Electrolyte Concentration Regulation Boosting Zinc Storage Stability of High-Capacity K0.486V2O5 Cathode for Bendable Quasi-Solid-State Zinc Ion Batteries
Corresponding Author: Jinping Liu
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 34
Abstract
Vanadium-based cathodes have attracted great interest in aqueous zinc ion batteries (AZIBs) due to their large capacities, good rate performance and facile synthesis in large scale. However, their practical application is greatly hampered by vanadium dissolution issue in conventional dilute electrolytes. Herein, taking a new potassium vanadate K0.486V2O5 (KVO) cathode with large interlayer spacing (~ 0.95 nm) and high capacity as an example, we propose that the cycle life of vanadates can be greatly upgraded in AZIBs by regulating the concentration of ZnCl2 electrolyte, but with no need to approach “water-in-salt” threshold. With the optimized moderate concentration of 15 m ZnCl2 electrolyte, the KVO exhibits the best cycling stability with ~ 95.02% capacity retention after 1400 cycles. We further design a novel sodium carboxymethyl cellulose (CMC)-moderate concentration ZnCl2 gel electrolyte with high ionic conductivity of 10.08 mS cm−1 for the first time and assemble a quasi-solid-state AZIB. This device is bendable with remarkable energy density (268.2 Wh kg−1), excellent stability (97.35% after 2800 cycles), low self-discharge rate, and good environmental (temperature, pressure) suitability, and is capable of powering small electronics. The device also exhibits good electrochemical performance with high KVO mass loading (5 and 10 mg cm−2). Our work sheds light on the feasibility of using moderately concentrated electrolyte to address the stability issue of aqueous soluble electrode materials.
Highlights:
1 Moderate-concentration ZnCl2 (15 m) was found to be effective for suppressing the dissolution of vanadate cathode, which was more stable and had 4 times higher ionic conductivity than 30 m “water-in-salt” electrolyte.
2 K0.486V2O5 with huge interlayer space of ~ 0.95 nm was chosen for the first time to assemble aqueous Zn ion batteries, giving rise to excellent rate performance and high energy and power densities.
3 A novel sodium carboxymethyl cellulose-15 m ZnCl2 hydrogel electrolyte with high ionic conductivity of 10.08 mS cm−1 was designed, enabling a bendable Zn ion battery with outstanding resistance to temperature and pressure.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Liu, C. Guan, C. Zhou, Z. Fan, Q. Ke et al., A flexible quasi-solid-state nickel-zinc battery with high energy and power densities based on 3D electrode design. Adv. Mater. 28, 8732 (2016). https://doi.org/10.1002/adma.201603038
- N. Li, T. Meng, L. Ma, H. Zhang, J. Yao et al., Curtailing carbon usage with addition of functionalized NiFe2O4 quantum dots: toward more practical S cathodes for Li-S cells. Nano-Micro Lett. 12, 145 (2020). https://doi.org/10.1007/s40820-020-00484-4
- W. Zuo, W. Zhu, D. Zhao, Y. Sun, Y. Li et al., Bismuth oxide: a versatile high-capacity electrode material for rechargeable aqueous metal-ion batteries. Energy Environ. Sci. 9, 2881–2891 (2016). https://doi.org/10.1039/C6EE01871H
- H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
- C. Li, X. Xie, S. Liang, J. Zhou, Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energy Environ. Mater. 3, 146 (2020). https://doi.org/10.1002/eem2.12067
- S. Gheytani, Y. Liang, F. Wu, Y. Jing, H. Dong et al., An aqueous Ca-ion battery. Adv. Sci. 4, 1700465 (2017). https://doi.org/10.1002/advs.201700465
- W. Zhang, S. Liang, G. Fang, Y. Yang, J. Zhou, Ultra-high mass-loading cathode for aqueous zinc-ion battery based on graphene-wrapped aluminum vanadate nanobelts. Nano-Micro Lett. 11, 69 (2019). https://doi.org/10.1007/s40820-019-0300-2
- W. Xu, Y. Wang, Recent progress on zinc-ion rechargeable batteries. Nano-Micro Lett. 11, 90 (2019). https://doi.org/10.1007/s40820-019-0322-9
- P. Lei, K. Liu, X. Wan, D. Luo, X. Xiang, Ultrafast Na intercalation chemistry of Na2Ti3/2Mn1/2(PO4)3 nanodots planted in a carbon matrix as a low cost anode for aqueous sodium-ion batteries. Chem. Commun. 55, 509–512 (2019). https://doi.org/10.1039/c8cc07668e
- W. Zhou, D. Zhu, J. He, J. Li, H. Chen et al., A scalable top-down strategy toward practical metrics of Ni-Zn aqueous batteries with total energy densities of 165 W h kg−1 and 506 W h L−1. Energy Environ. Sci. (Advance Article, 2020). https://doi.org/https://doi.org/10.1039/d0ee01221a
- Y. Jiang, D. Ba, Y. Li, J. Liu, Non-interference revealing of “layered to layered” zinc storage mechanism of δ-MnO2 towards neutral Zn-Mn batteries with superior performance. Adv. Sci. 7, 1902795 (2020). https://doi.org/10.1002/advs.201902795
- F. Liu, Z. Chen, G. Fang, Z. Wang, Y. Cai et al., V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode. Nano-Micro Lett. 11, 25 (2019). https://doi.org/10.1007/s40820-019-0256-2
- Y. Zhang, G. Liu, C. Zhang, Q. Chi, T. Zhang et al., Low-cost MgFexMn2-xO4 cathode materials for high-performance aqueous rechargeable magnesium-ion batteries. Chem. Eng. J. 392, 123652 (2020). https://doi.org/10.1016/j.cej.2019.123652
- N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei et al., Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138, 12894–12901 (2016). https://doi.org/10.1021/jacs.6b05958
- D. Chao, W. Zhou, F. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6, 4098 (2020). https://doi.org/10.1126/sciadv.aba4098
- D. Luo, P. Lei, G. Tian, Y. Huang, X. Ren et al., Insight into electrochemical properties and reaction mechanism of a cobalt-rich prussian blue analogue cathode in a NaSO3CF3 electrolyte for aqueous sodium-ion batteries. J. Phys. Chem. C 124, 5958–5965 (2020). https://doi.org/10.1021/acs.jpcc.9b11758
- M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28, 1802564 (2018). https://doi.org/10.1002/adfm.2018025649
- L. Zhang, I.A. Rodríguez-Pérez, H. Jiang, C. Zhang, D.P. Leonard et al., ZnCl2 “Water-in-Salt” electrolyte transforms the performance of vanadium oxide as a Zn battery cathode. Adv. Funct. Mater. 29, 1902653 (2019). https://doi.org/10.1002/adfm.201902653
- H. Jiang, Y. Zhang, L. Xu, Z. Gao, J. Zheng et al., Fabrication of (NH4)2V3O8 nanoparticles encapsulated in amorphous carbon for high capacity electrodes in aqueous zinc ion batteries. Chem. Eng. J. 382, 122844 (2020). https://doi.org/10.1016/j.cej.2019.122844
- B. Tang, J. Zhou, G. Fang, F. Liu, C. Zhu et al., Engineering the interplanar spacing of ammonium vanadates as a high-performance aqueous zinc-ion battery cathode. J. Mater. Chem. A 7, 940–945 (2019). https://doi.org/10.1039/C8TA09338E
- D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
- W. Yang, L. Dong, W. Yang, C. Xu, G. Shao et al., 3D oxygen-defective potassium vanadate/carbon nanoribbon networks as high-performance cathodes for aqueous zinc-ion batteries. Small Methods 4, 1900670 (2020). https://doi.org/10.1002/smtd.201900670
- B. Sambandam, V. Soundharrajan, S. Kim, M.H. Alfaruqi, J. Jo et al., K2V6O16·2.7H2O nanorod cathode: an advanced intercalation system for high energy aqueous rechargeable Zn-ion batteries. J. Mater. Chem. A 6, 15530–15539 (2018). https://doi.org/10.1039/C8TA02018C
- Y. Cai, F. Liu, Z. Luo, G. Fang, J. Zhou et al., Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode. Energy Storage Mater. 13, 168–174 (2018). https://doi.org/10.1016/j.ensm.2018.01.009
- F. Wan, Z. Niu, Design strategies for vanadium-based aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 58, 16358–16367 (2019). https://doi.org/10.1002/anie.201903941
- H.Y. Shi, Y. Song, Z. Qin, C. Li, D. Guo et al., Inhibiting VOPO4⋅xH2O decomposition and dissolution in rechargeable aqueous zinc batteries to promote voltage and capacity stabilities. Angew. Chem. Int. Ed. 58, 16057–16061 (2019). https://doi.org/10.1002/anie.201908853
- F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu et al., Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9, 1–11 (2018). https://doi.org/10.1038/s41467-018-04060-8
- Z. Peng, Q. Wei, S. Tan, P. He, W. Luo et al., Novel layered iron vanadate cathode for high-capacity aqueous rechargeable zinc batteries. Chem. Commun. 54, 4041–4044 (2018). https://doi.org/10.1039/C8CC00987B
- X. Wu, Y. Xu, C. Zhang, D.P. Leonard, A. Markir et al., Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte. J. Am. Chem. Soc. 141, 6338–6344 (2019). https://doi.org/10.1021/jacs.9b00617
- Q. Dou, S. Lei, D.-W. Wang, Q. Zhang, D. Xiao et al., Safe and high-rate supercapacitors based on an “acetonitrile/water in salt” hybrid electrolyte. Energy Environ. Sci. 11, 3212–3219 (2018). https://doi.org/10.1039/C8EE01040D
- X. Bu, L. Su, Q. Dou, S. Lei, X. Yan, A low-cost “water-in-salt” electrolyte for a 2.3 V high-rate carbon-based supercapacitor. J. Mater. Chem. A 7, 7541–7547 (2019). https://doi.org/10.1039/C9TA00154A
- C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu et al., A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem. Commun. 54, 14097–14099 (2018). https://doi.org/10.1039/C8CC07730D
- L. Deng, X. Niu, G. Ma, Z. Yang, L. Zeng et al., Layered Potassium vanadate K0.5V2O5 as a cathode material for nonaqueous potassium ion batteries. Adv. Funct. Mater. 28, 1800670 (2018). https://doi.org/10.1002/adfm.201800670
- J. Meng, Z. Liu, C. Niu, X. Xu, X. Liu et al., A synergistic effect between layer surface configurations and K ions of potassium vanadate nanowires for enhanced energy storage performance. J. Mater. Chem. A 4, 4893–4899 (2016). https://doi.org/10.1039/C6TA00556J
- F. Wan, S. Huang, H. Cao, Z. Niu, Freestanding potassium vanadate/carbon nanotube films for ultralong-life aqueous zinc-ion batteries. ACS Nano 14, 6752–6760 (2020). https://doi.org/10.1021/acsnano.9b10214
- M. Yan, P. He, Y. Chen, S. Wang, Q. Wei et al., Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 30, 1703725 (2018). https://doi.org/10.1002/adma.201703725
- P. He, Y. Quan, X. Xu, M. Yan, W. Yang et al., High-performance aqueous zinc-ion battery based on layered H2V3O8 nanowire cathode. Small 13, 1702551 (2017). https://doi.org/10.1002/smll.201702551
- P. Hu, T. Zhu, X. Wang, X. Wei, M. Yan et al., Highly durable Na2V6O16·1.63H2O nanowire cathode for aqueous zinc-ion battery. Nano Lett. 18, 1758–1763 (2018). https://doi.org/10.1021/acs.nanolett.7b04889
- B. Tang, G. Fang, J. Zhou, L. Wang, Y. Lei et al., Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy 51, 579–587 (2018). https://doi.org/10.1016/j.nanoen.2018.07.014
- P. He, M. Yan, G. Zhang, R. Sun, L. Chen et al., Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater. 7, 1601920 (2017). https://doi.org/10.1002/aenm.201601920
- P. He, G. Zhang, X. Liao, M. Yan, X. Xu et al., Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 8, 1702463 (2018). https://doi.org/10.1002/aenm.201702463
- M.H. Alfaruqi, V. Mathew, J. Song, S. Kim, S. Islam et al., Electrochemical zinc intercalation in lithium vanadium oxide: a high-capacity zinc-ion battery cathode. Chem. Mater. 29, 1684–1694 (2017). https://doi.org/10.1021/acs.chemmater.6b05092
- G. Li, Z. Yang, Y. Jiang, C. Jin, W. Huang et al., Towards polyvalent ion batteries: A zinc-ion battery based on NASICON structured Na3V2(PO4)3. Nano Energy 25, 211–217 (2016). https://doi.org/10.1016/j.nanoen.2016.04.051
- L. Zhang, L. Chen, X. Zhou, Z. Liu, Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5, 1400930 (2015). https://doi.org/10.1002/aenm.201400930
- Y. Jiang, D. Zhao, D. Ba, Y. Li, J. Liu, “Carbon-glue” enabled highly stable and high-rate Fe3O4 nanorod anode for flexible quasi-solid-state nickel-copper//iron alkaline battery. Adv. Mater. Interfaces 5, 1801043 (2018). https://doi.org/10.1002/admi.201801043
- D. Yu, K. Goh, H. Wang, L. Wei, W. Jiang et al., Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat. Nanotechnol. 9, 555 (2014). https://doi.org/10.1038/nnano.2014.93
- R. Li, Y. Wang, C. Zhou, C. Wang, X. Ba et al., Carbon-stabilized high-capacity ferroferric oxide nanorod array for flexible solid-state alkaline battery-supercapacitor hybrid device with high environmental suitability. Adv. Funct. Mater. 25, 5384–5394 (2015). https://doi.org/10.1002/adfm.201502265
- M. El-kady, V. Strong, S. Dubin, R. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 225, 1326–1330 (2012). https://doi.org/10.1126/science.1216744
- M. Shi, C. Yang, X. Song, L. Zhao, J. Liu et al., Integrated sustainable wind power harvesting and ultrahigh energy density wire-shaped supercapacitors based on vertically oriented nanosheet-array-coated carbon fibers. Adv. Sustain. Syst. 1, 1700044 (2017). https://doi.org/10.1002/adsu.201700044
- P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang et al., Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano 7, 2617–2626 (2013). https://doi.org/10.1021/nn306044d
- J. Luo, W. Cui, P. He, Y. Xia, Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2, 760–765 (2010). https://doi.org/10.1038/nchem.763
- Z. Guo, Y. Ma, X. Dong, J. Huang, Y. Wang et al., An environmentally friendly and flexible aqueous zinc battery using an organic cathode. Angew. Chem. Int. Ed. 130, 11911–11915 (2018). https://doi.org/10.1002/ange.201807121
- J. Chang, Q. Huang, Z. Zheng, A figure of merit for flexible batteries. Joule 4, 1346–1349 (2020). https://doi.org/10.1016/j.joule.2020.05.015
References
J. Liu, C. Guan, C. Zhou, Z. Fan, Q. Ke et al., A flexible quasi-solid-state nickel-zinc battery with high energy and power densities based on 3D electrode design. Adv. Mater. 28, 8732 (2016). https://doi.org/10.1002/adma.201603038
N. Li, T. Meng, L. Ma, H. Zhang, J. Yao et al., Curtailing carbon usage with addition of functionalized NiFe2O4 quantum dots: toward more practical S cathodes for Li-S cells. Nano-Micro Lett. 12, 145 (2020). https://doi.org/10.1007/s40820-020-00484-4
W. Zuo, W. Zhu, D. Zhao, Y. Sun, Y. Li et al., Bismuth oxide: a versatile high-capacity electrode material for rechargeable aqueous metal-ion batteries. Energy Environ. Sci. 9, 2881–2891 (2016). https://doi.org/10.1039/C6EE01871H
H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
C. Li, X. Xie, S. Liang, J. Zhou, Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energy Environ. Mater. 3, 146 (2020). https://doi.org/10.1002/eem2.12067
S. Gheytani, Y. Liang, F. Wu, Y. Jing, H. Dong et al., An aqueous Ca-ion battery. Adv. Sci. 4, 1700465 (2017). https://doi.org/10.1002/advs.201700465
W. Zhang, S. Liang, G. Fang, Y. Yang, J. Zhou, Ultra-high mass-loading cathode for aqueous zinc-ion battery based on graphene-wrapped aluminum vanadate nanobelts. Nano-Micro Lett. 11, 69 (2019). https://doi.org/10.1007/s40820-019-0300-2
W. Xu, Y. Wang, Recent progress on zinc-ion rechargeable batteries. Nano-Micro Lett. 11, 90 (2019). https://doi.org/10.1007/s40820-019-0322-9
P. Lei, K. Liu, X. Wan, D. Luo, X. Xiang, Ultrafast Na intercalation chemistry of Na2Ti3/2Mn1/2(PO4)3 nanodots planted in a carbon matrix as a low cost anode for aqueous sodium-ion batteries. Chem. Commun. 55, 509–512 (2019). https://doi.org/10.1039/c8cc07668e
W. Zhou, D. Zhu, J. He, J. Li, H. Chen et al., A scalable top-down strategy toward practical metrics of Ni-Zn aqueous batteries with total energy densities of 165 W h kg−1 and 506 W h L−1. Energy Environ. Sci. (Advance Article, 2020). https://doi.org/https://doi.org/10.1039/d0ee01221a
Y. Jiang, D. Ba, Y. Li, J. Liu, Non-interference revealing of “layered to layered” zinc storage mechanism of δ-MnO2 towards neutral Zn-Mn batteries with superior performance. Adv. Sci. 7, 1902795 (2020). https://doi.org/10.1002/advs.201902795
F. Liu, Z. Chen, G. Fang, Z. Wang, Y. Cai et al., V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode. Nano-Micro Lett. 11, 25 (2019). https://doi.org/10.1007/s40820-019-0256-2
Y. Zhang, G. Liu, C. Zhang, Q. Chi, T. Zhang et al., Low-cost MgFexMn2-xO4 cathode materials for high-performance aqueous rechargeable magnesium-ion batteries. Chem. Eng. J. 392, 123652 (2020). https://doi.org/10.1016/j.cej.2019.123652
N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei et al., Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138, 12894–12901 (2016). https://doi.org/10.1021/jacs.6b05958
D. Chao, W. Zhou, F. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6, 4098 (2020). https://doi.org/10.1126/sciadv.aba4098
D. Luo, P. Lei, G. Tian, Y. Huang, X. Ren et al., Insight into electrochemical properties and reaction mechanism of a cobalt-rich prussian blue analogue cathode in a NaSO3CF3 electrolyte for aqueous sodium-ion batteries. J. Phys. Chem. C 124, 5958–5965 (2020). https://doi.org/10.1021/acs.jpcc.9b11758
M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28, 1802564 (2018). https://doi.org/10.1002/adfm.2018025649
L. Zhang, I.A. Rodríguez-Pérez, H. Jiang, C. Zhang, D.P. Leonard et al., ZnCl2 “Water-in-Salt” electrolyte transforms the performance of vanadium oxide as a Zn battery cathode. Adv. Funct. Mater. 29, 1902653 (2019). https://doi.org/10.1002/adfm.201902653
H. Jiang, Y. Zhang, L. Xu, Z. Gao, J. Zheng et al., Fabrication of (NH4)2V3O8 nanoparticles encapsulated in amorphous carbon for high capacity electrodes in aqueous zinc ion batteries. Chem. Eng. J. 382, 122844 (2020). https://doi.org/10.1016/j.cej.2019.122844
B. Tang, J. Zhou, G. Fang, F. Liu, C. Zhu et al., Engineering the interplanar spacing of ammonium vanadates as a high-performance aqueous zinc-ion battery cathode. J. Mater. Chem. A 7, 940–945 (2019). https://doi.org/10.1039/C8TA09338E
D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
W. Yang, L. Dong, W. Yang, C. Xu, G. Shao et al., 3D oxygen-defective potassium vanadate/carbon nanoribbon networks as high-performance cathodes for aqueous zinc-ion batteries. Small Methods 4, 1900670 (2020). https://doi.org/10.1002/smtd.201900670
B. Sambandam, V. Soundharrajan, S. Kim, M.H. Alfaruqi, J. Jo et al., K2V6O16·2.7H2O nanorod cathode: an advanced intercalation system for high energy aqueous rechargeable Zn-ion batteries. J. Mater. Chem. A 6, 15530–15539 (2018). https://doi.org/10.1039/C8TA02018C
Y. Cai, F. Liu, Z. Luo, G. Fang, J. Zhou et al., Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode. Energy Storage Mater. 13, 168–174 (2018). https://doi.org/10.1016/j.ensm.2018.01.009
F. Wan, Z. Niu, Design strategies for vanadium-based aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 58, 16358–16367 (2019). https://doi.org/10.1002/anie.201903941
H.Y. Shi, Y. Song, Z. Qin, C. Li, D. Guo et al., Inhibiting VOPO4⋅xH2O decomposition and dissolution in rechargeable aqueous zinc batteries to promote voltage and capacity stabilities. Angew. Chem. Int. Ed. 58, 16057–16061 (2019). https://doi.org/10.1002/anie.201908853
F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu et al., Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9, 1–11 (2018). https://doi.org/10.1038/s41467-018-04060-8
Z. Peng, Q. Wei, S. Tan, P. He, W. Luo et al., Novel layered iron vanadate cathode for high-capacity aqueous rechargeable zinc batteries. Chem. Commun. 54, 4041–4044 (2018). https://doi.org/10.1039/C8CC00987B
X. Wu, Y. Xu, C. Zhang, D.P. Leonard, A. Markir et al., Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte. J. Am. Chem. Soc. 141, 6338–6344 (2019). https://doi.org/10.1021/jacs.9b00617
Q. Dou, S. Lei, D.-W. Wang, Q. Zhang, D. Xiao et al., Safe and high-rate supercapacitors based on an “acetonitrile/water in salt” hybrid electrolyte. Energy Environ. Sci. 11, 3212–3219 (2018). https://doi.org/10.1039/C8EE01040D
X. Bu, L. Su, Q. Dou, S. Lei, X. Yan, A low-cost “water-in-salt” electrolyte for a 2.3 V high-rate carbon-based supercapacitor. J. Mater. Chem. A 7, 7541–7547 (2019). https://doi.org/10.1039/C9TA00154A
C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu et al., A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem. Commun. 54, 14097–14099 (2018). https://doi.org/10.1039/C8CC07730D
L. Deng, X. Niu, G. Ma, Z. Yang, L. Zeng et al., Layered Potassium vanadate K0.5V2O5 as a cathode material for nonaqueous potassium ion batteries. Adv. Funct. Mater. 28, 1800670 (2018). https://doi.org/10.1002/adfm.201800670
J. Meng, Z. Liu, C. Niu, X. Xu, X. Liu et al., A synergistic effect between layer surface configurations and K ions of potassium vanadate nanowires for enhanced energy storage performance. J. Mater. Chem. A 4, 4893–4899 (2016). https://doi.org/10.1039/C6TA00556J
F. Wan, S. Huang, H. Cao, Z. Niu, Freestanding potassium vanadate/carbon nanotube films for ultralong-life aqueous zinc-ion batteries. ACS Nano 14, 6752–6760 (2020). https://doi.org/10.1021/acsnano.9b10214
M. Yan, P. He, Y. Chen, S. Wang, Q. Wei et al., Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 30, 1703725 (2018). https://doi.org/10.1002/adma.201703725
P. He, Y. Quan, X. Xu, M. Yan, W. Yang et al., High-performance aqueous zinc-ion battery based on layered H2V3O8 nanowire cathode. Small 13, 1702551 (2017). https://doi.org/10.1002/smll.201702551
P. Hu, T. Zhu, X. Wang, X. Wei, M. Yan et al., Highly durable Na2V6O16·1.63H2O nanowire cathode for aqueous zinc-ion battery. Nano Lett. 18, 1758–1763 (2018). https://doi.org/10.1021/acs.nanolett.7b04889
B. Tang, G. Fang, J. Zhou, L. Wang, Y. Lei et al., Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy 51, 579–587 (2018). https://doi.org/10.1016/j.nanoen.2018.07.014
P. He, M. Yan, G. Zhang, R. Sun, L. Chen et al., Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater. 7, 1601920 (2017). https://doi.org/10.1002/aenm.201601920
P. He, G. Zhang, X. Liao, M. Yan, X. Xu et al., Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 8, 1702463 (2018). https://doi.org/10.1002/aenm.201702463
M.H. Alfaruqi, V. Mathew, J. Song, S. Kim, S. Islam et al., Electrochemical zinc intercalation in lithium vanadium oxide: a high-capacity zinc-ion battery cathode. Chem. Mater. 29, 1684–1694 (2017). https://doi.org/10.1021/acs.chemmater.6b05092
G. Li, Z. Yang, Y. Jiang, C. Jin, W. Huang et al., Towards polyvalent ion batteries: A zinc-ion battery based on NASICON structured Na3V2(PO4)3. Nano Energy 25, 211–217 (2016). https://doi.org/10.1016/j.nanoen.2016.04.051
L. Zhang, L. Chen, X. Zhou, Z. Liu, Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5, 1400930 (2015). https://doi.org/10.1002/aenm.201400930
Y. Jiang, D. Zhao, D. Ba, Y. Li, J. Liu, “Carbon-glue” enabled highly stable and high-rate Fe3O4 nanorod anode for flexible quasi-solid-state nickel-copper//iron alkaline battery. Adv. Mater. Interfaces 5, 1801043 (2018). https://doi.org/10.1002/admi.201801043
D. Yu, K. Goh, H. Wang, L. Wei, W. Jiang et al., Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat. Nanotechnol. 9, 555 (2014). https://doi.org/10.1038/nnano.2014.93
R. Li, Y. Wang, C. Zhou, C. Wang, X. Ba et al., Carbon-stabilized high-capacity ferroferric oxide nanorod array for flexible solid-state alkaline battery-supercapacitor hybrid device with high environmental suitability. Adv. Funct. Mater. 25, 5384–5394 (2015). https://doi.org/10.1002/adfm.201502265
M. El-kady, V. Strong, S. Dubin, R. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 225, 1326–1330 (2012). https://doi.org/10.1126/science.1216744
M. Shi, C. Yang, X. Song, L. Zhao, J. Liu et al., Integrated sustainable wind power harvesting and ultrahigh energy density wire-shaped supercapacitors based on vertically oriented nanosheet-array-coated carbon fibers. Adv. Sustain. Syst. 1, 1700044 (2017). https://doi.org/10.1002/adsu.201700044
P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang et al., Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano 7, 2617–2626 (2013). https://doi.org/10.1021/nn306044d
J. Luo, W. Cui, P. He, Y. Xia, Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2, 760–765 (2010). https://doi.org/10.1038/nchem.763
Z. Guo, Y. Ma, X. Dong, J. Huang, Y. Wang et al., An environmentally friendly and flexible aqueous zinc battery using an organic cathode. Angew. Chem. Int. Ed. 130, 11911–11915 (2018). https://doi.org/10.1002/ange.201807121
J. Chang, Q. Huang, Z. Zheng, A figure of merit for flexible batteries. Joule 4, 1346–1349 (2020). https://doi.org/10.1016/j.joule.2020.05.015