A Versatile Method for Uniform Dispersion of Nanocarbons in Metal Matrix Based on Electrostatic Interactions
Corresponding Author: Zhiqiang Li
Nano-Micro Letters,
Vol. 8 No. 1 (2016), Article Number: 54-60
Abstract
Realizing the uniform dispersion of nanocarbons such as carbon nanotube and graphene in metals, is an essential prerequisite to fully exhibit their enhancement effect in mechanical, thermal, and electrical properties of metal matrix composites (MMCs). In this work, we propose an effective method to achieve uniform distribution of nanocarbons in various metal flakes through a slurry-based method. It relies on the electrostatic interactions between the negatively charged nanocarbons and the positively charged metal flakes when mixed in slurry. For case study, flake metal powders (Al, Mg, Ti, Fe, and Cu) were positively charged in aqueous suspension by spontaneous ionization or cationic surface modification. While nanocarbons, given examples as carboxylic multi-walled carbon nanotubes, pristine single-walled carbon nanotube, and carbon nanotube–graphene oxide hybrid were negatively charged by the ionization of oxygen-containing functional groups or anionic surfactant. It was found that through the electrostatic interaction mechanism, all kinds of nanocarbons can be spontaneously and efficiently adsorbed onto the surface of various metal flakes. The development of such a versatile method would provide us great opportunities to fabricate advanced MMCs with appealing properties.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Mortensen, J. Llorca, Metal matrix composites. Annu. Rev. Mater. Res. 40, 243–270 (2010). doi:10.1146/annurev-matsci-070909-104511
- M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996). doi:10.1038/381678a0
- C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(18), 385–388 (2008). doi:10.1126/science.1157996
- S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006). doi:10.1038/nature04969
- A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007). doi:10.1038/nmat1849
- Q. Zhang, J.Q. Huang, W.Z. Qian, Y.Y. Zhang, F. Wei, The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small 9(8), 1237–1265 (2013). doi:10.1002/smll.201203252
- L.L. Cao, Z.Q. Li, G.L. Fan, L. Jiang, D. Zhang, W.J. Moon, The growth of carbon nanotubes in aluminum powders by the catalytic pyrolysis of polyethylene glycol. Carbon 50(3), 1057–1062 (2012). doi:10.1016/j.carbon.2011.10.011
- S.I. Cha, K.T. Kim, S.N. Arshad, C.B. Mo, S.H. Hong, Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing. Adv. Mater. 17(11), 1377–1381 (2005). doi:10.1002/adma.200401933
- Y. Kim, J. Lee, M.S. Yeom, J.W. Shin, H. Kim, Y. Cui, J.W. Kysar, J. Hone, Y. Jung, S. Jeon, S.M. Han, Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites. Nat. Commun. 4, 2114 (2013). doi:10.1038/ncomms3114
- L. Jiang, Z.Q. Li, G.L. Fan, L.L. Cao, D. Zhang, The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution. Carbon 50(5), 1993–1998 (2012). doi:10.1016/j.carbon.2011.12.057
- A. Esawi, K. Morsi, Dispersion of carbon nanotubes (CNTs) in aluminum powder. Compos. Part A: Appl. Sci. Manuf. 38(2), 646–650 (2007). doi:10.1016/j.compositesa.2006.04.006
- C.F. Deng, D.Z. Wang, X.X. Zhang, A.B. Li, Processing and properties of carbon nanotubes reinforced aluminum composites. Mater. Sci. Eng. A 444(1–2), 138–145 (2007). doi:10.1016/j.msea.2006.08.057
- Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma, Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing. Carbon 50(5), 1843–1852 (2012). doi:10.1016/j.carbon.2011.12.034
- Z.Y. Liu, S.J. Xu, B.L. Xiao, P. Xue, W.G. Wang, Z.Y. Ma, Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites. Compos. Part A: Appl. Sci. Manuf. 43(12), 2161–2168 (2012). doi:10.1016/j.compositesa.2012.07.026
- R. Zhong, H.T. Cong, P.X. Hou, Fabrication of nano-Al based composites reinforced by single-walled carbon. Carbon 41(4), 848–851 (2003). doi:10.1016/S0008-6223(02)00427-X
- R. George, K.T. Kashyap, R. Rahul, S. Yamdagni, Strengthening in carbon nanotube/aluminum (CNT/Al) composites. Scr. Mater. 53(10), 1159–1163 (2005). doi:10.1016/j.scriptamat.2005.07.022
- Z. Li, G.L. Fan, Z.Q. Tan, Q. Guo, D.B. Xiong, Y.S. Su, Z.Q. Li, D. Zhang, Uniform dispersion of graphene oxide in aluminum powder by direct electrostatic adsorption for fabrication of graphene/aluminum composites. Nanotechnology 25, 325601 (2014). doi:10.1088/0957-4484/25/32/325601
- E.E. Tkalya, M. Ghislandi, G. De With, C.E. Koning, The use of surfactants for dispersing carbon nanotubes and graphene to make conductive nanocomposites. Curr. Opin. Colloid Interface Sci. 17(4), 225–232 (2012). doi:10.1016/j.cocis.2012.03.001
- J.Y. Oh, S.J. Yang, J.Y. Park, T. Kim, K. Lee, Y.S. Kim, H.N. Han, C.R. Park, Easy preparation of self-assembled high-density buckypaper with enhanced mechanical properties. Nano Lett. 15(1), 190–197 (2014). doi:10.1021/nl5033588
- M.K. Shin, B. Lee, S.H. Kim, J.A. Lee, G.M. Spinks, S. Gambhir, G.G. Wallace, M.E. Kozlov, R.H. Baughman, S.J. Kim, Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes. Nat. Commun. 3, 650 (2012). doi:10.1038/ncomms1661
- Z. Li, G.L. Fan, Q. Guo, Z.Q. Li, Y.S. Su, D. Zhang, Synergistic strengthening effect of graphene-carbon nanotube hybrid structure in aluminum matrix composites. Carbon 95, 419–427 (2015). doi:10.1016/j.carbon.2015.08.014
References
A. Mortensen, J. Llorca, Metal matrix composites. Annu. Rev. Mater. Res. 40, 243–270 (2010). doi:10.1146/annurev-matsci-070909-104511
M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996). doi:10.1038/381678a0
C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(18), 385–388 (2008). doi:10.1126/science.1157996
S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006). doi:10.1038/nature04969
A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007). doi:10.1038/nmat1849
Q. Zhang, J.Q. Huang, W.Z. Qian, Y.Y. Zhang, F. Wei, The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small 9(8), 1237–1265 (2013). doi:10.1002/smll.201203252
L.L. Cao, Z.Q. Li, G.L. Fan, L. Jiang, D. Zhang, W.J. Moon, The growth of carbon nanotubes in aluminum powders by the catalytic pyrolysis of polyethylene glycol. Carbon 50(3), 1057–1062 (2012). doi:10.1016/j.carbon.2011.10.011
S.I. Cha, K.T. Kim, S.N. Arshad, C.B. Mo, S.H. Hong, Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing. Adv. Mater. 17(11), 1377–1381 (2005). doi:10.1002/adma.200401933
Y. Kim, J. Lee, M.S. Yeom, J.W. Shin, H. Kim, Y. Cui, J.W. Kysar, J. Hone, Y. Jung, S. Jeon, S.M. Han, Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites. Nat. Commun. 4, 2114 (2013). doi:10.1038/ncomms3114
L. Jiang, Z.Q. Li, G.L. Fan, L.L. Cao, D. Zhang, The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution. Carbon 50(5), 1993–1998 (2012). doi:10.1016/j.carbon.2011.12.057
A. Esawi, K. Morsi, Dispersion of carbon nanotubes (CNTs) in aluminum powder. Compos. Part A: Appl. Sci. Manuf. 38(2), 646–650 (2007). doi:10.1016/j.compositesa.2006.04.006
C.F. Deng, D.Z. Wang, X.X. Zhang, A.B. Li, Processing and properties of carbon nanotubes reinforced aluminum composites. Mater. Sci. Eng. A 444(1–2), 138–145 (2007). doi:10.1016/j.msea.2006.08.057
Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma, Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing. Carbon 50(5), 1843–1852 (2012). doi:10.1016/j.carbon.2011.12.034
Z.Y. Liu, S.J. Xu, B.L. Xiao, P. Xue, W.G. Wang, Z.Y. Ma, Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites. Compos. Part A: Appl. Sci. Manuf. 43(12), 2161–2168 (2012). doi:10.1016/j.compositesa.2012.07.026
R. Zhong, H.T. Cong, P.X. Hou, Fabrication of nano-Al based composites reinforced by single-walled carbon. Carbon 41(4), 848–851 (2003). doi:10.1016/S0008-6223(02)00427-X
R. George, K.T. Kashyap, R. Rahul, S. Yamdagni, Strengthening in carbon nanotube/aluminum (CNT/Al) composites. Scr. Mater. 53(10), 1159–1163 (2005). doi:10.1016/j.scriptamat.2005.07.022
Z. Li, G.L. Fan, Z.Q. Tan, Q. Guo, D.B. Xiong, Y.S. Su, Z.Q. Li, D. Zhang, Uniform dispersion of graphene oxide in aluminum powder by direct electrostatic adsorption for fabrication of graphene/aluminum composites. Nanotechnology 25, 325601 (2014). doi:10.1088/0957-4484/25/32/325601
E.E. Tkalya, M. Ghislandi, G. De With, C.E. Koning, The use of surfactants for dispersing carbon nanotubes and graphene to make conductive nanocomposites. Curr. Opin. Colloid Interface Sci. 17(4), 225–232 (2012). doi:10.1016/j.cocis.2012.03.001
J.Y. Oh, S.J. Yang, J.Y. Park, T. Kim, K. Lee, Y.S. Kim, H.N. Han, C.R. Park, Easy preparation of self-assembled high-density buckypaper with enhanced mechanical properties. Nano Lett. 15(1), 190–197 (2014). doi:10.1021/nl5033588
M.K. Shin, B. Lee, S.H. Kim, J.A. Lee, G.M. Spinks, S. Gambhir, G.G. Wallace, M.E. Kozlov, R.H. Baughman, S.J. Kim, Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes. Nat. Commun. 3, 650 (2012). doi:10.1038/ncomms1661
Z. Li, G.L. Fan, Q. Guo, Z.Q. Li, Y.S. Su, D. Zhang, Synergistic strengthening effect of graphene-carbon nanotube hybrid structure in aluminum matrix composites. Carbon 95, 419–427 (2015). doi:10.1016/j.carbon.2015.08.014