Type-II Core/Shell Nanowire Heterostructures and Their Photovoltaic Applications
Corresponding Author: Junyong Kang
Nano-Micro Letters,
Vol. 4 No. 3 (2012), Article Number: 135-141
Abstract
Nanowire-based photovoltaic devices have the advantages over planar devices in light absorption and charge transport and collection. Recently, a new strategy relying on type-II band alignment has been proposed to facilitate efficient charge separation in core/shell nanowire solar cells. This paper reviews the type-II heterojunction solar cells based on core/shell nanowire arrays, and specifically focuses on the progress of theoretical design and fabrication of type-II ZnO/ZnSe core/shell nanowire-based solar cells. A strong photoresponse associated with the type-II interfacial transition exhibits a threshold of 1.6 eV, which demonstrates the feasibility and great potential for exploring all-inorganic versions of type-II heterojunction solar cells using wide bandgap semiconductors. Future prospects in this area are also outlooked.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961). http://dx.doi.org/10.1063/1.1736034
- D. M. Chapin, C. S. Fuller and G. L. Pearson, J. Appl. Phys. 25, 676 (1954). http://dx.doi.org/10.1063/1.1721711
- M. Yamaguchi, A. Yamamoto, and Y. Itoh, J. Appl. Phys. 59, 1751 (1986). http://dx.doi.org/10.1063/1.336439
- C. Algora, E. Ortiz, I. Rey-Stolle, V. Diaz, R. Pena, V. M. Andreev, V. P. Khvostikov and V. D. Rumyantsev, IEEE Trans. Elec. Dev. 48, 840 (2001). http://dx.doi.org/10.1109/16.918225
- J. J. Loferski, J. Appl. Phys. 27, 777 (1956). http://dx.doi.org/10.1063/1.1722483
- D. A. Cusano, Solid-State Electronics 6, 217 (1963). http://dx.doi.org/10.1016/0038-1101(63)90078-9
- P. V. Meyers, Solar Cell 23, 59 (1988). http://dx.doi.org/10.1016/0379-6787(88)90007-5
- L. D. Partain (Ed.), Solar Cells and Their Applications, Wiley, 1995.
- M. A. Green, Solar Cells: Operating Principles, Technology and Systems Applications, Prentice-Hall, 1992.
- J. Zhao, A. Wang and M. A. Green, Prog. Photovoltaics: Res. Appl. 7, 471 (1999). http://dx.doi.org/10.1002/(SICI)1099-159X(199911/12)7:6<471::AID-PIP298>3.0.CO;2-7
- M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, Progress in Photovoltaics: Research and Applications 20, 12 (2012). http://dx.doi.org/10.1002/pip.2163}
- K. S. Leschkies, R. Divakar, J. Basu, E. E. Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, Nano Lett. 7, 1793 (2007). http://dx.doi.org/10.1021/nl070430o
- W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett and F. Dimroth, Appl. Phys. Lett. 94, 223504 (2009). http://dx.doi.org/10.1063/1.3148341
- M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, Prog. Photovoltaics: Res. Appl. 17, 320 (2009). http://dx.doi.org/10.1002/pip.911
- J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, Appl. Phys. Lett. 93, 123505 (2008). http://dx.doi.org/10.1063/1.2988497
- L. Hu and G. Chen, Nano Lett. 7, 3249 (2007). http://dx.doi.org/10.1021/nl071018b
- Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie and J. W. P. Hsu, Nano Lett. 8, 1501 (2008). http://dx.doi.org/10.1021/nl080659j
- B. M. Kayes, H. A. Atwater, and N. S. Lewis, J. Appl. Phys. 97, 114302 (2005). http://dx.doi.org/10.1063/1.1901835
- A. Nduwimana and X. Q. Wang, Nano Lett. 9, 283 (2009). http://dx.doi.org/10.1021/nl802907d
- Y. Zhang, L. Wang and A. Mascarenhas, Nano Lett. 7, 1264 (2007). http://dx.doi.org/10.1021/nl070174f
- Y. F. Zhang, Y. F. Wang, N. Chen, Y. Y. Wang, Y. Z. Zhang, Z. H. Zhou and L. M. Wei, Nano-Micro Lett. 2, 22–25 (2010). http://dx.doi.org/10.5101/nml.v2i1.p22-25
- B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F Yu, G. H. Yu, J. L. Huang and C. M. Lieber, Nature 449, 885 (2007). http://dx.doi.org/10.1038/nature06181
- J. Schrier, D. O. Demchenko and L. W. Wang, Nano Lett. 7, 2377 (2007). http://dx.doi.org/10.1021/nl071027k
- E. J. W. Crossland, M. Nedelcu, C. Ducati, S. Ludwigs, M. A. Hillmyer, U. Steiner, and H. J. Snaith, Nano Lett. 9, 2813 (2009). http://dx.doi.org/10.1021/nl803174p
- E. L. Tae, S. H. Lee, J. K. Lee, S. S. Yoo, E. J. Kang and K. B. Yoon, J. Phys. Chem. B 109, 22513 (2005). http://dx.doi.org/10.1021/jp0537411
- H. J. Lee, M. K. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddish, M. Gratzel and Md. K. Nazeeruddin, Nano Lett. 9, 4221 (2009). http://dx.doi.org/10.1021/nl902438d
- S. A. Ivanov, A. Piryatinski, J. Nanda, S. Tretiak, K. R. Zavadil, W. O. Wallace, D. Werder and V. I. Klimov, J. Am. Chem. Soc. 129, 11708 (2007). http://dx.doi.org/10.1021/ja068351m
- H. Z. Zhong, Y. Zhou, Y. Yang, C. Yang, and Y. F. Li, J. Phys. Chem. C 111, 6538 (2007). http://dx.doi.org/10.1021/jp0709407
- Y. Yu, P. V. Kamat and M. Kuno, Adv. Funct. Mater. 20, 1464 (2010). http://dx.doi.org/10.1002/adfm.200902372
- Y. Kang, N.-G. Park, and D. Kim, Appl. Phys. Lett. 86, 113101 (2005). http://dx.doi.org/10.1063/1.1883319
- B. R. Saunders and M. L. Turner, Adv. Colloid Interface Sci. 138, 1 (2008). http://dx.doi.org/10.1016/j.cis.2007.09.001
- S. Dayal, N. Kopidakis, D. C. Olson, D. S. Ginley and G. Rumbles, Nano Lett. 10, 239 (2010). http://dx.doi.org/10.1021/nl903406s
- A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, Chem. Rev. 110, 6873 (2010). http://dx.doi.org/10.1021/cr900289f
- P. V. Kamat, J. Phys. Chem. C 112, 18737 (2008). http://dx.doi.org/10.1021/jp806791s
- K. Sun, A. Kargar, N. Park, K. N. Madsen, P. W. Naughton, T. Bright, Y. Jing, and D. L. Wang, IEEE Journal of Selected Topics in Quantum Electronics (17), 1033 (2011). http://dx.doi.org/10.1109/jstqe.2010.2090342
- H. W. Wei, L. Wang, Z. P. Li, S. Q. Ni, and Q. Q. Zhao, Nano-Micro Lett. 3, 6 (2011). http://dx.doi.org/10.5101/nml.v3i1.p6–11
- X. G. Lin, Used for photovoltaic device of ZnO base type II heterogeneous structure design , Xiamen University, 2010.
- X. Q. Meng, H. W. Peng, Y. Q. Gai and J. B. Li, J. Phys. Chem. C 114, 1467 (2010). http://dx.doi.org/10.1021/jp909176p
- Z. H. Wang, Y. C. Fan and M.W. Zhao, J. Appl. Phys. 108, 123707 (2010). http://dx.doi.org/10.1063/1.3504225
- A. Nduwimana, R. N. Musin, A. M. Smith and X. Q. Wang, Nano Lett. 8, 3341 (2008). http://dx.doi.org/10.1021/nl8017725
- Y. Tak, S. J. Hong, J. S. Lee, and K. Yong, J. Mater. Chem. 19, 5945 (2009). http://dx.doi.org/10.1039/b904993b
- K. Wang, J. J. Chen, W. L. Zhou, Y. Zhang, Y. F. Yan, J. Pern and A. Mascarenhas, Adv. Mater. 20, 3248 (2008). http://dx.doi.org/10.1002/adma.200800145
- P. T. Chou, C. Y. Chen, C. T. Cheng, S. C. Pu, K. C. Wu, Y. M. Cheng, C. W. Lai, Y. H. Chou, and H. T. Chiu, Chem. Phys. Chem. 7, 222 (2006). http://dx.doi.org/10.1002/cphc.200500307
- W. F. Li, Y. G. Sun and J. L. Xu, Nano-Micro Lett. 4 (2), 98–102 (2012). http://dx.doi.org/10.3786/nml.v4i2.p98–102
- Y. Tak, H. Kim, D. Lee, and K. Yong, Chem.Commun., 4585 (2008). http://dx.doi.org/10.1039/b810388g
- R. Tena-Zaera, A. Katty, S. Bastide, and C. Lévy-Clément, Chem. Mater. 19, 1626 (2007). http://dx.doi.org/10.1021/cm062390f
- J. Bang, J. Park, J. H. Lee, N. Won, J. Nam, J. Lim, B. Y. Chang, H. J. Lee, B. Chon, J. Shin, J. B. Park, J. H. Choi, K. Cho, S. M. Park, T. Joo and S. Kim, Chem. Mater. 22, 233 (2010). http://dx.doi.org/10.1021/cm9027995
- A Dinger, S Petillon, M Grün, M Hetterich and C Klingshirn, Semicond. Sci. Technol. 14, 595 (1999). http://dx.doi.org/10.1088/0268-1242/14/7/301
- D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. B. Li, L. W. Wang and A. P. Alivisatos, Nature 430, 190 (2004). http://dx.doi.org/10.1038/nature02695
- J. C. Ni, Z. M. Wu, X. G. Lin, J. J. Zheng, S. P. Li, J. Li and J. Y. Kang, J. Mater. Res. 27, 730 (2012). http://dx.doi.org/10.1557/jmr.2011.417
- Z. M. Wu, Y. Zhang, J. J. Zheng, X.G. Lin, X. H. Chen, B. W. Huang, H. Q. Wang, K. Huang, S. P. Li, and J. Y. Kang, J. Mater. Chem. 21, 6020 (2011). http://dx.doi.org/10.1039/c0jm03971c
- J. J. Zheng, Z. M. Wu, W. H. Yang, S. P. Li and J. Y. Kang, J. Mater. Res. 25, 1272 (2010). http://dx.doi.org/10.1557/JMR.2010.0161
- S. Gubbala, V. Chakrapani, V. Kumar and M. K. Sunkara, Adv. Funct. Mater. 18, 2411 (2008). http://dx.doi.org/10.1002/adfm.200800099
- S. Cho, J.W. Jang, J. Kim, J. S. Lee, W. Choi, and K.-H. Lee, Langmuir 27, 10243 (2011). http://dx.doi.org/10.1021/la201755w
- S. Cho, J.W. Jang, Sang-Hoon Lim, Hyun Joon Kang, Shi-Woo Rhee, Jae Sung Lee and Kun-Hong Lee, J. Mater. Chem. 21, 17816 (2011). http://dx.doi.org/10.1039/c1jm14014k
- J. Chung, J. Myoung, J. Oh, and S. Lim, J. Phys. Chem. Solids 73, 535 (2012). http://dx.doi.org/10.1016/j.jpcs.2011.12.001
- J. Chung, J. Myoung, J. Oh and S. Lim, J. Phys. Chem. C 114, 21360 (2010). http://dx.doi.org/10.1021/jp109355h
- H. Y. Chao, S. H. You, J. Y. Lu, Y. H. Chang, C. T. Liang and C. T. Wu, Journal of Nanoscience and Nanotechnology 11, 2042 (2011). http://dx.doi.org/10.1166/jnn.2011.3128
- K. Wang, J. J. Chen, Z. M. Zeng, J. Tarr, W. L. Zhou, Y. Zhang, Y. F. Yan, C. S. Jiang, J. Pern, and A. Mascarenhas, Appl. Phys. Lett. 96, 123105 (2010). http://dx.doi.org/10.1063/1.3367706
- Z. Y. Fan, H. Razavi, J. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, Paul W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager and A. Javey, Nat. Mater. 8, 648 (2009). http://dx.doi.org/10.1038/nmat2493
References
W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961). http://dx.doi.org/10.1063/1.1736034
D. M. Chapin, C. S. Fuller and G. L. Pearson, J. Appl. Phys. 25, 676 (1954). http://dx.doi.org/10.1063/1.1721711
M. Yamaguchi, A. Yamamoto, and Y. Itoh, J. Appl. Phys. 59, 1751 (1986). http://dx.doi.org/10.1063/1.336439
C. Algora, E. Ortiz, I. Rey-Stolle, V. Diaz, R. Pena, V. M. Andreev, V. P. Khvostikov and V. D. Rumyantsev, IEEE Trans. Elec. Dev. 48, 840 (2001). http://dx.doi.org/10.1109/16.918225
J. J. Loferski, J. Appl. Phys. 27, 777 (1956). http://dx.doi.org/10.1063/1.1722483
D. A. Cusano, Solid-State Electronics 6, 217 (1963). http://dx.doi.org/10.1016/0038-1101(63)90078-9
P. V. Meyers, Solar Cell 23, 59 (1988). http://dx.doi.org/10.1016/0379-6787(88)90007-5
L. D. Partain (Ed.), Solar Cells and Their Applications, Wiley, 1995.
M. A. Green, Solar Cells: Operating Principles, Technology and Systems Applications, Prentice-Hall, 1992.
J. Zhao, A. Wang and M. A. Green, Prog. Photovoltaics: Res. Appl. 7, 471 (1999). http://dx.doi.org/10.1002/(SICI)1099-159X(199911/12)7:6<471::AID-PIP298>3.0.CO;2-7
M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, Progress in Photovoltaics: Research and Applications 20, 12 (2012). http://dx.doi.org/10.1002/pip.2163}
K. S. Leschkies, R. Divakar, J. Basu, E. E. Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, Nano Lett. 7, 1793 (2007). http://dx.doi.org/10.1021/nl070430o
W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett and F. Dimroth, Appl. Phys. Lett. 94, 223504 (2009). http://dx.doi.org/10.1063/1.3148341
M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, Prog. Photovoltaics: Res. Appl. 17, 320 (2009). http://dx.doi.org/10.1002/pip.911
J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, Appl. Phys. Lett. 93, 123505 (2008). http://dx.doi.org/10.1063/1.2988497
L. Hu and G. Chen, Nano Lett. 7, 3249 (2007). http://dx.doi.org/10.1021/nl071018b
Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie and J. W. P. Hsu, Nano Lett. 8, 1501 (2008). http://dx.doi.org/10.1021/nl080659j
B. M. Kayes, H. A. Atwater, and N. S. Lewis, J. Appl. Phys. 97, 114302 (2005). http://dx.doi.org/10.1063/1.1901835
A. Nduwimana and X. Q. Wang, Nano Lett. 9, 283 (2009). http://dx.doi.org/10.1021/nl802907d
Y. Zhang, L. Wang and A. Mascarenhas, Nano Lett. 7, 1264 (2007). http://dx.doi.org/10.1021/nl070174f
Y. F. Zhang, Y. F. Wang, N. Chen, Y. Y. Wang, Y. Z. Zhang, Z. H. Zhou and L. M. Wei, Nano-Micro Lett. 2, 22–25 (2010). http://dx.doi.org/10.5101/nml.v2i1.p22-25
B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F Yu, G. H. Yu, J. L. Huang and C. M. Lieber, Nature 449, 885 (2007). http://dx.doi.org/10.1038/nature06181
J. Schrier, D. O. Demchenko and L. W. Wang, Nano Lett. 7, 2377 (2007). http://dx.doi.org/10.1021/nl071027k
E. J. W. Crossland, M. Nedelcu, C. Ducati, S. Ludwigs, M. A. Hillmyer, U. Steiner, and H. J. Snaith, Nano Lett. 9, 2813 (2009). http://dx.doi.org/10.1021/nl803174p
E. L. Tae, S. H. Lee, J. K. Lee, S. S. Yoo, E. J. Kang and K. B. Yoon, J. Phys. Chem. B 109, 22513 (2005). http://dx.doi.org/10.1021/jp0537411
H. J. Lee, M. K. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddish, M. Gratzel and Md. K. Nazeeruddin, Nano Lett. 9, 4221 (2009). http://dx.doi.org/10.1021/nl902438d
S. A. Ivanov, A. Piryatinski, J. Nanda, S. Tretiak, K. R. Zavadil, W. O. Wallace, D. Werder and V. I. Klimov, J. Am. Chem. Soc. 129, 11708 (2007). http://dx.doi.org/10.1021/ja068351m
H. Z. Zhong, Y. Zhou, Y. Yang, C. Yang, and Y. F. Li, J. Phys. Chem. C 111, 6538 (2007). http://dx.doi.org/10.1021/jp0709407
Y. Yu, P. V. Kamat and M. Kuno, Adv. Funct. Mater. 20, 1464 (2010). http://dx.doi.org/10.1002/adfm.200902372
Y. Kang, N.-G. Park, and D. Kim, Appl. Phys. Lett. 86, 113101 (2005). http://dx.doi.org/10.1063/1.1883319
B. R. Saunders and M. L. Turner, Adv. Colloid Interface Sci. 138, 1 (2008). http://dx.doi.org/10.1016/j.cis.2007.09.001
S. Dayal, N. Kopidakis, D. C. Olson, D. S. Ginley and G. Rumbles, Nano Lett. 10, 239 (2010). http://dx.doi.org/10.1021/nl903406s
A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, Chem. Rev. 110, 6873 (2010). http://dx.doi.org/10.1021/cr900289f
P. V. Kamat, J. Phys. Chem. C 112, 18737 (2008). http://dx.doi.org/10.1021/jp806791s
K. Sun, A. Kargar, N. Park, K. N. Madsen, P. W. Naughton, T. Bright, Y. Jing, and D. L. Wang, IEEE Journal of Selected Topics in Quantum Electronics (17), 1033 (2011). http://dx.doi.org/10.1109/jstqe.2010.2090342
H. W. Wei, L. Wang, Z. P. Li, S. Q. Ni, and Q. Q. Zhao, Nano-Micro Lett. 3, 6 (2011). http://dx.doi.org/10.5101/nml.v3i1.p6–11
X. G. Lin, Used for photovoltaic device of ZnO base type II heterogeneous structure design , Xiamen University, 2010.
X. Q. Meng, H. W. Peng, Y. Q. Gai and J. B. Li, J. Phys. Chem. C 114, 1467 (2010). http://dx.doi.org/10.1021/jp909176p
Z. H. Wang, Y. C. Fan and M.W. Zhao, J. Appl. Phys. 108, 123707 (2010). http://dx.doi.org/10.1063/1.3504225
A. Nduwimana, R. N. Musin, A. M. Smith and X. Q. Wang, Nano Lett. 8, 3341 (2008). http://dx.doi.org/10.1021/nl8017725
Y. Tak, S. J. Hong, J. S. Lee, and K. Yong, J. Mater. Chem. 19, 5945 (2009). http://dx.doi.org/10.1039/b904993b
K. Wang, J. J. Chen, W. L. Zhou, Y. Zhang, Y. F. Yan, J. Pern and A. Mascarenhas, Adv. Mater. 20, 3248 (2008). http://dx.doi.org/10.1002/adma.200800145
P. T. Chou, C. Y. Chen, C. T. Cheng, S. C. Pu, K. C. Wu, Y. M. Cheng, C. W. Lai, Y. H. Chou, and H. T. Chiu, Chem. Phys. Chem. 7, 222 (2006). http://dx.doi.org/10.1002/cphc.200500307
W. F. Li, Y. G. Sun and J. L. Xu, Nano-Micro Lett. 4 (2), 98–102 (2012). http://dx.doi.org/10.3786/nml.v4i2.p98–102
Y. Tak, H. Kim, D. Lee, and K. Yong, Chem.Commun., 4585 (2008). http://dx.doi.org/10.1039/b810388g
R. Tena-Zaera, A. Katty, S. Bastide, and C. Lévy-Clément, Chem. Mater. 19, 1626 (2007). http://dx.doi.org/10.1021/cm062390f
J. Bang, J. Park, J. H. Lee, N. Won, J. Nam, J. Lim, B. Y. Chang, H. J. Lee, B. Chon, J. Shin, J. B. Park, J. H. Choi, K. Cho, S. M. Park, T. Joo and S. Kim, Chem. Mater. 22, 233 (2010). http://dx.doi.org/10.1021/cm9027995
A Dinger, S Petillon, M Grün, M Hetterich and C Klingshirn, Semicond. Sci. Technol. 14, 595 (1999). http://dx.doi.org/10.1088/0268-1242/14/7/301
D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. B. Li, L. W. Wang and A. P. Alivisatos, Nature 430, 190 (2004). http://dx.doi.org/10.1038/nature02695
J. C. Ni, Z. M. Wu, X. G. Lin, J. J. Zheng, S. P. Li, J. Li and J. Y. Kang, J. Mater. Res. 27, 730 (2012). http://dx.doi.org/10.1557/jmr.2011.417
Z. M. Wu, Y. Zhang, J. J. Zheng, X.G. Lin, X. H. Chen, B. W. Huang, H. Q. Wang, K. Huang, S. P. Li, and J. Y. Kang, J. Mater. Chem. 21, 6020 (2011). http://dx.doi.org/10.1039/c0jm03971c
J. J. Zheng, Z. M. Wu, W. H. Yang, S. P. Li and J. Y. Kang, J. Mater. Res. 25, 1272 (2010). http://dx.doi.org/10.1557/JMR.2010.0161
S. Gubbala, V. Chakrapani, V. Kumar and M. K. Sunkara, Adv. Funct. Mater. 18, 2411 (2008). http://dx.doi.org/10.1002/adfm.200800099
S. Cho, J.W. Jang, J. Kim, J. S. Lee, W. Choi, and K.-H. Lee, Langmuir 27, 10243 (2011). http://dx.doi.org/10.1021/la201755w
S. Cho, J.W. Jang, Sang-Hoon Lim, Hyun Joon Kang, Shi-Woo Rhee, Jae Sung Lee and Kun-Hong Lee, J. Mater. Chem. 21, 17816 (2011). http://dx.doi.org/10.1039/c1jm14014k
J. Chung, J. Myoung, J. Oh, and S. Lim, J. Phys. Chem. Solids 73, 535 (2012). http://dx.doi.org/10.1016/j.jpcs.2011.12.001
J. Chung, J. Myoung, J. Oh and S. Lim, J. Phys. Chem. C 114, 21360 (2010). http://dx.doi.org/10.1021/jp109355h
H. Y. Chao, S. H. You, J. Y. Lu, Y. H. Chang, C. T. Liang and C. T. Wu, Journal of Nanoscience and Nanotechnology 11, 2042 (2011). http://dx.doi.org/10.1166/jnn.2011.3128
K. Wang, J. J. Chen, Z. M. Zeng, J. Tarr, W. L. Zhou, Y. Zhang, Y. F. Yan, C. S. Jiang, J. Pern, and A. Mascarenhas, Appl. Phys. Lett. 96, 123105 (2010). http://dx.doi.org/10.1063/1.3367706
Z. Y. Fan, H. Razavi, J. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, Paul W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager and A. Javey, Nat. Mater. 8, 648 (2009). http://dx.doi.org/10.1038/nmat2493