Moisture-Electric–Moisture-Sensitive Heterostructure Triggered Proton Hopping for Quality-Enhancing Moist-Electric Generator
Corresponding Author: Nan Chen
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 56
Abstract
Moisture-enabled electricity (ME) is a method of converting the potential energy of water in the external environment into electrical energy through the interaction of functional materials with water molecules and can be directly applied to energy harvesting and signal expression. However, ME can be unreliable in numerous applications due to its sluggish response to moisture, thus sacrificing the value of fast energy harvesting and highly accurate information representation. Here, by constructing a moisture-electric–moisture-sensitive (ME-MS) heterostructure, we develop an efficient ME generator with ultra-fast electric response to moisture achieved by triggering Grotthuss protons hopping in the sensitized ZnO, which modulates the heterostructure built-in interfacial potential, enables quick response (0.435 s), an unprecedented ultra-fast response rate of 972.4 mV s−1, and a durable electrical signal output for 8 h without any attenuation. Our research provides an efficient way to generate electricity and important insight for a deeper understanding of the mechanisms of moisture-generated carrier migration in ME generator, which has a more comprehensive working scene and can serve as a typical model for human health monitoring and smart medical electronics design.
Highlights:
1 An efficient moist-electric generator with ultra-fast electric response to moisture is achieved by triggering Grotthuss protons hopping in the moisture-electric–moisture-sensitive heterostructure.
2 The moist-electric generator produces a quick response (0.435 s), an unprecedented ultra-fast response rate of 972.4 mV s−1 to alternating moisture stimulation and stable output for 8 h.
3 An obstructive sleep apnea hypoventilation syndrome diagnostic system based on a moist-electric generator was developed to monitor hypopnea and apnea in real time and successfully diagnose them with early warning.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Kim, K. Lee, J. Lee, S. Jang, H. Kim et al., Bird-inspired self-navigating artificial synaptic compass. ACS Nano 15, 20116–20126 (2021). https://doi.org/10.1021/acsnano.1c08005
- M. Sahu, S. Hajra, S. Panda, M. Rajaitha, B.K. Panigrahi et al., Waste textiles as the versatile triboelectric energy-harvesting platform for self-powered applications in sports and athletics. Nano Energy 97, 107208 (2022). https://doi.org/10.1016/j.nanoen.2022.107208
- M. Liu, X. Pu, C. Jiang, T. Liu, X. Huang et al., Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv. Mater. 29, 1703700 (2017). https://doi.org/10.1002/adma.201703700
- K. Meng, X. Xiao, W. Wei, G. Chen, A. Nashalian et al., Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 34, e2109357 (2022). https://doi.org/10.1002/adma.202109357
- L. Ma, R. Wu, A. Patil, S. Zhu, Z. Meng et al., Full-textile wireless flexible humidity sensor for human physiological monitoring. Adv. Funct. Mater. 29, 1904549 (2019). https://doi.org/10.1002/adfm.201904549
- H. Ouyang, J. Tian, G. Sun, Y. Zou, Z. Liu et al., Self-powered pulse sensor for antidiastole of cardiovascular disease. Adv. Mater. 29, 1703456 (2017). https://doi.org/10.1002/adma.201703456
- A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett et al., Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008). https://doi.org/10.1038/nature06381
- S.A. Svatek, V. Sacchetti, L. Rodríguez-Pérez, B.M. Illescas, L. Rincón-García et al., Enhanced thermoelectricity in metal–[60] fullerene–graphene molecular junctions. Nano Lett. 23, 2726–2732 (2023). https://doi.org/10.1021/acs.nanolett.3c00014
- X. Mu, J. Zhou, P. Wang, H. Chen, T. Yang et al., A robust starch–polyacrylamide hydrogel with scavenging energy harvesting capacity for efficient solar thermoelectricity–freshwater cogeneration. Energ. Environ. Sci. 15, 3388–3399 (2022). https://doi.org/10.1039/D2EE01394K
- Z. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006). https://doi.org/10.1126/science.1124005
- F. Li, Breaking symmetry for piezoelectricity. Science 375(6581), 618–619 (2022). https://doi.org/10.1126/science.abn2903
- L. Yang, H. Huang, Z. Xi, L. Zheng, S. Xu et al., Simultaneously achieving giant piezoelectricity and record coercive field enhancement in relaxor-based ferroelectric crystals. Nat. Commun. 13, 2444 (2022). https://doi.org/10.1038/s41467-022-29962-6
- X. Li, C. Zhang, Y. Gao, Z. Zhao, Y. Hu, O. Yang, L. Liu, L. Zhou, J. Wang, Z.L. Wang et al., A highly efficient constant-voltage triboelectric nanogenerator. Energ. Environ. Sci. 15, 1334–1345 (2022). https://doi.org/10.1039/D1EE03961J
- X. Hui, Z. Li, L. Tang, J. Sun, X. Hou et al., A self-powered, highly embedded and sensitive tribo-label-sensor for the fast and stable label printer. Nano-Micro Lett. 15, 27 (2023). https://doi.org/10.1007/s40820-022-00999-y
- C. Shan, K. Li, Y. Cheng, C. Hu, Harvesting environment mechanical energy by direct current triboelectric nanogenerators. Nano-Micro Lett. 15, 127 (2023). https://doi.org/10.1007/s40820-023-01115-4
- J. Wang, X. Li, Y. Zi, S. Wang, Z. Li et al., A flexible fiber-based supercapacitor-triboelectric-nanogenerator power system for wearable electronics. Adv. Mater. 27, 4830–4836 (2015). https://doi.org/10.1002/adma.201501934
- G.L. Stephens, J. Li, M. Wild, C.A. Clayson, N. Loeb et al., An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci. 5, 691 (2012). https://doi.org/10.1038/ngeo1580
- C. Yang, H. Wang, J. Bai, T. He, H. Cheng et al., Transfer learning enhanced water-enabled electricity generation in highly oriented graphene oxide nanochannels. Nat. Commun. 13, 6819 (2022). https://doi.org/10.1038/s41467-022-34496-y
- H. Cheng, Y. Huang, L. Qu, Q. Cheng, G. Shi et al., Flexible in-plane graphene oxide moisture-electric converter for touchless interactive panel. Nano Energy 45, 37–43 (2018). https://doi.org/10.1016/j.nanoen.2017.12.033
- F. Zhao, Y. Liang, H. Cheng, L. Jiang, L. Qu, Highly efficient moisture-enabled electricity generation from graphene oxide frameworks. Energ. Environ. Sci. 9, 912–916 (2016). https://doi.org/10.1039/C5EE03701H
- T. Xu, X. Ding, C. Shao, L. Song, T. Lin et al., Electric power generation through the direct interaction of pristine graphene-oxide with water molecules. Small 14, e1704473 (2018). https://doi.org/10.1002/smll.201704473
- C. Shao, J. Gao, T. Xu, B. Ji, Y. Xiao et al., Wearable fiberform hygroelectric generator. Nano Energy 53, 698–705 (2018). https://doi.org/10.1016/j.nanoen.2018.09.043
- Y. Huang, H. Cheng, G. Shi, L. Qu, Highly efficient moisture-triggered nanogenerator based on graphene quantum dots. ACS Appl. Mater. Interfaces 9, 38170–38175 (2017). https://doi.org/10.1021/acsami.7b12542
- F. Zhao, L. Wang, Y. Zhao, L. Qu, L. Dai, Graphene oxide nanoribbon assembly toward moisture-powered information storage. Adv. Mater. 29, 1604972 (2017). https://doi.org/10.1002/adma.201604972
- Y. Liang, F. Zhao, Z. Cheng, Q. Zhou, H. Shao et al., Self-powered wearable graphene fiber for information expression. Nano Energy 32, 329–335 (2017). https://doi.org/10.1016/j.nanoen.2016.12.062
- Y. Huang, H. Cheng, C. Yang, P. Zhang, Q. Liao et al., Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts. Nat. Commun. 9, 4166 (2018). https://doi.org/10.1038/s41467-018-06633-z
- Y. Liang, F. Zhao, Z. Cheng, Y. Deng, Y. Xiao et al., Electric power generation via asymmetric moisturizing of graphene oxide for flexible, printable and portable electronics. Energ. Environ. Sci. 11, 1730–1735 (2018). https://doi.org/10.1039/C8EE00671G
- C. Yang, Y. Huang, H. Cheng, L. Jiang, L. Qu, Rollable, stretchable, and reconfigurable graphene hygroelectric generators. Adv. Mater. 31, e1805705 (2019). https://doi.org/10.1002/adma.201805705
- Y. Han, B. Lu, C. Shao, T. Xu, Q. Liu et al., A hygroelectric power generator with energy self-storage. Chem. Eng. J. 384, 123366 (2020). https://doi.org/10.1016/j.cej.2019.123366
- J. Xue, F. Zhao, C. Hu, Y. Zhao, H. Luo et al., Vapor-activated power generation on conductive polymer. Adv. Funct. Mater. 26, 8784–8792 (2016). https://doi.org/10.1002/adfm.201604188
- X. Nie, B. Ji, N. Chen, Y. Liang, Q. Han et al., Gradient doped polymer nanowire for moistelectric nanogenerator. Nano Energy 46, 297–304 (2018). https://doi.org/10.1016/j.nanoen.2018.02.012
- T. Xu, X. Ding, Y. Huang, C. Shao, L. Song et al., An efficient polymer moist-electric generator. Energ. Environ. Sci. 12, 972–978 (2019). https://doi.org/10.1039/C9EE00252A
- Y. Long, P. He, Z. Shao, Z. Li, H. Kim et al., Moisture-induced autonomous surface potential oscillations for energy harvesting. Nat. Commun. 12, 5287 (2021). https://doi.org/10.1038/s41467-021-25554-y
- Z. Sun, L. Feng, C. Xiong, X. He, L. Wang et al., Electrospun nanofiber fabric: an efficient, breathable and wearable moist-electric generator. J. Mater. Chem. A 9, 7085–7093 (2021). https://doi.org/10.1039/D0TA11974A
- H. Wang, H. Cheng, Y. Huang, C. Yang, D. Wang et al., Transparent, self-healing, arbitrary tailorable moist-electric film generator. Nano Energy 67, 104238 (2020). https://doi.org/10.1016/j.nanoen.2019.104238
- K. Liu, P. Yang, S. Li, J. Li, T. Ding et al., Induced potential in porous carbon films through water vapor absorption. Angew. Chem. Int. Ed. 55, 8003–8007 (2016). https://doi.org/10.1002/anie.201602708
- Q. Li, M. Zhou, Q. Yang, M. Yang, Q. Wu et al., Flexible carbon dots composite paper for electricity generation from water vapor absorption. J. Mater. Chem. A 6, 10639–10643 (2018). https://doi.org/10.1039/C8TA02505C
- S. Lee, J. Eun, S. Jeon, Facile fabrication of a highly efficient moisture-driven power generator using laser-induced graphitization under ambient conditions. Nano Energy 68, 104364 (2020). https://doi.org/10.1016/j.nanoen.2019.104364
- Y. Tao, Z. Wang, H. Xu, W. Ding, X. Zhao et al., Moisture-powered memristor with interfacial oxygen migration for power-free reading of multiple memory states. Nano Energy 71, 104628 (2020). https://doi.org/10.1016/j.nanoen.2020.104628
- K. Gao, J. Sun, X. Lin, Y. Li, X. Sun et al., High-performance flexible and integratable MEG devices from sulfonated carbon solid acids containing strong Brønsted acid sites. J. Mater. Chem. A 9, 24488–24494 (2021). https://doi.org/10.1039/D1TA06757E
- S. Lee, H. Jang, H. Lee, D. Yoon, S. Jeon, Direct fabrication of a moisture-driven power generator by laser-induced graphitization with a gradual defocusing method. ACS Appl. Mater. Interfaces 11, 26970–26975 (2019). https://doi.org/10.1021/acsami.9b08056
- X. Gao, T. Xu, C. Shao, Y. Han, B. Lu et al., Electric power generation using paper materials. J. Mater. Chem. A 7, 20574–20578 (2019). https://doi.org/10.1039/C9TA08264F
- D. Shen, M. Xiao, Y. Xiao, G. Zou, L. Hu et al., Self-powered, rapid-response, and highly flexible humidity sensors based on moisture-dependent voltage generation. ACS Appl. Mater. Interfaces 11, 14249–14255 (2019). https://doi.org/10.1021/acsami.9b01523
- Z. Sun, L. Feng, X. Wen, L. Wang, X. Qin et al., Nanofiber fabric based ion-gradient-enhanced moist-electric generator with a sustained voltage output of 1.1 volts. Mater. Horiz. 8, 2303–2309 (2021). https://doi.org/10.1039/D1MH00565K
- T. He, H. Wang, B. Lu, T. Guang, C. Yang et al., Fully printed planar moisture-enabled electric generator arrays for scalable function integration. Joule 7, 935–951 (2023). https://doi.org/10.1016/j.joule.2023.04.007
- J. Bai, Y. Huang, H. Wang, T. Guang, Q. Liao et al., Sunlight-coordinated high-performance moisture power in natural conditions. Adv. Mater. 34, 2103897 (2022). https://doi.org/10.1002/adma.202103897
- L. Li, Z. Chen, M. Hao, S. Wang, F. Sun et al., Moisture-driven power generation for multifunctional flexible sensing systems. Nano Lett. 19, 5544–5552 (2019). https://doi.org/10.1021/acs.nanolett.9b02081
- D. Shen, M. Xiao, G. Zou, L. Liu, W.W. Duley et al., Self-powered wearable electronics based on moisture enabled electricity generation. Adv. Mater. 30, e1705925 (2018). https://doi.org/10.1002/adma.201705925
- D. He, Y. Yang, Y. Zhou, J. Wan, H. Wang et al., Electricity generation from phase-engineered flexible MoS2 nanosheets under moisture. Nano Energy 81, 105630 (2021). https://doi.org/10.1016/j.nanoen.2020.105630
- M. Li, L. Zong, W. Yang, X. Li, J. You et al., Biological nanofibrous generator for electricity harvest from moist air flow. Adv. Funct. Mater. 29, 1901798 (2019). https://doi.org/10.1002/adfm.201901798
- Q. Lyu, B. Peng, Z. Xie, S. Du, L. Zhang et al., Moist-induced electricity generation by electrospun cellulose acetate membranes with optimized porous structures. ACS Appl. Mater. Interfaces 12, 57373–57381 (2020). https://doi.org/10.1021/acsami.0c17931
- W. Yang, X. Li, X. Han, W. Zhang, Z. Wang et al., Asymmetric ionic aerogel of biologic nanofibrils for harvesting electricity from moisture. Nano Energy 71, 104610 (2020). https://doi.org/10.1016/j.nanoen.2020.104610
- Y. Zhang, T. Yang, K. Shang, F. Guo, Y. Shang et al., Sustainable power generation for at least one month from ambient humidity using unique nanofluidic diode. Nat. Commun. 13, 3484 (2022). https://doi.org/10.1038/s41467-022-31067-z
- J. Bai, Y. Hu, T. Guang, K. Zhu, H. Wang et al., Vapor and heat dual-drive sustainable power for portable electronics in ambient environments. Energ. Environ. Sci. 15, 3086–3096 (2022). https://doi.org/10.1039/D2EE00846G
- J. Tan, S. Fang, Z. Zhang, J. Yin, L. Li et al., Self-sustained electricity generator driven by the compatible integration of ambient moisture adsorption and evaporation. Nat. Commun. 13(1), 3643 (2022). https://doi.org/10.1038/s41467-022-31221-7
- Z. Sun, X. Wen, L. Wang, J. Yu, X. Qin, Capacitor-inspired high-performance and durable moist-electric generator. Energ. Environ. Sci. 15(11), 4584–4591 (2022). https://doi.org/10.1039/D2EE02046G
- Z. Sun, X. Wen, L. Wang, D. Ji, X. Qin et al., Emerging design principles, materials, and applications for moisture-enabled electric generation. eScience 2(1), 32–46 (2022). https://doi.org/10.1016/j.esci.2021.12.009
- K. Wang, W. Xu, W. Zhang, X. Wang, X. Yang et al., Bio-inspired water-driven electricity generators: From fundamental mechanisms to practical applications. Nano Res. Energy 2(1), e9120042 (2023). https://doi.org/10.26599/NRE.2023.9120042
- S.K. Arya, C.C. Wong, Y.J. Jeon, T. Bansal, M.K. Park, Advances in complementary-metal-oxide-semiconductor-based integrated biosensor arrays. Chem. Rev. 115, 5116–5158 (2015). https://doi.org/10.1021/cr500554n
- S.Y. Jeong, J.S. Kim, J.H. Lee, Rational design of semiconductor-based chemiresistors and their libraries for next-generation artificial olfaction. Adv. Mater. 32, e2002075 (2020). https://doi.org/10.1002/adma.202002075
- L. Gao, Flexible device applications of 2d semiconductors. Small 13, 1603994 (2017). https://doi.org/10.1002/smll.201603994
- H. Wang, Y. Sun, T. He, Y. Huang, H. Cheng et al., Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output. Nat. Nanotechnol.. 16, 811 (2021). https://doi.org/10.1038/s41565-021-00903-6
- H. Farahani, R. Wagiran, M.N. Hamidon, Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14, 7881–7939 (2014). https://doi.org/10.3390/s140507881
- C.J.D. von Grotthuss, Mémoire sur la décomposition de l’eau et des corps qu’ell tient en dissolution à l’aide de l’electricité galvanique. Ann. Chim. LVIII, 54–74 (1806).
- D.-D. Han, Y.-L. Zhang, J.-N. Ma, Y. Liu, J.-W. Mao et al., Sunlight-reduced graphene oxides as sensitive moisture sensors for smart device design. Adv. Mater. Technol. 2, 1700045 (2017). https://doi.org/10.1002/admt.201700045
- N. Agmon, The grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995). https://doi.org/10.1016/0009-2614(95)00905-J
- T.E. DeCoursey, V.V. Cherny, Deuterium isotope effects on permeation and gating of proton channels in rat alveolar epithelium. J. Gen. Physiol. 109, 415–434 (1997). https://doi.org/10.1085/jgp.109.4.415
- X. Qian, L. Chen, L. Yin, Z. Liu, S. Pei et al., CdPS3 nanosheets-based membrane with high proton conductivity enabled by Cd vacancies. Science 370, 596–600 (2020). https://doi.org/10.1126/science.abb9704
- Y. Wang, Y. Zhao, Y. Han, X. Li, C. Dai et al., Fixture-free omnidirectional prestretching fabrication and integration of crumpled in-plane micro-supercapacitors. Sci. Adv. 8, eabn8338 (2022). https://doi.org/10.1126/sciadv.abn8338
- M. Beidaghi, C. Wang, Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater. 22, 4501–4510 (2012). https://doi.org/10.1002/adfm.201201292
- A.G. de Sousa, C. Cercato, M.C. Mancini, A. Halpern, Obesity and obstructive sleep apnea-hypopnea syndrome. Obes. Rev. Off. J. Int. Assoc. Study Obes. 9, 340–354 (2008). https://doi.org/10.1111/j.1467-789X.2008.00478.x
- E.J. Olson, W.R. Moore, T.I. Morgenthaler, P.C. Gay, B.A. Staats, Obstructive sleep apnea-hypopnea syndrome. Mayo Clin. Proc. 78, 1545–1552 (2003). https://doi.org/10.4065/78.12.1545
- S.A. Kielb, S. Ancoli-Israel, G.W. Rebok, A.P. Spira, Cognition in obstructive sleep apnea-hypopnea syndrome (OSAS): current clinical knowledge and the impact of treatment. Neuromol. Med. 14, 180–193 (2012). https://doi.org/10.1007/s12017-012-8182-1
References
Y. Kim, K. Lee, J. Lee, S. Jang, H. Kim et al., Bird-inspired self-navigating artificial synaptic compass. ACS Nano 15, 20116–20126 (2021). https://doi.org/10.1021/acsnano.1c08005
M. Sahu, S. Hajra, S. Panda, M. Rajaitha, B.K. Panigrahi et al., Waste textiles as the versatile triboelectric energy-harvesting platform for self-powered applications in sports and athletics. Nano Energy 97, 107208 (2022). https://doi.org/10.1016/j.nanoen.2022.107208
M. Liu, X. Pu, C. Jiang, T. Liu, X. Huang et al., Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv. Mater. 29, 1703700 (2017). https://doi.org/10.1002/adma.201703700
K. Meng, X. Xiao, W. Wei, G. Chen, A. Nashalian et al., Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 34, e2109357 (2022). https://doi.org/10.1002/adma.202109357
L. Ma, R. Wu, A. Patil, S. Zhu, Z. Meng et al., Full-textile wireless flexible humidity sensor for human physiological monitoring. Adv. Funct. Mater. 29, 1904549 (2019). https://doi.org/10.1002/adfm.201904549
H. Ouyang, J. Tian, G. Sun, Y. Zou, Z. Liu et al., Self-powered pulse sensor for antidiastole of cardiovascular disease. Adv. Mater. 29, 1703456 (2017). https://doi.org/10.1002/adma.201703456
A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett et al., Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008). https://doi.org/10.1038/nature06381
S.A. Svatek, V. Sacchetti, L. Rodríguez-Pérez, B.M. Illescas, L. Rincón-García et al., Enhanced thermoelectricity in metal–[60] fullerene–graphene molecular junctions. Nano Lett. 23, 2726–2732 (2023). https://doi.org/10.1021/acs.nanolett.3c00014
X. Mu, J. Zhou, P. Wang, H. Chen, T. Yang et al., A robust starch–polyacrylamide hydrogel with scavenging energy harvesting capacity for efficient solar thermoelectricity–freshwater cogeneration. Energ. Environ. Sci. 15, 3388–3399 (2022). https://doi.org/10.1039/D2EE01394K
Z. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006). https://doi.org/10.1126/science.1124005
F. Li, Breaking symmetry for piezoelectricity. Science 375(6581), 618–619 (2022). https://doi.org/10.1126/science.abn2903
L. Yang, H. Huang, Z. Xi, L. Zheng, S. Xu et al., Simultaneously achieving giant piezoelectricity and record coercive field enhancement in relaxor-based ferroelectric crystals. Nat. Commun. 13, 2444 (2022). https://doi.org/10.1038/s41467-022-29962-6
X. Li, C. Zhang, Y. Gao, Z. Zhao, Y. Hu, O. Yang, L. Liu, L. Zhou, J. Wang, Z.L. Wang et al., A highly efficient constant-voltage triboelectric nanogenerator. Energ. Environ. Sci. 15, 1334–1345 (2022). https://doi.org/10.1039/D1EE03961J
X. Hui, Z. Li, L. Tang, J. Sun, X. Hou et al., A self-powered, highly embedded and sensitive tribo-label-sensor for the fast and stable label printer. Nano-Micro Lett. 15, 27 (2023). https://doi.org/10.1007/s40820-022-00999-y
C. Shan, K. Li, Y. Cheng, C. Hu, Harvesting environment mechanical energy by direct current triboelectric nanogenerators. Nano-Micro Lett. 15, 127 (2023). https://doi.org/10.1007/s40820-023-01115-4
J. Wang, X. Li, Y. Zi, S. Wang, Z. Li et al., A flexible fiber-based supercapacitor-triboelectric-nanogenerator power system for wearable electronics. Adv. Mater. 27, 4830–4836 (2015). https://doi.org/10.1002/adma.201501934
G.L. Stephens, J. Li, M. Wild, C.A. Clayson, N. Loeb et al., An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci. 5, 691 (2012). https://doi.org/10.1038/ngeo1580
C. Yang, H. Wang, J. Bai, T. He, H. Cheng et al., Transfer learning enhanced water-enabled electricity generation in highly oriented graphene oxide nanochannels. Nat. Commun. 13, 6819 (2022). https://doi.org/10.1038/s41467-022-34496-y
H. Cheng, Y. Huang, L. Qu, Q. Cheng, G. Shi et al., Flexible in-plane graphene oxide moisture-electric converter for touchless interactive panel. Nano Energy 45, 37–43 (2018). https://doi.org/10.1016/j.nanoen.2017.12.033
F. Zhao, Y. Liang, H. Cheng, L. Jiang, L. Qu, Highly efficient moisture-enabled electricity generation from graphene oxide frameworks. Energ. Environ. Sci. 9, 912–916 (2016). https://doi.org/10.1039/C5EE03701H
T. Xu, X. Ding, C. Shao, L. Song, T. Lin et al., Electric power generation through the direct interaction of pristine graphene-oxide with water molecules. Small 14, e1704473 (2018). https://doi.org/10.1002/smll.201704473
C. Shao, J. Gao, T. Xu, B. Ji, Y. Xiao et al., Wearable fiberform hygroelectric generator. Nano Energy 53, 698–705 (2018). https://doi.org/10.1016/j.nanoen.2018.09.043
Y. Huang, H. Cheng, G. Shi, L. Qu, Highly efficient moisture-triggered nanogenerator based on graphene quantum dots. ACS Appl. Mater. Interfaces 9, 38170–38175 (2017). https://doi.org/10.1021/acsami.7b12542
F. Zhao, L. Wang, Y. Zhao, L. Qu, L. Dai, Graphene oxide nanoribbon assembly toward moisture-powered information storage. Adv. Mater. 29, 1604972 (2017). https://doi.org/10.1002/adma.201604972
Y. Liang, F. Zhao, Z. Cheng, Q. Zhou, H. Shao et al., Self-powered wearable graphene fiber for information expression. Nano Energy 32, 329–335 (2017). https://doi.org/10.1016/j.nanoen.2016.12.062
Y. Huang, H. Cheng, C. Yang, P. Zhang, Q. Liao et al., Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts. Nat. Commun. 9, 4166 (2018). https://doi.org/10.1038/s41467-018-06633-z
Y. Liang, F. Zhao, Z. Cheng, Y. Deng, Y. Xiao et al., Electric power generation via asymmetric moisturizing of graphene oxide for flexible, printable and portable electronics. Energ. Environ. Sci. 11, 1730–1735 (2018). https://doi.org/10.1039/C8EE00671G
C. Yang, Y. Huang, H. Cheng, L. Jiang, L. Qu, Rollable, stretchable, and reconfigurable graphene hygroelectric generators. Adv. Mater. 31, e1805705 (2019). https://doi.org/10.1002/adma.201805705
Y. Han, B. Lu, C. Shao, T. Xu, Q. Liu et al., A hygroelectric power generator with energy self-storage. Chem. Eng. J. 384, 123366 (2020). https://doi.org/10.1016/j.cej.2019.123366
J. Xue, F. Zhao, C. Hu, Y. Zhao, H. Luo et al., Vapor-activated power generation on conductive polymer. Adv. Funct. Mater. 26, 8784–8792 (2016). https://doi.org/10.1002/adfm.201604188
X. Nie, B. Ji, N. Chen, Y. Liang, Q. Han et al., Gradient doped polymer nanowire for moistelectric nanogenerator. Nano Energy 46, 297–304 (2018). https://doi.org/10.1016/j.nanoen.2018.02.012
T. Xu, X. Ding, Y. Huang, C. Shao, L. Song et al., An efficient polymer moist-electric generator. Energ. Environ. Sci. 12, 972–978 (2019). https://doi.org/10.1039/C9EE00252A
Y. Long, P. He, Z. Shao, Z. Li, H. Kim et al., Moisture-induced autonomous surface potential oscillations for energy harvesting. Nat. Commun. 12, 5287 (2021). https://doi.org/10.1038/s41467-021-25554-y
Z. Sun, L. Feng, C. Xiong, X. He, L. Wang et al., Electrospun nanofiber fabric: an efficient, breathable and wearable moist-electric generator. J. Mater. Chem. A 9, 7085–7093 (2021). https://doi.org/10.1039/D0TA11974A
H. Wang, H. Cheng, Y. Huang, C. Yang, D. Wang et al., Transparent, self-healing, arbitrary tailorable moist-electric film generator. Nano Energy 67, 104238 (2020). https://doi.org/10.1016/j.nanoen.2019.104238
K. Liu, P. Yang, S. Li, J. Li, T. Ding et al., Induced potential in porous carbon films through water vapor absorption. Angew. Chem. Int. Ed. 55, 8003–8007 (2016). https://doi.org/10.1002/anie.201602708
Q. Li, M. Zhou, Q. Yang, M. Yang, Q. Wu et al., Flexible carbon dots composite paper for electricity generation from water vapor absorption. J. Mater. Chem. A 6, 10639–10643 (2018). https://doi.org/10.1039/C8TA02505C
S. Lee, J. Eun, S. Jeon, Facile fabrication of a highly efficient moisture-driven power generator using laser-induced graphitization under ambient conditions. Nano Energy 68, 104364 (2020). https://doi.org/10.1016/j.nanoen.2019.104364
Y. Tao, Z. Wang, H. Xu, W. Ding, X. Zhao et al., Moisture-powered memristor with interfacial oxygen migration for power-free reading of multiple memory states. Nano Energy 71, 104628 (2020). https://doi.org/10.1016/j.nanoen.2020.104628
K. Gao, J. Sun, X. Lin, Y. Li, X. Sun et al., High-performance flexible and integratable MEG devices from sulfonated carbon solid acids containing strong Brønsted acid sites. J. Mater. Chem. A 9, 24488–24494 (2021). https://doi.org/10.1039/D1TA06757E
S. Lee, H. Jang, H. Lee, D. Yoon, S. Jeon, Direct fabrication of a moisture-driven power generator by laser-induced graphitization with a gradual defocusing method. ACS Appl. Mater. Interfaces 11, 26970–26975 (2019). https://doi.org/10.1021/acsami.9b08056
X. Gao, T. Xu, C. Shao, Y. Han, B. Lu et al., Electric power generation using paper materials. J. Mater. Chem. A 7, 20574–20578 (2019). https://doi.org/10.1039/C9TA08264F
D. Shen, M. Xiao, Y. Xiao, G. Zou, L. Hu et al., Self-powered, rapid-response, and highly flexible humidity sensors based on moisture-dependent voltage generation. ACS Appl. Mater. Interfaces 11, 14249–14255 (2019). https://doi.org/10.1021/acsami.9b01523
Z. Sun, L. Feng, X. Wen, L. Wang, X. Qin et al., Nanofiber fabric based ion-gradient-enhanced moist-electric generator with a sustained voltage output of 1.1 volts. Mater. Horiz. 8, 2303–2309 (2021). https://doi.org/10.1039/D1MH00565K
T. He, H. Wang, B. Lu, T. Guang, C. Yang et al., Fully printed planar moisture-enabled electric generator arrays for scalable function integration. Joule 7, 935–951 (2023). https://doi.org/10.1016/j.joule.2023.04.007
J. Bai, Y. Huang, H. Wang, T. Guang, Q. Liao et al., Sunlight-coordinated high-performance moisture power in natural conditions. Adv. Mater. 34, 2103897 (2022). https://doi.org/10.1002/adma.202103897
L. Li, Z. Chen, M. Hao, S. Wang, F. Sun et al., Moisture-driven power generation for multifunctional flexible sensing systems. Nano Lett. 19, 5544–5552 (2019). https://doi.org/10.1021/acs.nanolett.9b02081
D. Shen, M. Xiao, G. Zou, L. Liu, W.W. Duley et al., Self-powered wearable electronics based on moisture enabled electricity generation. Adv. Mater. 30, e1705925 (2018). https://doi.org/10.1002/adma.201705925
D. He, Y. Yang, Y. Zhou, J. Wan, H. Wang et al., Electricity generation from phase-engineered flexible MoS2 nanosheets under moisture. Nano Energy 81, 105630 (2021). https://doi.org/10.1016/j.nanoen.2020.105630
M. Li, L. Zong, W. Yang, X. Li, J. You et al., Biological nanofibrous generator for electricity harvest from moist air flow. Adv. Funct. Mater. 29, 1901798 (2019). https://doi.org/10.1002/adfm.201901798
Q. Lyu, B. Peng, Z. Xie, S. Du, L. Zhang et al., Moist-induced electricity generation by electrospun cellulose acetate membranes with optimized porous structures. ACS Appl. Mater. Interfaces 12, 57373–57381 (2020). https://doi.org/10.1021/acsami.0c17931
W. Yang, X. Li, X. Han, W. Zhang, Z. Wang et al., Asymmetric ionic aerogel of biologic nanofibrils for harvesting electricity from moisture. Nano Energy 71, 104610 (2020). https://doi.org/10.1016/j.nanoen.2020.104610
Y. Zhang, T. Yang, K. Shang, F. Guo, Y. Shang et al., Sustainable power generation for at least one month from ambient humidity using unique nanofluidic diode. Nat. Commun. 13, 3484 (2022). https://doi.org/10.1038/s41467-022-31067-z
J. Bai, Y. Hu, T. Guang, K. Zhu, H. Wang et al., Vapor and heat dual-drive sustainable power for portable electronics in ambient environments. Energ. Environ. Sci. 15, 3086–3096 (2022). https://doi.org/10.1039/D2EE00846G
J. Tan, S. Fang, Z. Zhang, J. Yin, L. Li et al., Self-sustained electricity generator driven by the compatible integration of ambient moisture adsorption and evaporation. Nat. Commun. 13(1), 3643 (2022). https://doi.org/10.1038/s41467-022-31221-7
Z. Sun, X. Wen, L. Wang, J. Yu, X. Qin, Capacitor-inspired high-performance and durable moist-electric generator. Energ. Environ. Sci. 15(11), 4584–4591 (2022). https://doi.org/10.1039/D2EE02046G
Z. Sun, X. Wen, L. Wang, D. Ji, X. Qin et al., Emerging design principles, materials, and applications for moisture-enabled electric generation. eScience 2(1), 32–46 (2022). https://doi.org/10.1016/j.esci.2021.12.009
K. Wang, W. Xu, W. Zhang, X. Wang, X. Yang et al., Bio-inspired water-driven electricity generators: From fundamental mechanisms to practical applications. Nano Res. Energy 2(1), e9120042 (2023). https://doi.org/10.26599/NRE.2023.9120042
S.K. Arya, C.C. Wong, Y.J. Jeon, T. Bansal, M.K. Park, Advances in complementary-metal-oxide-semiconductor-based integrated biosensor arrays. Chem. Rev. 115, 5116–5158 (2015). https://doi.org/10.1021/cr500554n
S.Y. Jeong, J.S. Kim, J.H. Lee, Rational design of semiconductor-based chemiresistors and their libraries for next-generation artificial olfaction. Adv. Mater. 32, e2002075 (2020). https://doi.org/10.1002/adma.202002075
L. Gao, Flexible device applications of 2d semiconductors. Small 13, 1603994 (2017). https://doi.org/10.1002/smll.201603994
H. Wang, Y. Sun, T. He, Y. Huang, H. Cheng et al., Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output. Nat. Nanotechnol.. 16, 811 (2021). https://doi.org/10.1038/s41565-021-00903-6
H. Farahani, R. Wagiran, M.N. Hamidon, Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14, 7881–7939 (2014). https://doi.org/10.3390/s140507881
C.J.D. von Grotthuss, Mémoire sur la décomposition de l’eau et des corps qu’ell tient en dissolution à l’aide de l’electricité galvanique. Ann. Chim. LVIII, 54–74 (1806).
D.-D. Han, Y.-L. Zhang, J.-N. Ma, Y. Liu, J.-W. Mao et al., Sunlight-reduced graphene oxides as sensitive moisture sensors for smart device design. Adv. Mater. Technol. 2, 1700045 (2017). https://doi.org/10.1002/admt.201700045
N. Agmon, The grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995). https://doi.org/10.1016/0009-2614(95)00905-J
T.E. DeCoursey, V.V. Cherny, Deuterium isotope effects on permeation and gating of proton channels in rat alveolar epithelium. J. Gen. Physiol. 109, 415–434 (1997). https://doi.org/10.1085/jgp.109.4.415
X. Qian, L. Chen, L. Yin, Z. Liu, S. Pei et al., CdPS3 nanosheets-based membrane with high proton conductivity enabled by Cd vacancies. Science 370, 596–600 (2020). https://doi.org/10.1126/science.abb9704
Y. Wang, Y. Zhao, Y. Han, X. Li, C. Dai et al., Fixture-free omnidirectional prestretching fabrication and integration of crumpled in-plane micro-supercapacitors. Sci. Adv. 8, eabn8338 (2022). https://doi.org/10.1126/sciadv.abn8338
M. Beidaghi, C. Wang, Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater. 22, 4501–4510 (2012). https://doi.org/10.1002/adfm.201201292
A.G. de Sousa, C. Cercato, M.C. Mancini, A. Halpern, Obesity and obstructive sleep apnea-hypopnea syndrome. Obes. Rev. Off. J. Int. Assoc. Study Obes. 9, 340–354 (2008). https://doi.org/10.1111/j.1467-789X.2008.00478.x
E.J. Olson, W.R. Moore, T.I. Morgenthaler, P.C. Gay, B.A. Staats, Obstructive sleep apnea-hypopnea syndrome. Mayo Clin. Proc. 78, 1545–1552 (2003). https://doi.org/10.4065/78.12.1545
S.A. Kielb, S. Ancoli-Israel, G.W. Rebok, A.P. Spira, Cognition in obstructive sleep apnea-hypopnea syndrome (OSAS): current clinical knowledge and the impact of treatment. Neuromol. Med. 14, 180–193 (2012). https://doi.org/10.1007/s12017-012-8182-1