Recent Advances in 2D Lateral Heterostructures
Corresponding Author: Xiaobin Niu
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 48
Abstract
Recent developments in synthesis and nanofabrication technologies offer the tantalizing prospect of realizing various applications from two-dimensional (2D) materials. A revolutionary development is to flexibly construct many different kinds of heterostructures with a diversity of 2D materials. These 2D heterostructures play an important role in semiconductor and condensed matter physics studies and are promising candidates for new device designs in the fields of integrated circuits and quantum sciences. Theoretical and experimental studies have focused on both vertical and lateral 2D heterostructures; the lateral heterostructures are considered to be easier for planner integration and exhibit unique electronic and photoelectronic properties. In this review, we give a summary of the properties of lateral heterostructures with homogeneous junction and heterogeneous junction, where the homogeneous junctions have the same host materials and the heterogeneous junctions are combined with different materials. Afterward, we discuss the applications and experimental synthesis of lateral 2D heterostructures. Moreover, a perspective on lateral 2D heterostructures is given at the end.
Highlights:
1 The tunable mechanisms of lateral heterostructures on both homogeneous junctions and heterogeneous junctions are summarized.
2 Electronic and photoelectronic devices with lateral heterostructures have been discussed.
3 Different types of contacts of 2D lateral heterostructures are classified.
4 Recent developments in synthesis and nanofabrication technologies of 2D lateral heterostructures are reviewed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005). https://doi.org/10.1073/pnas.0502848102
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
- M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev. 110(1), 132–145 (2009). https://doi.org/10.1021/cr900070d
- A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009). https://doi.org/10.1103/RevModPhys.81.109
- C.L. Tan, X.H. Cao, X.J. Wu, Q.Y. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
- M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113(5), 3766–3798 (2013). https://doi.org/10.1021/cr300263a
- Y. Lin, T.V. Williams, J.W. Connell, Soluble, exfoliated hexagonal boron nitride nanosheets. J. Phys. Chem. Lett. 1(1), 277–283 (2010). https://doi.org/10.1021/jz9002108
- Q.H. Weng, X.B. Wang, X. Wang, Y. Bando, D. Golberg, Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chem. Soc. Rev. 45(14), 3989–4012 (2016). https://doi.org/10.1039/c5cs00869g
- R. Lv, J.A. Robinson, R.E. Schaak, D. Sun, Y.F. Sun, T.E. Mallouk, M. Terrones, Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res. 48(1), 56–64 (2015). https://doi.org/10.1021/ar5002846
- C.L. Tan, H. Zhang, Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 44(9), 2713–2731 (2015). https://doi.org/10.1039/c4cs00182f
- H. Liu, Y.C. Du, Y.X. Deng, P.D. Ye, Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44(9), 2732–2743 (2015). https://doi.org/10.1039/c4cs00257a
- P.F. Chen, N. Li, X.Z. Chen, W.J. Ong, X.J. Zhao, The rising star of 2D black phosphorus beyond graphene: synthesis, properties and electronic applications. 2D Mater. 5(1), 014002 (2018). https://doi.org/10.1088/2053-1583/aa8d37
- A. Kara, H. Enriquez, A.P. Seitsonen, L. Voon, S. Vizzini, B. Aufray, H. Oughaddou, A review on silicene-new candidate for electronics. Surf. Sci. Rep. 67(1), 1–18 (2012). https://doi.org/10.1016/j.surfrep.2011.10.001
- B. Hunt, J.D. Sanchez-Yamagishi, A.F. Young, M. Yankowitz, B.J. LeRoy et al., Massive dirac fermions and hofstadter butterfly in a van der waals heterostructure. Science 340(6139), 1427–1430 (2013). https://doi.org/10.1126/science.1237240
- L. Britnell, R.M. Ribeiro, A. Eckmann, R. Jalil, B.D. Belle et al., Strong light-matter interactions in heterostructures of atomically thin films. Science 340(6138), 1311–1314 (2013). https://doi.org/10.1126/science.1235547
- A.K. Geim, I.V. Grigorieva, Van der waals heterostructures. Nature 499, 419–425 (2013). https://doi.org/10.1038/nature12385
- W. Zhang, Q. Wang, Y. Chen, Z. Wang, A.T.S. Wee, Van der waals stacked 2D layered materials for optoelectronics. 2D Mater. 3(2), 022001 (2016). https://doi.org/10.1088/2053-1583/3/2/022001
- L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin et al., Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335(6071), 947–950 (2012). https://doi.org/10.1126/science.1218461
- T. Georgiou, R. Jalil, B.D. Belle, L. Britnell, R.V. Gorbachev et al., Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8(2), 100–103 (2013). https://doi.org/10.1038/nnano.2012.224
- Y.Z. Xue, Y.P. Zhang, Y. Liu, H.T. Liu, J.C. Song et al., Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors. ACS Nano 10(1), 573–580 (2016). https://doi.org/10.1021/acsnano.5b05596
- X. Duan, C. Wang, J.C. Shaw, R. Cheng, Y. Chen et al., Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9(12), 1024–1030 (2014). https://doi.org/10.1038/nnano.2014.222
- X. Chen, Y. Qiu, H. Yang, G. Liu, W. Zheng, W. Feng, W. Cao, W. Hu, P. Hu, In-plane mosaic potential growth of large-area 2D layered semiconductors MoS2–MoSe2 lateral heterostructures and photodetector application. ACS Appl. Mater. Interfaces. 9(2), 1684–1691 (2017). https://doi.org/10.1021/acsami.6b13379
- C.Y. Lin, X. Zhu, S.H. Tsai, S.P. Tsai, S.D. Lei et al., Atomic-monolayer two-dimensional lateral quasi-heterojunction bipolar transistors with resonant tunneling phenomenon. ACS Nano 11(11), 11015–11023 (2017). https://doi.org/10.1021/acsnano.7b05012
- M.Y. Li, J. Pu, J.K. Huang, Y. Miyauchi, K. Matsuda, T. Takenobu, L.J. Li, Self-aligned and scalable growth of monolayer WSe2–MoS2 lateral heterojunctions. Adv. Funct. Mater. 28(17), 1706860 (2018). https://doi.org/10.1002/adfm.201706860
- D.R. Chen, M. Hofmann, H.M. Yao, S.K. Chiu, S.H. Chen, Y.R. Luo, C.C. Hsu, Y.P. Hsieh, Lateral two-dimensional material heterojunction photodetectors with ultrahigh speed and detectivity. ACS Appl. Mater. Interfaces. 11(6), 6384–6388 (2019). https://doi.org/10.1021/acsami.8b19093
- P. Solis-Fernandez, M. Bissett, H. Ago, Synthesis, structure and applications of graphene-based 2D heterostructures. Chem. Soc. Rev. 46(15), 4572–4613 (2017). https://doi.org/10.1039/c7cs00160f
- R. Frisenda, E. Navarro-Moratalla, P. Gant, D.P. De Lara, P. Jarillo-Herrero, R.V. Gorbachev, A. Castellanos-Gomez, Recent progress in the assembly of nanodevices and van der waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 47(1), 53–68 (2018). https://doi.org/10.1039/c7cs00556c
- H. Wang, F.C. Liu, W. Fu, Z.Y. Fang, W. Zhou, Z. Liu, Two-dimensional heterostructures: fabrication, characterization, and application. Nanoscale 6(21), 12250–12272 (2014). https://doi.org/10.1039/c4nr03435j
- K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H.C. Neto, 2D materials and van der waals heterostructures. Science 353(aac6298), 9439 (2016). https://doi.org/10.1126/science.aac9439
- S.J. Haigh, A. Gholinia, R. Jalil, S. Romani, L. Britnell et al., Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11(9), 764–767 (2012). https://doi.org/10.1038/nmat3386
- W. Yang, G. Chen, Z. Shi, C.C. Liu, L. Zhang et al., Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12(9), 792–797 (2013). https://doi.org/10.1038/nmat3695
- D. Logoteta, G. Fiori, G. Iannaccone, Graphene-based lateral heterostructure transistors exhibit better intrinsic performance than graphene-based vertical transistors as post-CMOS devices. Sci. Rep. 4, 6607 (2014). https://doi.org/10.1038/srep06607
- P. Chen, Z. Zhang, X. Duan, X. Duan, Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. Chem. Soc. Rev. 47(9), 3129–3151 (2018). https://doi.org/10.1039/C7CS00887B
- X. Cai, Y. Luo, B. Liu, H.M. Cheng, Preparation of 2D material dispersions and their applications. Chem. Soc. Rev. 47(16), 6224–6266 (2018). https://doi.org/10.1039/C8CS00254A
- K. Chen, X. Wan, J. Xu, Epitaxial stitching and stacking growth of atomically thin transition-metal dichalcogenides(TMDCs) heterojunctions. Adv. Funct. Mater. 27(19), 1603884 (2017). https://doi.org/10.1002/adfm.201603884
- Z. Cai, B. Liu, X. Zou, H.M. Cheng, Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 118(13), 6091–6133 (2018). https://doi.org/10.1021/acs.chemrev.7b00536
- Y.W. Son, M.L. Cohen, S.G. Louie, Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97(21), 216803 (2006). https://doi.org/10.1103/PhysRevLett.97.216803
- M.Y. Han, B. Özyilmaz, Y. Zhang, P. Kim, Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98(20), 206805 (2007). https://doi.org/10.1103/PhysRevLett.98.206805
- G.X. Wu, Q.Y. Meng, Y.H. Jing, Computational design for interconnection of graphene nanoribbons. Chem. Phys. Lett. 531, 119–125 (2012). https://doi.org/10.1016/j.cplett.2012.01.084
- G.X. Wu, C.L. Li, Y.H. Jing, C.Y. Wang, Y. Yang, Z.Q. Wang, Electronic transport properties of graphene nanoribbon heterojunctions with 5–7–5 ring defect. Comput. Mater. Sci. 95, 84–88 (2014). https://doi.org/10.1016/j.commatsci.2014.07.023
- X.F. Li, L.L. Wang, K.Q. Chen, Y. Luo, Design of graphene–nanoribbon heterojunctions from first principles. J. Phys. Chem. C 115(25), 12616–12624 (2011). https://doi.org/10.1021/jp202188t
- X.F. Li, L.L. Wang, K.Q. Chen, Y. Luo, Electronic transport through zigzag/armchair graphene nanoribbon heterojunctions. J. Phys.: Condens. Matter 24(9), 095801 (2012). https://doi.org/10.1088/0953-8984/24/9/095801
- W. Zhang, C. Basaran, T. Ragab, Impact of geometry on transport properties of armchair graphene nanoribbon heterojunction. Carbon 124, 422–428 (2017). https://doi.org/10.1016/j.carbon.2017.09.005
- L. Rosales, P. Orellana, Z. Barticevic, M. Pacheco, Transport properties of graphene nanoribbon heterostructures. Microelectron. J. 39(3), 537–540 (2008). https://doi.org/10.1016/j.mejo.2007.07.080
- M.D.S. Price, E. Cruz-Silva, A.L.M.T. Costa, F.M.D. Vasconcelos, E.C. Girão, S.B. Zhang, V. Meunier, Electronic and transport properties of graphene nanoribbon barbell-shaped heterojunctions. Phys. Status Solidi B 250(11), 2417–2423 (2013). https://doi.org/10.1002/pssb.201349224
- Y. Li, F. Ma, Size and strain tunable band alignment of black-blue phosphorene lateral heterostructures. Phys. Chem. Chem. Phys. 19(19), 12466–12472 (2017). https://doi.org/10.1039/C7CP00940B
- R. Li, X.W. Huang, X.Y. Ma, Z.L. Zhu, C. Li, C.X. Xia, Z.P. Zeng, Y. Jia, Even-odd oscillation of bandgaps in GeP3 nanoribbons and a tunable 1D lateral homogenous heterojunction. Phys. Chem. Chem. Phys. 21(1), 275–280 (2019). https://doi.org/10.1039/c8cp06310a
- F.P. Ouyang, S.L. Peng, Z.F. Liu, Z.R. Liu, Bandgap opening in graphene antidot lattices: the missing half. ACS Nano 5(5), 4023–4030 (2011). https://doi.org/10.1021/nn200580w
- W. Liu, Z.F. Wang, Q.W. Shi, J.L. Yang, F. Liu, Band-gap scaling of graphene nanohole superlattices. Phys. Rev. B 80(23), 233405 (2009). https://doi.org/10.1103/PhysRevB.80.233405
- L. Rosales, M. Pacheco, Z. Barticevic, A. Leon, A. Latge, P.A. Orellana, Transport properties of antidot superlattices of graphene nanoribbons. Phys. Rev. B 80(7), 073402 (2009). https://doi.org/10.1103/PhysRevB.80.073402
- J.W. Bai, X. Zhong, S. Jiang, Y. Huang, X.F. Duan, Graphene nanomesh. Nat. Nanotechnol. 5(3), 190–194 (2010). https://doi.org/10.1038/nnano.2010.8
- W. Oswald, Z.G. Wu, Energy gaps in graphene nanomeshes. Phys. Rev. B 85(11), 115431 (2012). https://doi.org/10.1103/PhysRevB.85.115431
- H.Y. Chen, K.H. Jin, H. Guo, B.J. Wang, A.O. Govorov, X.B. Niu, Z.M. Wang, Nanoperforated graphene with alternating gap switching for optical applications. Carbon 126, 480–488 (2018). https://doi.org/10.1016/j.carbon.2017.10.028
- V.H. Nguyen, F. Mazzamuto, J. Saint-Martin, A. Bournel, P. Dollfus, Graphene nanomesh-based devices exhibiting a strong negative differential conductance effect. Nanotechnology 23(6), 065201 (2012). https://doi.org/10.1088/0957-4484/23/6/065201
- J. Zhang, W.X. Zhang, T. Ragab, C. Basaran, Mechanical and electronic properties of graphene nanomesh heterojunctions. Comput. Mater. Sci. 153, 64–72 (2018). https://doi.org/10.1016/j.commatsci.2018.06.026
- M. Tosun, D.Y. Fu, S.B. Desai, C. Ko, J.S. Kang et al., MoS2 heterojunctions by thickness modulation. Sci. Rep. 5, 10990 (2015). https://doi.org/10.1038/srep10990
- T.B. Martins, R.H. Miwa, A.J.R. da Silva, A. Fazzio, Electronic and transport properties of boron-doped graphene nanoribbons. Phys. Rev. Lett. 98(19), 196803 (2007). https://doi.org/10.1103/PhysRevLett.98.196803
- A. Lherbier, X. Blase, Y.M. Niquet, F. Triozon, S. Roche, Charge transport in chemically doped 2D graphene. Phys. Rev. Lett. 101(3), 036808 (2008). https://doi.org/10.1103/PhysRevLett.101.036808
- D.C. Wei, Y.Q. Liu, Y. Wang, H.L. Zhang, L.P. Huang, G. Yu, Synthesis of n-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9(5), 1752–1758 (2009). https://doi.org/10.1021/nl803279t
- L.S. Panchokarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, C.N.R. Rao, Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv. Mater. 21(46), 4726–4730 (2009). https://doi.org/10.1002/adma.200901285
- X.R. Wang, X.L. Li, L. Zhang, Y. Yoon, P.K. Weber, H.L. Wang, J. Guo, H.J. Dai, N-doping of graphene through electrothermal reactions with ammonia. Science 324(5928), 768–771 (2009). https://doi.org/10.1126/science.1170335
- J.X. Zheng, X. Yan, L.L. Yu, H. Li, R. Qin et al., Family-dependent rectification characteristics in ultra-short graphene nanoribbon p–n junctions. J. Phys. Chem. C 115(17), 8547–8554 (2011). https://doi.org/10.1021/jp200982w
- Y. Zhou, N. Qiu, R. Li, Z. Guo, J. Zhang et al., Negative differential resistance and rectifying performance induced by doped graphene nanoribbons p–n device. Phys. Lett. A 380(9), 1049–1055 (2016). https://doi.org/10.1016/j.physleta.2016.01.010
- D.H. Zhang, K.L. Yao, G.Y. Gao, The peculiar transport properties in p–n junctions of doped graphene nanoribbons. J. Appl. Phys. 110(1), 013718 (2011). https://doi.org/10.1063/1.3605489
- J. Zeng, K.Q. Chen, J. He, Z.Q. Fan, X.J. Zhang, Nitrogen doping-induced rectifying behavior with large rectifying ratio in graphene nanoribbons device. J. Appl. Phys. 109(12), 124502 (2011). https://doi.org/10.1063/1.3600067
- A. Pramanik, S. Sarkar, P. Sarkar, Doped GNR p–n junction as high performance NDR and rectifying device. J. Phys. Chem. C 116(34), 18064–18069 (2012). https://doi.org/10.1021/jp304582k
- P. Zhao, D.S. Liu, S.J. Li, G. Chen, Giant low bias negative differential resistance induced by nitrogen doping in graphene nanoribbon. Chem. Phys. Lett. 554, 172–176 (2012). https://doi.org/10.1016/j.cplett.2012.10.045
- T. Chen, X.F. Li, L.L. Wang, K.W. Luo, L. Xu, Rectification induced in N AA2 -doped armchair graphene nanoribbon device. J. Appl. Phys. 116(1), 013702 (2014). https://doi.org/10.1063/1.4884975
- P. Zhao, D.S. Liu, S.J. Li, G. Chen, Modulation of rectification and negative differential resistance in graphene nanoribbon by nitrogen doping. Phys. Lett. A 377(15), 1134–1138 (2013). https://doi.org/10.1016/j.physleta.2013.02.048
- Y.H. Zhou, J.J. Wu, P. He, T.F. Deng, S.Y. Du, C. Ye, The electronic transport properties in boron-doped armchair graphene nanoribbon junctions. Nanosci. Nanotechnol. Lett. 7(8), 630–636 (2015). https://doi.org/10.1166/nnl.2015.2013
- Y. Zhou, J. Zhang, D. Zhang, C. Ye, X. Miao, Phosphorus-doping-induced rectifying behavior in armchair graphene nanoribbons devices. J. Appl. Phys. 115(1), 013705 (2014). https://doi.org/10.1063/1.4861176
- J. Zeng, K.Q. Chen, J. He, X.J. Zhang, C.Q. Sun, Edge hydrogenation-induced spin-filtering and rectifying behaviors in the graphene nanoribbon heterojunctions. J. Phys. Chem. C 115(50), 25072–25076 (2011). https://doi.org/10.1021/jp208248v
- O.V. Yazyev, M.I. Katsnelson, Magnetic correlations at graphene edges: basis for novel spintronics devices. Phys. Rev. Lett. 100(4), 047209 (2008). https://doi.org/10.1103/PhysRevLett.100.047209
- L.H. Wang, Z.Z. Zhang, J.G. Zhao, B.J. Ding, Y. Guo, C. Jin, Bipolar spin-filtering effect in B- or N-doped zigzag graphene nanoribbons with asymmetric edge hydrogenation. Phys. Lett. A 379(43–44), 2860–2865 (2015). https://doi.org/10.1016/j.physleta.2015.09.020
- L.H. Wang, Z.Z. Zhang, J.G. Zhao, B.J. Ding, Y. Guo, Nitrogen doping position-dependent rectification of spin-polarized current and realization of multifunction in zigzag graphene nanoribbons with asymmetric edge hydrogenation. J. Electron. Mater. 45(2), 1165–1174 (2016). https://doi.org/10.1007/s11664-015-4233-3
- D. Zhang, M.Q. Long, X.J. Zhang, F.P. Ouyang, M.J. Li, H. Xu, Designing of spin-filtering devices in zigzag graphene nanoribbons heterojunctions by asymmetric hydrogenation and B–N doping. J. Appl. Phys. 117(1), 014311 (2015). https://doi.org/10.1063/1.4905503
- J. Kunstmann, C. Ozdogan, A. Quandt, H. Fehske, Stability of edge states and edge magnetism in graphene nanoribbons. Phys. Rev. B 83(4), 045414 (2011). https://doi.org/10.1103/PhysRevB.83.045414
- I. Maity, K. Ghosh, H. Rahaman, P. Bhattacharyya, Spin dependent electronic transport in edge oxidized zigzag graphene nanoribbon. Mater. Today: Proc. 5(3), 9892–9898 (2018). https://doi.org/10.1016/j.matpr.2017.10.184
- C. Cao, L.N. Chen, M.Q. Long, W.R. Huang, H. Xu, Electronic transport properties on transition-metal terminated zigzag graphene nanoribbons. J. Appl. Phys. 111(11), 113708 (2012). https://doi.org/10.1063/1.4723832
- M. Nazirfakhr, A. Shahhoseini, Negative differential resistance and rectification effects in zigzag graphene nanoribbon heterojunctions: induced by edge oxidation and symmetry concept. Phys. Lett. A 382(10), 704–709 (2018). https://doi.org/10.1016/j.physleta.2018.01.001
- L.L. Cui, M.Q. Long, X.J. Zhang, X.M. Li, D. Zhang, B.C. Yang, Spin-dependent transport properties of hetero-junction based on zigzag graphene nanoribbons with edge hydrogenation and oxidation. Phys. Lett. A 380(5), 730–738 (2016). https://doi.org/10.1016/j.physleta.2015.10.050
- X.Q. Deng, Z.H. Zhang, G.P. Tang, Z.Q. Fan, C.H. Yang, Spin filter effects in zigzag-edge graphene nanoribbons with symmetric and asymmetric edge hydrogenations. Carbon 66, 646–653 (2014). https://doi.org/10.1016/j.carbon.2013.09.061
- X.Q. Deng, Z.H. Zhang, C.H. Yang, H.L. Zhu, B. Liang, The design of spin filter junction in zigzag graphene nanoribbons with asymmetric edge hydrogenation. Org. Electron. 14(12), 3240–3248 (2013). https://doi.org/10.1016/j.orgel.2013.09.041
- C. Cao, L.N. Chen, M.Q. Long, H. Xu, Rectifying performance in zigzag graphene nanoribbon heterojunctions with different edge hydrogenations. Phys. Lett. A 377(31–33), 1905–1910 (2013). https://doi.org/10.1016/j.physleta.2013.05.004
- L. Peng, K. Yao, S. Zhu, Y. Ni, F. Zu, S. Wang, B. Guo, Y. Tian, Spin transport properties of partially edge-hydrogenated MoS2 nanoribbon heterostructure. J. Appl. Phys. 115(22), 223705 (2014). https://doi.org/10.1063/1.4882195
- J. Zhao, C. Fang, B. Cui, D. Zou, W. Zhao, X. Li, D. Li, D. Liu, Spin transport properties in silicene-based heterojunctions with different edge hydrogenation. Org. Electron. 41, 333–339 (2017). https://doi.org/10.1016/j.orgel.2016.11.025
- S.X. Yang, C. Wang, H. Sahin, H. Chen, Y. Li et al., Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 15(3), 1660–1666 (2015). https://doi.org/10.1021/nl504276u
- J. Quereda, P. San-Jose, V. Parente, L. Vaquero-Garzon, A.J. Molina-Mendoza et al., Strong modulation of optical properties in black phosphorus through strain-engineered rippling. Nano Lett. 16(5), 2931–2937 (2016). https://doi.org/10.1021/acs.nanolett.5b04670
- H. Tomori, A. Kanda, H. Goto, Y. Ootuka, K. Tsukagoshi, S. Moriyama, E. Watanabe, D. Tsuya, Introducing nonuniform strain to graphene using dielectric nanopillars. Appl. Phys. Express 4(7), 075102 (2011). https://doi.org/10.1143/apex.4.075102
- H. Li, A.W. Contryman, X. Qian, S.M. Ardakani, Y. Gong et al., Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat. Commun. 6, 8080 (2015). https://doi.org/10.1038/ncomms8381
- A. Reserbat-Plantey, D. Kalita, Z. Han, L. Ferlazzo, S. Autier-Laurent et al., Strain superlattices and macroscale suspension of graphene induced by corrugated substrates. Nano Lett. 14(9), 5044–5051 (2014). https://doi.org/10.1021/nl5016552
- M. Neek-Amal, L. Covaci, F.M. Peeters, Nanoengineered nonuniform strain in graphene using nanopillars. Phys. Rev. B 86(4), 041405 (2012). https://doi.org/10.1103/PhysRevB.86.041405
- R. Banerjee, V.-H. Nguyen, T. Granzier-Nakajima, L. Pabbi, A. Lherbier et al., Strain modulated superlattices in graphene (2019). https://arxiv.org/abs/1903.10468
- P. Kun, G. Kukucska, G. Dobrik, J. Koltai, J. Kürti, L.P. Biró, L. Tapasztó, P. Nemes-Incze, Large intravalley scattering due to pseudo-magnetic fields in crumpled graphene. npj 2D Mater. Appl. 3(1), 11 (2019). https://doi.org/10.1038/s41699-019-0094-6
- M.I.B. Utama, H. Kleemann, W. Zhao, C.S. Ong, F.H. da Jornada et al., A dielectric-defined lateral heterojunction in a monolayer semiconductor. Nat. Electron. 2(2), 60–65 (2019). https://doi.org/10.1038/s41928-019-0207-4
- Z.B. Wu, Y.Y. Zhang, G. Li, S.X. Du, H.J. Gao, Electronic properties of silicene in BN/silicene van der waals heterostructures. Chin. Phys. B 27(7), 077302 (2018). https://doi.org/10.1088/1674-1056/27/7/077302
- J. Kang, J.B. Li, S.S. Li, J.B. Xia, L.W. Wang, Electronic structural moire pattern effects on MoS2/MoSe2 2D heterostructures. Nano Lett. 13(11), 5485–5490 (2013). https://doi.org/10.1021/nl4030648
- M.L. Sun, J.P. Chou, J. Yu, W.C. Tang, Electronic properties of blue phosphorene/graphene and blue phosphorene/graphene-like gallium nitride heterostructures. Phys. Chem. Chem. Phys. 19(26), 17324–17330 (2017). https://doi.org/10.1039/c7cp01852e
- V.A. Skachkova, M.S. Baranava, D.C. Hvazdouski, V.R. Stempitsky, Electronic properties of graphene-based heterostructures. IOP Conf. Ser.: J. Phys. 917, 092012 (2017). https://doi.org/10.1088/1742-6596/917/9/092012
- Z.Y. Huang, C.Y. He, X. Qi, H. Yang, W.L. Liu, X.L. Wei, X.Y. Peng, J.X. Zhong, Band structure engineering of monolayer MoS2 on h-BN: first-principles calculations. J. Phys. D-Appl. Phys. 47(7), 075301 (2014). https://doi.org/10.1088/0022-3727/47/7/075301
- H.V. Phuc, N.N. Hieu, B.D. Hoi, C.V. Nguyen, Interlayer coupling and electric field tunable electronic properties and Schottky barrier in a graphene/bilayer-GaSe van der waals heterostructure. Phys. Chem. Chem. Phys. 20(26), 17899–17908 (2018). https://doi.org/10.1039/c8cp02190b
- B. Liu, L.J. Wu, Y.Q. Zhao, L.Z. Wang, M.Q. Cai, First-principles investigation of the schottky contact for the two-dimensional MoS2 and graphene heterostructure. RSC Adv. 6(65), 60271–60276 (2016). https://doi.org/10.1039/c6ra12812b
- H.V. Phuc, N.N. Hieu, B.D. Hoi, L.T.T. Phoung, N.V. Hieu, C.V. Nguyen, Out-of-plane strain and electric field tunable electronic properties and schottky contact of graphene/antimonene heterostructure. Superlattices Microstruct. 112, 554–560 (2017). https://doi.org/10.1016/j.spmi.2017.10.011
- J. Lee, G. Kim, Electronic properties of a graphene/periodic porous graphene heterostructure. Carbon 122, 281–286 (2017). https://doi.org/10.1016/j.carbon.2017.06.049
- H.V. Phuc, V.V. Ilyasov, N.N. Hieu, B. Amin, C.V. Nguyen, Van der waals graphene/g-GaSe heterostructure: tuning the electronic properties and schottky barrier by interlayer coupling, biaxial strain, and electric gating. J. Alloys Compd. 750, 765–773 (2018). https://doi.org/10.1016/j.jallcom.2018.04.030
- X.P. Chen, X. Sun, D.G. Yang, R.S. Meng, C.J. Tan, Q. Yang, Q.H. Liang, J.K. Jiang, SiGe/h-BN heterostructure with inspired electronic and optical properties: a first-principles study. J. Mater. Chem. C 4(42), 10082–10089 (2016). https://doi.org/10.1039/c6tc03838g
- Q. Sun, Y. Dai, N. Yin, L. Yu, Y.D. Ma, W. Wei, B.B. Huang, Two-dimensional square transition metal dichalcogenides with lateral heterostructures. Nano Res. 10(11), 3909–3919 (2017). https://doi.org/10.1007/s12274-017-1605-4
- L.P. Feng, J. Su, Z.T. Liu, Characteristics of lateral and hybrid heterostructures based on monolayer MoS2: a computational study. Phys. Chem. Chem. Phys. 19(6), 4741–4750 (2017). https://doi.org/10.1039/c6cp07825g
- C. Mu, W. Wei, J.J. Li, B.B. Huang, Y. Dai, Electronic properties of two-dimensional in-plane heterostructures of WS2/WSe2/MoS2. Mater. Res. Express 5(4), 046307 (2018). https://doi.org/10.1088/2053-1591/aabddf
- J. Lee, J.S. Huang, B.G. Sumpter, M. Yoon, Strain-engineered optoelectronic properties of 2D transition metal dichalcogenide lateral heterostructures. 2D Mater. 4(2), 021016 (2017). https://doi.org/10.1088/2053-1583/aa5542
- O. Avalos-Ovando, D. Mastrogiuseppe, S.E. Ulloa, Lateral interfaces of transition metal dichalcogenides: a stable tunable one-dimensional physics platform. Phys. Rev. B 99(3), 035107 (2019). https://doi.org/10.1103/PhysRevB.99.035107
- J.H. Yuan, N.N. Yu, J.F. Wang, K.H. Xue, X.S. Miao, Design lateral heterostructure of monolayer ZrS2 and HfS2 from first principles calculations. Appl. Surf. Sci. 436, 919–926 (2018). https://doi.org/10.1016/j.apsusc.2017.12.093
- Z. Zhang, Y. Xu, First-principles study on the structural stability and electronic properties of AlN/GaN heterostructure nanoribbons. Superlattices Microstruct. 57, 37–43 (2013). https://doi.org/10.1016/j.spmi.2013.02.001
- Q.F. Li, X.F. Ma, L. Zhang, X.G. Wan, W.F. Rao, Theoretical design of blue phosphorene/arsenene lateral heterostructures with superior electronic properties. J. Phys. D-Appl. Phys. 51(25), 255304 (2018). https://doi.org/10.1088/1361-6463/aac563
- M. Ge, C. Si, Mechanical and electronic properties of lateral graphene and hexagonal boron nitride heterostructures. Carbon 136, 286–291 (2018). https://doi.org/10.1016/j.carbon.2018.04.069
- Y.P. An, M.J. Zhang, D.P. Wu, T.X. Wang, Z.Y. Jiao, C.X. Xia, Z.M. Fu, K. Wang, The rectifying and negative differential resistance effects in graphene/h-BN nanoribbon heterojunctions. Phys. Chem. Chem. Phys. 18(40), 27976–27980 (2016). https://doi.org/10.1039/c6cp05912k
- G.C. Loh, R. Pandey, A graphene–boron nitride lateral heterostructure—first-principles study of its growth, electronic properties, and chemical topology. J. Mater. Chem. C 3(23), 5918–5932 (2015). https://doi.org/10.1039/c5tc00539f
- X.Q. Tian, L. Liu, Y. Du, J. Gu, J.B. Xu, B.I. Yakobson, Variable electronic properties of lateral phosphorene–graphene heterostructures. Phys. Chem. Chem. Phys. 17(47), 31685–31692 (2015). https://doi.org/10.1039/c5cp05443e
- J. Sun, N. Lin, C. Tang, H.Y. Wang, H. Ren, X. Zhao, First principles studies on electronic and transport properties of edge contact graphene–MoS2 heterostructure. Comput. Mater. Sci. 133, 137–144 (2017). https://doi.org/10.1016/j.commatsci.2017.03.004
- W. Chen, Y. Yang, Z.Y. Zhang, E. Kaxiras, Properties of in-plane graphene/MoS2 heterojunctions. 2D Mater. 4(4), 045001 (2017). https://doi.org/10.1088/2053-1583/aa8313
- W. Hong, G.W. Shim, S.Y. Yang, D.Y. Jung, S.-Y. Choi, Improved electrical contact properties of MoS2–graphene lateral heterostructure. Adv. Funct. Mater. 29(6), 1807550 (2019). https://doi.org/10.1002/adfm.201807550
- Y. Zhang, L. Yin, J. Chu, T.A. Shifa, J. Xia et al., Edge-epitaxial growth of 2D NbS2–WS2 lateral metal-semiconductor heterostructures. Adv. Mater. 30(40), 1803665 (2018). https://doi.org/10.1002/adma.201803665
- A. Behranginia, P. Yasaei, A.K. Majee, V.K. Sangwan, F. Long et al., Direct growth of high mobility and low-noise lateral MoS2–graphene heterostructure electronics. Small 13(30), 1604301 (2017). https://doi.org/10.1002/smll.201604301
- Z. Liu, L.L. Ma, G. Shi, W. Zhou, Y.J. Gong et al., In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotechnol. 8(2), 119–124 (2013). https://doi.org/10.1038/nnano.2012.256
- M. Zhao, Y. Ye, Y. Han, Y. Xia, H. Zhu et al., Large-scale chemical assembly of atomically thin transistors and circuits. Nat. Nanotechnol. 11(11), 954–959 (2016). https://doi.org/10.1038/nnano.2016.115
- M.P. Levendorf, C.J. Kim, L. Brown, P.Y. Huang, R.W. Havener, D.A. Muller, J. Park, Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488(7413), 627–632 (2012). https://doi.org/10.1038/nature11408
- T.X. Chen, Y.W. Sheng, Y.Q. Zhou, R.J. Chang, X.C. Wang et al., High photoresponsivity in ultrathin 2D lateral graphene:WS2: graphene photodetectors using direct CVD growth. ACS Appl. Mater. Interfaces. 11(6), 6421–6430 (2019). https://doi.org/10.1021/acsami.8b20321
- B.Y. Liu, Y.F. Chen, C.Y. You, Y.W. Liu, X.Y. Kong et al., High performance photodetector based on graphene/MoS2/graphene lateral heterostructure with schottky junctions. J. Alloys Compds. 779, 140–146 (2019). https://doi.org/10.1016/j.jallcom.2018.11.165
- W.J. Deng, Y.F. Chen, C.Y. You, B.Y. Liu, Y.H. Yang et al., High detectivity from a lateral graphene–MoS2 schottky photodetector grown by chemical vapor deposition. Adv. Electron. Mater. 4(9), 1800069 (2018). https://doi.org/10.1002/aelm.201800069
- Z.P. Li, J.L. Zheng, Y.P. Zhang, C.X. Zheng, W.Y. Woon et al., Synthesis of ultrathin composition graded doped lateral WSe2/WS2 heterostructures. ACS Appl. Mater. Interfaces. 9(39), 34204–34212 (2017). https://doi.org/10.1021/acsami.7b08668
- J.M. Cai, C.A. Pignedoli, L. Talirz, P. Ruffieux, H. Söde et al., Graphene nanoribbon heterojunctions. Nat. Nanotechnol. 9(11), 896–900 (2014). https://doi.org/10.1038/nnano.2014.184
- Y.C. Chen, T. Cao, C. Chen, Z. Pedramrazi, D. Haberer et al., Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nat. Nanotechnol. 10(2), 156–160 (2015). https://doi.org/10.1038/nnano.2014.307
- L. Ci, L. Song, C.H. Jin, D. Jariwala, D.X. Wu et al., Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9(5), 430–435 (2010). https://doi.org/10.1038/nmat2711
- P. Rivera, J.R. Schaibley, A.M. Jones, J.S. Ross, S.F. Wu et al., Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015). https://doi.org/10.1038/ncomms7242
- Y.J. Gong, J.H. Lin, X.L. Wang, G. Shi, S.D. Lei et al., Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13(12), 1135–1142 (2014). https://doi.org/10.1038/nmat4091
- K. Chen, X. Wan, W.G. Xie, J.X. Wen, Z.W. Kang, X.L. Zeng, H.J. Chen, J.B. Xu, Lateral built-in potential of monolayer MoS2–WS2 in-plane heterostructures by a shortcut growth strategy. Adv. Mater. 27(41), 6431 (2015). https://doi.org/10.1002/adma.201502375
- X.D. Fang, Q.Q. Tian, Y. Sheng, G.F. Yang, N.Y. Lu et al., Chemical vapor deposition of WS2/Mo1−xWxS2/MoS2 lateral heterostructures. Superlattices Microstruct. 123, 323–329 (2018). https://doi.org/10.1016/j.spmi.2018.09.017
- J.D. Cain, E.D. Hanson, V.P. Dravid, Controlled synthesis of 2D MX2 (M = Mo, W; X = S, Se) heterostructures and alloys. J. Appl. Phys. 123(20), 204304 (2018). https://doi.org/10.1063/1.5025710
- Y. Miyata, E. Maeda, K. Kamon, R. Kitaura, Y. Sasaki, S. Suzuki, H. Shinohara, Fabrication and characterization of graphene/hexagonal boron nitride hybrid sheets. Appl. Phys. Express 5(8), 085102 (2012). https://doi.org/10.1143/apex.5.085102
- G.H. Han, J.A. Rodriguez-Manzo, C.W. Lee, N.J. Kybert, M.B. Lerner et al., Continuous growth of hexagonal graphene and boron nitride in-plane heterostructures by atmospheric pressure chemical vapor deposition. ACS Nano 7(11), 10129–10138 (2013). https://doi.org/10.1021/nn404331f
- L. Liu, J. Park, D.A. Siegel, K.F. McCarty, K.W. Clark, W. Deng, L. Basile, J.C. Idrobo, A.P. Li, G. Gu, Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science 343(6167), 163–167 (2014). https://doi.org/10.1126/science.1246137
- X. Ling, Y. Lin, Q. Ma, Z. Wang, Y. Song et al., Parallel stitching of 2D materials. Adv. Mater. 28(12), 2322–2329 (2016). https://doi.org/10.1002/adma.201505070
- C. Zheng, Q. Zhang, B. Weber, H. Ilatikhameneh, F. Chen et al., Fuhrer, direct observation of 2D electrostatics and ohmic contacts in template-grown graphene/WS2 heterostructures. ACS Nano 11(3), 2785–2793 (2017). https://doi.org/10.1021/acsnano.6b07832
- M.Y. Li, Y.M. Shi, C.C. Cheng, L.S. Lu, Y.C. Lin et al., Epitaxial growth of a monolayer WSe2–MoS2 lateral p–n junction with an atomically sharp interface. Science 349(6247), 524–528 (2015). https://doi.org/10.1126/science.aab4097
- Y.J. Gong, S.D. Lei, G.L. Ye, B. Li, Y.M. He et al., Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 15(9), 6135–6141 (2015). https://doi.org/10.1021/acs.nanolett.5b02423
- K. Chen, X. Wan, J. Wen, W. Xie, Z. Kang, X. Zeng, H. Chen, J.-B. Xu, Electronic properties of MoS2–WS2 heterostructures synthesized with two-step lateral epitaxial strategy. ACS Nano 9(10), 9868–9876 (2015). https://doi.org/10.1021/acsnano.5b03188
- Y.H. Cai, K. Xu, W.J. Zhu, Synthesis of transition metal dichalcogenides and their heterostructures. Mater. Res. Express 5(9), 095904 (2018). https://doi.org/10.1088/2053-1591/aad950
- Z.W. Zhang, P. Chen, X.D. Duan, K.T. Zang, J. Luo, X.F. Duan, Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 357(6353), 788–792 (2017). https://doi.org/10.1126/science.aan6814
- P.K. Sahoo, S. Memaran, Y. Xin, L. Balicas, H.R. Gutiérrez, One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature 553(7876), 63–67 (2018). https://doi.org/10.1038/nature25155
- C.D. Zhang, Y.X. Chen, J.K. Huang, X.X. Wu, L.J. Li, W. Yao, J. Tersoff, C.K. Shih, Visualizing band offsets and edge states in bilayer–monolayer transition metal dichalcogenides lateral heterojunction. Nat. Commun. 7, 10349 (2016). https://doi.org/10.1038/ncomms10349
- Y.M. He, A. Sobhani, S.D. Lei, Z.H. Zhang, Y.J. Gong et al., Layer engineering of 2D semiconductor junctions. Adv. Mater. 28(25), 5126–5132 (2016). https://doi.org/10.1002/adma.201600278
- M. Mahjouri-Samani, M.W. Lin, K. Wang, A.R. Lupini, J. Lee et al., Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors. Nat. Commun. 6, 7749 (2015). https://doi.org/10.1038/ncomms8749
- T. Afaneh, P.K. Sahoo, I.A.P. Nobrega, Y. Xin, H.R. Gutiérrez, Laser-assisted chemical modification of monolayer transition metal dichalcogenides. Adv. Funct. Mater. 28(37), 1802949 (2018). https://doi.org/10.1002/adfm.201802949
- Z. Tian, M.X. Zhao, X.X. Xue, W. Xia, C.L. Guo, Y.F. Guo, Y.X. Feng, J.M. Xue, Lateral heterostructures formed by thermally converting n-type SnSe2 to p-type SnSe. ACS Appl. Mater. Interfaces. 10(15), 12831–12838 (2018). https://doi.org/10.1021/acsami.8b01235
- N. Choudhary, M.R. Islam, N. Kang, L. Tetard, Y. Jung, S.I. Khondaker, Two-dimensional lateral heterojunction through bandgap engineering of MoS2 via oxygen plasma. J. Phys.: Condens. Matter 28(36), 364002 (2016). https://doi.org/10.1088/0953-8984/28/36/364002
- L. Jamilpanah, S. Azizmohseni, S.A. Hosseini, M. Hasheminejad, N. Vesali, A.I. Zad, M. Pourfath, S.M. Mohseni, Simple one-step fabrication of semiconductive lateral heterostructures using bipolar electrodeposition. Phys. Status Solidi RRL 12(12), 1800418 (2018). https://doi.org/10.1002/pssr.201800418
References
K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005). https://doi.org/10.1073/pnas.0502848102
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev. 110(1), 132–145 (2009). https://doi.org/10.1021/cr900070d
A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009). https://doi.org/10.1103/RevModPhys.81.109
C.L. Tan, X.H. Cao, X.J. Wu, Q.Y. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113(5), 3766–3798 (2013). https://doi.org/10.1021/cr300263a
Y. Lin, T.V. Williams, J.W. Connell, Soluble, exfoliated hexagonal boron nitride nanosheets. J. Phys. Chem. Lett. 1(1), 277–283 (2010). https://doi.org/10.1021/jz9002108
Q.H. Weng, X.B. Wang, X. Wang, Y. Bando, D. Golberg, Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chem. Soc. Rev. 45(14), 3989–4012 (2016). https://doi.org/10.1039/c5cs00869g
R. Lv, J.A. Robinson, R.E. Schaak, D. Sun, Y.F. Sun, T.E. Mallouk, M. Terrones, Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res. 48(1), 56–64 (2015). https://doi.org/10.1021/ar5002846
C.L. Tan, H. Zhang, Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 44(9), 2713–2731 (2015). https://doi.org/10.1039/c4cs00182f
H. Liu, Y.C. Du, Y.X. Deng, P.D. Ye, Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44(9), 2732–2743 (2015). https://doi.org/10.1039/c4cs00257a
P.F. Chen, N. Li, X.Z. Chen, W.J. Ong, X.J. Zhao, The rising star of 2D black phosphorus beyond graphene: synthesis, properties and electronic applications. 2D Mater. 5(1), 014002 (2018). https://doi.org/10.1088/2053-1583/aa8d37
A. Kara, H. Enriquez, A.P. Seitsonen, L. Voon, S. Vizzini, B. Aufray, H. Oughaddou, A review on silicene-new candidate for electronics. Surf. Sci. Rep. 67(1), 1–18 (2012). https://doi.org/10.1016/j.surfrep.2011.10.001
B. Hunt, J.D. Sanchez-Yamagishi, A.F. Young, M. Yankowitz, B.J. LeRoy et al., Massive dirac fermions and hofstadter butterfly in a van der waals heterostructure. Science 340(6139), 1427–1430 (2013). https://doi.org/10.1126/science.1237240
L. Britnell, R.M. Ribeiro, A. Eckmann, R. Jalil, B.D. Belle et al., Strong light-matter interactions in heterostructures of atomically thin films. Science 340(6138), 1311–1314 (2013). https://doi.org/10.1126/science.1235547
A.K. Geim, I.V. Grigorieva, Van der waals heterostructures. Nature 499, 419–425 (2013). https://doi.org/10.1038/nature12385
W. Zhang, Q. Wang, Y. Chen, Z. Wang, A.T.S. Wee, Van der waals stacked 2D layered materials for optoelectronics. 2D Mater. 3(2), 022001 (2016). https://doi.org/10.1088/2053-1583/3/2/022001
L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin et al., Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335(6071), 947–950 (2012). https://doi.org/10.1126/science.1218461
T. Georgiou, R. Jalil, B.D. Belle, L. Britnell, R.V. Gorbachev et al., Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8(2), 100–103 (2013). https://doi.org/10.1038/nnano.2012.224
Y.Z. Xue, Y.P. Zhang, Y. Liu, H.T. Liu, J.C. Song et al., Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors. ACS Nano 10(1), 573–580 (2016). https://doi.org/10.1021/acsnano.5b05596
X. Duan, C. Wang, J.C. Shaw, R. Cheng, Y. Chen et al., Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9(12), 1024–1030 (2014). https://doi.org/10.1038/nnano.2014.222
X. Chen, Y. Qiu, H. Yang, G. Liu, W. Zheng, W. Feng, W. Cao, W. Hu, P. Hu, In-plane mosaic potential growth of large-area 2D layered semiconductors MoS2–MoSe2 lateral heterostructures and photodetector application. ACS Appl. Mater. Interfaces. 9(2), 1684–1691 (2017). https://doi.org/10.1021/acsami.6b13379
C.Y. Lin, X. Zhu, S.H. Tsai, S.P. Tsai, S.D. Lei et al., Atomic-monolayer two-dimensional lateral quasi-heterojunction bipolar transistors with resonant tunneling phenomenon. ACS Nano 11(11), 11015–11023 (2017). https://doi.org/10.1021/acsnano.7b05012
M.Y. Li, J. Pu, J.K. Huang, Y. Miyauchi, K. Matsuda, T. Takenobu, L.J. Li, Self-aligned and scalable growth of monolayer WSe2–MoS2 lateral heterojunctions. Adv. Funct. Mater. 28(17), 1706860 (2018). https://doi.org/10.1002/adfm.201706860
D.R. Chen, M. Hofmann, H.M. Yao, S.K. Chiu, S.H. Chen, Y.R. Luo, C.C. Hsu, Y.P. Hsieh, Lateral two-dimensional material heterojunction photodetectors with ultrahigh speed and detectivity. ACS Appl. Mater. Interfaces. 11(6), 6384–6388 (2019). https://doi.org/10.1021/acsami.8b19093
P. Solis-Fernandez, M. Bissett, H. Ago, Synthesis, structure and applications of graphene-based 2D heterostructures. Chem. Soc. Rev. 46(15), 4572–4613 (2017). https://doi.org/10.1039/c7cs00160f
R. Frisenda, E. Navarro-Moratalla, P. Gant, D.P. De Lara, P. Jarillo-Herrero, R.V. Gorbachev, A. Castellanos-Gomez, Recent progress in the assembly of nanodevices and van der waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 47(1), 53–68 (2018). https://doi.org/10.1039/c7cs00556c
H. Wang, F.C. Liu, W. Fu, Z.Y. Fang, W. Zhou, Z. Liu, Two-dimensional heterostructures: fabrication, characterization, and application. Nanoscale 6(21), 12250–12272 (2014). https://doi.org/10.1039/c4nr03435j
K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H.C. Neto, 2D materials and van der waals heterostructures. Science 353(aac6298), 9439 (2016). https://doi.org/10.1126/science.aac9439
S.J. Haigh, A. Gholinia, R. Jalil, S. Romani, L. Britnell et al., Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11(9), 764–767 (2012). https://doi.org/10.1038/nmat3386
W. Yang, G. Chen, Z. Shi, C.C. Liu, L. Zhang et al., Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12(9), 792–797 (2013). https://doi.org/10.1038/nmat3695
D. Logoteta, G. Fiori, G. Iannaccone, Graphene-based lateral heterostructure transistors exhibit better intrinsic performance than graphene-based vertical transistors as post-CMOS devices. Sci. Rep. 4, 6607 (2014). https://doi.org/10.1038/srep06607
P. Chen, Z. Zhang, X. Duan, X. Duan, Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. Chem. Soc. Rev. 47(9), 3129–3151 (2018). https://doi.org/10.1039/C7CS00887B
X. Cai, Y. Luo, B. Liu, H.M. Cheng, Preparation of 2D material dispersions and their applications. Chem. Soc. Rev. 47(16), 6224–6266 (2018). https://doi.org/10.1039/C8CS00254A
K. Chen, X. Wan, J. Xu, Epitaxial stitching and stacking growth of atomically thin transition-metal dichalcogenides(TMDCs) heterojunctions. Adv. Funct. Mater. 27(19), 1603884 (2017). https://doi.org/10.1002/adfm.201603884
Z. Cai, B. Liu, X. Zou, H.M. Cheng, Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 118(13), 6091–6133 (2018). https://doi.org/10.1021/acs.chemrev.7b00536
Y.W. Son, M.L. Cohen, S.G. Louie, Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97(21), 216803 (2006). https://doi.org/10.1103/PhysRevLett.97.216803
M.Y. Han, B. Özyilmaz, Y. Zhang, P. Kim, Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98(20), 206805 (2007). https://doi.org/10.1103/PhysRevLett.98.206805
G.X. Wu, Q.Y. Meng, Y.H. Jing, Computational design for interconnection of graphene nanoribbons. Chem. Phys. Lett. 531, 119–125 (2012). https://doi.org/10.1016/j.cplett.2012.01.084
G.X. Wu, C.L. Li, Y.H. Jing, C.Y. Wang, Y. Yang, Z.Q. Wang, Electronic transport properties of graphene nanoribbon heterojunctions with 5–7–5 ring defect. Comput. Mater. Sci. 95, 84–88 (2014). https://doi.org/10.1016/j.commatsci.2014.07.023
X.F. Li, L.L. Wang, K.Q. Chen, Y. Luo, Design of graphene–nanoribbon heterojunctions from first principles. J. Phys. Chem. C 115(25), 12616–12624 (2011). https://doi.org/10.1021/jp202188t
X.F. Li, L.L. Wang, K.Q. Chen, Y. Luo, Electronic transport through zigzag/armchair graphene nanoribbon heterojunctions. J. Phys.: Condens. Matter 24(9), 095801 (2012). https://doi.org/10.1088/0953-8984/24/9/095801
W. Zhang, C. Basaran, T. Ragab, Impact of geometry on transport properties of armchair graphene nanoribbon heterojunction. Carbon 124, 422–428 (2017). https://doi.org/10.1016/j.carbon.2017.09.005
L. Rosales, P. Orellana, Z. Barticevic, M. Pacheco, Transport properties of graphene nanoribbon heterostructures. Microelectron. J. 39(3), 537–540 (2008). https://doi.org/10.1016/j.mejo.2007.07.080
M.D.S. Price, E. Cruz-Silva, A.L.M.T. Costa, F.M.D. Vasconcelos, E.C. Girão, S.B. Zhang, V. Meunier, Electronic and transport properties of graphene nanoribbon barbell-shaped heterojunctions. Phys. Status Solidi B 250(11), 2417–2423 (2013). https://doi.org/10.1002/pssb.201349224
Y. Li, F. Ma, Size and strain tunable band alignment of black-blue phosphorene lateral heterostructures. Phys. Chem. Chem. Phys. 19(19), 12466–12472 (2017). https://doi.org/10.1039/C7CP00940B
R. Li, X.W. Huang, X.Y. Ma, Z.L. Zhu, C. Li, C.X. Xia, Z.P. Zeng, Y. Jia, Even-odd oscillation of bandgaps in GeP3 nanoribbons and a tunable 1D lateral homogenous heterojunction. Phys. Chem. Chem. Phys. 21(1), 275–280 (2019). https://doi.org/10.1039/c8cp06310a
F.P. Ouyang, S.L. Peng, Z.F. Liu, Z.R. Liu, Bandgap opening in graphene antidot lattices: the missing half. ACS Nano 5(5), 4023–4030 (2011). https://doi.org/10.1021/nn200580w
W. Liu, Z.F. Wang, Q.W. Shi, J.L. Yang, F. Liu, Band-gap scaling of graphene nanohole superlattices. Phys. Rev. B 80(23), 233405 (2009). https://doi.org/10.1103/PhysRevB.80.233405
L. Rosales, M. Pacheco, Z. Barticevic, A. Leon, A. Latge, P.A. Orellana, Transport properties of antidot superlattices of graphene nanoribbons. Phys. Rev. B 80(7), 073402 (2009). https://doi.org/10.1103/PhysRevB.80.073402
J.W. Bai, X. Zhong, S. Jiang, Y. Huang, X.F. Duan, Graphene nanomesh. Nat. Nanotechnol. 5(3), 190–194 (2010). https://doi.org/10.1038/nnano.2010.8
W. Oswald, Z.G. Wu, Energy gaps in graphene nanomeshes. Phys. Rev. B 85(11), 115431 (2012). https://doi.org/10.1103/PhysRevB.85.115431
H.Y. Chen, K.H. Jin, H. Guo, B.J. Wang, A.O. Govorov, X.B. Niu, Z.M. Wang, Nanoperforated graphene with alternating gap switching for optical applications. Carbon 126, 480–488 (2018). https://doi.org/10.1016/j.carbon.2017.10.028
V.H. Nguyen, F. Mazzamuto, J. Saint-Martin, A. Bournel, P. Dollfus, Graphene nanomesh-based devices exhibiting a strong negative differential conductance effect. Nanotechnology 23(6), 065201 (2012). https://doi.org/10.1088/0957-4484/23/6/065201
J. Zhang, W.X. Zhang, T. Ragab, C. Basaran, Mechanical and electronic properties of graphene nanomesh heterojunctions. Comput. Mater. Sci. 153, 64–72 (2018). https://doi.org/10.1016/j.commatsci.2018.06.026
M. Tosun, D.Y. Fu, S.B. Desai, C. Ko, J.S. Kang et al., MoS2 heterojunctions by thickness modulation. Sci. Rep. 5, 10990 (2015). https://doi.org/10.1038/srep10990
T.B. Martins, R.H. Miwa, A.J.R. da Silva, A. Fazzio, Electronic and transport properties of boron-doped graphene nanoribbons. Phys. Rev. Lett. 98(19), 196803 (2007). https://doi.org/10.1103/PhysRevLett.98.196803
A. Lherbier, X. Blase, Y.M. Niquet, F. Triozon, S. Roche, Charge transport in chemically doped 2D graphene. Phys. Rev. Lett. 101(3), 036808 (2008). https://doi.org/10.1103/PhysRevLett.101.036808
D.C. Wei, Y.Q. Liu, Y. Wang, H.L. Zhang, L.P. Huang, G. Yu, Synthesis of n-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9(5), 1752–1758 (2009). https://doi.org/10.1021/nl803279t
L.S. Panchokarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, C.N.R. Rao, Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv. Mater. 21(46), 4726–4730 (2009). https://doi.org/10.1002/adma.200901285
X.R. Wang, X.L. Li, L. Zhang, Y. Yoon, P.K. Weber, H.L. Wang, J. Guo, H.J. Dai, N-doping of graphene through electrothermal reactions with ammonia. Science 324(5928), 768–771 (2009). https://doi.org/10.1126/science.1170335
J.X. Zheng, X. Yan, L.L. Yu, H. Li, R. Qin et al., Family-dependent rectification characteristics in ultra-short graphene nanoribbon p–n junctions. J. Phys. Chem. C 115(17), 8547–8554 (2011). https://doi.org/10.1021/jp200982w
Y. Zhou, N. Qiu, R. Li, Z. Guo, J. Zhang et al., Negative differential resistance and rectifying performance induced by doped graphene nanoribbons p–n device. Phys. Lett. A 380(9), 1049–1055 (2016). https://doi.org/10.1016/j.physleta.2016.01.010
D.H. Zhang, K.L. Yao, G.Y. Gao, The peculiar transport properties in p–n junctions of doped graphene nanoribbons. J. Appl. Phys. 110(1), 013718 (2011). https://doi.org/10.1063/1.3605489
J. Zeng, K.Q. Chen, J. He, Z.Q. Fan, X.J. Zhang, Nitrogen doping-induced rectifying behavior with large rectifying ratio in graphene nanoribbons device. J. Appl. Phys. 109(12), 124502 (2011). https://doi.org/10.1063/1.3600067
A. Pramanik, S. Sarkar, P. Sarkar, Doped GNR p–n junction as high performance NDR and rectifying device. J. Phys. Chem. C 116(34), 18064–18069 (2012). https://doi.org/10.1021/jp304582k
P. Zhao, D.S. Liu, S.J. Li, G. Chen, Giant low bias negative differential resistance induced by nitrogen doping in graphene nanoribbon. Chem. Phys. Lett. 554, 172–176 (2012). https://doi.org/10.1016/j.cplett.2012.10.045
T. Chen, X.F. Li, L.L. Wang, K.W. Luo, L. Xu, Rectification induced in N AA2 -doped armchair graphene nanoribbon device. J. Appl. Phys. 116(1), 013702 (2014). https://doi.org/10.1063/1.4884975
P. Zhao, D.S. Liu, S.J. Li, G. Chen, Modulation of rectification and negative differential resistance in graphene nanoribbon by nitrogen doping. Phys. Lett. A 377(15), 1134–1138 (2013). https://doi.org/10.1016/j.physleta.2013.02.048
Y.H. Zhou, J.J. Wu, P. He, T.F. Deng, S.Y. Du, C. Ye, The electronic transport properties in boron-doped armchair graphene nanoribbon junctions. Nanosci. Nanotechnol. Lett. 7(8), 630–636 (2015). https://doi.org/10.1166/nnl.2015.2013
Y. Zhou, J. Zhang, D. Zhang, C. Ye, X. Miao, Phosphorus-doping-induced rectifying behavior in armchair graphene nanoribbons devices. J. Appl. Phys. 115(1), 013705 (2014). https://doi.org/10.1063/1.4861176
J. Zeng, K.Q. Chen, J. He, X.J. Zhang, C.Q. Sun, Edge hydrogenation-induced spin-filtering and rectifying behaviors in the graphene nanoribbon heterojunctions. J. Phys. Chem. C 115(50), 25072–25076 (2011). https://doi.org/10.1021/jp208248v
O.V. Yazyev, M.I. Katsnelson, Magnetic correlations at graphene edges: basis for novel spintronics devices. Phys. Rev. Lett. 100(4), 047209 (2008). https://doi.org/10.1103/PhysRevLett.100.047209
L.H. Wang, Z.Z. Zhang, J.G. Zhao, B.J. Ding, Y. Guo, C. Jin, Bipolar spin-filtering effect in B- or N-doped zigzag graphene nanoribbons with asymmetric edge hydrogenation. Phys. Lett. A 379(43–44), 2860–2865 (2015). https://doi.org/10.1016/j.physleta.2015.09.020
L.H. Wang, Z.Z. Zhang, J.G. Zhao, B.J. Ding, Y. Guo, Nitrogen doping position-dependent rectification of spin-polarized current and realization of multifunction in zigzag graphene nanoribbons with asymmetric edge hydrogenation. J. Electron. Mater. 45(2), 1165–1174 (2016). https://doi.org/10.1007/s11664-015-4233-3
D. Zhang, M.Q. Long, X.J. Zhang, F.P. Ouyang, M.J. Li, H. Xu, Designing of spin-filtering devices in zigzag graphene nanoribbons heterojunctions by asymmetric hydrogenation and B–N doping. J. Appl. Phys. 117(1), 014311 (2015). https://doi.org/10.1063/1.4905503
J. Kunstmann, C. Ozdogan, A. Quandt, H. Fehske, Stability of edge states and edge magnetism in graphene nanoribbons. Phys. Rev. B 83(4), 045414 (2011). https://doi.org/10.1103/PhysRevB.83.045414
I. Maity, K. Ghosh, H. Rahaman, P. Bhattacharyya, Spin dependent electronic transport in edge oxidized zigzag graphene nanoribbon. Mater. Today: Proc. 5(3), 9892–9898 (2018). https://doi.org/10.1016/j.matpr.2017.10.184
C. Cao, L.N. Chen, M.Q. Long, W.R. Huang, H. Xu, Electronic transport properties on transition-metal terminated zigzag graphene nanoribbons. J. Appl. Phys. 111(11), 113708 (2012). https://doi.org/10.1063/1.4723832
M. Nazirfakhr, A. Shahhoseini, Negative differential resistance and rectification effects in zigzag graphene nanoribbon heterojunctions: induced by edge oxidation and symmetry concept. Phys. Lett. A 382(10), 704–709 (2018). https://doi.org/10.1016/j.physleta.2018.01.001
L.L. Cui, M.Q. Long, X.J. Zhang, X.M. Li, D. Zhang, B.C. Yang, Spin-dependent transport properties of hetero-junction based on zigzag graphene nanoribbons with edge hydrogenation and oxidation. Phys. Lett. A 380(5), 730–738 (2016). https://doi.org/10.1016/j.physleta.2015.10.050
X.Q. Deng, Z.H. Zhang, G.P. Tang, Z.Q. Fan, C.H. Yang, Spin filter effects in zigzag-edge graphene nanoribbons with symmetric and asymmetric edge hydrogenations. Carbon 66, 646–653 (2014). https://doi.org/10.1016/j.carbon.2013.09.061
X.Q. Deng, Z.H. Zhang, C.H. Yang, H.L. Zhu, B. Liang, The design of spin filter junction in zigzag graphene nanoribbons with asymmetric edge hydrogenation. Org. Electron. 14(12), 3240–3248 (2013). https://doi.org/10.1016/j.orgel.2013.09.041
C. Cao, L.N. Chen, M.Q. Long, H. Xu, Rectifying performance in zigzag graphene nanoribbon heterojunctions with different edge hydrogenations. Phys. Lett. A 377(31–33), 1905–1910 (2013). https://doi.org/10.1016/j.physleta.2013.05.004
L. Peng, K. Yao, S. Zhu, Y. Ni, F. Zu, S. Wang, B. Guo, Y. Tian, Spin transport properties of partially edge-hydrogenated MoS2 nanoribbon heterostructure. J. Appl. Phys. 115(22), 223705 (2014). https://doi.org/10.1063/1.4882195
J. Zhao, C. Fang, B. Cui, D. Zou, W. Zhao, X. Li, D. Li, D. Liu, Spin transport properties in silicene-based heterojunctions with different edge hydrogenation. Org. Electron. 41, 333–339 (2017). https://doi.org/10.1016/j.orgel.2016.11.025
S.X. Yang, C. Wang, H. Sahin, H. Chen, Y. Li et al., Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 15(3), 1660–1666 (2015). https://doi.org/10.1021/nl504276u
J. Quereda, P. San-Jose, V. Parente, L. Vaquero-Garzon, A.J. Molina-Mendoza et al., Strong modulation of optical properties in black phosphorus through strain-engineered rippling. Nano Lett. 16(5), 2931–2937 (2016). https://doi.org/10.1021/acs.nanolett.5b04670
H. Tomori, A. Kanda, H. Goto, Y. Ootuka, K. Tsukagoshi, S. Moriyama, E. Watanabe, D. Tsuya, Introducing nonuniform strain to graphene using dielectric nanopillars. Appl. Phys. Express 4(7), 075102 (2011). https://doi.org/10.1143/apex.4.075102
H. Li, A.W. Contryman, X. Qian, S.M. Ardakani, Y. Gong et al., Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat. Commun. 6, 8080 (2015). https://doi.org/10.1038/ncomms8381
A. Reserbat-Plantey, D. Kalita, Z. Han, L. Ferlazzo, S. Autier-Laurent et al., Strain superlattices and macroscale suspension of graphene induced by corrugated substrates. Nano Lett. 14(9), 5044–5051 (2014). https://doi.org/10.1021/nl5016552
M. Neek-Amal, L. Covaci, F.M. Peeters, Nanoengineered nonuniform strain in graphene using nanopillars. Phys. Rev. B 86(4), 041405 (2012). https://doi.org/10.1103/PhysRevB.86.041405
R. Banerjee, V.-H. Nguyen, T. Granzier-Nakajima, L. Pabbi, A. Lherbier et al., Strain modulated superlattices in graphene (2019). https://arxiv.org/abs/1903.10468
P. Kun, G. Kukucska, G. Dobrik, J. Koltai, J. Kürti, L.P. Biró, L. Tapasztó, P. Nemes-Incze, Large intravalley scattering due to pseudo-magnetic fields in crumpled graphene. npj 2D Mater. Appl. 3(1), 11 (2019). https://doi.org/10.1038/s41699-019-0094-6
M.I.B. Utama, H. Kleemann, W. Zhao, C.S. Ong, F.H. da Jornada et al., A dielectric-defined lateral heterojunction in a monolayer semiconductor. Nat. Electron. 2(2), 60–65 (2019). https://doi.org/10.1038/s41928-019-0207-4
Z.B. Wu, Y.Y. Zhang, G. Li, S.X. Du, H.J. Gao, Electronic properties of silicene in BN/silicene van der waals heterostructures. Chin. Phys. B 27(7), 077302 (2018). https://doi.org/10.1088/1674-1056/27/7/077302
J. Kang, J.B. Li, S.S. Li, J.B. Xia, L.W. Wang, Electronic structural moire pattern effects on MoS2/MoSe2 2D heterostructures. Nano Lett. 13(11), 5485–5490 (2013). https://doi.org/10.1021/nl4030648
M.L. Sun, J.P. Chou, J. Yu, W.C. Tang, Electronic properties of blue phosphorene/graphene and blue phosphorene/graphene-like gallium nitride heterostructures. Phys. Chem. Chem. Phys. 19(26), 17324–17330 (2017). https://doi.org/10.1039/c7cp01852e
V.A. Skachkova, M.S. Baranava, D.C. Hvazdouski, V.R. Stempitsky, Electronic properties of graphene-based heterostructures. IOP Conf. Ser.: J. Phys. 917, 092012 (2017). https://doi.org/10.1088/1742-6596/917/9/092012
Z.Y. Huang, C.Y. He, X. Qi, H. Yang, W.L. Liu, X.L. Wei, X.Y. Peng, J.X. Zhong, Band structure engineering of monolayer MoS2 on h-BN: first-principles calculations. J. Phys. D-Appl. Phys. 47(7), 075301 (2014). https://doi.org/10.1088/0022-3727/47/7/075301
H.V. Phuc, N.N. Hieu, B.D. Hoi, C.V. Nguyen, Interlayer coupling and electric field tunable electronic properties and Schottky barrier in a graphene/bilayer-GaSe van der waals heterostructure. Phys. Chem. Chem. Phys. 20(26), 17899–17908 (2018). https://doi.org/10.1039/c8cp02190b
B. Liu, L.J. Wu, Y.Q. Zhao, L.Z. Wang, M.Q. Cai, First-principles investigation of the schottky contact for the two-dimensional MoS2 and graphene heterostructure. RSC Adv. 6(65), 60271–60276 (2016). https://doi.org/10.1039/c6ra12812b
H.V. Phuc, N.N. Hieu, B.D. Hoi, L.T.T. Phoung, N.V. Hieu, C.V. Nguyen, Out-of-plane strain and electric field tunable electronic properties and schottky contact of graphene/antimonene heterostructure. Superlattices Microstruct. 112, 554–560 (2017). https://doi.org/10.1016/j.spmi.2017.10.011
J. Lee, G. Kim, Electronic properties of a graphene/periodic porous graphene heterostructure. Carbon 122, 281–286 (2017). https://doi.org/10.1016/j.carbon.2017.06.049
H.V. Phuc, V.V. Ilyasov, N.N. Hieu, B. Amin, C.V. Nguyen, Van der waals graphene/g-GaSe heterostructure: tuning the electronic properties and schottky barrier by interlayer coupling, biaxial strain, and electric gating. J. Alloys Compd. 750, 765–773 (2018). https://doi.org/10.1016/j.jallcom.2018.04.030
X.P. Chen, X. Sun, D.G. Yang, R.S. Meng, C.J. Tan, Q. Yang, Q.H. Liang, J.K. Jiang, SiGe/h-BN heterostructure with inspired electronic and optical properties: a first-principles study. J. Mater. Chem. C 4(42), 10082–10089 (2016). https://doi.org/10.1039/c6tc03838g
Q. Sun, Y. Dai, N. Yin, L. Yu, Y.D. Ma, W. Wei, B.B. Huang, Two-dimensional square transition metal dichalcogenides with lateral heterostructures. Nano Res. 10(11), 3909–3919 (2017). https://doi.org/10.1007/s12274-017-1605-4
L.P. Feng, J. Su, Z.T. Liu, Characteristics of lateral and hybrid heterostructures based on monolayer MoS2: a computational study. Phys. Chem. Chem. Phys. 19(6), 4741–4750 (2017). https://doi.org/10.1039/c6cp07825g
C. Mu, W. Wei, J.J. Li, B.B. Huang, Y. Dai, Electronic properties of two-dimensional in-plane heterostructures of WS2/WSe2/MoS2. Mater. Res. Express 5(4), 046307 (2018). https://doi.org/10.1088/2053-1591/aabddf
J. Lee, J.S. Huang, B.G. Sumpter, M. Yoon, Strain-engineered optoelectronic properties of 2D transition metal dichalcogenide lateral heterostructures. 2D Mater. 4(2), 021016 (2017). https://doi.org/10.1088/2053-1583/aa5542
O. Avalos-Ovando, D. Mastrogiuseppe, S.E. Ulloa, Lateral interfaces of transition metal dichalcogenides: a stable tunable one-dimensional physics platform. Phys. Rev. B 99(3), 035107 (2019). https://doi.org/10.1103/PhysRevB.99.035107
J.H. Yuan, N.N. Yu, J.F. Wang, K.H. Xue, X.S. Miao, Design lateral heterostructure of monolayer ZrS2 and HfS2 from first principles calculations. Appl. Surf. Sci. 436, 919–926 (2018). https://doi.org/10.1016/j.apsusc.2017.12.093
Z. Zhang, Y. Xu, First-principles study on the structural stability and electronic properties of AlN/GaN heterostructure nanoribbons. Superlattices Microstruct. 57, 37–43 (2013). https://doi.org/10.1016/j.spmi.2013.02.001
Q.F. Li, X.F. Ma, L. Zhang, X.G. Wan, W.F. Rao, Theoretical design of blue phosphorene/arsenene lateral heterostructures with superior electronic properties. J. Phys. D-Appl. Phys. 51(25), 255304 (2018). https://doi.org/10.1088/1361-6463/aac563
M. Ge, C. Si, Mechanical and electronic properties of lateral graphene and hexagonal boron nitride heterostructures. Carbon 136, 286–291 (2018). https://doi.org/10.1016/j.carbon.2018.04.069
Y.P. An, M.J. Zhang, D.P. Wu, T.X. Wang, Z.Y. Jiao, C.X. Xia, Z.M. Fu, K. Wang, The rectifying and negative differential resistance effects in graphene/h-BN nanoribbon heterojunctions. Phys. Chem. Chem. Phys. 18(40), 27976–27980 (2016). https://doi.org/10.1039/c6cp05912k
G.C. Loh, R. Pandey, A graphene–boron nitride lateral heterostructure—first-principles study of its growth, electronic properties, and chemical topology. J. Mater. Chem. C 3(23), 5918–5932 (2015). https://doi.org/10.1039/c5tc00539f
X.Q. Tian, L. Liu, Y. Du, J. Gu, J.B. Xu, B.I. Yakobson, Variable electronic properties of lateral phosphorene–graphene heterostructures. Phys. Chem. Chem. Phys. 17(47), 31685–31692 (2015). https://doi.org/10.1039/c5cp05443e
J. Sun, N. Lin, C. Tang, H.Y. Wang, H. Ren, X. Zhao, First principles studies on electronic and transport properties of edge contact graphene–MoS2 heterostructure. Comput. Mater. Sci. 133, 137–144 (2017). https://doi.org/10.1016/j.commatsci.2017.03.004
W. Chen, Y. Yang, Z.Y. Zhang, E. Kaxiras, Properties of in-plane graphene/MoS2 heterojunctions. 2D Mater. 4(4), 045001 (2017). https://doi.org/10.1088/2053-1583/aa8313
W. Hong, G.W. Shim, S.Y. Yang, D.Y. Jung, S.-Y. Choi, Improved electrical contact properties of MoS2–graphene lateral heterostructure. Adv. Funct. Mater. 29(6), 1807550 (2019). https://doi.org/10.1002/adfm.201807550
Y. Zhang, L. Yin, J. Chu, T.A. Shifa, J. Xia et al., Edge-epitaxial growth of 2D NbS2–WS2 lateral metal-semiconductor heterostructures. Adv. Mater. 30(40), 1803665 (2018). https://doi.org/10.1002/adma.201803665
A. Behranginia, P. Yasaei, A.K. Majee, V.K. Sangwan, F. Long et al., Direct growth of high mobility and low-noise lateral MoS2–graphene heterostructure electronics. Small 13(30), 1604301 (2017). https://doi.org/10.1002/smll.201604301
Z. Liu, L.L. Ma, G. Shi, W. Zhou, Y.J. Gong et al., In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotechnol. 8(2), 119–124 (2013). https://doi.org/10.1038/nnano.2012.256
M. Zhao, Y. Ye, Y. Han, Y. Xia, H. Zhu et al., Large-scale chemical assembly of atomically thin transistors and circuits. Nat. Nanotechnol. 11(11), 954–959 (2016). https://doi.org/10.1038/nnano.2016.115
M.P. Levendorf, C.J. Kim, L. Brown, P.Y. Huang, R.W. Havener, D.A. Muller, J. Park, Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488(7413), 627–632 (2012). https://doi.org/10.1038/nature11408
T.X. Chen, Y.W. Sheng, Y.Q. Zhou, R.J. Chang, X.C. Wang et al., High photoresponsivity in ultrathin 2D lateral graphene:WS2: graphene photodetectors using direct CVD growth. ACS Appl. Mater. Interfaces. 11(6), 6421–6430 (2019). https://doi.org/10.1021/acsami.8b20321
B.Y. Liu, Y.F. Chen, C.Y. You, Y.W. Liu, X.Y. Kong et al., High performance photodetector based on graphene/MoS2/graphene lateral heterostructure with schottky junctions. J. Alloys Compds. 779, 140–146 (2019). https://doi.org/10.1016/j.jallcom.2018.11.165
W.J. Deng, Y.F. Chen, C.Y. You, B.Y. Liu, Y.H. Yang et al., High detectivity from a lateral graphene–MoS2 schottky photodetector grown by chemical vapor deposition. Adv. Electron. Mater. 4(9), 1800069 (2018). https://doi.org/10.1002/aelm.201800069
Z.P. Li, J.L. Zheng, Y.P. Zhang, C.X. Zheng, W.Y. Woon et al., Synthesis of ultrathin composition graded doped lateral WSe2/WS2 heterostructures. ACS Appl. Mater. Interfaces. 9(39), 34204–34212 (2017). https://doi.org/10.1021/acsami.7b08668
J.M. Cai, C.A. Pignedoli, L. Talirz, P. Ruffieux, H. Söde et al., Graphene nanoribbon heterojunctions. Nat. Nanotechnol. 9(11), 896–900 (2014). https://doi.org/10.1038/nnano.2014.184
Y.C. Chen, T. Cao, C. Chen, Z. Pedramrazi, D. Haberer et al., Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nat. Nanotechnol. 10(2), 156–160 (2015). https://doi.org/10.1038/nnano.2014.307
L. Ci, L. Song, C.H. Jin, D. Jariwala, D.X. Wu et al., Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9(5), 430–435 (2010). https://doi.org/10.1038/nmat2711
P. Rivera, J.R. Schaibley, A.M. Jones, J.S. Ross, S.F. Wu et al., Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015). https://doi.org/10.1038/ncomms7242
Y.J. Gong, J.H. Lin, X.L. Wang, G. Shi, S.D. Lei et al., Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13(12), 1135–1142 (2014). https://doi.org/10.1038/nmat4091
K. Chen, X. Wan, W.G. Xie, J.X. Wen, Z.W. Kang, X.L. Zeng, H.J. Chen, J.B. Xu, Lateral built-in potential of monolayer MoS2–WS2 in-plane heterostructures by a shortcut growth strategy. Adv. Mater. 27(41), 6431 (2015). https://doi.org/10.1002/adma.201502375
X.D. Fang, Q.Q. Tian, Y. Sheng, G.F. Yang, N.Y. Lu et al., Chemical vapor deposition of WS2/Mo1−xWxS2/MoS2 lateral heterostructures. Superlattices Microstruct. 123, 323–329 (2018). https://doi.org/10.1016/j.spmi.2018.09.017
J.D. Cain, E.D. Hanson, V.P. Dravid, Controlled synthesis of 2D MX2 (M = Mo, W; X = S, Se) heterostructures and alloys. J. Appl. Phys. 123(20), 204304 (2018). https://doi.org/10.1063/1.5025710
Y. Miyata, E. Maeda, K. Kamon, R. Kitaura, Y. Sasaki, S. Suzuki, H. Shinohara, Fabrication and characterization of graphene/hexagonal boron nitride hybrid sheets. Appl. Phys. Express 5(8), 085102 (2012). https://doi.org/10.1143/apex.5.085102
G.H. Han, J.A. Rodriguez-Manzo, C.W. Lee, N.J. Kybert, M.B. Lerner et al., Continuous growth of hexagonal graphene and boron nitride in-plane heterostructures by atmospheric pressure chemical vapor deposition. ACS Nano 7(11), 10129–10138 (2013). https://doi.org/10.1021/nn404331f
L. Liu, J. Park, D.A. Siegel, K.F. McCarty, K.W. Clark, W. Deng, L. Basile, J.C. Idrobo, A.P. Li, G. Gu, Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science 343(6167), 163–167 (2014). https://doi.org/10.1126/science.1246137
X. Ling, Y. Lin, Q. Ma, Z. Wang, Y. Song et al., Parallel stitching of 2D materials. Adv. Mater. 28(12), 2322–2329 (2016). https://doi.org/10.1002/adma.201505070
C. Zheng, Q. Zhang, B. Weber, H. Ilatikhameneh, F. Chen et al., Fuhrer, direct observation of 2D electrostatics and ohmic contacts in template-grown graphene/WS2 heterostructures. ACS Nano 11(3), 2785–2793 (2017). https://doi.org/10.1021/acsnano.6b07832
M.Y. Li, Y.M. Shi, C.C. Cheng, L.S. Lu, Y.C. Lin et al., Epitaxial growth of a monolayer WSe2–MoS2 lateral p–n junction with an atomically sharp interface. Science 349(6247), 524–528 (2015). https://doi.org/10.1126/science.aab4097
Y.J. Gong, S.D. Lei, G.L. Ye, B. Li, Y.M. He et al., Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 15(9), 6135–6141 (2015). https://doi.org/10.1021/acs.nanolett.5b02423
K. Chen, X. Wan, J. Wen, W. Xie, Z. Kang, X. Zeng, H. Chen, J.-B. Xu, Electronic properties of MoS2–WS2 heterostructures synthesized with two-step lateral epitaxial strategy. ACS Nano 9(10), 9868–9876 (2015). https://doi.org/10.1021/acsnano.5b03188
Y.H. Cai, K. Xu, W.J. Zhu, Synthesis of transition metal dichalcogenides and their heterostructures. Mater. Res. Express 5(9), 095904 (2018). https://doi.org/10.1088/2053-1591/aad950
Z.W. Zhang, P. Chen, X.D. Duan, K.T. Zang, J. Luo, X.F. Duan, Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 357(6353), 788–792 (2017). https://doi.org/10.1126/science.aan6814
P.K. Sahoo, S. Memaran, Y. Xin, L. Balicas, H.R. Gutiérrez, One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature 553(7876), 63–67 (2018). https://doi.org/10.1038/nature25155
C.D. Zhang, Y.X. Chen, J.K. Huang, X.X. Wu, L.J. Li, W. Yao, J. Tersoff, C.K. Shih, Visualizing band offsets and edge states in bilayer–monolayer transition metal dichalcogenides lateral heterojunction. Nat. Commun. 7, 10349 (2016). https://doi.org/10.1038/ncomms10349
Y.M. He, A. Sobhani, S.D. Lei, Z.H. Zhang, Y.J. Gong et al., Layer engineering of 2D semiconductor junctions. Adv. Mater. 28(25), 5126–5132 (2016). https://doi.org/10.1002/adma.201600278
M. Mahjouri-Samani, M.W. Lin, K. Wang, A.R. Lupini, J. Lee et al., Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors. Nat. Commun. 6, 7749 (2015). https://doi.org/10.1038/ncomms8749
T. Afaneh, P.K. Sahoo, I.A.P. Nobrega, Y. Xin, H.R. Gutiérrez, Laser-assisted chemical modification of monolayer transition metal dichalcogenides. Adv. Funct. Mater. 28(37), 1802949 (2018). https://doi.org/10.1002/adfm.201802949
Z. Tian, M.X. Zhao, X.X. Xue, W. Xia, C.L. Guo, Y.F. Guo, Y.X. Feng, J.M. Xue, Lateral heterostructures formed by thermally converting n-type SnSe2 to p-type SnSe. ACS Appl. Mater. Interfaces. 10(15), 12831–12838 (2018). https://doi.org/10.1021/acsami.8b01235
N. Choudhary, M.R. Islam, N. Kang, L. Tetard, Y. Jung, S.I. Khondaker, Two-dimensional lateral heterojunction through bandgap engineering of MoS2 via oxygen plasma. J. Phys.: Condens. Matter 28(36), 364002 (2016). https://doi.org/10.1088/0953-8984/28/36/364002
L. Jamilpanah, S. Azizmohseni, S.A. Hosseini, M. Hasheminejad, N. Vesali, A.I. Zad, M. Pourfath, S.M. Mohseni, Simple one-step fabrication of semiconductive lateral heterostructures using bipolar electrodeposition. Phys. Status Solidi RRL 12(12), 1800418 (2018). https://doi.org/10.1002/pssr.201800418