Cu3(PO4)2: Novel Anion Convertor for Aqueous Dual-Ion Battery
Corresponding Author: Jie Shu
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 41
Abstract
Electrode materials which can reversibly react with anions are of interest for aqueous dual-ion batteries. Herein, we propose a novel anion electrode, Cu3(PO4)2, for constructing an aqueous dual-ion cell. The Cu3(PO4)2 electrode can operate in a quasi-neutral condition and deliver a reversible capacity of 115.6 mAh g−1 with a well-defined plateau at −0.17 V versus Ag/AgCl. Its reaction mechanism shows that Cu3(PO4)2 decomposes into Cu2O and subsequently is converted into Cu during the initial discharge process. In the following charge process, Cu is oxidized into Cu2O. It suggests Cu3(PO4)2 reacts with OH− ions instead of PO43− ions after the initial discharge process and its potential thereby depends upon the OH− ions concentration in electrolyte. Additionally, an aqueous dual-ion cell is built by using pretreated Cu3(PO4)2 and Na0.44MnO2 as anode and cathode, respectively. During cycling, OH− ions and Na+ ions in electrolyte can be stored and released. Such a cell can provide a discharge capacity of 52.6 mAh g−1 with plateaus at 0.70 and 0.45 V, exhibiting the potential of application. This work presents an available aqueous dual-ion cell and provides new insights into renewable energy storage and adjustment of the OH− ions concentration in aqueous buffer solution.
Highlights:
1 A novel anion electrode Cu3(PO4)2 is proposed at the first time.
2 The reaction mechanism of Cu3(PO4)2 electrode is investigated.
3 The dual-ion cell is constructed by using pretreated Cu3(PO4)2 and Na0.44MnO2.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652 (2008). https://doi.org/10.1038/451652a
- J. Meng, Z. Yang, L. Chen, H. Qin, F. Cui et al., Energy storage performance of CuO as a cathode material for aqueous zinc ion battery. Mater. Today Energy 15, 100370 (2020). https://doi.org/10.1016/j.mtener.2019.100370
- X. Zhou, Q. Liu, C. Jiang, B. Ji, X. Ji et al., Strategies towards low-cost dual-ion batteries with high performance. Angew. Chem. Int. Ed. 132, 3830 (2020). https://doi.org/10.1002/ange.201814294
- M. Wang, Y. Tang, A review on the features and progress of dual-ion batteries. Adv. Energy Mater. 8, 1703320 (2018). https://doi.org/10.1002/aenm.201703320
- T. Liu, X. Zhang, M. Xia, H. Yu, N. Peng et al., Functional cation defects engineering in TiS2 for high-stability anode. Nano Energy 67, 104295 (2020). https://doi.org/10.1016/j.nanoen.2019.104295
- H. Yu, X. Cheng, M. Xia, T. Liu, W. Ye et al., Pretreated commercial TiSe2 as an insertion-type potassium container for constructing “Rocking-Chair” type potassium ion batteries. Energy Storage Mater. 22, 154 (2019). https://doi.org/10.1016/j.ensm.2019.01.010
- J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001). https://doi.org/10.1038/35104644
- B. Dunn, H. Kamath, J. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334, 928 (2011). https://doi.org/10.1126/science.1212741
- M. Inagaki, Applications of graphite intercalation compounds. J. Mater. Res. 4, 1560 (1989). https://doi.org/10.1557/JMR.1989.1560
- V.W. Rüdorff, U. Hofmann, Über Graphitsalze. Z. Anorg. Allg. Chem. 238, 1–50 (1938). https://doi.org/10.1002/zaac.19382380102
- F.P. McCullough, C.A. Levine, R.V. Snelgrove, Secondary battery (Dow Chemical Co.), US4830938, (1989)
- J.R. Dahn, J.A. Seel, Energy and capacity projections for practical dual-graphite cells. J. Electrochem. Soc. 147, 899 (2000). https://doi.org/10.1149/1.1393289
- J. Fan, Z. Zhang, Y. Liu, A. Wang, L. Li et al., An excellent rechargeable PP14TFSI ionic liquid dual-ion battery. Chem. Commun. 53, 6891 (2017). https://doi.org/10.1039/c7cc02534c
- G. Wang, F. Wang, P. Zhang, J. Zhang, T. Zhang et al., Polarity-switchable symmetric graphite batteries with high energy and high power densities. Adv. Mater. 30, 1802949 (2018). https://doi.org/10.1002/adma.201802949
- T. Placke, O. Fromm, S.F. Lux, P. Bieker, S. Rothermel et al., Reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells. J. Electrochem. Soc. 159, A1755 (2012). https://doi.org/10.1149/2.011211jes
- H. Yang, X. Shi, T. Deng, T. Qin, L. Sui et al., Carbon-based dual-ion battery with enhanced capacity and cycling stability. ChemElectroChem 5, 3612 (2018). https://doi.org/10.1002/celc.201801108
- Z. Li, J. Liu, J. Li, F. Kang, F. Gao, A novel graphite-based dual ion battery using PP14NTF2 ionic liquid for preparing graphene structure. Carbon 138, 52 (2018). https://doi.org/10.1016/j.carbon.2018.06.002
- A. Wang, W. Yuan, J. Fan, L. Li, A dual-graphite battery with pure 1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide as the electrolyte. Energy Technol. 6, 2172–2178 (2018). https://doi.org/10.1002/ente.201800269
- Y. Huang, R. Xiao, Z. Ma, W. Zhu, Developing dual-graphite batteries with pure 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid as the electrolyte. ChemElectroChem 6, 4681 (2019). https://doi.org/10.1002/celc.201901171
- Y. Fang, C. Chen, J. Fan, M. Zhang, W. Yuan et al., Reversible interaction of 1-butyl-1-methylpyrrolidinium cations with 5,7,12,14-pentacenetetrone from a pure ionic liquid electrolyte for dual-ion batteries. Chem. Commun. 55, 8333 (2019). https://doi.org/10.1039/c9cc04626g
- Z. Lv, M. Han, J. Sun, L. Hou, H. Chen et al., A high discharge voltage dual-ion rechargeable battery using pure (DMPI+) (AlCl4-) ionic liquid electrolyte. J. Power Sources 418, 233 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.035
- Z. Lv, J. Sun, S. Zhou, Y. Bian, H. Chen et al., Electrochemical and physical properties of imidazolium chloride ionic liquids with pyrrolidinium or piperidinium cation addition and their application in dual-ion batteries. Energy Technol. 8, 2000432 (2020). https://doi.org/10.1002/ente.202000432
- M. Pasta, C.D. Wessells, Y. Cui, F.L. Mantia, A desalination battery. Nano Lett. 12, 839 (2012). https://doi.org/10.1021/nl203889e
- D. Nam, K. Choi, Bismuth as a new chloride-storage electrode enabling the construction of a practical high capacity desalination battery. J. Am. Chem. Soc. 139, 11055 (2017). https://doi.org/10.1021/jacs.7b01119
- F. Chen, Y. Huang, D. Kong, M. Ding, S. Huang et al., NaTi2(PO4)3–Ag electrodes based desalination battery and energy recovery. FlatChem 8, 9 (2018). https://doi.org/10.1016/j.flatc.2018.02.001
- L. Wang, C. Mu, H. Li, F. Li, A dual-function battery for desalination and energy storage. Inorg. Chem. Front. 5, 2522 (2018). https://doi.org/10.1039/c8qi00704g
- Y. Yuan, Z. Chen, H. Yu, X. Zhang, T. Liu et al., Heteroatom-doped carbon-based materials for lithium and sodium ion batteries. Energy Storage Mater. 32, 65 (2020). https://doi.org/10.1016/j.ensm.2020.07.027
- A. Eftekhari, Z. Jian, X. Ji, Potassium secondary batteries. ACS Appl. Mater. Interfaces 9, 4404 (2017). https://doi.org/10.1021/acsami.6b07989
- C. Zhang, Y. Xu, M. Zhou, L. Liang, H. Dong et al., Potassium prussian blue nanoparticles: a low-cost cathode material for potassium-ion batteries. Adv. Funct. Mater. 27, 1604307 (2017). https://doi.org/10.1002/adfm.201604307
- J.G. Speight, Lange’s Handbook of Chemistry, 16th edn. (The McGraw-Hill Companies Inc, United States of America, 2005).
- D. Larcher, D. Bonnin, R. Cortes, I. Rivals, L. Personnaz et al., Combined XRD, EXAFS, and Mössbauer studies of the reduction by lithium of α–Fe2O3 with various particle sizes. J. Electrochem. Soc. 150, A1643 (2003). https://doi.org/10.1149/1.1622959
- S.H. Choi, K.Y. Jung, Y.C. Kang, Amorphous GeOx-coated reduced graphene oxide balls with sandwich structure for long-life lithium-ion batteries. ACS Appl. Mater. Interfaces 7, 13952 (2015). https://doi.org/10.1021/acsami.5b02846
- Z. Su, J. Liu, M. Li, Y. Zhu, S. Qian et al., Defect engineering in titanium-based oxides for electrochemical energy storage devices. Electrochem. Energ. Rev. 3, 286 (2020). https://doi.org/10.1007/s41918-020-00064-5
- S. Qian, H. Chen, Z. Wu, D. Li, X. Liu et al., Designing ceramic/polymer composite as highly ionic conductive solid-state electrolytes. Batter. Supercaps 3, 1 (2020). https://doi.org/10.1002/batt.202000149
- T. Yuan, J. Zhang, X. Pu, Z. Chen, C. Tang et al., Novel alkaline Zn/Na0.44MnO2 dual-ion battery with a high capacity and long cycle lifespan. ACS Appl. Mater. Interfaces 10, 34108 (2018)
- Z. Li, D. Young, K. Xiang, W.C. Carter, Y. Chiang, Towards high power high energy aqueous sodium-ion batteries the NaTi2 (PO4)3/Na0.44MnO2 system. Adv. Energy Mater 3, 290 (2013)
- Q. Liu, Z. Hu, M. Chen, Q. Gu, Y. Dou et al., Multiangular rod-shaped Na MnO2 as cathode materials with high rate and long life for sodium-ion batteries. ACS Appl. Mater. Interfaces 9, 3644 (2017)
- P. Srimuk, J. Lee, A. Tolosa, C. Kim, M. Aslan et al., Titanium disulfide: a promising low-dimensional electrode material for sodium ion intercalation for seawater desalination. Chem. Mater. 29, 9964 (2017). https://doi.org/10.1021/acs.chemmater.7b03363
- F. Chen, Y. Huang, L. Guo, L. Sun, Y. Wang et al., Dual-ions electrochemical deionization: a desalination generator. Energy Environ. Sci. 10, 2081 (2017). https://doi.org/10.1039/c7ee00855d
- F.L. Mantia, M. Pasta, H.D. Deshazer, B.E. Logan, Y. Cui, Batteries for efficient energy extraction from a water salinity difference. Nano Lett. 11, 1810 (2011). https://doi.org/10.1021/nl200500s
- X. Wu, A. Markir, Y. Xu, E.C. Hu, K.T. Dai et al., Rechargeable iron-sulfur battery without polysulfide shuttling. Adv. Energy Mater. 9, 1902422 (2019). https://doi.org/10.1002/aenm.201902422
- M. Pasta, A. Battistel, F.L. Mantia, Batteries for lithium recovery from brines. Energy Environ. Sci. 5, 9487 (2012). https://doi.org/10.1039/c2ee22977c
- X. Wu, A. Markir, L. Ma, Y. Xu, H. Jiang et al., A four-electron sulfur electrode hosting a Cu2+/Cu+ redox charge carrier. Angew. Chem. Int. Ed. 58, 12640 (2019). https://doi.org/10.1002/anie.201905875
- F. Sauvage, L. Laffont, J.M. Tarascon, E. Baudrin, Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. Inorg. Chem. 46, 3289 (2007)
References
M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652 (2008). https://doi.org/10.1038/451652a
J. Meng, Z. Yang, L. Chen, H. Qin, F. Cui et al., Energy storage performance of CuO as a cathode material for aqueous zinc ion battery. Mater. Today Energy 15, 100370 (2020). https://doi.org/10.1016/j.mtener.2019.100370
X. Zhou, Q. Liu, C. Jiang, B. Ji, X. Ji et al., Strategies towards low-cost dual-ion batteries with high performance. Angew. Chem. Int. Ed. 132, 3830 (2020). https://doi.org/10.1002/ange.201814294
M. Wang, Y. Tang, A review on the features and progress of dual-ion batteries. Adv. Energy Mater. 8, 1703320 (2018). https://doi.org/10.1002/aenm.201703320
T. Liu, X. Zhang, M. Xia, H. Yu, N. Peng et al., Functional cation defects engineering in TiS2 for high-stability anode. Nano Energy 67, 104295 (2020). https://doi.org/10.1016/j.nanoen.2019.104295
H. Yu, X. Cheng, M. Xia, T. Liu, W. Ye et al., Pretreated commercial TiSe2 as an insertion-type potassium container for constructing “Rocking-Chair” type potassium ion batteries. Energy Storage Mater. 22, 154 (2019). https://doi.org/10.1016/j.ensm.2019.01.010
J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001). https://doi.org/10.1038/35104644
B. Dunn, H. Kamath, J. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334, 928 (2011). https://doi.org/10.1126/science.1212741
M. Inagaki, Applications of graphite intercalation compounds. J. Mater. Res. 4, 1560 (1989). https://doi.org/10.1557/JMR.1989.1560
V.W. Rüdorff, U. Hofmann, Über Graphitsalze. Z. Anorg. Allg. Chem. 238, 1–50 (1938). https://doi.org/10.1002/zaac.19382380102
F.P. McCullough, C.A. Levine, R.V. Snelgrove, Secondary battery (Dow Chemical Co.), US4830938, (1989)
J.R. Dahn, J.A. Seel, Energy and capacity projections for practical dual-graphite cells. J. Electrochem. Soc. 147, 899 (2000). https://doi.org/10.1149/1.1393289
J. Fan, Z. Zhang, Y. Liu, A. Wang, L. Li et al., An excellent rechargeable PP14TFSI ionic liquid dual-ion battery. Chem. Commun. 53, 6891 (2017). https://doi.org/10.1039/c7cc02534c
G. Wang, F. Wang, P. Zhang, J. Zhang, T. Zhang et al., Polarity-switchable symmetric graphite batteries with high energy and high power densities. Adv. Mater. 30, 1802949 (2018). https://doi.org/10.1002/adma.201802949
T. Placke, O. Fromm, S.F. Lux, P. Bieker, S. Rothermel et al., Reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells. J. Electrochem. Soc. 159, A1755 (2012). https://doi.org/10.1149/2.011211jes
H. Yang, X. Shi, T. Deng, T. Qin, L. Sui et al., Carbon-based dual-ion battery with enhanced capacity and cycling stability. ChemElectroChem 5, 3612 (2018). https://doi.org/10.1002/celc.201801108
Z. Li, J. Liu, J. Li, F. Kang, F. Gao, A novel graphite-based dual ion battery using PP14NTF2 ionic liquid for preparing graphene structure. Carbon 138, 52 (2018). https://doi.org/10.1016/j.carbon.2018.06.002
A. Wang, W. Yuan, J. Fan, L. Li, A dual-graphite battery with pure 1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide as the electrolyte. Energy Technol. 6, 2172–2178 (2018). https://doi.org/10.1002/ente.201800269
Y. Huang, R. Xiao, Z. Ma, W. Zhu, Developing dual-graphite batteries with pure 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid as the electrolyte. ChemElectroChem 6, 4681 (2019). https://doi.org/10.1002/celc.201901171
Y. Fang, C. Chen, J. Fan, M. Zhang, W. Yuan et al., Reversible interaction of 1-butyl-1-methylpyrrolidinium cations with 5,7,12,14-pentacenetetrone from a pure ionic liquid electrolyte for dual-ion batteries. Chem. Commun. 55, 8333 (2019). https://doi.org/10.1039/c9cc04626g
Z. Lv, M. Han, J. Sun, L. Hou, H. Chen et al., A high discharge voltage dual-ion rechargeable battery using pure (DMPI+) (AlCl4-) ionic liquid electrolyte. J. Power Sources 418, 233 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.035
Z. Lv, J. Sun, S. Zhou, Y. Bian, H. Chen et al., Electrochemical and physical properties of imidazolium chloride ionic liquids with pyrrolidinium or piperidinium cation addition and their application in dual-ion batteries. Energy Technol. 8, 2000432 (2020). https://doi.org/10.1002/ente.202000432
M. Pasta, C.D. Wessells, Y. Cui, F.L. Mantia, A desalination battery. Nano Lett. 12, 839 (2012). https://doi.org/10.1021/nl203889e
D. Nam, K. Choi, Bismuth as a new chloride-storage electrode enabling the construction of a practical high capacity desalination battery. J. Am. Chem. Soc. 139, 11055 (2017). https://doi.org/10.1021/jacs.7b01119
F. Chen, Y. Huang, D. Kong, M. Ding, S. Huang et al., NaTi2(PO4)3–Ag electrodes based desalination battery and energy recovery. FlatChem 8, 9 (2018). https://doi.org/10.1016/j.flatc.2018.02.001
L. Wang, C. Mu, H. Li, F. Li, A dual-function battery for desalination and energy storage. Inorg. Chem. Front. 5, 2522 (2018). https://doi.org/10.1039/c8qi00704g
Y. Yuan, Z. Chen, H. Yu, X. Zhang, T. Liu et al., Heteroatom-doped carbon-based materials for lithium and sodium ion batteries. Energy Storage Mater. 32, 65 (2020). https://doi.org/10.1016/j.ensm.2020.07.027
A. Eftekhari, Z. Jian, X. Ji, Potassium secondary batteries. ACS Appl. Mater. Interfaces 9, 4404 (2017). https://doi.org/10.1021/acsami.6b07989
C. Zhang, Y. Xu, M. Zhou, L. Liang, H. Dong et al., Potassium prussian blue nanoparticles: a low-cost cathode material for potassium-ion batteries. Adv. Funct. Mater. 27, 1604307 (2017). https://doi.org/10.1002/adfm.201604307
J.G. Speight, Lange’s Handbook of Chemistry, 16th edn. (The McGraw-Hill Companies Inc, United States of America, 2005).
D. Larcher, D. Bonnin, R. Cortes, I. Rivals, L. Personnaz et al., Combined XRD, EXAFS, and Mössbauer studies of the reduction by lithium of α–Fe2O3 with various particle sizes. J. Electrochem. Soc. 150, A1643 (2003). https://doi.org/10.1149/1.1622959
S.H. Choi, K.Y. Jung, Y.C. Kang, Amorphous GeOx-coated reduced graphene oxide balls with sandwich structure for long-life lithium-ion batteries. ACS Appl. Mater. Interfaces 7, 13952 (2015). https://doi.org/10.1021/acsami.5b02846
Z. Su, J. Liu, M. Li, Y. Zhu, S. Qian et al., Defect engineering in titanium-based oxides for electrochemical energy storage devices. Electrochem. Energ. Rev. 3, 286 (2020). https://doi.org/10.1007/s41918-020-00064-5
S. Qian, H. Chen, Z. Wu, D. Li, X. Liu et al., Designing ceramic/polymer composite as highly ionic conductive solid-state electrolytes. Batter. Supercaps 3, 1 (2020). https://doi.org/10.1002/batt.202000149
T. Yuan, J. Zhang, X. Pu, Z. Chen, C. Tang et al., Novel alkaline Zn/Na0.44MnO2 dual-ion battery with a high capacity and long cycle lifespan. ACS Appl. Mater. Interfaces 10, 34108 (2018)
Z. Li, D. Young, K. Xiang, W.C. Carter, Y. Chiang, Towards high power high energy aqueous sodium-ion batteries the NaTi2 (PO4)3/Na0.44MnO2 system. Adv. Energy Mater 3, 290 (2013)
Q. Liu, Z. Hu, M. Chen, Q. Gu, Y. Dou et al., Multiangular rod-shaped Na MnO2 as cathode materials with high rate and long life for sodium-ion batteries. ACS Appl. Mater. Interfaces 9, 3644 (2017)
P. Srimuk, J. Lee, A. Tolosa, C. Kim, M. Aslan et al., Titanium disulfide: a promising low-dimensional electrode material for sodium ion intercalation for seawater desalination. Chem. Mater. 29, 9964 (2017). https://doi.org/10.1021/acs.chemmater.7b03363
F. Chen, Y. Huang, L. Guo, L. Sun, Y. Wang et al., Dual-ions electrochemical deionization: a desalination generator. Energy Environ. Sci. 10, 2081 (2017). https://doi.org/10.1039/c7ee00855d
F.L. Mantia, M. Pasta, H.D. Deshazer, B.E. Logan, Y. Cui, Batteries for efficient energy extraction from a water salinity difference. Nano Lett. 11, 1810 (2011). https://doi.org/10.1021/nl200500s
X. Wu, A. Markir, Y. Xu, E.C. Hu, K.T. Dai et al., Rechargeable iron-sulfur battery without polysulfide shuttling. Adv. Energy Mater. 9, 1902422 (2019). https://doi.org/10.1002/aenm.201902422
M. Pasta, A. Battistel, F.L. Mantia, Batteries for lithium recovery from brines. Energy Environ. Sci. 5, 9487 (2012). https://doi.org/10.1039/c2ee22977c
X. Wu, A. Markir, L. Ma, Y. Xu, H. Jiang et al., A four-electron sulfur electrode hosting a Cu2+/Cu+ redox charge carrier. Angew. Chem. Int. Ed. 58, 12640 (2019). https://doi.org/10.1002/anie.201905875
F. Sauvage, L. Laffont, J.M. Tarascon, E. Baudrin, Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. Inorg. Chem. 46, 3289 (2007)