.org/10.1016/j.fmre.2023.03.021
H. Yin, X. Zhou, Z. Zhou, R. Liu, X. Mo et al., Switchable kirigami structures as window envelopes for energy-efficient buildings. Research 6, 0103 (2023). https://doi.org/10.34133/research.0103
M. Li, D. Liu, H. Cheng, L. Peng, M. Zu, Manipulating metals for adaptive thermal camouflage. Sci. Adv. 6(22), eaba3494 (2020). https://doi.org/10.1126/sciadv.aba3494
J. Mandal, M. Jia, A. Overvig, Y. Fu, E. Che et al., Porous polymers with switchable optical transmittance for optical and thermal regulation. Joule 3(12), 3088–3099 (2019). https://doi.org/10.1016/j.joule.2019.09.016
S. Wang, T. Jiang, Y. Meng, R. Yang, G. Tan et al., Scalable thermochromic smart windows with passive radiative cooling regulation. Science 374(6574), 1501–1504 (2021). https://doi.org/10.1126/science.abg0291
M. Shi, Z. Song, J. Ni, X. Du, Y. Cao et al., Dual-mode porous polymeric films with coral-like hierarchical structure for all-day radiative cooling and heating. ACS Nano 17(3), 2029–2038 (2023). https://doi.org/10.1021/acsnano.2c07293
S.K. Saju, A.B. Puthirath, S. Wang, T. Tsafack, L.K. Beagle et al., Thermochromic polymer blends. Joule 8(9), 2696–2714 (2024). https://doi.org/10.1016/j.joule.2024.07.020
K. Sun, W. Xiao, C. Wheeler, M. Simeoni, A. Urbani et al., VO2 metasurface smart thermal emitter with high visual transparency for passive radiative cooling regulation in space and terrestrial applications. Nanophotonics 11(17), 4101–4114 (2022). https://doi.org/10.1515/nanoph-2022-0020
J.-W. Ma, F.-R. Zeng, X.-C. Lin, Y.-Q. Wang, Y.-H. Ma et al., A photoluminescent hydrogen-bonded biomass aerogel for sustainable radiative cooling. Science 385(6704), 68–74 (2024). https://doi.org/10.1126/science.adn5694
Y. Zhou, C. Lu, R. Xiong, Hierarchical nanocellulose photonic design for synergistic colored radiative cooling. ACS Nano 19(4), 5029–5039 (2025). https://doi.org/10.1021/acsnano.5c00330
X. Xue, M. Qiu, Y. Li, Q.M. Zhang, S. Li et al., Creating an eco-friendly building coating with smart subambient radiative cooling. Adv. Mater. 32(42), e1906751 (2020). https://doi.org/10.1002/adma.201906751
S. Kim, J.H. Park, J.W. Lee, Y. Kim, Y.T. Kang, Self-recovering passive cooling utilizing endothermic reaction of NH4NO3/H2O driven by water sorption for photovoltaic cell. Nat. Commun. 14(1), 2374 (2023). https://doi.org/10.1038/s41467-023-38081-9
S. Kim, S. Lee, J. Lee, H.W. Choi, W. Choi et al., Passive isothermal film with self-switchable radiative cooling-driven water sorption layer for arid climate applications. Nat. Commun. 15(1), 8000 (2024). https://doi.org/10.1038/s41467-024-52328-z