Correction to: Prussian Blue Analogues in Aqueous Batteries and Desalination Batteries
Corresponding Author: Jie Shu
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 187
Abstract
In the applications of large-scale energy storage, aqueous batteries are considered as rivals for organic batteries due to their environmentally friendly and low-cost nature. However, carrier ions always exhibit huge hydrated radius in aqueous electrolyte, which brings difficulty to find suitable host materials that can achieve highly reversible insertion and extraction of cations. Owing to open three-dimensional rigid framework and facile synthesis, Prussian blue analogues (PBAs) receive the most extensive attention among various host candidates in aqueous system. Herein, a comprehensive review on recent progresses of PBAs in aqueous batteries is presented. Based on the application in different aqueous systems, the relationship between electrochemical behaviors (redox potential, capacity, cycling stability and rate performance) and structural characteristics (preparation method, structure type, particle size, morphology, crystallinity, defect, metal atom in high-spin state and chemical composition) is analyzed and summarized thoroughly. It can be concluded that the required type of PBAs is different for various carrier ions. In particular, the desalination batteries worked with the same mechanism as aqueous batteries are also discussed in detail to introduce the application of PBAs in aqueous systems comprehensively. This report can help the readers to understand the relationship between physical/chemical characteristics and electrochemical properties for PBAs and find a way to fabricate high-performance PBAs in aqueous batteries and desalination batteries.
Highlights:
1 The characteristics of Prussian blue analogues PBAs in different aqueous systems are analyzed.
2 The relationship between structure and performance of PBAs is summarized.
3 The measures to improve electrochemical property of PBAs are proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater et al., Recycling lithium-ion batteries from electric vehicles. Nature 575, 75 (2019). https://doi.org/10.1038/s41586-019-1682-5
- X.K. Zhang, M.T. Xia, T.T. Liu, N. Peng, H.X. Yu et al., Copper hexacyanoferrate as ultra-high rate host for aqueous ammonium ion storage. Chem. Eng. J. 421, 127767 (2021). https://doi.org/10.1016/j.cej.2020.127767
- F.L. Lama, D.R. Padrón, A.R.P. Santiago, M.J.M. Batista, A. Caballero et al., Non-porous carbonaceous materials derived from coffee waste grounds as highly sustainable anodes for lithium-ion batteries. J. Clean. Prod. 207, 411 (2019). https://doi.org/10.1016/j.jclepro.2018.10.024
- T.T. Liu, X. Cheng, H.X. Yu, H.J. Zhu, N. Peng et al., An overview and future perspectives of aqueous rechargeable polyvalent ion batteries. Energy Storage Mater. 18, 68 (2019). https://doi.org/10.1016/j.ensm.2018.09.027
- X.K. Zhang, M.T. Xia, H.X. Yu, J.W. Zhang, Z.W. Yang et al., Hydrogen bond assisted ultra-stable and fast aqueous NH4+ storage. Nano-Micro Lett. 13, 139 (2021). https://doi.org/10.1007/s40820-021-00671-x
- T.T. Liu, N. Peng, X.K. Zhang, R.T. Zheng, M.T. Xia et al., Controllable defect engineering enhanced bond strength for stable electrochemical energy storage. Nano Energy 79, 105460 (2021). https://doi.org/10.1016/j.nanoen.2020.105460
- D. Su, A. McDonagh, S.Z. Qiao, G.X. Wang, High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv. Mater. 29, 1604007 (2017). https://doi.org/10.1002/adma.201604007
- H. Kim, J. Hong, Y.U. Park, J. Kim, I. Hwang et al., Sodium storage behavior in natural graphite using ether-based electrolyte systems. Adv. Funct. Mater. 25, 534 (2015). https://doi.org/10.1002/adfm.201402984
- S. Karmakar, C. Chowdhury, A. Datta, Two-dimensional group monochalcogenides: Anode materials for Li-ion batteries. J. Phys. Chem. C 120, 14522 (2016). https://doi.org/10.1021/acs.jpcc.6b04152
- S. Liu, G.L. Pan, G.R. Li, X.P. Gao, Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries. J. Mater. Chem. A 3, 959 (2015). https://doi.org/10.1039/C4TA04644G
- H.X. Yu, C.C. Deng, H.H. Yan, M.T. Xia, X.K. Zhang et al., Cu3(PO4)2: Novel anion convertor for aqueous dual-ion battery. Nano-Micro Lett. 13, 41 (2021). https://doi.org/10.1007/s40820-020-00576-1
- C.F. Wang, W. Zhang, W.W. Li, Y. Zhang, X.D. Tang et al., Magnetism tuned by intercalation of various metal ions in coordination polymer. Chin. Chem. Lett. 30, 1390 (2019). https://doi.org/10.1016/j.cclet.2019.03.007
- W.L. Liu, H.Q. Zhi, X.B. Yu, Recent progress in phosphorus based anode materials for lithium/sodium ion batteries. Energy Storage Mater. 16, 290 (2019). https://doi.org/10.1016/j.ensm.2018.05.020
- D.N. Lei, D.C. Lee, E.B. Zhao, A. Magasinski, H.R. Jung et al., Iron oxide nanoconfined in carbon nanopores as high capacity anode for rechargeable alkaline batteries. Nano Energy 48, 170 (2018). https://doi.org/10.1016/j.nanoen.2018.03.035
- X.H. Cai, H.H. Yan, R.T. Zheng, H.X. Yu, Z.W. Yang et al., Cu2Nb34O87 nanowires as superior lithium storage host in advanced rechargeable battery. Inorg. Chem. Front. 8, 444 (2021). https://doi.org/10.1039/D0QI01075H
- M.T. Xia, X.K. Zhan, H.X. Yu, Z.W. Yang, S. Chen et al., Hydrogen bond chemistry in Fe4[Fe(CN)6]3 host for aqueous NH4+ batteries. Chem. Eng. J. 421, 127759 (2021). https://doi.org/10.1016/j.cej.2020.127759
- L.Y. Zhang, L. Chen, X.F. Zhou, Z.P. Liu, Morphology-dependent electrochemical performance of zinc hexacyanoferrate cathode for zinc-ion battery. Sci. Rep. 5, 18263 (2015). https://doi.org/10.1038/srep18263
- B.Q. Wang, Y. Han, X. Wang, N. Bahlawane, H. Pan et al., Prussian blue analogs for rechargeable batteries. Science 3, 110 (2018). https://doi.org/10.1016/j.isci.2018.04.008
- H.X. Yu, X. Cheng, M.T. Xia, T.T. Liu, W.Q. Ye et al., Pretreated commercial TiSe2 as an insertion-type potassium container for constructing “Rocking-Chair” type potassium ion batteries. Energy Storage Mater. 22, 154 (2019). https://doi.org/10.1016/j.ensm.2019.01.010
- B.Q. Wang, Y. Han, Y.T. Chen, Y.J. Xu, H.G. Pan et al., Gradient substitution: an intrinsic strategy towards high performance sodium storage in Prussian blue-based cathodes. J. Mater. Chem. A 6, 8947 (2018). https://doi.org/10.1039/c8ta02291g
- S.S. Yin, Q. Ji, X.X. Zuo, S. Xie, K. Fang et al., Silicon lithium-ion battery anode with enhanced performance: Multiple effects of silver nanoparticles. J. Mater. Sci. Technol. 34, 1902 (2018). https://doi.org/10.1016/j.jmst.2018.02.004
- L.Y. Zhang, L. Chen, X.F. Zhou, Z.P. Liu, Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: The zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5, 1400930 (2015). https://doi.org/10.1002/aenm.201400930
- W. Chu, Y. He, Y.S. Chu, L. Meng, J.B. Liu et al., A highly stable Cu(OH)2-poly (vinyl alcohol) nanocomposite membrane for dramatically enhanced direct borohydride fuel cell performance. J. Power Sources 467, 228312 (2020). https://doi.org/10.1016/j.jpowsour.2020.228312
- S.W. Tao, J.T.S. Irvine, J.A. Kilner, An efficient solid oxide fuel cell based upon single-phase perovskites. Adv. Mater. 17, 1734 (2015). https://doi.org/10.1002/adma.200402007
- J.H. Joo, R. Merkle, J.H. Kim, J. Maier, Measuring electrical properties of thin film fuel cell electrodes by in situ infrared spectroscopy. Adv. Mater. 24, 6507 (2012). https://doi.org/10.1002/adma.201202934
- W. Wu, Y.Y. Zhang, D. Ding, T. He, A high-performing direct carbon fuel cell with a 3D architectured anode operated below 600 °C. Adv. Mater. 30, 1704745 (2018). https://doi.org/10.1002/adma.201704745
- D. Banham, J.Y. Choi, T. Kishimoto, S.Y. Ye, Integrating PGM-free catalysts into catalyst layers and proton exchange membrane fuel cell devices. Adv. Mater. 31, 1804846 (2019). https://doi.org/10.1002/adma.201804846
- M. Goor, S. Menkin, E. Peled, High power direct methanol fuel cell for mobility and portable applications. Int. J. Hydrogen Energy 44, 3138 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.019
- E. Dogdibegovic, R.F. Wang, G.Y. Lau, M.C. Tucker, High performance metal-supported solid oxide fuel cells with infiltrated electrodes. J. Power Sources 410–411, 91–98 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.004
- L. Yang, M.H. Huang, M. Lu, X.H. Guan, X. Guan et al., Facile design and synthesis of nickle-molybdenum oxide/sulfide composites with robust microsphere structure for high-performance supercapacitors. Chem. Eng. J. 364, 462 (2019). https://doi.org/10.1016/j.cej.2019.01.107
- L. Zeng, X.C. Lou, J.H. Zhang, C. Wu, J. Liu et al., Carbonaceous mudstone and lignin-derived activated carbon and its application for supercapacitor electrode. Surf. Coat. Technol. 357, 580 (2019). https://doi.org/10.1016/j.surfcoat.2018.10.041
- L. Liu, Y. Feng, J. Liang, S.Q. Li, B. Tian et al., Structure-designed fabrication of all-printed flexible in-plane solid-state supercapacitors for wearable electronics. J. Power Sources 425, 195 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.118
- S.H. Lee, T.H. Lee, High performance hybrid supercapacitors with LiNi1/3Mn1/3Co1/3O2 activated carbon cathode and activated carbon anode. Int. J. Hydrogen Energy 43, 15365 (2018). https://doi.org/10.1016/j.ijhydene.2018.06.089
- W.F. Wei, X.W. Cui, W.X. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40, 1697 (2011). https://doi.org/10.1039/C0CS00127A
- E. Lim, H. Kim, C. Jo, J. Chun, K. Ku et al., Advanced hybrid supercapacitor based on a mesoporous niobium pentoxide/carbon as high-performance anode. ACS Nano 8, 8968 (2014). https://doi.org/10.1021/nn501972w
- Y.Z. Jiang, S.L. Yu, B.Q. Wang, Y. Li, W.P. Sun et al., Prussian blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode. Adv. Funct. Mater. 29, 5315 (2016). https://doi.org/10.1002/adfm.201600747
- E. Hitz, J.Y. Wan, A. Patel, Y. Xu, L. Meshi et al., Electrochemical intercalation of lithium ions into NbSe2 nanosheets. ACS Appl. Mater. Interfaces 8, 11390 (2016). https://doi.org/10.1021/acsami.5b11583
- L.T. Yan, G. Chen, S. Sarker, S. Richins, H.Q. Wang et al., Ultrafine Nb2O5 nanocrystal coating on reduced graphene oxide as anode material for high performance sodium ion battery. ACS Appl. Mater. Interfaces 8, 22213 (2016). https://doi.org/10.1021/acsami.6b06516
- M.A. Anderson, A.L. Cudero, J. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochim. Acta 55, 3845 (2010). https://doi.org/10.1016/j.electacta.2010.02.012
- S.J. Kim, S.H. Ko, K.H. Kang, J. Han, Direct seawater desalination by ion concentration polarization. Nat. Nanotechnol. 5, 297 (2010). https://doi.org/10.1038/nnano.2010.34
- H.D. Asfaw, C.W. Tai, L. Nyholm, K. Edström, Over-stoichiometric NbO2 nanoparticles for a high energy and power density lithium microbattery. Chem. Nano. Mat. 3, 646 (2017). https://doi.org/10.1002/cnma.201700141
- C.D. Wessells, R.A. Huggins, Y. Cui, Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Commun. 2, 550 (2011). https://doi.org/10.1038/ncomms1563
- C.D. Wessells, S.V. Peddada, R.A. Huggins, Y. Cui, Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett. 11, 5421 (2011). https://doi.org/10.1021/nl203193q
- J.Y. Luo, Y.Y. Xia, Aqueous lithium-ion battery LiTi2(PO4)3/LiMn2O4 with high power and energy densities as well as superior cycling stability. Adv. Funct. Mater. 17, 3877 (2007). https://doi.org/10.1002/adfm.200700638
- H. Manjunatha, G.S. Suresh, T.V. Venkatesha, Electrode materials for aqueous rechargeable lithium batteries. J. Solid State Electrochem. 15, 431 (2011). https://doi.org/10.1007/s10008-010-1117-6
- J. Chen, K.L. Huang, S.Q. Liu, Insoluble metal hexacyanoferrates as supercapacitor electrodes. Electrochem. Commun. 10, 1851 (2008). https://doi.org/10.1016/j.elecom.2008.07.046
- G.H. Yuan, J.M. Xiang, H.F. Jin, Y.Z. Jin, L.Z. Wu et al., Flexible free-standing Na4Mn9O18/reduced graphene oxide composite film as a cathode for sodium rechargeable hybrid aqueous battery. Electrochim. Acta 259, 647 (2018). https://doi.org/10.1016/j.electacta.2017.11.015
- F. Zhang, W.F. Li, X.D. Xiang, M.L. Sun, Highly stable Na-storage performance of Na0.5Mn0.5Ti0.5O2 microrods as cathode for aqueous sodium-ion batteries. J. Electroanal. Chem. 802, 22 (2017). https://doi.org/10.1016/j.jelechem.2017.08.042
- Z.G. Hou, X.N. Li, J.W. Liang, Y.C. Zhu, Y.T. Qian, An aqueous rechargeable sodium ion battery based on a NaMnO2-NaTi2(PO4)3 hybrid system for stationary energy storage. J. Mater. Chem. A 3, 1400 (2015). https://doi.org/10.1039/C4TA06018K
- X.Q. Zhang, Z.G. Hou, X.N. Li, J.W. Liang, Y.C. Zhu et al., Na-birnessite with high capacity and long cycle life for rechargeable aqueous sodium-ion battery cathode electrodes. J. Mater. Chem. A 4, 856 (2016). https://doi.org/10.1039/C5TA08857G
- Y.S. Wang, J. Liu, B. Lee, R.M. Qiao, Z.Z. Yang et al., Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. Nat. Commun. 6, 6401 (2015). https://doi.org/10.1038/ncomms7401
- Q.T. Qu, L.L. Liu, Y.P. Wu, R. Holze, Electrochemical behavior of V2O5·06H2O nanoribbons in neutral aqueous electrolyte solution. Electrochim. Acta 96, 8 (2013). https://doi.org/10.1016/j.electacta.2013.02.078
- Y. Liu, Y. Qiao, X.D. Lou, X.H. Zhang, W.X. Zhang et al., Hollow K027MnO2 nanospheres as cathode for high performance aqueous sodium ion batteries. ACS Appl. Mat. Interfaces 8, 14564 (2016). https://doi.org/10.1021/acsami.6b03089
- F. Zhang, W.F. Li, X.D. Xiang, M.L. Sun, Nanocrystal-assembled porous Na3MgTi(PO4)3 aggregates as highly stable anode for aqueous sodium-ion batteries. Chem. Eur. J. 23, 12944 (2017). https://doi.org/10.1002/chem.201703044
- A.J.F. Ropero, D. Saurel, B. Acebedo, T. Rojo, M.C. Cabanas, Electrochemical characterization of NaFePO4 as positive electrode in aqueous sodium-ion batteries. J. Power Sources 291, 40 (2015). https://doi.org/10.1016/j.jpowsour.2015.05.006
- H.C. Gao, J.B. Goodenough, An aqueous symmetric sodium-ion battery with nasicon-structured Na3MnTi(PO4)3. Angew. Chem. Int. Ed. 55, 12768 (2016). https://doi.org/10.1002/ange.201606508
- A.J.F. Ropero, M. Zarrabeitia, M. Reynaud, T. Rojo, M. Casas-Cabanas, Toward safe and sustainable batteries: Na4Fe3(PO4)2P2O7 as a low-cost cathode for rechargeable aqueous Na-ion batteries. J. Phys. Chem. C 122, 133 (2018). https://doi.org/10.1021/acs.jpcc.7b09803
- P.R. Kumar, Y.H. Jung, C.H. Lim, D.K. Kim, Na3V2O2x(PO4)2F3-2x: a stable and high-voltage cathode material for aqueous sodium-ion batteries with high energy density. J. Mater. Chem. A 3, 6271 (2015). https://doi.org/10.1039/C5TA00980D
- M. Vujković, S. Mentus, Potentiodynamic and galvanostatic testing of NaFe0.95V0.05PO4 composite in aqueous NaNO3 solution, and the properties of aqueous Na1.2V3O8/NaNO3/NaFe0.95V0.05PO4 battery. J. Power Sources 325, 185 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.031
- L. Zhou, Z.K. Yang, C.Y. Li, B.W. Chen, Y.F. Wang et al., Prussian blue as positive electrode material for aqueous sodium-ion capacitor with excellent performance. RSC Adv. 6, 109340 (2016). https://doi.org/10.1039/C6RA21500A
- C.D. Wessells, M.T. McDowell, S.V. Peddada, M. Pasta, R.A. Huggins et al., Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage. ACS Nano 6, 1688 (2012). https://doi.org/10.1021/nn204666v
- W. Zhang, W.Q. Chen, X.L. Zhao, Q. Dang, Y.C. Li et al., An auto-switchable dual-mode seawater energy extraction system enabled by metal-organic frameworks. Angew. Chem. Int. Ed. 58, 7431 (2019). https://doi.org/10.1002/anie.201901759
- X.Y. Wu, Z.L. Jian, Z.F. Li, X.L. Ji, Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries. Electrochem. Commun. 77, 54 (2017). https://doi.org/10.1016/j.elecom.2017.02.012
- Y.C. Li, Q. Dang, C.J. Shi, W. Zhang, C.B. Jing et al., A flexible cyanometallate coordination polymer electrode for electrochemical dual-mode seawater energy extraction. J. Mater. Chem. A 7, 23084 (2019). https://doi.org/10.1039/c9ta07540b
- J.W. Nai, X.W. Lou, Hollow structures based on Prussian blue and its analogs for electrochemical energy storage and conversion. Adv. Mater. 31, 1703825 (2019). https://doi.org/10.1002/adma.201706825
- Z.K. Le, W.W. Li, Q. Dang, C.B. Jing, W. Zhang et al., A high-power seawater battery working in a wide temperature range enabled by an ultra-stable Prussian blue analogue cathode. J. Mater. Chem. A 9, 8685 (2021). https://doi.org/10.1039/d0ta12052a
- X.L. Jiang, H.J. Liu, J. Song, C.F. Yin, H.Y. Xu, Hierarchical mesoporous octahedral K2Mn1-xCoxFe(CN)6 as a superior cathode material for sodium-ion batteries. J. Mater. Chem. A 4, 16205 (2016). https://doi.org/10.1039/C6TA06658E
- W. Zhang, Y.C. Li, C.J. Shi, R.J. Qi, M. Hu, Single-crystal lattice filling in connected spaces inside 3D networks. J. Am. Chem. Soc. 143, 6447 (2021). https://doi.org/10.1021/jacs.0c12545
- B. Paulitsch, J. Yun, A.S. Bandarenka, Electrodeposited Na2VOx[Fe(CN)6] films As a cathode material for aqueous Na-ion batteries. ACS Appl. Mater. Interfaces 9, 8107 (2017). https://doi.org/10.1021/acsami.6b15666
- A.L. Lipson, S.D. Han, S. Kim, B.F. Pan, N.Y. Sa et al., Nickel hexacyanoferrate, a versatile intercalation host for divalent ions from nonaqueous electrolytes. J. Power Sources 325, 646 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.019
- V.D. Neff, Electrochemical oxidation and reduction of thin films of Prussian blue. J. Electrochem. Soc. 125, 886 (1978). https://doi.org/10.1149/1.2131575
- N. Imanishi, T. Morikawa, J. Kondo, Y. Takeda, O., Yamamoto, et al., Lithium intercalation behavior into iron cyanide complex as positive electrode of lithium secondary battery. J. Power Sources 79, 215 (1999). https://doi.org/10.1016/S0378-7753(99)00061-0
- N. Imanishi, T. Morikawa, J. Kondo, R. Yamane, Y. Takeda et al., Lithium intercalation behavior of iron cyanometallates. J. Power Sources 81–82, 530 (1999). https://doi.org/10.1016/S0378-7753(98)00228-6
- C.D. Wessells, S.V. Peddada, M.T. McDowell, R.A. Huggins, Y. Cui, The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes. J. Electrochem. Soc. 2, A98 (2012). https://doi.org/10.1149/2.060202jes
- R.Y. Wang, C.D. Wessells, R.A. Huggins, Y. Cui, Highly reversible open framework nanoscale electrodes for divalent ion batteries. Nano Lett. 13, 5748 (2013). https://doi.org/10.1021/nl403669a
- R.Y. Wang, B. Shyam, K.H. Stone, J.N. Weker, M. Pasta et al., Reversible multivalent (monovalent, divalent, trivalent) ion insertion in open framework materials. Adv. Energy Mater. 5, 1401869 (2015). https://doi.org/10.1002/aenm.201401869
- L.T. Ma, S.M. Chen, C.B. Long, X.L. Li, Y.W. Zhao et al., Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction. Adv. Energy Mater. 9, 1902446 (2019). https://doi.org/10.1002/aenm.201902446
- D.H. Nam, M.A. Lumley, K.S. Choi, A desalination battery combining Cu3[Fe(CN)6]2 as a Na-storage electrode and Bi as a Cl-storage electrode enabling membrane-free desalination. Chem. Mater. 31, 1460 (2019). https://doi.org/10.1021/acs.chemmater.9b00084
- X.Y. Wu, Y.T. Qi, J.J. Hong, Z.F. Li, A.S. Hernandez et al., Rocking-Chair NH4-ion battery: a highly reversible aqueous energy storage system. Angew. Chem. Int. Ed. 56, 13026 (2017). https://doi.org/10.1002/anie.201707473
- W.H. Ren, X.J. Chen, C. Zhao, Ultrafast aqueous potassium-ion batteries cathode for stable intermittent grid-scale energy storage. Adv. Energy Mater. 24, 1801413 (2018). https://doi.org/10.1002/aenm.201801413
- X.Y. Wu, J.J. Hong, W.C. Shin, L. Ma, T.C. Liu et al., Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries. Nat. Energy 4, 123 (2019). https://doi.org/10.1038/s41560-018-0309-7
- A.J. Zhou, W.J. Cheng, W. Wang, Q. Zhao, J. Xie et al., Hexacyanoferrate-type Prussian blue analogs: principles and advances toward high-performance sodium and potassium ion batteries. Adv. Energy Mater. 2, 2000943 (2020). https://doi.org/10.1002/aenm.202000943
- V. Verma, S. Kumar Jr, W.M.R. Satish, M. Srinivasan, Progress in rechargeable aqueous zinc- and aluminum-ion battery electrodes: Challenges and outlook. Adv. Sustainable Syst. 3, 1800111 (2019). https://doi.org/10.1002/adsu.201800111
- S. Qiu, Y.K. Xu, X.Y. Wu, X.L. Ji, Prussian blue analogues as electrodes for aqueous monovalent ion batteries. Electrochem. Energ. Rev. (2021). https://doi.org/10.1007/s41918-020-00088-x
- L.T. Ma, H.L. Cui, S.M. Chen, X.L. Li, B.B. Dong et al., Accommodating diverse ions in Prussian blue analogs frameworks for rechargeable batteries: The electrochemical redox reactions. Nano Energy 81, 105632 (2021). https://doi.org/10.1016/j.nanoen.2020.105632
- A. Paolella, C. Faure, V. Timoshevskii, S. Marras, G. Bertoni et al., A review on hexacyanoferrate-based materials for energy storage and smart windows: Challenges and perspectives. J. Mater. Chem. A 5, 18919 (2017). https://doi.org/10.1039/C7TA05121B
- X.Y. Guo, Z.B. Wang, Z. Deng, X.G. Li, B. Wang et al., Water contributes to higher energy density and cycling stability of Prussian blue analogue cathodes for aqueous sodium-ion batteries. Chem. Mater. 31, 5933 (2019). https://doi.org/10.1021/acs.chemmater.9b02269
- C.T. Gao, Y.Z. Liu, L. Zheng, E. Feng, S. Sim et al., The effect of electrolyte type on the Li ion intercalation in copper hexacyanoferrate. J. Electrochem. Soc. A 166, 1732 (2019). https://doi.org/10.1149/2.0331910jes
- S. Phadke, R. Mysyk, M. Anouti, Effect of cation (Li+, Na+, K+, Rb+, Cs+) in aqueous electrolyte on the electrochemical redox of Prussian blue analogue (PBA) cathodes. J. Energy Chem. 40, 31 (2020). https://doi.org/10.1016/j.jechem.2019.01.025
- M. Pasta, C.D. Wessells, R.A. Huggins, Y. Cui, A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. Commun. 3, 1149 (2012). https://doi.org/10.1038/ncomms2139
- Q. Yang, F.N. Mo, Z.X. Liu, L.T. Ma, X.L. Li et al., Activating C-coordinated iron of iron hexacyanoferrate for Zn hybrid-ion batteries with 10000-cycle lifespan and superior rate capability. Adv. Mater. 31, 1901521 (2019). https://doi.org/10.1002/adma.201901521
- W.J. Li, C. Han, G. Cheng, S.L. Chou, H.K. Liu, S.X. Dou, Chemical properties, structural properties, and energy storage applications of Prussian blue analogues. Small 15, 1900470 (2019). https://doi.org/10.1002/smll.201900470
- X.H. Ning, S. Phadke, B. Chung, H.Y. Yin, P. Burke et al., Self-healing Li-Bi liquid metal battery for grid-scale energy storage. J. Power Sources 275, 370 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.173
- X.Y. Wu, Y.L. Cao, X.P. Ai, J.F. Qian, H.Y. Yang, A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3-Na2NiFe(CN)6 intercalation chemistry. Electrochem. Commun. 31, 145 (2013). https://doi.org/10.1016/j.elecom.2013.03.013
- L.X. Shen, Y. Jiang, Y.F. Liu, J.L. Ma, T.R. Sun et al., High-stability monoclinic nickel hexacyanoferrate cathode materials for ultrafast aqueous sodium ion battery. Chem. Eng. J. 388, 124228 (2020). https://doi.org/10.1016/j.cej.2020.124228
- C. Ling, J.J. Chen, F. Mizuno, First-principles study of alkali and alkaline earth ion intercalation in iron hexacyanoferrate: The important role of ionic radius. J. Phys. Chem. 117, 21158 (2013). https://doi.org/10.1021/jp4078689
- F. Scholz, A. Dostal, The formal potentials of solid metal hexacyanometalates. Angew. Chem. Int. Ed. 34, 2685 (1996). https://doi.org/10.1002/anie.199526851
- X.Y. Wu, M.Y. Sun, Y.F. Shen, J.F. Qian, Y.L. Cao et al., Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6-NaTi2(PO4)3 intercalation chemistry. Chemsuschem 7, 407 (2014). https://doi.org/10.1002/cssc.201301036
- W.F. Li, F. Zhang, X.D. Xiang, X.C. Zhang, Nickel-substituted copper hexacyanoferrates as superior cathode for aqueous sodium-ion batteries. ChemElectroChem 5, 350–354 (2018). https://doi.org/10.1002/celc.201700958
- L. Niu, L. Chen, J. Zhang, P. Jiang, Z.P. Liu, Revisiting the open-framework zinc hexacyanoferrate: the role of ternary electrolyte and sodium-ion intercalation mechanism. J. Power Source 380, 135 (2018). https://doi.org/10.1016/j.jpowsour.2018.01.083
- B. He, P. Man, Q.C. Zhang, C. Wang, Z.Y. Zhou et al., Conversion synthesis of self-standing potassium zinc hexacyanoferrate arrays as cathodes for high-voltage flexible aqueous rechargeable sodium-ion batteries. Small 15, 1905115 (2019). https://doi.org/10.1002/smll.201905115
- A.J.F. Ropero, M.J.P. Muñoz, E.C. Artínez, T. Rojo, M.C. Cabanas, Electrochemical characterization of NaFe2(CN)6 Prussian blue as positive electrode for aqueous sodium-ion batteries. Electrochim. Acta 210, 352 (2016). https://doi.org/10.1016/j.electacta.2016.05.176
- F.P. Zhao, Y.Y. Wang, X.N. Xu, Y.L. Liu, R. Song et al., Cobalt hexacyanoferrate nanoparticles as a high-rate and ultra-stable supercapacitor electrode material. ACS Appl. Mat. Interfaces 6, 11007 (2014). https://doi.org/10.1021/am503375h
- X.Y. Wu, Y. Luo, M.Y. Sun, J.F. Qian, Y.L. Cao et al., Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries. Nano Energy 13, 117 (2015). https://doi.org/10.1016/j.nanoen.2015.02.006
- X.Y. Wu, M.Y. Sun, S. Guo, J.F. Qian, Y. Liu et al., Vacancy-free Prussian blue nanocrystals with high capacity and superior cyclability for aqueous sodium-ion batteries. ChemNanoMat 1, 1883 (2015). https://doi.org/10.1002/cnma.201500021
- K. Nakamoto, R. Sakamoto, M. Ito, A. Kitajou, S. Okada, Effect of concentrated electrolyte on aqueous sodium-ion battery with sodium manganese hexacyanoferrate cathode. Electrochemistry 85, 179 (2017). https://doi.org/10.5796/electrochemistry.85.179
- M. Pasta, R.Y. Wang, R. Ruffo, R. Qiao, H.W. Lee et al., Manganese-cobalt hexacyanoferrate cathodes for sodium-ion batteries. J. Mater. Chem. A 4, 4211 (2016). https://doi.org/10.1039/C5TA10571D
- L. Chen, L.Y. Zhang, X.F. Zhou, Z.P. Liu, Aqueous batteries based on mixed monovalence metal ions: A new battery family. Chemsuschem 7, 2295 (2014). https://doi.org/10.1002/cssc.201402084
- P. Jiang, H.Z. Shao, L. Chen, J.W. Feng, Z.P. Liu, Ion-selective copper hexacyanoferrate with an open-framework structure enables high-voltage aqueous mixed-ion batteries. J. Mater. Chem. A 5, 16740 (2017). https://doi.org/10.1039/C7TA04172A
- J. Zhang, L. Chen, L. Niu, Z.P. Liu, Iron hexcyanoferrate nanocubes as low-strain cathode materials for aqueous Li/Na mixed-ion batteries. ACS Appl. Nano Mater. 3, 1318 (2013). https://doi.org/10.1021/acsanm.9b02167
- C. Li, X.S. Wang, W.J. Deng, C.Y. Liu, J.T. Chen et al., Size engineering and crystallinity control enable high-capacity aqueous potassium-ion storage of Prussian white analogues. ChemElectroChem 5, 3887 (2018). https://doi.org/10.1002/celc.201801277
- P. Padigi, J. Thiebes, M. Swan, G. Goncher, D. Evans et al., Prussian green: a high rate capacity cathode for potassium ion batteries. Electrochim. Acta 166, 32 (2015). https://doi.org/10.1016/j.electacta.2015.03.084
- M.M. Giner, R.S. Gual, J. Romero, A. Alberola, L.G. Cruz et al., Prussian blue@MoS2 layer composites as highly efficient cathodes for sodium- and potassium-ion batteries. Adv. Funct. Mater. 28, 1706125 (2018). https://doi.org/10.1002/adfm.201706125
- G.J. Liang, F.J. Mo, X.L. Ji, C.Y. Zhi, Non-metallic charge carriers for aqueous batteries. Nat. Rev. Mater. 6, 109 (2020). https://doi.org/10.1038/s41578-020-00241-4
- X.Y. Wu, S. Qiu, Y.K. Xu, L. Ma, X.X. Bi et al., Hydrous nickel-iron Turnbull’s blue as a high-rate and low-temperature proton electrode. ACS Appl. Mater. Interfaces 12, 9201 (2020). https://doi.org/10.1021/acsami.9b20320
- C.Y. Li, J.H. Wu, F.X. Ma, Y.H. Chen, L.J. Fu et al., High-rate and High-voltage aqueous rechargeable zinc ammonium hybrid battery from selective cation intercalation cathode. ACS Appl. Energy Mater. 2, 6984 (2019). https://doi.org/10.1021/acsaem.9b01469
- X.Y. Wu, Y.K. Xu, H. Jiang, Z.X. Wei, J. Hong et al., NH4+ topotactic insertion in Berlin green: an exceptionally long-cycling cathode in aqueous ammonium ion batteries. ACS Appl. Energy Mater. 1, 3077 (2018). https://doi.org/10.1021/acsaem.8b00789
- C.Y. Li, W.Q. Yan, S.S. Liang, P. Wang, J. Wang et al., Achieving a high-performance Prussian blue analogue cathode with ultra-stable redox reaction for ammonium ion storage. J. Name. 4, 991 (2019). https://doi.org/10.1039/C8NH00484F
- E. Levi, M.D. Levi, O. Chasid, D. Aurbach, A review on the problems of the solid state ions diffusion in cathodes for rechargeable Mg batteries. J. Electroceram 22, 13 (2009). https://doi.org/10.1007/s10832-007-9370-5
- L.P. Wang, P.F. Wang, T.S. Wang, Y.X. Yin, Y.G. Guo et al., Prussian blue nanocubes as cathode materials for aqueous Na-Zn hybrid batteries. J. Power Sources 355, 18 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.049
- D.L. Chao, C.R. Zhu, M. Song, P. Liang, X. Zhang et al., A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv. Mater. 30, 1803181 (2018). https://doi.org/10.1002/adma.201803181
- S. Kawamura, H. Kuraku, K. Kurotaki, The composition and ion-exchange behavior of zinc hexacyanoferrate(II) analogues. Anal. Chim. Acta 49, 317 (1970). https://doi.org/10.1016/S0003-2670(00)86793-8
- Y. Mizuno, M. Okubo, E. Hosono, T. Kudo, K. Oh-ishi et al., Electrochemical Mg2+ intercalation into a bimetallic CuFe Prussian blue analog in aqueous electrolytes. J. Mater. Chem. A 1, 13019 (2013). https://doi.org/10.1039/C3TA13205F
- L. Chen, J.L. Bao, X. Dong, D.G. Truhlar, Y. Wang et al., Aqueous Mg-ion battery based on polyimide anode and Prussian blue cathode. ACS Energy Lett. 2, 1115 (2017). https://doi.org/10.1021/acsenergylett.7b00040
- Z.J. Jia, B.G. Wang, Y. Wang, Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries. Mater. Chem. Phys. 149–150, 601 (2015). https://doi.org/10.1016/j.matchemphys.2014.11.014
- R. Trcoli, F.L. Mantia, An aqueous zinc-ion battery based on copper hexacyanoferrate. Chemsuschem 8, 481 (2015). https://doi.org/10.1002/cssc.201403143
- G. Kasiria, R. Trócolib, A.B. Hashemia, F.L. Mantia, An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries. Electrochim. Acta 222, 74 (2016). https://doi.org/10.1016/j.electacta.2016.10.155
- J. Lim, G. Kasiri, R. Sahu, K. Schweinar, K. Hengge et al., Irreversible structural changes of copper hexacyanoferrate used as cathode in Zn-ion batteries. Chem. Eur. J. 26, 4917 (2020). https://doi.org/10.1002/chem.201905384
- G. Kasiri, J. Glenneberg, A.B. Hashemi, R. Kun, F.L. Mantia, Mixed copper-zinc hexacyanoferrates as cathode materials for aqueous zinc-ion batteries. Energy Storage Mater. 19, 360 (2019). https://doi.org/10.1016/j.ensm.2019.03.006
- M.Y. Kiriukhin, K.D. Collins, Dynamic hydration numbers for biologically important ions. Biophys. Chem. 99, 155 (2002). https://doi.org/10.1016/S0301-4622(02)00153-9
- S. Gheytani, Y.L. Liang, F.L. Wu, Y. Jing, H. Dong et al., An aqueous Ca-ion battery. Adv. Sci. 4, 1700465 (2017). https://doi.org/10.1002/advs.201700465
- M. Adil, A. Sarkar, A. Roy, M.R. Panda, A. Nagendra et al., Practical aqueous calcium-ion battery full-cells for future stationary storage. ACS Appl. Mater. Interfaces 12, 11489 (2020). https://doi.org/10.1021/acsami.9b20129
- C. Lee, S.K. Jeong, Modulating the hydration number of calcium ions by varying the electrolyte concentration: Electrochemical performance in a Prussian blue electrode/aqueous electrolyte system for calcium-ion batteries. Electrochim. Acta 265, 430 (2018). https://doi.org/10.1016/j.electacta.2018.01.172
- A. Holland, R.D. Mckerracher, A. Cruden, R.G.A. Wills, An aluminium battery operating with an aqueous electrolyte. J. Appl. Electrochem. 48, 243 (2018). https://doi.org/10.1007/s10800-018-1154-x
- Y. Ru, S.S. Zheng, H.G. Xue, H. Pang, Potassium cobalt hexacyanoferrate nanocubic assemblies for high-performance aqueous aluminum ion batteries. Chem. Eng. J. 382, 122853 (2020). https://doi.org/10.1016/j.cej.2019.122853
- Y. Gao, H.Y. Yang, X.R. Wang, Y. Bai, N. Zhu et al., The compensation effect mechanism of Fe-Ni mixed Prussian blue analogues in aqueous rechargeable aluminum-ion batteries. Chemsuschem 13, 732 (2020). https://doi.org/10.1002/cssc.201903067
- X.Y. Wu, A. Markir, Y.K. Xu, C. Zhang, D.P. Leonard et al., A rechargeable battery with an iron metal anode. Adv. Funct. Mater. 29, 1900911 (2019). https://doi.org/10.1002/adfm.201900911
- D.H. Nam, K.S. Choi, Electrochemical desalination using Bi/BiOCl electrodialysis cells. ACS Sustainable Chem. Eng. 6, 15455 (2018). https://doi.org/10.1021/acssuschemeng.8b03906
- K.C. Smith, R. Dmello, Na-Ion desalination (NID) enabled by Na-blocking membranes and symmetric Na-intercalation: Porous-electrode modeling. J. Electrochem. Soc. 163, A530 (2016). https://doi.org/10.1149/2.0761603jes
- K.C. Smith, Theoretical evaluation of electrochemical cell architectures using cation intercalation electrodes for desalination. Electrochim. Acta 230, 333 (2017). https://doi.org/10.1016/j.electacta.2017.02.006
- M.E. Suss, V. Presser, Water desalination with energy storage electrode materials. Joule 2, 10 (2018). https://doi.org/10.1016/j.joule.2017.12.010
- S. Shanbhag, Y. Bootwala, J.F. Whitacre, M.S. Mauter, Ion transport and competition effects on NaTi2(PO4)3 and Na4Mn9O18 selective insertion electrode performance. Langmuir 33, 12580 (2017). https://doi.org/10.1021/acs.langmuir.7b02861
- M. Pasta, C.D. Wessells, Y. Cui, F.L. Mantia, A desalination battery. Nano Lett. 12, 839 (2012). https://doi.org/10.1021/nl203889e
- J. Lee, S. Kim, J. Yoon, Rocking chair desalination battery based on Prussian blue electrodes. ACS Omega 2, 1653 (2017). https://doi.org/10.1021/acsomega.6b00526
- D. Desai, E.S. Beh, S. Sahu, V. Vedharathinam, Q. van Overmeere et al., Electrochemical desalination of seawater and hypersaline brines with coupled electricity storage. ACS Energy Lett. 3, 375 (2018). https://doi.org/10.1021/acsenergylett.7b01220
- V.G. Gude, N. Nirmalakhandan, N.S. Deng, Renewable and sustainable approaches for desalination. Renew. Sust. Energ. Rev. 14, 2641 (2010). https://doi.org/10.1016/j.rser.2010.06.008
- S. Burn, M. Hoang, D. Zarzo, F. Olewniak, E. Campos et al., Desalination techniques-a review of the opportunities for desalination in agriculture. Desalination 364, 2 (2015). https://doi.org/10.1016/j.desal.2015.01.041
- T.M. Missimer, R.G. Maliva, Environmental issues in seawater reverse osmosis desalination: Intakes and outfalls. Desalination 434, 198 (2018). https://doi.org/10.1016/j.desal.2017.07.012
- D.H. Nam, K.S. Choi, Bismuth as a new chloride-storage electrode enabling the construction of a practical high capacity desalination battery. J. Am. Chem. Soc. 139, 11055 (2017). https://doi.org/10.1021/jacs.7b01119
- Z. Li, D.B. Ravnsbæk, K. Xiang, Y.M. Chiang, Na3Ti2(PO4)3 as a sodium-bearing anode for rechargeable aqueous sodium-ion batteries. Electrochem. Commun. 44, 12 (2014). https://doi.org/10.1016/j.elecom.2014.04.003
- S.H. Yu, M. Shokouhimehr, T. Hyeon, Y.E. Sung, Iron hexacyanoferrate nanoparticles as cathode materials for Lithium and sodium rechargeable batteries. ECS Electrochem. Lett. 2, A39 (2013). https://doi.org/10.1149/2.008304eel
- W.Z. Gong, M. Wan, R. Zeng, Z.X. Rao, S. Su et al., Ultrafine Prussian blue as a high-rate and long-life sodium-ion battery cathode. Energy Technol. 7, 1900108 (2019). https://doi.org/10.1002/ente.201900108
- Q.T. Qu, L.J. Fu, X.Y. Zhan, D. Samuelis, J. Maier et al., Porous LiMn2O4 as cathode material with high power and excellent cycling for aqueous rechargeable lithium batteries. Energy Environ. Sci. 4, 3985 (2011). https://doi.org/10.1039/C0EE00673D
- C.Y. Li, W.Q. Yan, S.S. Liang, P. Wang, J. Wang et al., Achieving a high-performance Prussian blue analogue cathode with an ultra-stable redox reaction for ammonium ion storage. Nanoscale Horiz. 4, 991–998 (2019). https://doi.org/10.1039/C8NH00484F
- Y. You, H.R. Yao, S. Xin, Y.X. Yin, T.T. Zuo et al., Subzero-temperature cathode for a sodium-ion battery. Adv. Mater. 28, 7243 (2016). https://doi.org/10.1002/adma.201600846
- Y.X. Huang, F.M. Chen, L. Guo, H.Y. Yang, Ultrahigh performance of a novel electrochemical deionization system based on a NaTi2(PO4)3/rGO nanocomposite. J. Mater. Chem. A 5, 18157 (2017). https://doi.org/10.1039/C7TA03725B
- H. Wang, L. Wang, S.M. Chen, G.P. Li, J.J. Quan et al., Crystallographic-plane tuned Prussian-blue wrapped with RGO: A high-capacity, long-life cathode for sodium-ion batteries. J. Mater. Chem. A 5, 3569–3577 (2017)
- S. Porada, A. Shrivastava, P. Bukowska, P.M. Biesheuvel, K.C. Smith, Nickel hexacyanoferrate electrodes for continuous cation intercalation desalination of brackish water. Electrochim. Acta 255, 369 (2017). https://doi.org/10.1016/j.electacta.2017.09.137
- T. Kim, C.A. Gorski, B.E. Logan, Low energy desalination using battery electrode deionization. Environ. Sci. Technol. Lett. 4, 444 (2017). https://doi.org/10.1021/acs.estlett.7b00392
- D.J. Kim, R. Ponraj, A.G. Kannan, H.W. Lee, R. Fathi et al., Diffusion behavior of sodium ions in Na0.44MnO2 in aqueous and non-aqueous electrolytes. J. Power Sources 244, 758 (2013). https://doi.org/10.1016/j.jpowsour.2013.02.090
- J. Lee, J. Lee, J. Ahn, K. Jo, S.P. Hong et al., Enhancement in desalination performance of battery electrodes via improved mass transport using a multichannel flow system. ACS Appl. Mater. Interfaces 11, 36580 (2019). https://doi.org/10.1021/acsami.9b100
References
G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater et al., Recycling lithium-ion batteries from electric vehicles. Nature 575, 75 (2019). https://doi.org/10.1038/s41586-019-1682-5
X.K. Zhang, M.T. Xia, T.T. Liu, N. Peng, H.X. Yu et al., Copper hexacyanoferrate as ultra-high rate host for aqueous ammonium ion storage. Chem. Eng. J. 421, 127767 (2021). https://doi.org/10.1016/j.cej.2020.127767
F.L. Lama, D.R. Padrón, A.R.P. Santiago, M.J.M. Batista, A. Caballero et al., Non-porous carbonaceous materials derived from coffee waste grounds as highly sustainable anodes for lithium-ion batteries. J. Clean. Prod. 207, 411 (2019). https://doi.org/10.1016/j.jclepro.2018.10.024
T.T. Liu, X. Cheng, H.X. Yu, H.J. Zhu, N. Peng et al., An overview and future perspectives of aqueous rechargeable polyvalent ion batteries. Energy Storage Mater. 18, 68 (2019). https://doi.org/10.1016/j.ensm.2018.09.027
X.K. Zhang, M.T. Xia, H.X. Yu, J.W. Zhang, Z.W. Yang et al., Hydrogen bond assisted ultra-stable and fast aqueous NH4+ storage. Nano-Micro Lett. 13, 139 (2021). https://doi.org/10.1007/s40820-021-00671-x
T.T. Liu, N. Peng, X.K. Zhang, R.T. Zheng, M.T. Xia et al., Controllable defect engineering enhanced bond strength for stable electrochemical energy storage. Nano Energy 79, 105460 (2021). https://doi.org/10.1016/j.nanoen.2020.105460
D. Su, A. McDonagh, S.Z. Qiao, G.X. Wang, High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv. Mater. 29, 1604007 (2017). https://doi.org/10.1002/adma.201604007
H. Kim, J. Hong, Y.U. Park, J. Kim, I. Hwang et al., Sodium storage behavior in natural graphite using ether-based electrolyte systems. Adv. Funct. Mater. 25, 534 (2015). https://doi.org/10.1002/adfm.201402984
S. Karmakar, C. Chowdhury, A. Datta, Two-dimensional group monochalcogenides: Anode materials for Li-ion batteries. J. Phys. Chem. C 120, 14522 (2016). https://doi.org/10.1021/acs.jpcc.6b04152
S. Liu, G.L. Pan, G.R. Li, X.P. Gao, Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries. J. Mater. Chem. A 3, 959 (2015). https://doi.org/10.1039/C4TA04644G
H.X. Yu, C.C. Deng, H.H. Yan, M.T. Xia, X.K. Zhang et al., Cu3(PO4)2: Novel anion convertor for aqueous dual-ion battery. Nano-Micro Lett. 13, 41 (2021). https://doi.org/10.1007/s40820-020-00576-1
C.F. Wang, W. Zhang, W.W. Li, Y. Zhang, X.D. Tang et al., Magnetism tuned by intercalation of various metal ions in coordination polymer. Chin. Chem. Lett. 30, 1390 (2019). https://doi.org/10.1016/j.cclet.2019.03.007
W.L. Liu, H.Q. Zhi, X.B. Yu, Recent progress in phosphorus based anode materials for lithium/sodium ion batteries. Energy Storage Mater. 16, 290 (2019). https://doi.org/10.1016/j.ensm.2018.05.020
D.N. Lei, D.C. Lee, E.B. Zhao, A. Magasinski, H.R. Jung et al., Iron oxide nanoconfined in carbon nanopores as high capacity anode for rechargeable alkaline batteries. Nano Energy 48, 170 (2018). https://doi.org/10.1016/j.nanoen.2018.03.035
X.H. Cai, H.H. Yan, R.T. Zheng, H.X. Yu, Z.W. Yang et al., Cu2Nb34O87 nanowires as superior lithium storage host in advanced rechargeable battery. Inorg. Chem. Front. 8, 444 (2021). https://doi.org/10.1039/D0QI01075H
M.T. Xia, X.K. Zhan, H.X. Yu, Z.W. Yang, S. Chen et al., Hydrogen bond chemistry in Fe4[Fe(CN)6]3 host for aqueous NH4+ batteries. Chem. Eng. J. 421, 127759 (2021). https://doi.org/10.1016/j.cej.2020.127759
L.Y. Zhang, L. Chen, X.F. Zhou, Z.P. Liu, Morphology-dependent electrochemical performance of zinc hexacyanoferrate cathode for zinc-ion battery. Sci. Rep. 5, 18263 (2015). https://doi.org/10.1038/srep18263
B.Q. Wang, Y. Han, X. Wang, N. Bahlawane, H. Pan et al., Prussian blue analogs for rechargeable batteries. Science 3, 110 (2018). https://doi.org/10.1016/j.isci.2018.04.008
H.X. Yu, X. Cheng, M.T. Xia, T.T. Liu, W.Q. Ye et al., Pretreated commercial TiSe2 as an insertion-type potassium container for constructing “Rocking-Chair” type potassium ion batteries. Energy Storage Mater. 22, 154 (2019). https://doi.org/10.1016/j.ensm.2019.01.010
B.Q. Wang, Y. Han, Y.T. Chen, Y.J. Xu, H.G. Pan et al., Gradient substitution: an intrinsic strategy towards high performance sodium storage in Prussian blue-based cathodes. J. Mater. Chem. A 6, 8947 (2018). https://doi.org/10.1039/c8ta02291g
S.S. Yin, Q. Ji, X.X. Zuo, S. Xie, K. Fang et al., Silicon lithium-ion battery anode with enhanced performance: Multiple effects of silver nanoparticles. J. Mater. Sci. Technol. 34, 1902 (2018). https://doi.org/10.1016/j.jmst.2018.02.004
L.Y. Zhang, L. Chen, X.F. Zhou, Z.P. Liu, Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: The zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5, 1400930 (2015). https://doi.org/10.1002/aenm.201400930
W. Chu, Y. He, Y.S. Chu, L. Meng, J.B. Liu et al., A highly stable Cu(OH)2-poly (vinyl alcohol) nanocomposite membrane for dramatically enhanced direct borohydride fuel cell performance. J. Power Sources 467, 228312 (2020). https://doi.org/10.1016/j.jpowsour.2020.228312
S.W. Tao, J.T.S. Irvine, J.A. Kilner, An efficient solid oxide fuel cell based upon single-phase perovskites. Adv. Mater. 17, 1734 (2015). https://doi.org/10.1002/adma.200402007
J.H. Joo, R. Merkle, J.H. Kim, J. Maier, Measuring electrical properties of thin film fuel cell electrodes by in situ infrared spectroscopy. Adv. Mater. 24, 6507 (2012). https://doi.org/10.1002/adma.201202934
W. Wu, Y.Y. Zhang, D. Ding, T. He, A high-performing direct carbon fuel cell with a 3D architectured anode operated below 600 °C. Adv. Mater. 30, 1704745 (2018). https://doi.org/10.1002/adma.201704745
D. Banham, J.Y. Choi, T. Kishimoto, S.Y. Ye, Integrating PGM-free catalysts into catalyst layers and proton exchange membrane fuel cell devices. Adv. Mater. 31, 1804846 (2019). https://doi.org/10.1002/adma.201804846
M. Goor, S. Menkin, E. Peled, High power direct methanol fuel cell for mobility and portable applications. Int. J. Hydrogen Energy 44, 3138 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.019
E. Dogdibegovic, R.F. Wang, G.Y. Lau, M.C. Tucker, High performance metal-supported solid oxide fuel cells with infiltrated electrodes. J. Power Sources 410–411, 91–98 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.004
L. Yang, M.H. Huang, M. Lu, X.H. Guan, X. Guan et al., Facile design and synthesis of nickle-molybdenum oxide/sulfide composites with robust microsphere structure for high-performance supercapacitors. Chem. Eng. J. 364, 462 (2019). https://doi.org/10.1016/j.cej.2019.01.107
L. Zeng, X.C. Lou, J.H. Zhang, C. Wu, J. Liu et al., Carbonaceous mudstone and lignin-derived activated carbon and its application for supercapacitor electrode. Surf. Coat. Technol. 357, 580 (2019). https://doi.org/10.1016/j.surfcoat.2018.10.041
L. Liu, Y. Feng, J. Liang, S.Q. Li, B. Tian et al., Structure-designed fabrication of all-printed flexible in-plane solid-state supercapacitors for wearable electronics. J. Power Sources 425, 195 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.118
S.H. Lee, T.H. Lee, High performance hybrid supercapacitors with LiNi1/3Mn1/3Co1/3O2 activated carbon cathode and activated carbon anode. Int. J. Hydrogen Energy 43, 15365 (2018). https://doi.org/10.1016/j.ijhydene.2018.06.089
W.F. Wei, X.W. Cui, W.X. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40, 1697 (2011). https://doi.org/10.1039/C0CS00127A
E. Lim, H. Kim, C. Jo, J. Chun, K. Ku et al., Advanced hybrid supercapacitor based on a mesoporous niobium pentoxide/carbon as high-performance anode. ACS Nano 8, 8968 (2014). https://doi.org/10.1021/nn501972w
Y.Z. Jiang, S.L. Yu, B.Q. Wang, Y. Li, W.P. Sun et al., Prussian blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode. Adv. Funct. Mater. 29, 5315 (2016). https://doi.org/10.1002/adfm.201600747
E. Hitz, J.Y. Wan, A. Patel, Y. Xu, L. Meshi et al., Electrochemical intercalation of lithium ions into NbSe2 nanosheets. ACS Appl. Mater. Interfaces 8, 11390 (2016). https://doi.org/10.1021/acsami.5b11583
L.T. Yan, G. Chen, S. Sarker, S. Richins, H.Q. Wang et al., Ultrafine Nb2O5 nanocrystal coating on reduced graphene oxide as anode material for high performance sodium ion battery. ACS Appl. Mater. Interfaces 8, 22213 (2016). https://doi.org/10.1021/acsami.6b06516
M.A. Anderson, A.L. Cudero, J. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochim. Acta 55, 3845 (2010). https://doi.org/10.1016/j.electacta.2010.02.012
S.J. Kim, S.H. Ko, K.H. Kang, J. Han, Direct seawater desalination by ion concentration polarization. Nat. Nanotechnol. 5, 297 (2010). https://doi.org/10.1038/nnano.2010.34
H.D. Asfaw, C.W. Tai, L. Nyholm, K. Edström, Over-stoichiometric NbO2 nanoparticles for a high energy and power density lithium microbattery. Chem. Nano. Mat. 3, 646 (2017). https://doi.org/10.1002/cnma.201700141
C.D. Wessells, R.A. Huggins, Y. Cui, Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Commun. 2, 550 (2011). https://doi.org/10.1038/ncomms1563
C.D. Wessells, S.V. Peddada, R.A. Huggins, Y. Cui, Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett. 11, 5421 (2011). https://doi.org/10.1021/nl203193q
J.Y. Luo, Y.Y. Xia, Aqueous lithium-ion battery LiTi2(PO4)3/LiMn2O4 with high power and energy densities as well as superior cycling stability. Adv. Funct. Mater. 17, 3877 (2007). https://doi.org/10.1002/adfm.200700638
H. Manjunatha, G.S. Suresh, T.V. Venkatesha, Electrode materials for aqueous rechargeable lithium batteries. J. Solid State Electrochem. 15, 431 (2011). https://doi.org/10.1007/s10008-010-1117-6
J. Chen, K.L. Huang, S.Q. Liu, Insoluble metal hexacyanoferrates as supercapacitor electrodes. Electrochem. Commun. 10, 1851 (2008). https://doi.org/10.1016/j.elecom.2008.07.046
G.H. Yuan, J.M. Xiang, H.F. Jin, Y.Z. Jin, L.Z. Wu et al., Flexible free-standing Na4Mn9O18/reduced graphene oxide composite film as a cathode for sodium rechargeable hybrid aqueous battery. Electrochim. Acta 259, 647 (2018). https://doi.org/10.1016/j.electacta.2017.11.015
F. Zhang, W.F. Li, X.D. Xiang, M.L. Sun, Highly stable Na-storage performance of Na0.5Mn0.5Ti0.5O2 microrods as cathode for aqueous sodium-ion batteries. J. Electroanal. Chem. 802, 22 (2017). https://doi.org/10.1016/j.jelechem.2017.08.042
Z.G. Hou, X.N. Li, J.W. Liang, Y.C. Zhu, Y.T. Qian, An aqueous rechargeable sodium ion battery based on a NaMnO2-NaTi2(PO4)3 hybrid system for stationary energy storage. J. Mater. Chem. A 3, 1400 (2015). https://doi.org/10.1039/C4TA06018K
X.Q. Zhang, Z.G. Hou, X.N. Li, J.W. Liang, Y.C. Zhu et al., Na-birnessite with high capacity and long cycle life for rechargeable aqueous sodium-ion battery cathode electrodes. J. Mater. Chem. A 4, 856 (2016). https://doi.org/10.1039/C5TA08857G
Y.S. Wang, J. Liu, B. Lee, R.M. Qiao, Z.Z. Yang et al., Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. Nat. Commun. 6, 6401 (2015). https://doi.org/10.1038/ncomms7401
Q.T. Qu, L.L. Liu, Y.P. Wu, R. Holze, Electrochemical behavior of V2O5·06H2O nanoribbons in neutral aqueous electrolyte solution. Electrochim. Acta 96, 8 (2013). https://doi.org/10.1016/j.electacta.2013.02.078
Y. Liu, Y. Qiao, X.D. Lou, X.H. Zhang, W.X. Zhang et al., Hollow K027MnO2 nanospheres as cathode for high performance aqueous sodium ion batteries. ACS Appl. Mat. Interfaces 8, 14564 (2016). https://doi.org/10.1021/acsami.6b03089
F. Zhang, W.F. Li, X.D. Xiang, M.L. Sun, Nanocrystal-assembled porous Na3MgTi(PO4)3 aggregates as highly stable anode for aqueous sodium-ion batteries. Chem. Eur. J. 23, 12944 (2017). https://doi.org/10.1002/chem.201703044
A.J.F. Ropero, D. Saurel, B. Acebedo, T. Rojo, M.C. Cabanas, Electrochemical characterization of NaFePO4 as positive electrode in aqueous sodium-ion batteries. J. Power Sources 291, 40 (2015). https://doi.org/10.1016/j.jpowsour.2015.05.006
H.C. Gao, J.B. Goodenough, An aqueous symmetric sodium-ion battery with nasicon-structured Na3MnTi(PO4)3. Angew. Chem. Int. Ed. 55, 12768 (2016). https://doi.org/10.1002/ange.201606508
A.J.F. Ropero, M. Zarrabeitia, M. Reynaud, T. Rojo, M. Casas-Cabanas, Toward safe and sustainable batteries: Na4Fe3(PO4)2P2O7 as a low-cost cathode for rechargeable aqueous Na-ion batteries. J. Phys. Chem. C 122, 133 (2018). https://doi.org/10.1021/acs.jpcc.7b09803
P.R. Kumar, Y.H. Jung, C.H. Lim, D.K. Kim, Na3V2O2x(PO4)2F3-2x: a stable and high-voltage cathode material for aqueous sodium-ion batteries with high energy density. J. Mater. Chem. A 3, 6271 (2015). https://doi.org/10.1039/C5TA00980D
M. Vujković, S. Mentus, Potentiodynamic and galvanostatic testing of NaFe0.95V0.05PO4 composite in aqueous NaNO3 solution, and the properties of aqueous Na1.2V3O8/NaNO3/NaFe0.95V0.05PO4 battery. J. Power Sources 325, 185 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.031
L. Zhou, Z.K. Yang, C.Y. Li, B.W. Chen, Y.F. Wang et al., Prussian blue as positive electrode material for aqueous sodium-ion capacitor with excellent performance. RSC Adv. 6, 109340 (2016). https://doi.org/10.1039/C6RA21500A
C.D. Wessells, M.T. McDowell, S.V. Peddada, M. Pasta, R.A. Huggins et al., Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage. ACS Nano 6, 1688 (2012). https://doi.org/10.1021/nn204666v
W. Zhang, W.Q. Chen, X.L. Zhao, Q. Dang, Y.C. Li et al., An auto-switchable dual-mode seawater energy extraction system enabled by metal-organic frameworks. Angew. Chem. Int. Ed. 58, 7431 (2019). https://doi.org/10.1002/anie.201901759
X.Y. Wu, Z.L. Jian, Z.F. Li, X.L. Ji, Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries. Electrochem. Commun. 77, 54 (2017). https://doi.org/10.1016/j.elecom.2017.02.012
Y.C. Li, Q. Dang, C.J. Shi, W. Zhang, C.B. Jing et al., A flexible cyanometallate coordination polymer electrode for electrochemical dual-mode seawater energy extraction. J. Mater. Chem. A 7, 23084 (2019). https://doi.org/10.1039/c9ta07540b
J.W. Nai, X.W. Lou, Hollow structures based on Prussian blue and its analogs for electrochemical energy storage and conversion. Adv. Mater. 31, 1703825 (2019). https://doi.org/10.1002/adma.201706825
Z.K. Le, W.W. Li, Q. Dang, C.B. Jing, W. Zhang et al., A high-power seawater battery working in a wide temperature range enabled by an ultra-stable Prussian blue analogue cathode. J. Mater. Chem. A 9, 8685 (2021). https://doi.org/10.1039/d0ta12052a
X.L. Jiang, H.J. Liu, J. Song, C.F. Yin, H.Y. Xu, Hierarchical mesoporous octahedral K2Mn1-xCoxFe(CN)6 as a superior cathode material for sodium-ion batteries. J. Mater. Chem. A 4, 16205 (2016). https://doi.org/10.1039/C6TA06658E
W. Zhang, Y.C. Li, C.J. Shi, R.J. Qi, M. Hu, Single-crystal lattice filling in connected spaces inside 3D networks. J. Am. Chem. Soc. 143, 6447 (2021). https://doi.org/10.1021/jacs.0c12545
B. Paulitsch, J. Yun, A.S. Bandarenka, Electrodeposited Na2VOx[Fe(CN)6] films As a cathode material for aqueous Na-ion batteries. ACS Appl. Mater. Interfaces 9, 8107 (2017). https://doi.org/10.1021/acsami.6b15666
A.L. Lipson, S.D. Han, S. Kim, B.F. Pan, N.Y. Sa et al., Nickel hexacyanoferrate, a versatile intercalation host for divalent ions from nonaqueous electrolytes. J. Power Sources 325, 646 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.019
V.D. Neff, Electrochemical oxidation and reduction of thin films of Prussian blue. J. Electrochem. Soc. 125, 886 (1978). https://doi.org/10.1149/1.2131575
N. Imanishi, T. Morikawa, J. Kondo, Y. Takeda, O., Yamamoto, et al., Lithium intercalation behavior into iron cyanide complex as positive electrode of lithium secondary battery. J. Power Sources 79, 215 (1999). https://doi.org/10.1016/S0378-7753(99)00061-0
N. Imanishi, T. Morikawa, J. Kondo, R. Yamane, Y. Takeda et al., Lithium intercalation behavior of iron cyanometallates. J. Power Sources 81–82, 530 (1999). https://doi.org/10.1016/S0378-7753(98)00228-6
C.D. Wessells, S.V. Peddada, M.T. McDowell, R.A. Huggins, Y. Cui, The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes. J. Electrochem. Soc. 2, A98 (2012). https://doi.org/10.1149/2.060202jes
R.Y. Wang, C.D. Wessells, R.A. Huggins, Y. Cui, Highly reversible open framework nanoscale electrodes for divalent ion batteries. Nano Lett. 13, 5748 (2013). https://doi.org/10.1021/nl403669a
R.Y. Wang, B. Shyam, K.H. Stone, J.N. Weker, M. Pasta et al., Reversible multivalent (monovalent, divalent, trivalent) ion insertion in open framework materials. Adv. Energy Mater. 5, 1401869 (2015). https://doi.org/10.1002/aenm.201401869
L.T. Ma, S.M. Chen, C.B. Long, X.L. Li, Y.W. Zhao et al., Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction. Adv. Energy Mater. 9, 1902446 (2019). https://doi.org/10.1002/aenm.201902446
D.H. Nam, M.A. Lumley, K.S. Choi, A desalination battery combining Cu3[Fe(CN)6]2 as a Na-storage electrode and Bi as a Cl-storage electrode enabling membrane-free desalination. Chem. Mater. 31, 1460 (2019). https://doi.org/10.1021/acs.chemmater.9b00084
X.Y. Wu, Y.T. Qi, J.J. Hong, Z.F. Li, A.S. Hernandez et al., Rocking-Chair NH4-ion battery: a highly reversible aqueous energy storage system. Angew. Chem. Int. Ed. 56, 13026 (2017). https://doi.org/10.1002/anie.201707473
W.H. Ren, X.J. Chen, C. Zhao, Ultrafast aqueous potassium-ion batteries cathode for stable intermittent grid-scale energy storage. Adv. Energy Mater. 24, 1801413 (2018). https://doi.org/10.1002/aenm.201801413
X.Y. Wu, J.J. Hong, W.C. Shin, L. Ma, T.C. Liu et al., Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries. Nat. Energy 4, 123 (2019). https://doi.org/10.1038/s41560-018-0309-7
A.J. Zhou, W.J. Cheng, W. Wang, Q. Zhao, J. Xie et al., Hexacyanoferrate-type Prussian blue analogs: principles and advances toward high-performance sodium and potassium ion batteries. Adv. Energy Mater. 2, 2000943 (2020). https://doi.org/10.1002/aenm.202000943
V. Verma, S. Kumar Jr, W.M.R. Satish, M. Srinivasan, Progress in rechargeable aqueous zinc- and aluminum-ion battery electrodes: Challenges and outlook. Adv. Sustainable Syst. 3, 1800111 (2019). https://doi.org/10.1002/adsu.201800111
S. Qiu, Y.K. Xu, X.Y. Wu, X.L. Ji, Prussian blue analogues as electrodes for aqueous monovalent ion batteries. Electrochem. Energ. Rev. (2021). https://doi.org/10.1007/s41918-020-00088-x
L.T. Ma, H.L. Cui, S.M. Chen, X.L. Li, B.B. Dong et al., Accommodating diverse ions in Prussian blue analogs frameworks for rechargeable batteries: The electrochemical redox reactions. Nano Energy 81, 105632 (2021). https://doi.org/10.1016/j.nanoen.2020.105632
A. Paolella, C. Faure, V. Timoshevskii, S. Marras, G. Bertoni et al., A review on hexacyanoferrate-based materials for energy storage and smart windows: Challenges and perspectives. J. Mater. Chem. A 5, 18919 (2017). https://doi.org/10.1039/C7TA05121B
X.Y. Guo, Z.B. Wang, Z. Deng, X.G. Li, B. Wang et al., Water contributes to higher energy density and cycling stability of Prussian blue analogue cathodes for aqueous sodium-ion batteries. Chem. Mater. 31, 5933 (2019). https://doi.org/10.1021/acs.chemmater.9b02269
C.T. Gao, Y.Z. Liu, L. Zheng, E. Feng, S. Sim et al., The effect of electrolyte type on the Li ion intercalation in copper hexacyanoferrate. J. Electrochem. Soc. A 166, 1732 (2019). https://doi.org/10.1149/2.0331910jes
S. Phadke, R. Mysyk, M. Anouti, Effect of cation (Li+, Na+, K+, Rb+, Cs+) in aqueous electrolyte on the electrochemical redox of Prussian blue analogue (PBA) cathodes. J. Energy Chem. 40, 31 (2020). https://doi.org/10.1016/j.jechem.2019.01.025
M. Pasta, C.D. Wessells, R.A. Huggins, Y. Cui, A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. Commun. 3, 1149 (2012). https://doi.org/10.1038/ncomms2139
Q. Yang, F.N. Mo, Z.X. Liu, L.T. Ma, X.L. Li et al., Activating C-coordinated iron of iron hexacyanoferrate for Zn hybrid-ion batteries with 10000-cycle lifespan and superior rate capability. Adv. Mater. 31, 1901521 (2019). https://doi.org/10.1002/adma.201901521
W.J. Li, C. Han, G. Cheng, S.L. Chou, H.K. Liu, S.X. Dou, Chemical properties, structural properties, and energy storage applications of Prussian blue analogues. Small 15, 1900470 (2019). https://doi.org/10.1002/smll.201900470
X.H. Ning, S. Phadke, B. Chung, H.Y. Yin, P. Burke et al., Self-healing Li-Bi liquid metal battery for grid-scale energy storage. J. Power Sources 275, 370 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.173
X.Y. Wu, Y.L. Cao, X.P. Ai, J.F. Qian, H.Y. Yang, A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3-Na2NiFe(CN)6 intercalation chemistry. Electrochem. Commun. 31, 145 (2013). https://doi.org/10.1016/j.elecom.2013.03.013
L.X. Shen, Y. Jiang, Y.F. Liu, J.L. Ma, T.R. Sun et al., High-stability monoclinic nickel hexacyanoferrate cathode materials for ultrafast aqueous sodium ion battery. Chem. Eng. J. 388, 124228 (2020). https://doi.org/10.1016/j.cej.2020.124228
C. Ling, J.J. Chen, F. Mizuno, First-principles study of alkali and alkaline earth ion intercalation in iron hexacyanoferrate: The important role of ionic radius. J. Phys. Chem. 117, 21158 (2013). https://doi.org/10.1021/jp4078689
F. Scholz, A. Dostal, The formal potentials of solid metal hexacyanometalates. Angew. Chem. Int. Ed. 34, 2685 (1996). https://doi.org/10.1002/anie.199526851
X.Y. Wu, M.Y. Sun, Y.F. Shen, J.F. Qian, Y.L. Cao et al., Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6-NaTi2(PO4)3 intercalation chemistry. Chemsuschem 7, 407 (2014). https://doi.org/10.1002/cssc.201301036
W.F. Li, F. Zhang, X.D. Xiang, X.C. Zhang, Nickel-substituted copper hexacyanoferrates as superior cathode for aqueous sodium-ion batteries. ChemElectroChem 5, 350–354 (2018). https://doi.org/10.1002/celc.201700958
L. Niu, L. Chen, J. Zhang, P. Jiang, Z.P. Liu, Revisiting the open-framework zinc hexacyanoferrate: the role of ternary electrolyte and sodium-ion intercalation mechanism. J. Power Source 380, 135 (2018). https://doi.org/10.1016/j.jpowsour.2018.01.083
B. He, P. Man, Q.C. Zhang, C. Wang, Z.Y. Zhou et al., Conversion synthesis of self-standing potassium zinc hexacyanoferrate arrays as cathodes for high-voltage flexible aqueous rechargeable sodium-ion batteries. Small 15, 1905115 (2019). https://doi.org/10.1002/smll.201905115
A.J.F. Ropero, M.J.P. Muñoz, E.C. Artínez, T. Rojo, M.C. Cabanas, Electrochemical characterization of NaFe2(CN)6 Prussian blue as positive electrode for aqueous sodium-ion batteries. Electrochim. Acta 210, 352 (2016). https://doi.org/10.1016/j.electacta.2016.05.176
F.P. Zhao, Y.Y. Wang, X.N. Xu, Y.L. Liu, R. Song et al., Cobalt hexacyanoferrate nanoparticles as a high-rate and ultra-stable supercapacitor electrode material. ACS Appl. Mat. Interfaces 6, 11007 (2014). https://doi.org/10.1021/am503375h
X.Y. Wu, Y. Luo, M.Y. Sun, J.F. Qian, Y.L. Cao et al., Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries. Nano Energy 13, 117 (2015). https://doi.org/10.1016/j.nanoen.2015.02.006
X.Y. Wu, M.Y. Sun, S. Guo, J.F. Qian, Y. Liu et al., Vacancy-free Prussian blue nanocrystals with high capacity and superior cyclability for aqueous sodium-ion batteries. ChemNanoMat 1, 1883 (2015). https://doi.org/10.1002/cnma.201500021
K. Nakamoto, R. Sakamoto, M. Ito, A. Kitajou, S. Okada, Effect of concentrated electrolyte on aqueous sodium-ion battery with sodium manganese hexacyanoferrate cathode. Electrochemistry 85, 179 (2017). https://doi.org/10.5796/electrochemistry.85.179
M. Pasta, R.Y. Wang, R. Ruffo, R. Qiao, H.W. Lee et al., Manganese-cobalt hexacyanoferrate cathodes for sodium-ion batteries. J. Mater. Chem. A 4, 4211 (2016). https://doi.org/10.1039/C5TA10571D
L. Chen, L.Y. Zhang, X.F. Zhou, Z.P. Liu, Aqueous batteries based on mixed monovalence metal ions: A new battery family. Chemsuschem 7, 2295 (2014). https://doi.org/10.1002/cssc.201402084
P. Jiang, H.Z. Shao, L. Chen, J.W. Feng, Z.P. Liu, Ion-selective copper hexacyanoferrate with an open-framework structure enables high-voltage aqueous mixed-ion batteries. J. Mater. Chem. A 5, 16740 (2017). https://doi.org/10.1039/C7TA04172A
J. Zhang, L. Chen, L. Niu, Z.P. Liu, Iron hexcyanoferrate nanocubes as low-strain cathode materials for aqueous Li/Na mixed-ion batteries. ACS Appl. Nano Mater. 3, 1318 (2013). https://doi.org/10.1021/acsanm.9b02167
C. Li, X.S. Wang, W.J. Deng, C.Y. Liu, J.T. Chen et al., Size engineering and crystallinity control enable high-capacity aqueous potassium-ion storage of Prussian white analogues. ChemElectroChem 5, 3887 (2018). https://doi.org/10.1002/celc.201801277
P. Padigi, J. Thiebes, M. Swan, G. Goncher, D. Evans et al., Prussian green: a high rate capacity cathode for potassium ion batteries. Electrochim. Acta 166, 32 (2015). https://doi.org/10.1016/j.electacta.2015.03.084
M.M. Giner, R.S. Gual, J. Romero, A. Alberola, L.G. Cruz et al., Prussian blue@MoS2 layer composites as highly efficient cathodes for sodium- and potassium-ion batteries. Adv. Funct. Mater. 28, 1706125 (2018). https://doi.org/10.1002/adfm.201706125
G.J. Liang, F.J. Mo, X.L. Ji, C.Y. Zhi, Non-metallic charge carriers for aqueous batteries. Nat. Rev. Mater. 6, 109 (2020). https://doi.org/10.1038/s41578-020-00241-4
X.Y. Wu, S. Qiu, Y.K. Xu, L. Ma, X.X. Bi et al., Hydrous nickel-iron Turnbull’s blue as a high-rate and low-temperature proton electrode. ACS Appl. Mater. Interfaces 12, 9201 (2020). https://doi.org/10.1021/acsami.9b20320
C.Y. Li, J.H. Wu, F.X. Ma, Y.H. Chen, L.J. Fu et al., High-rate and High-voltage aqueous rechargeable zinc ammonium hybrid battery from selective cation intercalation cathode. ACS Appl. Energy Mater. 2, 6984 (2019). https://doi.org/10.1021/acsaem.9b01469
X.Y. Wu, Y.K. Xu, H. Jiang, Z.X. Wei, J. Hong et al., NH4+ topotactic insertion in Berlin green: an exceptionally long-cycling cathode in aqueous ammonium ion batteries. ACS Appl. Energy Mater. 1, 3077 (2018). https://doi.org/10.1021/acsaem.8b00789
C.Y. Li, W.Q. Yan, S.S. Liang, P. Wang, J. Wang et al., Achieving a high-performance Prussian blue analogue cathode with ultra-stable redox reaction for ammonium ion storage. J. Name. 4, 991 (2019). https://doi.org/10.1039/C8NH00484F
E. Levi, M.D. Levi, O. Chasid, D. Aurbach, A review on the problems of the solid state ions diffusion in cathodes for rechargeable Mg batteries. J. Electroceram 22, 13 (2009). https://doi.org/10.1007/s10832-007-9370-5
L.P. Wang, P.F. Wang, T.S. Wang, Y.X. Yin, Y.G. Guo et al., Prussian blue nanocubes as cathode materials for aqueous Na-Zn hybrid batteries. J. Power Sources 355, 18 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.049
D.L. Chao, C.R. Zhu, M. Song, P. Liang, X. Zhang et al., A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv. Mater. 30, 1803181 (2018). https://doi.org/10.1002/adma.201803181
S. Kawamura, H. Kuraku, K. Kurotaki, The composition and ion-exchange behavior of zinc hexacyanoferrate(II) analogues. Anal. Chim. Acta 49, 317 (1970). https://doi.org/10.1016/S0003-2670(00)86793-8
Y. Mizuno, M. Okubo, E. Hosono, T. Kudo, K. Oh-ishi et al., Electrochemical Mg2+ intercalation into a bimetallic CuFe Prussian blue analog in aqueous electrolytes. J. Mater. Chem. A 1, 13019 (2013). https://doi.org/10.1039/C3TA13205F
L. Chen, J.L. Bao, X. Dong, D.G. Truhlar, Y. Wang et al., Aqueous Mg-ion battery based on polyimide anode and Prussian blue cathode. ACS Energy Lett. 2, 1115 (2017). https://doi.org/10.1021/acsenergylett.7b00040
Z.J. Jia, B.G. Wang, Y. Wang, Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries. Mater. Chem. Phys. 149–150, 601 (2015). https://doi.org/10.1016/j.matchemphys.2014.11.014
R. Trcoli, F.L. Mantia, An aqueous zinc-ion battery based on copper hexacyanoferrate. Chemsuschem 8, 481 (2015). https://doi.org/10.1002/cssc.201403143
G. Kasiria, R. Trócolib, A.B. Hashemia, F.L. Mantia, An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries. Electrochim. Acta 222, 74 (2016). https://doi.org/10.1016/j.electacta.2016.10.155
J. Lim, G. Kasiri, R. Sahu, K. Schweinar, K. Hengge et al., Irreversible structural changes of copper hexacyanoferrate used as cathode in Zn-ion batteries. Chem. Eur. J. 26, 4917 (2020). https://doi.org/10.1002/chem.201905384
G. Kasiri, J. Glenneberg, A.B. Hashemi, R. Kun, F.L. Mantia, Mixed copper-zinc hexacyanoferrates as cathode materials for aqueous zinc-ion batteries. Energy Storage Mater. 19, 360 (2019). https://doi.org/10.1016/j.ensm.2019.03.006
M.Y. Kiriukhin, K.D. Collins, Dynamic hydration numbers for biologically important ions. Biophys. Chem. 99, 155 (2002). https://doi.org/10.1016/S0301-4622(02)00153-9
S. Gheytani, Y.L. Liang, F.L. Wu, Y. Jing, H. Dong et al., An aqueous Ca-ion battery. Adv. Sci. 4, 1700465 (2017). https://doi.org/10.1002/advs.201700465
M. Adil, A. Sarkar, A. Roy, M.R. Panda, A. Nagendra et al., Practical aqueous calcium-ion battery full-cells for future stationary storage. ACS Appl. Mater. Interfaces 12, 11489 (2020). https://doi.org/10.1021/acsami.9b20129
C. Lee, S.K. Jeong, Modulating the hydration number of calcium ions by varying the electrolyte concentration: Electrochemical performance in a Prussian blue electrode/aqueous electrolyte system for calcium-ion batteries. Electrochim. Acta 265, 430 (2018). https://doi.org/10.1016/j.electacta.2018.01.172
A. Holland, R.D. Mckerracher, A. Cruden, R.G.A. Wills, An aluminium battery operating with an aqueous electrolyte. J. Appl. Electrochem. 48, 243 (2018). https://doi.org/10.1007/s10800-018-1154-x
Y. Ru, S.S. Zheng, H.G. Xue, H. Pang, Potassium cobalt hexacyanoferrate nanocubic assemblies for high-performance aqueous aluminum ion batteries. Chem. Eng. J. 382, 122853 (2020). https://doi.org/10.1016/j.cej.2019.122853
Y. Gao, H.Y. Yang, X.R. Wang, Y. Bai, N. Zhu et al., The compensation effect mechanism of Fe-Ni mixed Prussian blue analogues in aqueous rechargeable aluminum-ion batteries. Chemsuschem 13, 732 (2020). https://doi.org/10.1002/cssc.201903067
X.Y. Wu, A. Markir, Y.K. Xu, C. Zhang, D.P. Leonard et al., A rechargeable battery with an iron metal anode. Adv. Funct. Mater. 29, 1900911 (2019). https://doi.org/10.1002/adfm.201900911
D.H. Nam, K.S. Choi, Electrochemical desalination using Bi/BiOCl electrodialysis cells. ACS Sustainable Chem. Eng. 6, 15455 (2018). https://doi.org/10.1021/acssuschemeng.8b03906
K.C. Smith, R. Dmello, Na-Ion desalination (NID) enabled by Na-blocking membranes and symmetric Na-intercalation: Porous-electrode modeling. J. Electrochem. Soc. 163, A530 (2016). https://doi.org/10.1149/2.0761603jes
K.C. Smith, Theoretical evaluation of electrochemical cell architectures using cation intercalation electrodes for desalination. Electrochim. Acta 230, 333 (2017). https://doi.org/10.1016/j.electacta.2017.02.006
M.E. Suss, V. Presser, Water desalination with energy storage electrode materials. Joule 2, 10 (2018). https://doi.org/10.1016/j.joule.2017.12.010
S. Shanbhag, Y. Bootwala, J.F. Whitacre, M.S. Mauter, Ion transport and competition effects on NaTi2(PO4)3 and Na4Mn9O18 selective insertion electrode performance. Langmuir 33, 12580 (2017). https://doi.org/10.1021/acs.langmuir.7b02861
M. Pasta, C.D. Wessells, Y. Cui, F.L. Mantia, A desalination battery. Nano Lett. 12, 839 (2012). https://doi.org/10.1021/nl203889e
J. Lee, S. Kim, J. Yoon, Rocking chair desalination battery based on Prussian blue electrodes. ACS Omega 2, 1653 (2017). https://doi.org/10.1021/acsomega.6b00526
D. Desai, E.S. Beh, S. Sahu, V. Vedharathinam, Q. van Overmeere et al., Electrochemical desalination of seawater and hypersaline brines with coupled electricity storage. ACS Energy Lett. 3, 375 (2018). https://doi.org/10.1021/acsenergylett.7b01220
V.G. Gude, N. Nirmalakhandan, N.S. Deng, Renewable and sustainable approaches for desalination. Renew. Sust. Energ. Rev. 14, 2641 (2010). https://doi.org/10.1016/j.rser.2010.06.008
S. Burn, M. Hoang, D. Zarzo, F. Olewniak, E. Campos et al., Desalination techniques-a review of the opportunities for desalination in agriculture. Desalination 364, 2 (2015). https://doi.org/10.1016/j.desal.2015.01.041
T.M. Missimer, R.G. Maliva, Environmental issues in seawater reverse osmosis desalination: Intakes and outfalls. Desalination 434, 198 (2018). https://doi.org/10.1016/j.desal.2017.07.012
D.H. Nam, K.S. Choi, Bismuth as a new chloride-storage electrode enabling the construction of a practical high capacity desalination battery. J. Am. Chem. Soc. 139, 11055 (2017). https://doi.org/10.1021/jacs.7b01119
Z. Li, D.B. Ravnsbæk, K. Xiang, Y.M. Chiang, Na3Ti2(PO4)3 as a sodium-bearing anode for rechargeable aqueous sodium-ion batteries. Electrochem. Commun. 44, 12 (2014). https://doi.org/10.1016/j.elecom.2014.04.003
S.H. Yu, M. Shokouhimehr, T. Hyeon, Y.E. Sung, Iron hexacyanoferrate nanoparticles as cathode materials for Lithium and sodium rechargeable batteries. ECS Electrochem. Lett. 2, A39 (2013). https://doi.org/10.1149/2.008304eel
W.Z. Gong, M. Wan, R. Zeng, Z.X. Rao, S. Su et al., Ultrafine Prussian blue as a high-rate and long-life sodium-ion battery cathode. Energy Technol. 7, 1900108 (2019). https://doi.org/10.1002/ente.201900108
Q.T. Qu, L.J. Fu, X.Y. Zhan, D. Samuelis, J. Maier et al., Porous LiMn2O4 as cathode material with high power and excellent cycling for aqueous rechargeable lithium batteries. Energy Environ. Sci. 4, 3985 (2011). https://doi.org/10.1039/C0EE00673D
C.Y. Li, W.Q. Yan, S.S. Liang, P. Wang, J. Wang et al., Achieving a high-performance Prussian blue analogue cathode with an ultra-stable redox reaction for ammonium ion storage. Nanoscale Horiz. 4, 991–998 (2019). https://doi.org/10.1039/C8NH00484F
Y. You, H.R. Yao, S. Xin, Y.X. Yin, T.T. Zuo et al., Subzero-temperature cathode for a sodium-ion battery. Adv. Mater. 28, 7243 (2016). https://doi.org/10.1002/adma.201600846
Y.X. Huang, F.M. Chen, L. Guo, H.Y. Yang, Ultrahigh performance of a novel electrochemical deionization system based on a NaTi2(PO4)3/rGO nanocomposite. J. Mater. Chem. A 5, 18157 (2017). https://doi.org/10.1039/C7TA03725B
H. Wang, L. Wang, S.M. Chen, G.P. Li, J.J. Quan et al., Crystallographic-plane tuned Prussian-blue wrapped with RGO: A high-capacity, long-life cathode for sodium-ion batteries. J. Mater. Chem. A 5, 3569–3577 (2017)
S. Porada, A. Shrivastava, P. Bukowska, P.M. Biesheuvel, K.C. Smith, Nickel hexacyanoferrate electrodes for continuous cation intercalation desalination of brackish water. Electrochim. Acta 255, 369 (2017). https://doi.org/10.1016/j.electacta.2017.09.137
T. Kim, C.A. Gorski, B.E. Logan, Low energy desalination using battery electrode deionization. Environ. Sci. Technol. Lett. 4, 444 (2017). https://doi.org/10.1021/acs.estlett.7b00392
D.J. Kim, R. Ponraj, A.G. Kannan, H.W. Lee, R. Fathi et al., Diffusion behavior of sodium ions in Na0.44MnO2 in aqueous and non-aqueous electrolytes. J. Power Sources 244, 758 (2013). https://doi.org/10.1016/j.jpowsour.2013.02.090
J. Lee, J. Lee, J. Ahn, K. Jo, S.P. Hong et al., Enhancement in desalination performance of battery electrodes via improved mass transport using a multichannel flow system. ACS Appl. Mater. Interfaces 11, 36580 (2019). https://doi.org/10.1021/acsami.9b100