Engineering Ruthenium-Based Electrocatalysts for Effective Hydrogen Evolution Reaction
Corresponding Author: Xinlong Tian
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 160
Abstract
The investigation of highly effective, durable, and cost-effective electrocatalysts for the hydrogen evolution reaction (HER) is a prerequisite for the upcoming hydrogen energy society. To establish a new hydrogen energy system and gradually replace the traditional fossil-based energy, electrochemical water-splitting is considered the most promising, environmentally friendly, and efficient way to produce pure hydrogen. Compared with the commonly used platinum (Pt)-based catalysts, ruthenium (Ru) is expected to be a good alternative because of its similar hydrogen bonding energy, lower water decomposition barrier, and considerably lower price. Analyzing and revealing the HER mechanisms, as well as identifying a rational design of Ru-based HER catalysts with desirable activity and stability is indispensable. In this review, the research progress on HER electrocatalysts and the relevant describing parameters for HER performance are briefly introduced. Moreover, four major strategies to improve the performance of Ru-based electrocatalysts, including electronic effect modulation, support engineering, structure design, and maximum utilization (single atom) are discussed. Finally, the challenges, solutions and prospects are highlighted to prompt the practical applications of Ru-based electrocatalysts for HER.
Highlights:
1 Four main strategies for improving the hydrogen evolution reaction (HER) performance of Ru-based catalysts were summarized.
2 The source of HER activity of Ru-based catalysts is discussed in terms of catalytic mechanism.
3 The current states, challenges and prospects were specifically provided for Ru-based catalysts.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.Y. Bae, J. Mahmood, I.Y. Jeon, J.B. Baek, Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction. Nanoscale Horiz. 5(1), 43–56 (2020). https://doi.org/10.1039/c9nh00485h
- J.A. Turner, Sustainable hydrogen production. Science 305(5686), 972–974 (2004). https://doi.org/10.1126/science.1103197
- S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012). https://doi.org/10.1038/nature11475
- Y.L. Zhu, Q. Lin, Y.J. Zhong, H.A. Tahini, Z.P. Shao et al., Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts. Energy Environ. Sci. 13(10), 3361–3392 (2020). https://doi.org/10.1039/d0ee02485f
- X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44(15), 5148–5180 (2015). https://doi.org/10.1039/c4cs00448e
- D. Dang, L. Zhang, X.Y. Zeng, X.L. Tian, C. Qu et al., In situ construction of Ir@Pt/C nanoparticles in the cathode layer of membrane electrode assemblies with ultra-low Pt loading and high Pt exposure. J. Power Sources 355, 83–89 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.050
- J. Luo, H. Tang, X. Tian, S. Hou, X. Li et al., Highly Selective TiN-supported highly dispersed Pt catalyst: ultra active toward hydrogen oxidation and inactive toward oxygen reduction. ACS Appl. Mater. Interfaces 10(4), 3530–3537 (2018). https://doi.org/10.1021/acsami.7b15159
- Z. Wu, D. Dang, X. Tian, Designing robust support for Pt alloy nanoframes with durable oxygen reduction reaction activity. ACS Appl. Mater. Interfaces 11(9), 9117–9124 (2019). https://doi.org/10.1021/acsami.8b21459
- A. Ray, S. Sultana, L. Paramanik, K.M. Parida, Recent advances in phase, size, and morphology-oriented nanostructured nickel phosphide for overall water splitting. J. Mater. Chem. A 8(37), 19196–19245 (2020). https://doi.org/10.1039/d0ta05797e
- W.J. Jiang, T. Tang, Y. Zhang, J.S. Hu, Synergistic modulation of non-precious-metal electrocatalysts for advanced water splitting. Acc. Chem. Res. 53(6), 1111–1123 (2020). https://doi.org/10.1021/acs.accounts.0c00127
- K. Qi, X. Cui, L. Gu, S. Yu, X. Fan et al., Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun. 10(1), 5231 (2019). https://doi.org/10.1038/s41467-019-12997-7
- H. Coskun, A. Aljabour, P. de Luna, H. Sun, N. Nishiumi et al., Metal-free hydrogen-bonded polymers mimic noble metal electrocatalysts. Adv. Mater. 32(25), e1902177 (2020). https://doi.org/10.1002/adma.201902177
- L. Hui, Y. Xue, Y. Liu, Y. Li, Efficient hydrogen evolution on nanoscale graphdiyne. Small (2021). https://doi.org/10.1002/smll.202006136
- J. Yu, Q.J. He, G.M. Yang, W. Zhou, Z.P. Shao et al., Recent advances and prospective in ruthenium-based materials for electrochemical water splitting. ACS Catal. 9(11), 9973–10011 (2019). https://doi.org/10.1021/acscatal.9b02457
- S. Anantharaj, Ru-tweaking of non-precious materials: the tale of a strategy that ensures both cost and energy efficiency in electrocatalytic water splitting. J. Mater. Chem. A 9(11), 6710–6731 (2021). https://doi.org/10.1039/d0ta12424a
- J. Creus, J. De Tovar, N. Romero, J. Garcia-Anton, K. Philippot et al., Ruthenium nanoparticles for catalytic water splitting. ChemSusChem. 12(12), 2493–2514 (2019). https://doi.org/10.1002/cssc.201900393
- C. Li, J.B. Baek, Recent advances in noble metal (Pt, Ru, and Ir)-based electrocatalysts for efficient hydrogen evolution reaction. ACS Omega 5(1), 31–40 (2020). https://doi.org/10.1021/acsomega.9b03550
- W.J. Luo, Y.J. Wang, C.W. Cheng, Ru-based electrocatalysts for hydrogen evolution reaction: recent research advances and perspectives. Mater. Today Phys. 15, 100274 (2020). https://doi.org/10.1016/j.mtphys.2020.100274
- Q.Q. Zhang, J.Q. Guan, Atomically dispersed catalysts for hydrogen/oxygen evolution reactions and overall water splitting. J. Power Sources 471, 228446 (2020). https://doi.org/10.1016/j.jpowsour.2020.228446
- S. Zhang, J. Li, E.R. Wang, Recent progress of Ruthenium-based nanomaterials for electrochemical hydrogen evolution. ChemElectroChem. 7(22), 4526–4534 (2020). https://doi.org/10.1002/celc.202001149
- Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong et al., MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133(19), 7296–7299 (2011). https://doi.org/10.1021/ja201269b
- N. Mahmood, Y. Yao, J.W. Zhang, L. Pan, X. Zhang et al., Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions. Adv. Sci. 5(2), 1700464 (2018). https://doi.org/10.1002/advs.201700464
- T.F. Jaramillo, K.P. Jorgensen, J. Bonde, J.H. Nielsen, S. Horch et al., Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317(5834), 100–102 (2007). https://doi.org/10.1126/science.1141483
- H.E. Hoster, Anodic hydrogen oxidation at bare and Pt-modified Ru(0001) in flowing electrolyte – theory versus experiment. MRS Proc. 1388(1), 10 (2012). https://doi.org/10.1557/opl.2012.820
- E. Skúlason, V. Tripkovic, M.E. Björketun, S. Gudmundsdóttir, G. Karlberg et al., Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 114(42), 18182–18197 (2010). https://doi.org/10.1021/jp1048887
- J. Zhu, L. Hu, P. Zhao, L.Y.S. Lee, K.Y. Wong, Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 120(2), 851–918 (2020). https://doi.org/10.1021/acs.chemrev.9b00248
- M.T. Zhang, M. Wang, B.J. Xu, D. Ma, How to measure the reaction performance of heterogeneous catalytic reactions reliably. Joule 3(12), 2876–2883 (2019). https://doi.org/10.1016/j.joule.2019.11.005
- X. Sun, X. Gao, J. Chen, X. Wang, H. Chang et al., Ultrasmall Ru nanoparticles highly dispersed on sulfur-doped graphene for HER with high electrocatalytic performance. ACS Appl. Mater. Interfaces 12(43), 48591–48597 (2020). https://doi.org/10.1021/acsami.0c14170
- J. Wang, Z.Z. Wei, S.J. Mao, H.R. Li, Y. Wang, Highly uniform Ru nanoparticles over N-doped carbon: pH and temperature-universal hydrogen release from water reduction. Energy Environ. Sci. 11(4), 800–806 (2018). https://doi.org/10.1039/c7ee03345a
- X.X. Zhu, L. Huang, M. Wei, P. Tsiakaras, P.K. Shen, Highly stable Pt-Co nanodendrite in nanoframe with Pt skin structured catalyst for oxygen reduction electrocatalysis. Appl. Catal. B-Environ. 281, 119460 (2021). https://doi.org/10.1016/j.apcatb.2020.119460
- Y.M. Zhao, X.W. Wang, G.Z. Cheng, W. Luo, Phosphorus-induced activation of ruthenium for boosting hydrogen oxidation and evolution electrocatalysis. ACS Catal. 10(20), 11751–11757 (2020). https://doi.org/10.1021/acscatal.0c03148
- Y. Liu, X. Li, Q. Zhang, W. Li, Y. Xie et al., A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots. Angew. Chem. Int. Ed. 59(4), 1718–1726 (2020). https://doi.org/10.1002/anie.201913910
- S. Ye, F. Luo, T. Xu, P. Zhang, H. Shi et al., Boosting the alkaline hydrogen evolution of Ru nanoclusters anchored on B/N–doped graphene by accelerating water dissociation. Nano Energy 68, 104301 (2020). https://doi.org/10.1016/j.nanoen.2019.104301
- S. Higgins, Regarding ruthenium. Nat. Chem. 2(12), 1100 (2010). https://doi.org/10.1038/nchem.917
- Y. Zheng, Y. Jiao, Y. Zhu, L.H. Li, Y. Han et al., High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst. J. Am. Chem. Soc. 138(49), 16174–16181 (2016). https://doi.org/10.1021/jacs.6b11291
- X. Liu, F. Liu, J. Yu, G. Xiong, L. Zhao et al., Charge redistribution caused by S, P synergistically active Ru endows an ultrahigh hydrogen evolution activity of S-doped RuP embedded in N, P S-doped carbon. Adv. Sci. 7(17), 2001526 (2020). https://doi.org/10.1002/advs.202001526
- H.B. Li, C. Ren, S.L. Xu, L. Wang, Q.L. Yue et al., Te-template approach to fabricating ternary TeCuPt alloy nanowires with enhanced catalytic performance towards oxygen reduction reaction and methanol oxidation reaction. J. Mater. Chem. A 3(11), 5850–5858 (2015). https://doi.org/10.1039/c4ta05811a
- J.J. Mao, C.T. He, J.J. Pei, W.X. Chen, D.S. He et al., Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice. Nat. Commun. 9(1), 1–8 (2018). https://doi.org/10.1038/s41467-018-07288-6
- J. Yang, Q. Shao, B. Huang, M. Sun, X. Huang, pH-universal water splitting catalyst: Ru-Ni nanosheet assemblies. Iscience 11, 492–504 (2019). https://doi.org/10.1016/j.isci.2019.01.004
- W. Zhong, Z. Wang, N. Gao, L. Huang, Z. Lin et al., Coupled vacancy pairs in Ni-doped CoSe for improved electrocatalytic hydrogen production through topochemical deintercalation. Angew. Chem. Int. Ed. 59(50), 22743–22748 (2020). https://doi.org/10.1002/anie.202011378
- J. Su, Y. Yang, G. Xia, J. Chen, P. Jiang et al., Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat. Commun. 8, 14969 (2017). https://doi.org/10.1038/ncomms14969
- R.T. Ginting, M.M. Ovhal, J.W. Kang, A novel design of hybrid transparent electrodes for high performance and ultra-flexible bifunctional electrochromic-supercapacitors. Nano Energy 53, 650–657 (2018). https://doi.org/10.1016/j.nanoen.2018.09.016
- H. Yu, L. Shang, T. Bian, R. Shi, G.I. Waterhouse et al., Nitrogen-doped porous carbon nanosheets templated from g-C3N4 as metal-free electrocatalysts for efficient oxygen reduction reaction. Adv. Mater. 28(25), 5080–5086 (2016). https://doi.org/10.1002/adma.201600398
- T.A. Shifa, F. Wang, Y. Liu, J. He, Heterostructures based on 2D materials: A versatile platform for efficient catalysis. Adv. Mater. 31(45), e1804828 (2019). https://doi.org/10.1002/adma.201804828
- K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, 2D materials and van der Waals heterostructures. Science 353(6298), 9439 (2016)
- F. Yang, X. Bao, P. Li, X. Wang, G. Cheng et al., Boosting hydrogen oxidation activity of Ni in alkaline media through oxygen-vacancy-rich CeO2/Ni heterostructures. Angew. Chem. Int. Ed. 131(40), 14317–14321 (2019). https://doi.org/10.1002/anie.201908194
- K. Tu, D. Tranca, F. Rodriguez-Hernandez, K. Jiang, S. Huang et al., A novel heterostructure based on RuMo nanoalloys and N-doped carbon as an efficient electrocatalyst for the hydrogen evolution reaction. Adv. Mater. 32(46), e2005433 (2020). https://doi.org/10.1002/adma.202005433
- M.Y. Yang, L. Jiao, H.L. Dong, L.J. Zhou, C.Q. Teng et al., Conversion of bimetallic MOF to Ru-doped Cu electrocatalysts for efficient hydrogen evolution in alkaline media. Sci. Bull. 66(3), 257–264 (2021). https://doi.org/10.1016/j.scib.2020.06.036
- D. Cao, J. Wang, H. Xu, D. Cheng, Growth of highly active amorphous RuCu nanosheets on Cu nanotubes for the hydrogen evolution reaction in wide pH values. Small 16(37), e2000924 (2020). https://doi.org/10.1002/smll.202000924
- M. Ahmadi, H. Mistry, B. Roldan Cuenya, Tailoring the catalytic properties of metal nanoparticles via support interactions. J. Phys. Chem. Lett. 7(17), 3519–3533 (2016). https://doi.org/10.1021/acs.jpclett.6b01198
- W. Tian, H. Zhang, X. Duan, H. Sun, G. Shao et al., Porous carbons: structure-oriented design and versatile applications. Adv. Funct. Mater. 30(17), 1909265 (2020). https://doi.org/10.1002/adfm.201909265
- Y. Peng, B. Lu, S. Chen, Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv. Mater. 30(48), e1801995 (2018). https://doi.org/10.1002/adma.201801995
- H.Y. Zhuo, X. Zhang, J.X. Liang, Q. Yu, H. Xiao et al., Theoretical understandings of graphene-based metal single-atom catalysts: stability and catalytic performance. Chem. Rev. 120(21), 12315–12341 (2020). https://doi.org/10.1021/acs.chemrev.0c00818
- Q. Song, X. Qiao, L. Liu, Z. Xue, C. Huang et al., Ruthenium@N-doped graphite carbon derived from carbon foam for efficient hydrogen evolution reaction. Chem. Commun. 55(7), 965–968 (2019). https://doi.org/10.1039/c8cc09624d
- F. Li, G.F. Han, H.J. Noh, I. Ahmad, I.Y. Jeon et al., Mechanochemically assisted synthesis of a Ru catalyst for hydrogen evolution with performance superior to Pt in both acidic and alkaline media. Adv. Mater. 30(44), e1803676 (2018). https://doi.org/10.1002/adma.201803676
- K.N. Wood, R. O’Hayre, S. Pylypenko, Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ. Sci. 7(4), 1212–1249 (2014). https://doi.org/10.1039/c3ee44078h
- Y. Zheng, Y. Jiao, L.H. Li, T. Xing, Y. Chen et al., Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano 8(5), 5290–5296 (2014). https://doi.org/10.1021/nn501434a
- J. Mahmood, F. Li, S.M. Jung, M.S. Okyay, I. Ahmad et al., An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 12(5), 441–446 (2017). https://doi.org/10.1038/nnano.2016.304
- B. Lu, L. Guo, F. Wu, Y. Peng, J.E. Lu et al., Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nat. Commun. 10(1), 631 (2019). https://doi.org/10.1038/s41467-019-08419-3
- Z.L. Wang, K. Sun, J. Henzie, X. Hao, C. Li et al., Spatially confined assembly of monodisperse ruthenium nanoclusters in a hierarchically ordered carbon electrode for efficient hydrogen evolution. Angew. Chem. Int. Ed. 57(20), 5848–5852 (2018). https://doi.org/10.1002/anie.201801467
- Y.T. Li, L.A. Zhang, Y. Qin, F.Q. Chu, Y. Kong et al., Crystallinity dependence of ruthenium nanocatalyst toward hydrogen evolution reaction. ACS Catal. 8(7), 5714–5720 (2018). https://doi.org/10.1021/acscatal.8b01609
- Z. Liang, C. Qu, D. Xia, R. Zou, Q. Xu, Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew. Chem. Int. Ed. 57(31), 9604–9633 (2018). https://doi.org/10.1002/anie.201800269
- T.J. Qiu, Z.B. Liang, W.H. Guo, S. Gao, C. Qu et al., Highly exposed ruthenium-based electrocatalysts from bimetallic metal-organic frameworks for overall water splitting. Nano Energy 58, 1–10 (2019). https://doi.org/10.1016/j.nanoen.2018.12.085
- Y. Lin, M.L. Zhang, L.X. Zhao, L.M. Wang, D.L. Cao et al., Ru doped bimetallic phosphide derived from 2D metal organic framework as active and robust electrocatalyst for water splitting. Appl. Surf. Sci. 536, 147952 (2021). https://doi.org/10.1016/j.apsusc.2020.147952
- S. Yuan, Z.H. Pu, H. Zhou, J. Yu, I.S. Amiinu et al., A universal synthesis strategy for single atom dispersed cobalt/metal clusters heterostructure boosting hydrogen evolution catalysis at all pH values. Nano Energy 59, 472–480 (2019). https://doi.org/10.1016/j.nanoen.2019.02.062
- J. Hwang, R.R. Rao, L. Giordano, Y. Katayama, Y. Yu et al., Perovskites in catalysis and electrocatalysis. Science 358(6364), 751–756 (2017). https://doi.org/10.1126/science.aam7092
- N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu et al., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46(2), 337–365 (2017). https://doi.org/10.1039/c6cs00328a
- Y.J. Xue, S.S. Sun, Q. Wang, Z.H. Dong, Z.P. Liu, Transition metal oxide-based oxygen reduction reaction electrocatalysts for energy conversion systems with aqueous electrolytes. J. Mater. Chem. A 6(23), 10595–10626 (2018). https://doi.org/10.1039/c7ta10569j
- Z.J. Chen, X.G. Duan, W. Wei, S.B. Wang, B.J. Ni, Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution. J. Mater. Chem. A 7(25), 14971–15005 (2019). https://doi.org/10.1039/c9ta03220g
- M. Gong, W. Zhou, M.C. Tsai, J. Zhou, M. Guan et al., Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 5(1), 4695 (2014). https://doi.org/10.1038/ncomms5695
- R. Subbaraman, D. Tripkovic, D. Strmcnik, K.C. Chang, M. Uchimura et al., Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)(2)-Pt interfaces. Science 334(6060), 1256–1260 (2011). https://doi.org/10.1126/science.1211934
- T. Liu, W. Gao, Q. Wang, M. Dou, Z. Zhang et al., Selective loading of atomic platinum on a RuCeOx support enables stable hydrogen evolution at high current densities. Angew. Chem. Int. Ed. 59(46), 20423–20427 (2020). https://doi.org/10.1002/anie.202009612
- W. Dong, Y. Zhang, J. Xu, J.-W. Yin, S. Nong et al., Subnano ruthenium species anchored on tin dioxide surface for efficient alkaline hydrogen evolution reaction. Cell Rep. Phys. Sci. 1(3), 100026 (2020). https://doi.org/10.1016/j.xcrp.2020.100026
- J.Y. Yu, A.Z. Wang, W.Q. Yu, X.Y. Liu, X. Li et al., Tailoring the ruthenium reactive sites on N doped molybdenum carbide nanosheets via the anti-Ostwald ripening as efficient electrocatalyst for hydrogen evolution reaction in alkaline media. Appl. Catal. B-Environ. 277, 119236 (2020). https://doi.org/10.1016/j.apcatb.2020.119236
- D. Yi, F. Lu, F. Zhang, S. Liu, B. Zhou et al., Regulating charge transfer of lattice oxygen in single-atom-doped titania for hydrogen evolution. Angew. Chem. Int. Ed. 59(37), 15855–15859 (2020). https://doi.org/10.1002/anie.202004510
- J. Liu, Y. Zheng, Y. Jiao, Z. Wang, Z. Lu et al., NiO as a bifunctional promoter for RuO2 toward superior overall water splitting. Small 14(16), e1704073 (2018). https://doi.org/10.1002/smll.201704073
- J.X. Guo, D.Y. Yan, K.W. Qiu, C. Mu, D. Jiao et al., High electrocatalytic hydrogen evolution activity on a coupled Ru and CoO hybrid electrocatalyst. J. Energy Chem. 37, 143–147 (2019). https://doi.org/10.1016/j.jechem.2018.12.011
- Y.B. Cho, A. Yu, C. Lee, M.H. Kim, Y. Lee, Fundamental study of facile and stable hydrogen evolution reaction at electrospun Ir and Ru mixed oxide nanofibers. ACS Appl. Mater. Interfaces 10(1), 541–549 (2018). https://doi.org/10.1021/acsami.7b14399
- E. Demir, S. Akbayrak, A.M. Onal, S. Ozkar, Nanoceria-supported ruthenium(0) nanoparticles: highly active and stable catalysts for hydrogen evolution from water. ACS Appl. Mater. Interfaces 10(7), 6299–6308 (2018). https://doi.org/10.1021/acsami.7b17469
- P. Jiang, Y. Yang, R. Shi, G. Xia, J. Chen et al., Pt-like electrocatalytic behavior of Ru–MoO2 nanocomposites for the hydrogen evolution reaction. J. Mater. Chem. A 5(11), 5475–5485 (2017). https://doi.org/10.1039/c6ta09994g
- L. Li, P. Wang, Q. Shao, X. Huang, Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 49(10), 3072–3106 (2020). https://doi.org/10.1039/d0cs00013b
- W. Zhong, B. Xiao, Z. Lin, Z. Wang, L. Huang et al., RhSe2: A superior 3D electrocatalyst with multiple active facets for hydrogen evolution reaction in both acid and alkaline solutions. Adv. Mater. 33(9), e2007894 (2021). https://doi.org/10.1002/adma.202007894
- Q. Lu, A.L. Wang, H. Cheng, Y. Gong, Q. Yun et al., Synthesis of hierarchical 4H/fcc Ru nanotubes for highly efficient hydrogen evolution in alkaline media. Small 14(30), e1801090 (2018). https://doi.org/10.1002/smll.201801090
- X. Huang, Y. Chen, C.Y. Chiu, H. Zhang, Y. Xu et al., A versatile strategy to the selective synthesis of Cu nanocrystals and the in situ conversion to CuRu nanotubes. Nanoscale 5(14), 6284–6290 (2013). https://doi.org/10.1039/c3nr01290e
- J. Wang, L. Han, B. Huang, Q. Shao, H.L. Xin et al., Amorphization activated ruthenium-tellurium nanorods for efficient water splitting. Nat. Commun. 10(1), 5692 (2019). https://doi.org/10.1038/s41467-019-13519-1
- X.K. Kong, K. Xu, C.L. Zhang, J. Dai, S.N. Oliaee et al., Free-standing two-dimensional Ru nanosheets with high activity toward water splitting. ACS Catal. 6(3), 1487–1492 (2016). https://doi.org/10.1021/acscatal.5b02730
- A.X. Yin, W.C. Liu, J. Ke, W. Zhu, J. Gu et al., Ru nanocrystals with shape-dependent surface-enhanced Raman spectra and catalytic properties: controlled synthesis and DFT calculations. J. Am. Chem. Soc. 134(50), 20479–20489 (2012). https://doi.org/10.1021/ja3090934
- X. Zhang, Y. Xie, Recent advances in free-standing two-dimensional crystals with atomic thickness: design, assembly and transfer strategies. Chem. Soc. Rev. 42(21), 8187–8199 (2013). https://doi.org/10.1039/c3cs60138b
- Q. Yao, B. Huang, N. Zhang, M. Sun, Q. Shao et al., Channel-rich RuCu nanosheets for pH-universal overall water splitting electrocatalysis. Angew. Chem. Int. Ed. 58(39), 13983–13988 (2019). https://doi.org/10.1002/anie.201908092
- B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang et al., Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3(8), 634–641 (2011). https://doi.org/10.1038/NCHEM.1095
- H. Song, M. Wu, Z. Tang, J.S. Tse, B. Yang et al., Single atom ruthenium-doped CoP/CDs nanosheets via splicing of carbon-dots for robust hydrogen production. Angew. Chem. Int. Ed. 60(13), 7234–7244 (2021). https://doi.org/10.1002/anie.202017102
- K. Wu, K. Sun, S. Liu, W.-C. Cheong, Z. Chen et al., Atomically dispersed Ni–Ru–P interface sites for high-efficiency pH-universal electrocatalysis of hydrogen evolution. Nano Energy 80, 105467 (2021). https://doi.org/10.1016/j.nanoen.2020.105467
- Y. Sun, Z. Xue, Q. Liu, Y. Jia, Y. Li et al., Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat. Commun. 12(1), 1369 (2021). https://doi.org/10.1038/s41467-021-21595-5
- H.D. Yu, L. Hui, Y.R. Xue, Y.X. Liu, Y. Fang et al., 2D graphdiyne loading ruthenium atoms for high efficiency water splitting. Nano Energy 72, 104667 (2020). https://doi.org/10.1016/j.nanoen.2020.104667
- V. Ramalingam, P. Varadhan, H.C. Fu, H. Kim, D. Zhang et al., Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution. Adv. Mater. 31(48), e1903841 (2019). https://doi.org/10.1002/adma.201903841
- X. Peng, S. Zhao, Y. Mi, L. Han, X. Liu et al., Trifunctional single-atomic Ru sites enable efficient overall water splitting and oxygen reduction in acidic media. Small 16(33), e2002888 (2020). https://doi.org/10.1002/smll.202002888
- H. Zhang, W. Zhou, X.F. Lu, T. Chen, X.W. Lou, Implanting isolated Ru atoms into edge-rich carbon matrix for efficient electrocatalytic hydrogen evolution. Adv. Energy Mater. 10(23), 2000882 (2020). https://doi.org/10.1002/aenm.202000882
- L. Zhao, Y. Zhang, L.B. Huang, X.Z. Liu, Q.H. Zhang et al., Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 10(1), 1278 (2019). https://doi.org/10.1038/s41467-019-09290-y
- J.N. Tiwari, A.M. Harzandi, M. Ha, S. Sultan, C.W. Myung et al., High-performance hydrogen evolution by Ru single atoms and nitrided-Ru nanoparticles implanted on N-doped graphitic sheet. Adv. Energy Mater. 9(26), 1900931 (2019). https://doi.org/10.1002/aenm.201900931
- X.Y. Guo, S.G. Liu, S.P. Huang, Single Ru atom supported on defective graphene for water splitting: DFT and microkinetic investigation. Int. J. Hydrog. Energy 43(10), 4880–4892 (2018). https://doi.org/10.1016/j.ijhydene.2018.01.122
- Q.J. Ju, R.G. Ma, Y. Pei, B.B. Guo, Z.C. Li et al., Ruthenium triazine composite: a good match for increasing hydrogen evolution activity through contact electrification. Adv. Energy Mater. 10(21), 2000067 (2020). https://doi.org/10.1002/aenm.202000067
- C.H. Chen, D. Wu, Z. Li, R. Zhang, C.G. Kuai et al., Ruthenium-based single-atom alloy with high electrocatalytic activity for hydrogen evolution. Adv. Energy Mater. 9(20), 1803913 (2019). https://doi.org/10.1002/aenm.201803913
References
S.Y. Bae, J. Mahmood, I.Y. Jeon, J.B. Baek, Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction. Nanoscale Horiz. 5(1), 43–56 (2020). https://doi.org/10.1039/c9nh00485h
J.A. Turner, Sustainable hydrogen production. Science 305(5686), 972–974 (2004). https://doi.org/10.1126/science.1103197
S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012). https://doi.org/10.1038/nature11475
Y.L. Zhu, Q. Lin, Y.J. Zhong, H.A. Tahini, Z.P. Shao et al., Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts. Energy Environ. Sci. 13(10), 3361–3392 (2020). https://doi.org/10.1039/d0ee02485f
X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44(15), 5148–5180 (2015). https://doi.org/10.1039/c4cs00448e
D. Dang, L. Zhang, X.Y. Zeng, X.L. Tian, C. Qu et al., In situ construction of Ir@Pt/C nanoparticles in the cathode layer of membrane electrode assemblies with ultra-low Pt loading and high Pt exposure. J. Power Sources 355, 83–89 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.050
J. Luo, H. Tang, X. Tian, S. Hou, X. Li et al., Highly Selective TiN-supported highly dispersed Pt catalyst: ultra active toward hydrogen oxidation and inactive toward oxygen reduction. ACS Appl. Mater. Interfaces 10(4), 3530–3537 (2018). https://doi.org/10.1021/acsami.7b15159
Z. Wu, D. Dang, X. Tian, Designing robust support for Pt alloy nanoframes with durable oxygen reduction reaction activity. ACS Appl. Mater. Interfaces 11(9), 9117–9124 (2019). https://doi.org/10.1021/acsami.8b21459
A. Ray, S. Sultana, L. Paramanik, K.M. Parida, Recent advances in phase, size, and morphology-oriented nanostructured nickel phosphide for overall water splitting. J. Mater. Chem. A 8(37), 19196–19245 (2020). https://doi.org/10.1039/d0ta05797e
W.J. Jiang, T. Tang, Y. Zhang, J.S. Hu, Synergistic modulation of non-precious-metal electrocatalysts for advanced water splitting. Acc. Chem. Res. 53(6), 1111–1123 (2020). https://doi.org/10.1021/acs.accounts.0c00127
K. Qi, X. Cui, L. Gu, S. Yu, X. Fan et al., Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun. 10(1), 5231 (2019). https://doi.org/10.1038/s41467-019-12997-7
H. Coskun, A. Aljabour, P. de Luna, H. Sun, N. Nishiumi et al., Metal-free hydrogen-bonded polymers mimic noble metal electrocatalysts. Adv. Mater. 32(25), e1902177 (2020). https://doi.org/10.1002/adma.201902177
L. Hui, Y. Xue, Y. Liu, Y. Li, Efficient hydrogen evolution on nanoscale graphdiyne. Small (2021). https://doi.org/10.1002/smll.202006136
J. Yu, Q.J. He, G.M. Yang, W. Zhou, Z.P. Shao et al., Recent advances and prospective in ruthenium-based materials for electrochemical water splitting. ACS Catal. 9(11), 9973–10011 (2019). https://doi.org/10.1021/acscatal.9b02457
S. Anantharaj, Ru-tweaking of non-precious materials: the tale of a strategy that ensures both cost and energy efficiency in electrocatalytic water splitting. J. Mater. Chem. A 9(11), 6710–6731 (2021). https://doi.org/10.1039/d0ta12424a
J. Creus, J. De Tovar, N. Romero, J. Garcia-Anton, K. Philippot et al., Ruthenium nanoparticles for catalytic water splitting. ChemSusChem. 12(12), 2493–2514 (2019). https://doi.org/10.1002/cssc.201900393
C. Li, J.B. Baek, Recent advances in noble metal (Pt, Ru, and Ir)-based electrocatalysts for efficient hydrogen evolution reaction. ACS Omega 5(1), 31–40 (2020). https://doi.org/10.1021/acsomega.9b03550
W.J. Luo, Y.J. Wang, C.W. Cheng, Ru-based electrocatalysts for hydrogen evolution reaction: recent research advances and perspectives. Mater. Today Phys. 15, 100274 (2020). https://doi.org/10.1016/j.mtphys.2020.100274
Q.Q. Zhang, J.Q. Guan, Atomically dispersed catalysts for hydrogen/oxygen evolution reactions and overall water splitting. J. Power Sources 471, 228446 (2020). https://doi.org/10.1016/j.jpowsour.2020.228446
S. Zhang, J. Li, E.R. Wang, Recent progress of Ruthenium-based nanomaterials for electrochemical hydrogen evolution. ChemElectroChem. 7(22), 4526–4534 (2020). https://doi.org/10.1002/celc.202001149
Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong et al., MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133(19), 7296–7299 (2011). https://doi.org/10.1021/ja201269b
N. Mahmood, Y. Yao, J.W. Zhang, L. Pan, X. Zhang et al., Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions. Adv. Sci. 5(2), 1700464 (2018). https://doi.org/10.1002/advs.201700464
T.F. Jaramillo, K.P. Jorgensen, J. Bonde, J.H. Nielsen, S. Horch et al., Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317(5834), 100–102 (2007). https://doi.org/10.1126/science.1141483
H.E. Hoster, Anodic hydrogen oxidation at bare and Pt-modified Ru(0001) in flowing electrolyte – theory versus experiment. MRS Proc. 1388(1), 10 (2012). https://doi.org/10.1557/opl.2012.820
E. Skúlason, V. Tripkovic, M.E. Björketun, S. Gudmundsdóttir, G. Karlberg et al., Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 114(42), 18182–18197 (2010). https://doi.org/10.1021/jp1048887
J. Zhu, L. Hu, P. Zhao, L.Y.S. Lee, K.Y. Wong, Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 120(2), 851–918 (2020). https://doi.org/10.1021/acs.chemrev.9b00248
M.T. Zhang, M. Wang, B.J. Xu, D. Ma, How to measure the reaction performance of heterogeneous catalytic reactions reliably. Joule 3(12), 2876–2883 (2019). https://doi.org/10.1016/j.joule.2019.11.005
X. Sun, X. Gao, J. Chen, X. Wang, H. Chang et al., Ultrasmall Ru nanoparticles highly dispersed on sulfur-doped graphene for HER with high electrocatalytic performance. ACS Appl. Mater. Interfaces 12(43), 48591–48597 (2020). https://doi.org/10.1021/acsami.0c14170
J. Wang, Z.Z. Wei, S.J. Mao, H.R. Li, Y. Wang, Highly uniform Ru nanoparticles over N-doped carbon: pH and temperature-universal hydrogen release from water reduction. Energy Environ. Sci. 11(4), 800–806 (2018). https://doi.org/10.1039/c7ee03345a
X.X. Zhu, L. Huang, M. Wei, P. Tsiakaras, P.K. Shen, Highly stable Pt-Co nanodendrite in nanoframe with Pt skin structured catalyst for oxygen reduction electrocatalysis. Appl. Catal. B-Environ. 281, 119460 (2021). https://doi.org/10.1016/j.apcatb.2020.119460
Y.M. Zhao, X.W. Wang, G.Z. Cheng, W. Luo, Phosphorus-induced activation of ruthenium for boosting hydrogen oxidation and evolution electrocatalysis. ACS Catal. 10(20), 11751–11757 (2020). https://doi.org/10.1021/acscatal.0c03148
Y. Liu, X. Li, Q. Zhang, W. Li, Y. Xie et al., A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots. Angew. Chem. Int. Ed. 59(4), 1718–1726 (2020). https://doi.org/10.1002/anie.201913910
S. Ye, F. Luo, T. Xu, P. Zhang, H. Shi et al., Boosting the alkaline hydrogen evolution of Ru nanoclusters anchored on B/N–doped graphene by accelerating water dissociation. Nano Energy 68, 104301 (2020). https://doi.org/10.1016/j.nanoen.2019.104301
S. Higgins, Regarding ruthenium. Nat. Chem. 2(12), 1100 (2010). https://doi.org/10.1038/nchem.917
Y. Zheng, Y. Jiao, Y. Zhu, L.H. Li, Y. Han et al., High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst. J. Am. Chem. Soc. 138(49), 16174–16181 (2016). https://doi.org/10.1021/jacs.6b11291
X. Liu, F. Liu, J. Yu, G. Xiong, L. Zhao et al., Charge redistribution caused by S, P synergistically active Ru endows an ultrahigh hydrogen evolution activity of S-doped RuP embedded in N, P S-doped carbon. Adv. Sci. 7(17), 2001526 (2020). https://doi.org/10.1002/advs.202001526
H.B. Li, C. Ren, S.L. Xu, L. Wang, Q.L. Yue et al., Te-template approach to fabricating ternary TeCuPt alloy nanowires with enhanced catalytic performance towards oxygen reduction reaction and methanol oxidation reaction. J. Mater. Chem. A 3(11), 5850–5858 (2015). https://doi.org/10.1039/c4ta05811a
J.J. Mao, C.T. He, J.J. Pei, W.X. Chen, D.S. He et al., Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice. Nat. Commun. 9(1), 1–8 (2018). https://doi.org/10.1038/s41467-018-07288-6
J. Yang, Q. Shao, B. Huang, M. Sun, X. Huang, pH-universal water splitting catalyst: Ru-Ni nanosheet assemblies. Iscience 11, 492–504 (2019). https://doi.org/10.1016/j.isci.2019.01.004
W. Zhong, Z. Wang, N. Gao, L. Huang, Z. Lin et al., Coupled vacancy pairs in Ni-doped CoSe for improved electrocatalytic hydrogen production through topochemical deintercalation. Angew. Chem. Int. Ed. 59(50), 22743–22748 (2020). https://doi.org/10.1002/anie.202011378
J. Su, Y. Yang, G. Xia, J. Chen, P. Jiang et al., Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat. Commun. 8, 14969 (2017). https://doi.org/10.1038/ncomms14969
R.T. Ginting, M.M. Ovhal, J.W. Kang, A novel design of hybrid transparent electrodes for high performance and ultra-flexible bifunctional electrochromic-supercapacitors. Nano Energy 53, 650–657 (2018). https://doi.org/10.1016/j.nanoen.2018.09.016
H. Yu, L. Shang, T. Bian, R. Shi, G.I. Waterhouse et al., Nitrogen-doped porous carbon nanosheets templated from g-C3N4 as metal-free electrocatalysts for efficient oxygen reduction reaction. Adv. Mater. 28(25), 5080–5086 (2016). https://doi.org/10.1002/adma.201600398
T.A. Shifa, F. Wang, Y. Liu, J. He, Heterostructures based on 2D materials: A versatile platform for efficient catalysis. Adv. Mater. 31(45), e1804828 (2019). https://doi.org/10.1002/adma.201804828
K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, 2D materials and van der Waals heterostructures. Science 353(6298), 9439 (2016)
F. Yang, X. Bao, P. Li, X. Wang, G. Cheng et al., Boosting hydrogen oxidation activity of Ni in alkaline media through oxygen-vacancy-rich CeO2/Ni heterostructures. Angew. Chem. Int. Ed. 131(40), 14317–14321 (2019). https://doi.org/10.1002/anie.201908194
K. Tu, D. Tranca, F. Rodriguez-Hernandez, K. Jiang, S. Huang et al., A novel heterostructure based on RuMo nanoalloys and N-doped carbon as an efficient electrocatalyst for the hydrogen evolution reaction. Adv. Mater. 32(46), e2005433 (2020). https://doi.org/10.1002/adma.202005433
M.Y. Yang, L. Jiao, H.L. Dong, L.J. Zhou, C.Q. Teng et al., Conversion of bimetallic MOF to Ru-doped Cu electrocatalysts for efficient hydrogen evolution in alkaline media. Sci. Bull. 66(3), 257–264 (2021). https://doi.org/10.1016/j.scib.2020.06.036
D. Cao, J. Wang, H. Xu, D. Cheng, Growth of highly active amorphous RuCu nanosheets on Cu nanotubes for the hydrogen evolution reaction in wide pH values. Small 16(37), e2000924 (2020). https://doi.org/10.1002/smll.202000924
M. Ahmadi, H. Mistry, B. Roldan Cuenya, Tailoring the catalytic properties of metal nanoparticles via support interactions. J. Phys. Chem. Lett. 7(17), 3519–3533 (2016). https://doi.org/10.1021/acs.jpclett.6b01198
W. Tian, H. Zhang, X. Duan, H. Sun, G. Shao et al., Porous carbons: structure-oriented design and versatile applications. Adv. Funct. Mater. 30(17), 1909265 (2020). https://doi.org/10.1002/adfm.201909265
Y. Peng, B. Lu, S. Chen, Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv. Mater. 30(48), e1801995 (2018). https://doi.org/10.1002/adma.201801995
H.Y. Zhuo, X. Zhang, J.X. Liang, Q. Yu, H. Xiao et al., Theoretical understandings of graphene-based metal single-atom catalysts: stability and catalytic performance. Chem. Rev. 120(21), 12315–12341 (2020). https://doi.org/10.1021/acs.chemrev.0c00818
Q. Song, X. Qiao, L. Liu, Z. Xue, C. Huang et al., Ruthenium@N-doped graphite carbon derived from carbon foam for efficient hydrogen evolution reaction. Chem. Commun. 55(7), 965–968 (2019). https://doi.org/10.1039/c8cc09624d
F. Li, G.F. Han, H.J. Noh, I. Ahmad, I.Y. Jeon et al., Mechanochemically assisted synthesis of a Ru catalyst for hydrogen evolution with performance superior to Pt in both acidic and alkaline media. Adv. Mater. 30(44), e1803676 (2018). https://doi.org/10.1002/adma.201803676
K.N. Wood, R. O’Hayre, S. Pylypenko, Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ. Sci. 7(4), 1212–1249 (2014). https://doi.org/10.1039/c3ee44078h
Y. Zheng, Y. Jiao, L.H. Li, T. Xing, Y. Chen et al., Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano 8(5), 5290–5296 (2014). https://doi.org/10.1021/nn501434a
J. Mahmood, F. Li, S.M. Jung, M.S. Okyay, I. Ahmad et al., An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 12(5), 441–446 (2017). https://doi.org/10.1038/nnano.2016.304
B. Lu, L. Guo, F. Wu, Y. Peng, J.E. Lu et al., Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nat. Commun. 10(1), 631 (2019). https://doi.org/10.1038/s41467-019-08419-3
Z.L. Wang, K. Sun, J. Henzie, X. Hao, C. Li et al., Spatially confined assembly of monodisperse ruthenium nanoclusters in a hierarchically ordered carbon electrode for efficient hydrogen evolution. Angew. Chem. Int. Ed. 57(20), 5848–5852 (2018). https://doi.org/10.1002/anie.201801467
Y.T. Li, L.A. Zhang, Y. Qin, F.Q. Chu, Y. Kong et al., Crystallinity dependence of ruthenium nanocatalyst toward hydrogen evolution reaction. ACS Catal. 8(7), 5714–5720 (2018). https://doi.org/10.1021/acscatal.8b01609
Z. Liang, C. Qu, D. Xia, R. Zou, Q. Xu, Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew. Chem. Int. Ed. 57(31), 9604–9633 (2018). https://doi.org/10.1002/anie.201800269
T.J. Qiu, Z.B. Liang, W.H. Guo, S. Gao, C. Qu et al., Highly exposed ruthenium-based electrocatalysts from bimetallic metal-organic frameworks for overall water splitting. Nano Energy 58, 1–10 (2019). https://doi.org/10.1016/j.nanoen.2018.12.085
Y. Lin, M.L. Zhang, L.X. Zhao, L.M. Wang, D.L. Cao et al., Ru doped bimetallic phosphide derived from 2D metal organic framework as active and robust electrocatalyst for water splitting. Appl. Surf. Sci. 536, 147952 (2021). https://doi.org/10.1016/j.apsusc.2020.147952
S. Yuan, Z.H. Pu, H. Zhou, J. Yu, I.S. Amiinu et al., A universal synthesis strategy for single atom dispersed cobalt/metal clusters heterostructure boosting hydrogen evolution catalysis at all pH values. Nano Energy 59, 472–480 (2019). https://doi.org/10.1016/j.nanoen.2019.02.062
J. Hwang, R.R. Rao, L. Giordano, Y. Katayama, Y. Yu et al., Perovskites in catalysis and electrocatalysis. Science 358(6364), 751–756 (2017). https://doi.org/10.1126/science.aam7092
N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu et al., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46(2), 337–365 (2017). https://doi.org/10.1039/c6cs00328a
Y.J. Xue, S.S. Sun, Q. Wang, Z.H. Dong, Z.P. Liu, Transition metal oxide-based oxygen reduction reaction electrocatalysts for energy conversion systems with aqueous electrolytes. J. Mater. Chem. A 6(23), 10595–10626 (2018). https://doi.org/10.1039/c7ta10569j
Z.J. Chen, X.G. Duan, W. Wei, S.B. Wang, B.J. Ni, Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution. J. Mater. Chem. A 7(25), 14971–15005 (2019). https://doi.org/10.1039/c9ta03220g
M. Gong, W. Zhou, M.C. Tsai, J. Zhou, M. Guan et al., Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 5(1), 4695 (2014). https://doi.org/10.1038/ncomms5695
R. Subbaraman, D. Tripkovic, D. Strmcnik, K.C. Chang, M. Uchimura et al., Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)(2)-Pt interfaces. Science 334(6060), 1256–1260 (2011). https://doi.org/10.1126/science.1211934
T. Liu, W. Gao, Q. Wang, M. Dou, Z. Zhang et al., Selective loading of atomic platinum on a RuCeOx support enables stable hydrogen evolution at high current densities. Angew. Chem. Int. Ed. 59(46), 20423–20427 (2020). https://doi.org/10.1002/anie.202009612
W. Dong, Y. Zhang, J. Xu, J.-W. Yin, S. Nong et al., Subnano ruthenium species anchored on tin dioxide surface for efficient alkaline hydrogen evolution reaction. Cell Rep. Phys. Sci. 1(3), 100026 (2020). https://doi.org/10.1016/j.xcrp.2020.100026
J.Y. Yu, A.Z. Wang, W.Q. Yu, X.Y. Liu, X. Li et al., Tailoring the ruthenium reactive sites on N doped molybdenum carbide nanosheets via the anti-Ostwald ripening as efficient electrocatalyst for hydrogen evolution reaction in alkaline media. Appl. Catal. B-Environ. 277, 119236 (2020). https://doi.org/10.1016/j.apcatb.2020.119236
D. Yi, F. Lu, F. Zhang, S. Liu, B. Zhou et al., Regulating charge transfer of lattice oxygen in single-atom-doped titania for hydrogen evolution. Angew. Chem. Int. Ed. 59(37), 15855–15859 (2020). https://doi.org/10.1002/anie.202004510
J. Liu, Y. Zheng, Y. Jiao, Z. Wang, Z. Lu et al., NiO as a bifunctional promoter for RuO2 toward superior overall water splitting. Small 14(16), e1704073 (2018). https://doi.org/10.1002/smll.201704073
J.X. Guo, D.Y. Yan, K.W. Qiu, C. Mu, D. Jiao et al., High electrocatalytic hydrogen evolution activity on a coupled Ru and CoO hybrid electrocatalyst. J. Energy Chem. 37, 143–147 (2019). https://doi.org/10.1016/j.jechem.2018.12.011
Y.B. Cho, A. Yu, C. Lee, M.H. Kim, Y. Lee, Fundamental study of facile and stable hydrogen evolution reaction at electrospun Ir and Ru mixed oxide nanofibers. ACS Appl. Mater. Interfaces 10(1), 541–549 (2018). https://doi.org/10.1021/acsami.7b14399
E. Demir, S. Akbayrak, A.M. Onal, S. Ozkar, Nanoceria-supported ruthenium(0) nanoparticles: highly active and stable catalysts for hydrogen evolution from water. ACS Appl. Mater. Interfaces 10(7), 6299–6308 (2018). https://doi.org/10.1021/acsami.7b17469
P. Jiang, Y. Yang, R. Shi, G. Xia, J. Chen et al., Pt-like electrocatalytic behavior of Ru–MoO2 nanocomposites for the hydrogen evolution reaction. J. Mater. Chem. A 5(11), 5475–5485 (2017). https://doi.org/10.1039/c6ta09994g
L. Li, P. Wang, Q. Shao, X. Huang, Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 49(10), 3072–3106 (2020). https://doi.org/10.1039/d0cs00013b
W. Zhong, B. Xiao, Z. Lin, Z. Wang, L. Huang et al., RhSe2: A superior 3D electrocatalyst with multiple active facets for hydrogen evolution reaction in both acid and alkaline solutions. Adv. Mater. 33(9), e2007894 (2021). https://doi.org/10.1002/adma.202007894
Q. Lu, A.L. Wang, H. Cheng, Y. Gong, Q. Yun et al., Synthesis of hierarchical 4H/fcc Ru nanotubes for highly efficient hydrogen evolution in alkaline media. Small 14(30), e1801090 (2018). https://doi.org/10.1002/smll.201801090
X. Huang, Y. Chen, C.Y. Chiu, H. Zhang, Y. Xu et al., A versatile strategy to the selective synthesis of Cu nanocrystals and the in situ conversion to CuRu nanotubes. Nanoscale 5(14), 6284–6290 (2013). https://doi.org/10.1039/c3nr01290e
J. Wang, L. Han, B. Huang, Q. Shao, H.L. Xin et al., Amorphization activated ruthenium-tellurium nanorods for efficient water splitting. Nat. Commun. 10(1), 5692 (2019). https://doi.org/10.1038/s41467-019-13519-1
X.K. Kong, K. Xu, C.L. Zhang, J. Dai, S.N. Oliaee et al., Free-standing two-dimensional Ru nanosheets with high activity toward water splitting. ACS Catal. 6(3), 1487–1492 (2016). https://doi.org/10.1021/acscatal.5b02730
A.X. Yin, W.C. Liu, J. Ke, W. Zhu, J. Gu et al., Ru nanocrystals with shape-dependent surface-enhanced Raman spectra and catalytic properties: controlled synthesis and DFT calculations. J. Am. Chem. Soc. 134(50), 20479–20489 (2012). https://doi.org/10.1021/ja3090934
X. Zhang, Y. Xie, Recent advances in free-standing two-dimensional crystals with atomic thickness: design, assembly and transfer strategies. Chem. Soc. Rev. 42(21), 8187–8199 (2013). https://doi.org/10.1039/c3cs60138b
Q. Yao, B. Huang, N. Zhang, M. Sun, Q. Shao et al., Channel-rich RuCu nanosheets for pH-universal overall water splitting electrocatalysis. Angew. Chem. Int. Ed. 58(39), 13983–13988 (2019). https://doi.org/10.1002/anie.201908092
B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang et al., Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3(8), 634–641 (2011). https://doi.org/10.1038/NCHEM.1095
H. Song, M. Wu, Z. Tang, J.S. Tse, B. Yang et al., Single atom ruthenium-doped CoP/CDs nanosheets via splicing of carbon-dots for robust hydrogen production. Angew. Chem. Int. Ed. 60(13), 7234–7244 (2021). https://doi.org/10.1002/anie.202017102
K. Wu, K. Sun, S. Liu, W.-C. Cheong, Z. Chen et al., Atomically dispersed Ni–Ru–P interface sites for high-efficiency pH-universal electrocatalysis of hydrogen evolution. Nano Energy 80, 105467 (2021). https://doi.org/10.1016/j.nanoen.2020.105467
Y. Sun, Z. Xue, Q. Liu, Y. Jia, Y. Li et al., Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat. Commun. 12(1), 1369 (2021). https://doi.org/10.1038/s41467-021-21595-5
H.D. Yu, L. Hui, Y.R. Xue, Y.X. Liu, Y. Fang et al., 2D graphdiyne loading ruthenium atoms for high efficiency water splitting. Nano Energy 72, 104667 (2020). https://doi.org/10.1016/j.nanoen.2020.104667
V. Ramalingam, P. Varadhan, H.C. Fu, H. Kim, D. Zhang et al., Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution. Adv. Mater. 31(48), e1903841 (2019). https://doi.org/10.1002/adma.201903841
X. Peng, S. Zhao, Y. Mi, L. Han, X. Liu et al., Trifunctional single-atomic Ru sites enable efficient overall water splitting and oxygen reduction in acidic media. Small 16(33), e2002888 (2020). https://doi.org/10.1002/smll.202002888
H. Zhang, W. Zhou, X.F. Lu, T. Chen, X.W. Lou, Implanting isolated Ru atoms into edge-rich carbon matrix for efficient electrocatalytic hydrogen evolution. Adv. Energy Mater. 10(23), 2000882 (2020). https://doi.org/10.1002/aenm.202000882
L. Zhao, Y. Zhang, L.B. Huang, X.Z. Liu, Q.H. Zhang et al., Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 10(1), 1278 (2019). https://doi.org/10.1038/s41467-019-09290-y
J.N. Tiwari, A.M. Harzandi, M. Ha, S. Sultan, C.W. Myung et al., High-performance hydrogen evolution by Ru single atoms and nitrided-Ru nanoparticles implanted on N-doped graphitic sheet. Adv. Energy Mater. 9(26), 1900931 (2019). https://doi.org/10.1002/aenm.201900931
X.Y. Guo, S.G. Liu, S.P. Huang, Single Ru atom supported on defective graphene for water splitting: DFT and microkinetic investigation. Int. J. Hydrog. Energy 43(10), 4880–4892 (2018). https://doi.org/10.1016/j.ijhydene.2018.01.122
Q.J. Ju, R.G. Ma, Y. Pei, B.B. Guo, Z.C. Li et al., Ruthenium triazine composite: a good match for increasing hydrogen evolution activity through contact electrification. Adv. Energy Mater. 10(21), 2000067 (2020). https://doi.org/10.1002/aenm.202000067
C.H. Chen, D. Wu, Z. Li, R. Zhang, C.G. Kuai et al., Ruthenium-based single-atom alloy with high electrocatalytic activity for hydrogen evolution. Adv. Energy Mater. 9(20), 1803913 (2019). https://doi.org/10.1002/aenm.201803913