Polyimides as Promising Materials for Lithium-Ion Batteries: A Review
Corresponding Author: Xiangming He
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 135
Abstract
Lithium-ion batteries (LIBs) have helped revolutionize the modern world and are now advancing the alternative energy field. Several technical challenges are associated with LIBs, such as increasing their energy density, improving their safety, and prolonging their lifespan. Pressed by these issues, researchers are striving to find effective solutions and new materials for next-generation LIBs. Polymers play a more and more important role in satisfying the ever-increasing requirements for LIBs. Polyimides (PIs), a special functional polymer, possess unparalleled advantages, such as excellent mechanical strength, extremely high thermal stability, and excellent chemical inertness; they are a promising material for LIBs. Herein, we discuss the current applications of PIs in LIBs, including coatings, separators, binders, solid-state polymer electrolytes, and active storage materials, to improve high-voltage performance, safety, cyclability, flexibility, and sustainability. Existing technical challenges are described, and strategies for solving current issues are proposed. Finally, potential directions for implementing PIs in LIBs are outlined.
Highlights:
1 Polyimides (PIs) as coatings, separators, binders, solid-state electrolytes, and active storage materials help toward safe, high-performance, and long-life lithium-ion batteries (LIBs).
2 Strategies to design and utilize PI materials have been discussed, and the future development trends of PIs in LIBs are outlooked.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Zou, Q. Zhao, G. Zhang, B. Xiong, Energy revolution: From a fossil energy era to a new energy era. Nat. Gas Ind. B 3(1), 1–11 (2016). https://doi.org/10.1016/j.ngib.2016.02.001
- Y. Sun, Q. Wu, G. Shi, Graphene based new energy materials. Energy Environ. Sci. 4(4), 1113–1132 (2011). https://doi.org/10.1039/C0EE00683A
- A. Manthiram, An outlook on lithium ion battery technology. ACS Central Sci. 3(10), 1063–1069 (2017). https://doi.org/10.1021/acscentsci.7b00288
- G. Zubi, R. Dufo-López, M. Carvalho, G. Pasaoglu, The lithium-ion battery: State of the art and future perspectives. Renew. Sustain. Energy Rev. 89, 292–308 (2018). https://doi.org/10.1016/j.rser.2018.03.002
- B. Scrosati, Recent advances in lithium ion battery materials. Electrochim. Acta 45(15–16), 2461–2466 (2000). https://doi.org/10.1016/S0013-4686(00)00333-9
- L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 226, 272–288 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.060
- A. Jansen, A. Kahaian, K. Kepler, P. Nelson, K. Amine et al., Development of a high-power lithium-ion battery. J. Power Sources 81, 902–905 (1999). https://doi.org/10.1016/S0378-7753(99)00268-2
- J. Chen, Recent progress in advanced materials for lithium ion batteries. Materials 6(1), 156–183 (2013). https://doi.org/10.3390/ma6010156
- G. Blomgren, The development and future of lithium ion batteries. J. Electrochem. Soc. 164(1), A5019–A5025 (2016). https://doi.org/10.1149/2.0251701jes
- C. Costa, E. Lizundia, S. Lanceros-Méndez, Polymers for advanced lithium-ion batteries: state of the art and future needs on polymers for the different battery components. Prog. Energy Combust. Sci. 79, 100846–100880 (2020). https://doi.org/10.1016/j.pecs.2020.100846
- J. Li, Y. Cai, H. Wu, Z. Yu, X. Yan et al., Polymers in lithium-ion and lithium metal batteries. Adv. Energy Mater. 11(15), 2003239 (2021). https://doi.org/10.1002/aenm.202003239
- A. Sezer Hicyilmaz, A. Celik Bedeloglu, Applications of polyimide coatings: A review. SN Appl. Sci. 3(3), 363–385 (2021). https://doi.org/10.1007/s42452-021-04362-5
- C. Ye, M. Liu, X. Zhang, Q. Tong, M. Zhu et al., Review-long-term cyclability of high-temperature stable polyimide in libs. J. Electrochem. Soc. 168(10), 100519–100538 (2021). https://doi.org/10.1149/1945-7111/ac28c4
- H. Yu, Y. Shi, B. Yuan, Y. He, L. Qiao et al., Recent developments of polyimide materials for lithium-ion battery separators. Ionics 27(3), 907–923 (2021). https://doi.org/10.1007/s11581-020-03865-2
- N. DeLuca, Y. Elabd, Polymer electrolyte membranes for the direct methanol fuel cell. A Rev. J. Polym. Sci. Part B Polym. Phys. 44(16), 2201 (2006). https://doi.org/10.1002/polb.20861
- Z. Song, H. Zhan, Y. Zhou, Polyimides: Promising energy-storage materials. Angew. Chem. Int. Ed. 49(45), 8444–8448 (2010). https://doi.org/10.1002/anie.201002439
- M. Ding, Polyimide materials: Chemistry, Relationship between Structure and Properties and Materials, 2nd edn. (Science Press, Beijing, 2006), pp.9–53
- D.J. Liaw, K.L. Wang, Y.C. Huang, K.R. Lee, J.Y. Lai et al., Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci. 37(7), 907–974 (2012). https://doi.org/10.1016/j.progpolymsci.2012.02.005
- C. Liu, F. Li, L.P. Ma, H.M. Cheng, Crystalline materials: colloidal-crystal-assisted patterning of crystalline materials advanced materials for energy storage. Adv. Mater. 22(8), E28–E62 (2010). https://doi.org/10.1002/adma.200903328
- J.W. Fergus, Recent developments in cathode materials for lithium ion batteries. J. Power Sources 195(4), 939–954 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.089
- J. Xu, S. Dou, H. Liu, L. Dai, Cathode materials for next generation lithium ion batteries. Nano Energy 2(4), 439–442 (2013). https://doi.org/10.1016/j.nanoen.2013.05.013
- F. Schipper, P.K. Nayak, E.M. Erickson, S.F. Amalraj, O. Srur-Lavi et al., Study of cathode materials for lithium-ion batteries: recent progress and new challenges. Inorganics 5(2), 32 (2017). https://doi.org/10.3390/inorganics5020032
- F. Lin, I.M. Markus, D. Nordlund, T.C. Weng, M.D. Asta et al., Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5(1), 3529 (2014). https://doi.org/10.1038/ncomms4529
- S. Liu, Z. Wang, Y. Huang, Z. Ni, J. Bai et al., Fluorine doping and Al2O3 coating Co-modified Li[Li0.20Ni0.133Co0.133Mn0.534]O2 as high performance cathode material for lithium-ion batteries. J. Alloys Compd. 731, 636–645 (2018)
- N. Su, Y. Lyu, R. Gu, B. Guo, Al2O3 coated Li1.2Ni0.2Mn0.2Ru0.4O2 as cathode material for Li-ion batteries. J. Alloys Compd. 741, 398–403 (2018). https://doi.org/10.1016/j.jallcom.2018.01.146
- N. Dannehl, S.O. Steinmüller, D.V. Szabó, M. Pein, F. Sigel et al., High-resolution surface analysis on aluminum oxide-coated Li1.2Mn0.55Ni0.15Co0.1O2 with improved capacity retention. ACS Appl. Mater. Interf. 10(49), 43131–43143 (2018). https://doi.org/10.1021/acsami.8b09550
- G. Kobayashi, Y. Irii, F. Matsumoto, A. Ito, Y. Ohsawa et al., Improving cycling performance of Li-rich layered cathode materials through combination of Al2O3-based surface modification and stepwise precycling. J. Power Sources 303, 250–256 (2016). https://doi.org/10.1016/j.jpowsour.2015.11.014
- Z. Wang, E. Liu, L. Guo, C. Shi, C. He et al., Cycle performance improvement of Li-rich layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by ZrO2 coating. Surf. Coat. Technol. 235, 570–576 (2013). https://doi.org/10.1016/j.surfcoat.2013.08.026
- F. Wu, Z. Wang, Y. Su, N. Yan, L. Bao et al., Li[Li0.2Mn0.54Ni0.13Co0.13]O2-MoO3 composite cathodes with low irreversible capacity loss for lithium ion batteries. J. Power Sources 247, 20–25 (2014). https://doi.org/10.1016/j.jpowsour.2013.08.031
- J.M. Zheng, J. Li, Z.R. Zhang, X.J. Guo, Y. Yang, The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery. Solid State Ionics 179(27), 1794–1799 (2008). https://doi.org/10.1016/j.ssi.2008.01.091
- Y.K. Sun, M.J. Lee, C.S. Yoon, J. Hassoun, K. Amine et al., The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries. Adv. Mater. 24(9), 1192–1196 (2012). https://doi.org/10.1002/adma.201104106
- H.G. Song, J.Y. Kim, K.T. Kim, Y.J. Park, Enhanced electrochemical properties of Li(Ni0.4Co0.3Mn0.3)O2 cathode by surface modification using Li3PO4-based materials. J. Power Sources 196(16), 6847–6855 (2011). https://doi.org/10.1016/j.jpowsour.2010.09.027
- S.Y. Lee, J.H. Park, J.H. Cho, S.B. Kim, W.S. Kim et al., A novel ion-conductive protection skin based on polyimide gel polymer electrolyte: application to nanoscale coating layer of high voltage LiNi1/3C1/3Mn1/3O2 cathode materials for lithium-ion batteries. J. Mater. Chem. 22(25), 12574–12581 (2012). https://doi.org/10.1039/c2jm16799a
- J.H. Park, J.H. Cho, J.S. Kim, E.G. Shim, S.Y. Lee, High-voltage cell performance and thermal stability of nanoarchitectured polyimide gel polymer electrolyte-coated LiCoO2 cathode materials. Electrochim. Acta 86, 346–351 (2012). https://doi.org/10.1016/j.electacta.2012.04.073
- J. Zhang, Q. Lu, J. Fang, J. Wang, J. Yang et al., Polyimide encapsulated lithium-rich cathode material for high voltage lithium-ion battery. ACS Appl. Mater. Interfaces 6(20), 17965–17973 (2014). https://doi.org/10.1021/am504796n
- Y. Wang, Separator wettability enhanced by electrolyte additive to boost the electrochemical performance of lithium metal batteries. Nano-Micro Lett. 13, 210 (2021). https://doi.org/10.1007/s40820-021-00731-2
- X. Huang, Separator technologies for lithium-ion batteries. J. Solid State Electrochem. 15(4), 649–662 (2011). https://doi.org/10.1007/s10008-010-1264-9
- M.F. Lagadec, R. Zahn, V. Wood, Characterization and performance evaluation of lithium-ion battery separators. Nat. Energy 4(1), 16–25 (2019). https://doi.org/10.1038/s41560-018-0295-9
- Z. Liu, Y. Jiang, Q. Hu, S. Guo, L. Yu et al., Materials Safer lithium-ion batteries from the separator aspect Development and future perspectives. Energy Environ. Mater 4(3), 336–362 (2021). https://doi.org/10.1002/eem2.12129
- G. Dong, N. Dong, B. Liu, G. Tian, S. Qi et al., Ultrathin inorganic-nanoshell encapsulation: TiO2 coated polyimide nanofiber membrane enabled by layer-by-layer deposition for advanced and safe high-power LIB separator. J. Membr. Sci. 601, 117884–117892 (2020). https://doi.org/10.1016/j.memsci.2020.117884
- W. Jiang, Z. Liu, Q. Kong, J. Yao, C. Zhang et al., A high temperature operating nanofibrous polyimide separator in li-ion battery. Solid State Ionics 232, 44–48 (2013). https://doi.org/10.1016/j.ssi.2012.11.010
- L. He, J.H. Cao, T. Liang, D.Y. Wu, Effect of monomer structure on properties of polyimide as lib separator and its mechanism study. Electrochim. Acta 337, 135838–135848 (2020). https://doi.org/10.1016/j.electacta.2020.135838
- D. Lin, D. Zhuo, Y. Liu, Y. Cui, All-integrated bifunctional separator for li dendrite detection via novel solution synthesis of a thermostable polyimide separator. J. Am. Chem. Soc. 138(34), 11044–11050 (2016). https://doi.org/10.1021/jacs.6b06324
- M. Li, Z. Zhang, Y. Yin, W. Guo, Y. Bai et al., Novel polyimide separator prepared with two porogens for safe lithium-ion batteries. ACS Appl. Mater. Interfaces 12(3), 3610–3616 (2020). https://doi.org/10.1021/acsami.9b19049
- P. Zhou, D. Yao, H. Liang, J. Yin, Y. Xia et al., Highly connective spongy polyimide separators blended with inorganic whiskers for high-performance lithium-ion batteries. ACS Appl. Energy Mater. 5(2), 2011–2023 (2022). https://doi.org/10.1021/acsaem.1c03548
- Y. Song, X. Liu, D. Ren, H. Liang, L. Wang et al., Simultaneously blocking chemical crosstalk and internal short circuit via gel-stretching derived nanoporous non-shrinkage separator for safe lithium-ion batteries. Adv. Mater. 34(2), 2106335–2106345 (2021). https://doi.org/10.1002/adma.202106335
- J. Li, K. Luo, J. Yu, Y. Wang, J. Zhu et al., Promising free-standing polyimide membrane via solution blow spinning for high performance lithium-ion batteries. Ind. Eng. Chem. Res. 57(36), 12296–12305 (2018). https://doi.org/10.1021/acs.iecr.8b02755
- D. Wu, N. Dong, R. Wang, S. Qi, B. Liu et al., In situ construction of high-safety and non-flammable polyimide “ceramic” lithium-ion battery separator via SiO2 nano-encapsulation. Chem. Eng. J. 420, 129992–130001 (2021). https://doi.org/10.1016/j.cej.2021.129992
- N. Dong, J. Wang, N. Chen, B. Liu, G. Tian et al., In situ reinforcing: ZrO2-armored hybrid polyimide separators for advanced and safe lithium-ion batteries. ACS Sustain. Chem. Eng. 9(18), 6250–6257 (2021). https://doi.org/10.1021/acssuschemeng.0c08818
- M. Qiao, G. Zhang, J. Deng, J. Guo, J.J. Zhang, Electrospun polyimide@ organic-montmorillonite composite separator with enhanced mechanical and thermal performances for high-safety lithium-ion battery. J. Mater. Sci. 57(25), 11796–11808 (2022). https://doi.org/10.1007/s10853-022-07343-0
- M. Holzapfel, H. Buqa, L.J. Hardwick, M. Hahn, A. Würsig et al., Nano silicon for lithium-ion batteries. Electrochim. Acta 52(3), 973–978 (2006). https://doi.org/10.1016/j.electacta.2006.06.034
- H. Li, A high capacity nano-Si composite anode material for lithium rechargeable batteries. Electrochem. Solid-State Lett. 2(11), 547–549 (1999). https://doi.org/10.1149/1.1390899
- S. You, H. Tan, L. Wei, W. Tan, C. Li, Design strategies of Si/C composite anode for lithium-ion batteries. Chem. Eur. J. 27(48), 12237–12256 (2021). https://doi.org/10.1002/chem.202100842
- R. Yi, J. Zai, F. Dai, M.L. Gordin, D. Wang, Dual conductive network-enabled graphene/Si-C composite anode with high areal capacity for lithium-ion batteries. Nano Energy 6, 211–218 (2014). https://doi.org/10.1016/j.nanoen.2014.04.006
- X. Gao, W. Lu, J. Xu, Insights into the li diffusion mechanism in Si/C composite anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 13(18), 21362–21370 (2021). https://doi.org/10.1021/acsami.1c03366
- Y. Shi, X. Zhou, G. Yu, Material and structural design of novel binder systems for high-energy, high-power lithium-ion batteries. Acc. Chem. Res. 50(11), 2642–2652 (2017). https://doi.org/10.1021/acs.accounts.7b00402
- J. Li, R.B. Lewis, J.R. Dahn, Sodium carboxymethyl cellulose: a potential binder for Si negative electrodes for Li-ion batteries. Electrochem. Solid-State Lett. 10(2), A17–A20 (2007). https://doi.org/10.1149/1.2398725
- A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy et al., Toward efficient binders for Li-ion battery Si-based anodes: Polyacrylic acid. ACS Appl. Mater. Interfaces 2(11), 3004–3010 (2010). https://doi.org/10.1021/am100871y
- J.S. Bridel, T. Azaïs, M. Morcrette, J.M. Tarascon, D. Larcher, Key parameters governing the reversibility of si/carbon/cmc electrodes for li-ion batteries. Chem. Mater. 22(3), 1229–1241 (2010). https://doi.org/10.1021/cm902688w
- D. Shao, H. Zhong, L. Zhang, Water-soluble conductive composite binder containing PEDOT:PSS as conduction promoting agent for si anode of lithium-ion batteries. Chem Electro Chem 1(10), 1679–1687 (2014). https://doi.org/10.1002/celc.201402210
- C. Wang, H. Wu, Z. Chen, M.T. McDowell, Y. Cui et al., Self-healing chemistry enables the stable operation of silicon microp anodes for high-energy lithium-ion batteries. Nat. Chem. 5(12), 1042–1048 (2013). https://doi.org/10.1038/nchem.1802
- M.H. Ryou, J. Kim, I. Lee, S. Kim, Y.K. Jeong et al., Mussel-inspired adhesive binders for high-performance silicon nanop anodes in lithium-ion batteries. Adv. Mater. 25(11), 1571–1576 (2013). https://doi.org/10.1002/adma.201203981
- H. Zhao, Y. Wei, C. Wang, R. Qiao, W. Yang et al., Mussel-inspired conductive polymer binder for si-alloy anode in lithium-ion batteries. ACS Appl. Mater. Interfaces 10(6), 5440–5446 (2018). https://doi.org/10.1021/acsami.7b14645
- R. Wang, D. Feng, T. Chen, S. Chen, Y. Liu, Mussel-inspired polydopamine treated Si/C electrode as high-performance anode for lithium-ion batteries. J. Alloys Compd. 825, 154081–154090 (2020). https://doi.org/10.1016/j.jallcom.2020.154081
- J.H. Lee, U. Paik, V.A. Hackley, Y.M. Choi, Effect of poly(acrylic acid) on adhesion strength and electrochemical performance of natural graphite negative electrode for lithium-ion batteries. J. Power Sources 161(1), 612–616 (2006). https://doi.org/10.1016/j.jpowsour.2006.03.087
- M. Murase, N. Yabuuchi, Z.-J. Han, J.-Y. Son, Y.-T. Cui et al., Crop-derived polysaccharides as binders for high-capacity silicon/graphite-based electrodes in lithium-ion batteries. ChemSusChem 5(12), 2307–2311 (2012). https://doi.org/10.1002/cssc.201200650
- S. Hu, Z. Cai, T. Huang, H. Zhang, A. Yu, A modified natural polysaccharide as a high-performance binder for silicon anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 11(4), 4311–4317 (2019). https://doi.org/10.1021/acsami.8b15695
- L. Gong, M.H.T. Nguyen, E.-S. Oh, High polar polyacrylonitrile as a potential binder for negative electrodes in lithium ion batteries. Electrochem. Commun. 29, 45–47 (2013). https://doi.org/10.1016/j.elecom.2013.01.010
- N. Ohta, T. Sogabe, K. Kuroda, A novel binder for the graphite anode of rechargeable lithium ion batteries for the improvement of reversible capacity. Carbon 39(9), 1434–1436 (2001). https://doi.org/10.1016/S0008-6223(01)00079-3
- C.H. Tsao, T.K. Yang, K.Y. Chen, C.E. Fang, M. Ueda et al., Comparing the ion-conducting polymers with sulfonate and ether moieties as cathode binders for high-power lithium-ion batteries. ACS Appl. Mater. Interfaces 13(8), 9846–9855 (2021). https://doi.org/10.1021/acsami.0c20657
- J.S. Kim, W. Choi, K.Y. Cho, D. Byun, J. Lim et al., Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries. J. Power Sources 244, 521–526 (2013). https://doi.org/10.1016/j.jpowsour.2013.02.049
- Z. Xu, J. Yang, T. Zhang, Y. Nuli, J. Wang et al., Silicon microp anodes with self-healing multiple network binder. Joule 2(5), 950–961 (2018). https://doi.org/10.1016/j.joule.2018.02.012
- T.M. Higgins, S.H. Park, P.J. King, C. Zhang, N. McEvoy et al., A commercial conducting polymer as both binder and conductive additive for silicon nanop-based lithium-ion battery negative electrodes. ACS Nano 10(3), 3702–3713 (2016). https://doi.org/10.1021/acsnano.6b00218
- H. Zhao, Z. Wang, P. Lu, M. Jiang, F. Shi et al., Toward practical application of functional conductive polymer binder for a high-energy lithium-ion battery design. Nano Lett. 14(11), 6704–6710 (2014). https://doi.org/10.1021/nl503490h
- D. Yao, Y. Yang, Y. Deng, C. Wang, Flexible polyimides through one-pot synthesis as water-soluble binders for silicon anodes in lithium ion batteries. J. Power Sources 379, 26–32 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.086
- L. Ma, J.Q. Meng, Y.J. Cheng, Q. Ji, X. Zuo et al., Poly(siloxane imide) binder for silicon-based lithium-ion battery anodes via rigidness/softness coupling. Chem. Asian J. 15(17), 2674–2680 (2020). https://doi.org/10.1002/asia.202000633
- J. Choi, K. Kim, J. Jeong, K.Y. Cho, M.H. Ryou et al., Highly adhesive and soluble copolyimide binder: Improving the long-term cycle life of silicon anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 7(27), 14851–14858 (2015). https://doi.org/10.1021/acsami.5b03364
- Y. Xu, Q. Zhang, N. Lv, H. Li, Z. Wei et al., Carboxyl function group introduced to polyimide binders for silicon anode materials. Energy Fuels 37(3), 2441–2448 (2023). https://doi.org/10.1021/acs.energyfuels.2c04024
- H.Q. Pham, J. Lee, H.M. Jung, S. Song, Non-flammable LiNi0.8CO0.1Mn0.1O2 cathode via functional binder; stabilizing high-voltage interface and performance for safer and high-energy lithium rechargeable batteries. Electrochim. Acta 317, 711–721 (2019). https://doi.org/10.1016/j.electacta.2019.06.034
- K. Qi, Y. Wang, N. Dong, B. Liu, G. Tian et al., Novel polyimide binders integrated with soft and hard functional segments ensuring long-term high-voltage operating stability of high-energy NCM811 lithium-ion batteries up to 4.5 V. Appl. Energy 320, 119282 (2022). https://doi.org/10.1016/j.apenergy.2022.119282
- Q. Zhao, S. Stalin, C.Z. Zhao, L.A. Archer, Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5(3), 229–252 (2020). https://doi.org/10.1038/s41578-019-0165-5
- T. Famprikis, P. Canepa, J.A. Dawson, M.S. Islam, C. Masquelier, Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18(12), 1278–1291 (2019). https://doi.org/10.1038/s41563-019-0431-3
- A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2(4), 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103
- J. Lee, C.L. Lee, K. Park, I.D. Kim, Synthesis of an Al2O3-coated polyimide nanofiber mat and its electrochemical characteristics as a separator for lithium ion batteries. J. Power Sources 248, 1211–1217 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.056
- M. Higa, K. Yaguchi, R. Kitani, All solid-state polymer electrolytes prepared from a graft copolymer consisting of a polyimide main chain and poly(ethylene oxide) based side chains. Electrochim. Acta. 55(4), 1380–1384 (2010). https://doi.org/10.1016/j.electacta.2009.07.046
- J. Wan, J. Xie, X. Kong, Z. Liu, K. Liu et al., Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 14(7), 705–711 (2019). https://doi.org/10.1038/s41565-019-0465-3
- Y. Cui, J. Wan, Y. Ye, K. Liu, L.Y. Chou et al., A fireproof, lightweight, polymer-polymer solid-state electrolyte for safe lithium batteries. Nano Lett. 20(3), 1686–1692 (2020). https://doi.org/10.1021/acs.nanolett.9b04815
- J. Hu, P. He, B. Zhang, B. Wang, L.Z. Fan, Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries. Energy Storage Mater. 26, 283–289 (2020). https://doi.org/10.1016/j.ensm.2020.01.006
- J. Gai, F. Ma, Z. Zhang, D. Sun, Y. Jin et al., Flexible organic-inorganic composite solid electrolyte with asymmetric structure for room temperature solid-state Li-ion batteries. ACS Sustain. Chem. Eng. 7(19), 15896–15903 (2019). https://doi.org/10.1021/acssuschemeng.9b01869
- X. Shen, T. Hu, Y. Zeng, X. Huang, P. Zhang et al., Core-shell structured gel polymer electrolyte with single-ion conducting and thermal stability bifunction for lithium-ion batteries. J. Electrochem. Soc. 169(7), 070505–070514 (2022). https://doi.org/10.1149/1945-7111/ac79d5
- Y. Li, Z. Fu, S. Lu, X. Sun, X. Zhang et al., Polymer nanofibers framework composite solid electrolyte with lithium dendrite suppression for long life all-solid-state lithium metal battery. Chem. Eng. J. 440, 135816–135825 (2022). https://doi.org/10.1016/j.cej.2022.135816
- Z. Song, Y. Qian, X. Liu, T. Zhang, Y. Zhu et al., A quinone-based oligomeric lithium salt for superior Li–organic batteries. Energy Environ. Sci. 7(12), 4077–4086 (2014). https://doi.org/10.1039/C4EE02575J
- K. Liu, J. Zheng, G. Zhong, Y. Yang, Poly(2,5-dihydroxy-1,4-benzoquinonyl sulfide) (PDBS) as a cathode material for lithium ion batteries. J. Mater. Chem. 21(12), 4125–4131 (2011). https://doi.org/10.1039/C0JM03127E
- T. Janoschka, M.D. Hager, U.S. Schubert, Powering up the future: Radical polymers for battery applications. Adv. Mater. 24(48), 6397–6409 (2012). https://doi.org/10.1002/adma.201203119
- A.L. Goodwin, Packing down. Adv. Mater. 9(1), 7–8 (2010). https://doi.org/10.1038/nmat2597
- B. Häupler, A. Wild, U.S. Schubert, Carbonyls: powerful organic materials for secondary batteries. Adv. Energy Mater. 5(11), 1402034 (2015). https://doi.org/10.1002/aenm.201402034
- H.G. Wang, S. Yuan, D.L. Ma, X.L. Huang, F.L. Meng et al., Tailored aromatic carbonyl derivative polyimides for high-power and long-cycle sodium-organic batteries. Adv. Energy Mater. 4(7), 1301651–1301658 (2014). https://doi.org/10.1002/aenm.201301651
- Z. Song, T. Xu, M.L. Gordin, Y.B. Jiang, I.T. Bae et al., Polymer-graphene nanocomposites as ultrafast-charge and -discharge cathodes for rechargeable lithium batteries. Nano Lett. 12(5), 2205–2211 (2012). https://doi.org/10.1021/nl2039666
- C. Luo, X. Ji, S. Hou, N. Eidson, X. Fan et al., Azo compounds derived from electrochemical reduction of nitro compounds for high performance Li-ion batteries. Adv. Mater. 30(23), 1706498–1706507 (2018). https://doi.org/10.1002/adma.201706498
- C. Luo, O. Borodin, X. Ji, S. Hou, K.J. Gaskell et al., Azo compounds as a family of organic electrode materials for alkali-ion batteries. Proc. Natl. Acad. Sci. USA 115(9), 2004–2009 (2018). https://doi.org/10.1073/pnas.1717892115
- J. Wang, A.E. Lakraychi, X. Liu, L. Sieuw, C. Morari et al., Conjugated sulfonamides as a class of organic lithium-ion positive electrodes. Nat. Mater. 20(5), 665–673 (2021). https://doi.org/10.1038/s41563-020-00869-1
- J. Wang, X. Guo, P. Apostol, X. Liu, K. Robeyns et al., High performance Li-, Na-, and K-ion storage in electrically conducting coordination polymers. Energy Environ. Sci. 15(9), 3923–3932 (2022). https://doi.org/10.1039/D2EE00566B
- J. Wang, X. Liu, H. Jia, P. Apostol, X. Guo et al., A high-voltage organic framework for high-performance Na- and K-ion batteries. ACS Energy Lett. 7(2), 668–674 (2022). https://doi.org/10.1021/acsenergylett.1c02571
- M. Ruby Raj, R.V. Mangalaraja, G. Lee, D. Contreras, K. Zaghib et al., Large π-conjugated condensed perylene-based aromatic polyimide as organic cathode for lithium-ion batteries. ACS Appl. Energy Mater. 3(7), 6511–6524 (2020). https://doi.org/10.1021/acsaem.0c00729
- K.B. Labasan, H.-J. Lin, F. Baskoro, J.J.H. Togonon, H.Q. Wong et al., Dicyanotriphenylamine-based polyimides as high-performance electrodes for next generation organic lithium-ion batteries. ACS Appl. Mater. Interfaces 13(15), 17467–17477 (2021). https://doi.org/10.1021/acsami.1c00065
- H. Yang, S. Liu, L. Cao, S. Jiang, H.Q. Hou, Superlithiation of non-conductive polyimide toward high-performance lithium-ion batteries. J. Mater. Chem. A 6(42), 21216–21224 (2018). https://doi.org/10.1039/C8TA05109G
- G. Hernández, M. Salsamendi, S.M. Morozova, E.I. Lozinskaya, S. Devaraj et al., Polyimides as cathodic materials in lithium batteries: Effect of the chemical structure of the diamine monomer. J. Polym. Sci. A: Polym. Chem. 56(7), 714–723 (2018). https://doi.org/10.1002/pola.28937
- Z. Ba, Z. Wang, M. Luo, H.-B. Li, Y. Li et al., Benzoquinone-based polyimide derivatives as high-capacity and stable organic cathodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 12(1), 807–817 (2019). https://doi.org/10.1021/acsami.9b18422
- J. Wang, H. Liu, C. Du, X. Zhang, Y. Liu et al., Conjugated diketone-linked polyimide cathode material for organic lithium-ion batteries. Chem. Engin. J. 444, 136598 (2022). https://doi.org/10.1016/j.cej.2022.136598
- C.N. Gannett, J. Kim, D. Tirtariyadi, P.J. Milner, H. Abruña, Investigation of ion-electrode interactions of linear polyimides and alkali metal ions for next generation alternative-ion batteries. Chem. Sci. 13(32), 9191–9201 (2022). https://doi.org/10.1039/D2SC02939A
- J. He, Y. Liao, Q. Hu, Z. Zeng, L. Yi et al., Multi carbonyl polyimide as high capacity anode materials for lithium ion batteries. J. Power Sources 451, 227792 (2020). https://doi.org/10.1016/j.jpowsour.2020.227792
- Y. Liao, J. He, L. Yi, Y. Tang, X. Li et al., Electrochemical kinetic study of a polyimide anode for lithium-ion batteries using the ac impedance technique. ACS Appl. Energy Mater. 4(5), 5348–5358 (2021). https://doi.org/10.1021/acsaem.1c00941
- H. Kang, H. Liu, C. Li, L. Sun, C. Zhang et al., Polyanthraquinone-triazine-a promising anode material for high-energy lithium-ion batteries. ACS Appl. Mater. Interfaces 10(43), 37023–37030 (2018). https://doi.org/10.1021/acsami.8b12888
- Y. Huang, K. Li, J. Liu, X. Zhong, X. Duan et al., Three-dimensional graphene/polyimide composite-derived flexible high-performance organic cathode for rechargeable lithium and sodium batteries. J. Mater. Chem. A 5(6), 2710–2716 (2017). https://doi.org/10.1039/c6ta09754e
- A. Ahmad, H. Wu, Y. Guo, Q. Meng, Y. Meng et al., A graphene supported polyimide nanocomposite as a high performance organic cathode material for lithium ion batteries. RSC Adv. 6(40), 33287–33294 (2016). https://doi.org/10.1039/c5ra27471k
- Z. Xiao, G. Xiang, Q. Zhang, Y. Wang, Y.J.E. Yang et al., Boosting lithium storage in graphene-sandwiched cathodes containing multi-carbonyl polyquinoneimine nanosheets. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12399
- Q. Ban, Y. Liu, P. Liu, Y. Li, Y. Qin et al., Hierarchically nanostructured carbon nanotube/polyimide/mesoporous Fe2O3 nanocomposite for organic-inorganic lithium-ion battery anode. Micropor. Mesopor. Mater. 335, 111803–111812 (2022). https://doi.org/10.1016/j.micromeso.2022.111803
- G. Zhang, Z. Xu, P. Liu, Y. Su, T. Huang et al., A facile in-situ polymerization strategy towards polyimide/carbon black composites as high performance lithium ion battery cathodes. Electrochim. Acta 260, 598–605 (2018). https://doi.org/10.1016/j.electacta.2017.12.075
- G. Zha, C. Ouyang, S. Yin, K. Yao, S. Agarwal et al., High cycling stability of the LiNi0.8CO0.1Mn0.1O2 cathode via surface modification with polyimide/multi-walled carbon nanotubes composite coating. Small 17(47), 2102981 (2021). https://doi.org/10.1002/smll.202102981
- J.-M. Kim, Y. Xu, M.H. Engelhard, J. Hu, H.-S. Lim et al., Facile dual-protection layer and advanced electrolyte enhancing performances of cobalt-free/nickel-rich cathodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 14(15), 17405–17414 (2022). https://doi.org/10.1021/acsami.2c01694
- Y. Li, L. Lv, W. Huang, Y. Zhu, In situ polymerized and imidized Si@ polyimide microcapsules with flexible solid-electrolyte interphase and enhanced electrochemical activity for Li-storage. ChemElectroChem 9(2), e202101409 (2022). https://doi.org/10.1002/celc.202101409
- Y. Wang, K. Qi, N. Dong, B. Liu, G. Tian, LiNi0.8CO0.1Mn0.1O2 Surface modification enabling 4. 7 v nickel-rich layered cathode with superior long-term cyclability via novel functional polyimide binders. J. Power Sources 545, 231927–231938 (2022). https://doi.org/10.1016/j.jpowsour.2022.231927
- Y. Xu, Y. Wang, N. Dong, C. Pu, B. Liu et al., Novel polyimide binder for achieving high-rate capability and long-term cycling stability of LiNi0.8CO0.1Mn0.1O2 cathode via constructing polar and micro-branched crosslinking network structure. J. Energy Chem. 76, 19–31 (2023). https://doi.org/10.1016/j.jechem.2022.09.008
- Y. Wang, N. Dong, B. Liu, K. Qi, G. Tian et al., Enhanced electrochemical performance of the LiNi0.8CO0.1Mn0.1O2 cathode via in-situ nanoscale surface modification with poly (imide-siloxane) binder. Chem. Eng. J. 450, 137959–137969 (2022). https://doi.org/10.1016/j.cej.2022.137959
References
C. Zou, Q. Zhao, G. Zhang, B. Xiong, Energy revolution: From a fossil energy era to a new energy era. Nat. Gas Ind. B 3(1), 1–11 (2016). https://doi.org/10.1016/j.ngib.2016.02.001
Y. Sun, Q. Wu, G. Shi, Graphene based new energy materials. Energy Environ. Sci. 4(4), 1113–1132 (2011). https://doi.org/10.1039/C0EE00683A
A. Manthiram, An outlook on lithium ion battery technology. ACS Central Sci. 3(10), 1063–1069 (2017). https://doi.org/10.1021/acscentsci.7b00288
G. Zubi, R. Dufo-López, M. Carvalho, G. Pasaoglu, The lithium-ion battery: State of the art and future perspectives. Renew. Sustain. Energy Rev. 89, 292–308 (2018). https://doi.org/10.1016/j.rser.2018.03.002
B. Scrosati, Recent advances in lithium ion battery materials. Electrochim. Acta 45(15–16), 2461–2466 (2000). https://doi.org/10.1016/S0013-4686(00)00333-9
L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 226, 272–288 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.060
A. Jansen, A. Kahaian, K. Kepler, P. Nelson, K. Amine et al., Development of a high-power lithium-ion battery. J. Power Sources 81, 902–905 (1999). https://doi.org/10.1016/S0378-7753(99)00268-2
J. Chen, Recent progress in advanced materials for lithium ion batteries. Materials 6(1), 156–183 (2013). https://doi.org/10.3390/ma6010156
G. Blomgren, The development and future of lithium ion batteries. J. Electrochem. Soc. 164(1), A5019–A5025 (2016). https://doi.org/10.1149/2.0251701jes
C. Costa, E. Lizundia, S. Lanceros-Méndez, Polymers for advanced lithium-ion batteries: state of the art and future needs on polymers for the different battery components. Prog. Energy Combust. Sci. 79, 100846–100880 (2020). https://doi.org/10.1016/j.pecs.2020.100846
J. Li, Y. Cai, H. Wu, Z. Yu, X. Yan et al., Polymers in lithium-ion and lithium metal batteries. Adv. Energy Mater. 11(15), 2003239 (2021). https://doi.org/10.1002/aenm.202003239
A. Sezer Hicyilmaz, A. Celik Bedeloglu, Applications of polyimide coatings: A review. SN Appl. Sci. 3(3), 363–385 (2021). https://doi.org/10.1007/s42452-021-04362-5
C. Ye, M. Liu, X. Zhang, Q. Tong, M. Zhu et al., Review-long-term cyclability of high-temperature stable polyimide in libs. J. Electrochem. Soc. 168(10), 100519–100538 (2021). https://doi.org/10.1149/1945-7111/ac28c4
H. Yu, Y. Shi, B. Yuan, Y. He, L. Qiao et al., Recent developments of polyimide materials for lithium-ion battery separators. Ionics 27(3), 907–923 (2021). https://doi.org/10.1007/s11581-020-03865-2
N. DeLuca, Y. Elabd, Polymer electrolyte membranes for the direct methanol fuel cell. A Rev. J. Polym. Sci. Part B Polym. Phys. 44(16), 2201 (2006). https://doi.org/10.1002/polb.20861
Z. Song, H. Zhan, Y. Zhou, Polyimides: Promising energy-storage materials. Angew. Chem. Int. Ed. 49(45), 8444–8448 (2010). https://doi.org/10.1002/anie.201002439
M. Ding, Polyimide materials: Chemistry, Relationship between Structure and Properties and Materials, 2nd edn. (Science Press, Beijing, 2006), pp.9–53
D.J. Liaw, K.L. Wang, Y.C. Huang, K.R. Lee, J.Y. Lai et al., Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci. 37(7), 907–974 (2012). https://doi.org/10.1016/j.progpolymsci.2012.02.005
C. Liu, F. Li, L.P. Ma, H.M. Cheng, Crystalline materials: colloidal-crystal-assisted patterning of crystalline materials advanced materials for energy storage. Adv. Mater. 22(8), E28–E62 (2010). https://doi.org/10.1002/adma.200903328
J.W. Fergus, Recent developments in cathode materials for lithium ion batteries. J. Power Sources 195(4), 939–954 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.089
J. Xu, S. Dou, H. Liu, L. Dai, Cathode materials for next generation lithium ion batteries. Nano Energy 2(4), 439–442 (2013). https://doi.org/10.1016/j.nanoen.2013.05.013
F. Schipper, P.K. Nayak, E.M. Erickson, S.F. Amalraj, O. Srur-Lavi et al., Study of cathode materials for lithium-ion batteries: recent progress and new challenges. Inorganics 5(2), 32 (2017). https://doi.org/10.3390/inorganics5020032
F. Lin, I.M. Markus, D. Nordlund, T.C. Weng, M.D. Asta et al., Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5(1), 3529 (2014). https://doi.org/10.1038/ncomms4529
S. Liu, Z. Wang, Y. Huang, Z. Ni, J. Bai et al., Fluorine doping and Al2O3 coating Co-modified Li[Li0.20Ni0.133Co0.133Mn0.534]O2 as high performance cathode material for lithium-ion batteries. J. Alloys Compd. 731, 636–645 (2018)
N. Su, Y. Lyu, R. Gu, B. Guo, Al2O3 coated Li1.2Ni0.2Mn0.2Ru0.4O2 as cathode material for Li-ion batteries. J. Alloys Compd. 741, 398–403 (2018). https://doi.org/10.1016/j.jallcom.2018.01.146
N. Dannehl, S.O. Steinmüller, D.V. Szabó, M. Pein, F. Sigel et al., High-resolution surface analysis on aluminum oxide-coated Li1.2Mn0.55Ni0.15Co0.1O2 with improved capacity retention. ACS Appl. Mater. Interf. 10(49), 43131–43143 (2018). https://doi.org/10.1021/acsami.8b09550
G. Kobayashi, Y. Irii, F. Matsumoto, A. Ito, Y. Ohsawa et al., Improving cycling performance of Li-rich layered cathode materials through combination of Al2O3-based surface modification and stepwise precycling. J. Power Sources 303, 250–256 (2016). https://doi.org/10.1016/j.jpowsour.2015.11.014
Z. Wang, E. Liu, L. Guo, C. Shi, C. He et al., Cycle performance improvement of Li-rich layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by ZrO2 coating. Surf. Coat. Technol. 235, 570–576 (2013). https://doi.org/10.1016/j.surfcoat.2013.08.026
F. Wu, Z. Wang, Y. Su, N. Yan, L. Bao et al., Li[Li0.2Mn0.54Ni0.13Co0.13]O2-MoO3 composite cathodes with low irreversible capacity loss for lithium ion batteries. J. Power Sources 247, 20–25 (2014). https://doi.org/10.1016/j.jpowsour.2013.08.031
J.M. Zheng, J. Li, Z.R. Zhang, X.J. Guo, Y. Yang, The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery. Solid State Ionics 179(27), 1794–1799 (2008). https://doi.org/10.1016/j.ssi.2008.01.091
Y.K. Sun, M.J. Lee, C.S. Yoon, J. Hassoun, K. Amine et al., The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries. Adv. Mater. 24(9), 1192–1196 (2012). https://doi.org/10.1002/adma.201104106
H.G. Song, J.Y. Kim, K.T. Kim, Y.J. Park, Enhanced electrochemical properties of Li(Ni0.4Co0.3Mn0.3)O2 cathode by surface modification using Li3PO4-based materials. J. Power Sources 196(16), 6847–6855 (2011). https://doi.org/10.1016/j.jpowsour.2010.09.027
S.Y. Lee, J.H. Park, J.H. Cho, S.B. Kim, W.S. Kim et al., A novel ion-conductive protection skin based on polyimide gel polymer electrolyte: application to nanoscale coating layer of high voltage LiNi1/3C1/3Mn1/3O2 cathode materials for lithium-ion batteries. J. Mater. Chem. 22(25), 12574–12581 (2012). https://doi.org/10.1039/c2jm16799a
J.H. Park, J.H. Cho, J.S. Kim, E.G. Shim, S.Y. Lee, High-voltage cell performance and thermal stability of nanoarchitectured polyimide gel polymer electrolyte-coated LiCoO2 cathode materials. Electrochim. Acta 86, 346–351 (2012). https://doi.org/10.1016/j.electacta.2012.04.073
J. Zhang, Q. Lu, J. Fang, J. Wang, J. Yang et al., Polyimide encapsulated lithium-rich cathode material for high voltage lithium-ion battery. ACS Appl. Mater. Interfaces 6(20), 17965–17973 (2014). https://doi.org/10.1021/am504796n
Y. Wang, Separator wettability enhanced by electrolyte additive to boost the electrochemical performance of lithium metal batteries. Nano-Micro Lett. 13, 210 (2021). https://doi.org/10.1007/s40820-021-00731-2
X. Huang, Separator technologies for lithium-ion batteries. J. Solid State Electrochem. 15(4), 649–662 (2011). https://doi.org/10.1007/s10008-010-1264-9
M.F. Lagadec, R. Zahn, V. Wood, Characterization and performance evaluation of lithium-ion battery separators. Nat. Energy 4(1), 16–25 (2019). https://doi.org/10.1038/s41560-018-0295-9
Z. Liu, Y. Jiang, Q. Hu, S. Guo, L. Yu et al., Materials Safer lithium-ion batteries from the separator aspect Development and future perspectives. Energy Environ. Mater 4(3), 336–362 (2021). https://doi.org/10.1002/eem2.12129
G. Dong, N. Dong, B. Liu, G. Tian, S. Qi et al., Ultrathin inorganic-nanoshell encapsulation: TiO2 coated polyimide nanofiber membrane enabled by layer-by-layer deposition for advanced and safe high-power LIB separator. J. Membr. Sci. 601, 117884–117892 (2020). https://doi.org/10.1016/j.memsci.2020.117884
W. Jiang, Z. Liu, Q. Kong, J. Yao, C. Zhang et al., A high temperature operating nanofibrous polyimide separator in li-ion battery. Solid State Ionics 232, 44–48 (2013). https://doi.org/10.1016/j.ssi.2012.11.010
L. He, J.H. Cao, T. Liang, D.Y. Wu, Effect of monomer structure on properties of polyimide as lib separator and its mechanism study. Electrochim. Acta 337, 135838–135848 (2020). https://doi.org/10.1016/j.electacta.2020.135838
D. Lin, D. Zhuo, Y. Liu, Y. Cui, All-integrated bifunctional separator for li dendrite detection via novel solution synthesis of a thermostable polyimide separator. J. Am. Chem. Soc. 138(34), 11044–11050 (2016). https://doi.org/10.1021/jacs.6b06324
M. Li, Z. Zhang, Y. Yin, W. Guo, Y. Bai et al., Novel polyimide separator prepared with two porogens for safe lithium-ion batteries. ACS Appl. Mater. Interfaces 12(3), 3610–3616 (2020). https://doi.org/10.1021/acsami.9b19049
P. Zhou, D. Yao, H. Liang, J. Yin, Y. Xia et al., Highly connective spongy polyimide separators blended with inorganic whiskers for high-performance lithium-ion batteries. ACS Appl. Energy Mater. 5(2), 2011–2023 (2022). https://doi.org/10.1021/acsaem.1c03548
Y. Song, X. Liu, D. Ren, H. Liang, L. Wang et al., Simultaneously blocking chemical crosstalk and internal short circuit via gel-stretching derived nanoporous non-shrinkage separator for safe lithium-ion batteries. Adv. Mater. 34(2), 2106335–2106345 (2021). https://doi.org/10.1002/adma.202106335
J. Li, K. Luo, J. Yu, Y. Wang, J. Zhu et al., Promising free-standing polyimide membrane via solution blow spinning for high performance lithium-ion batteries. Ind. Eng. Chem. Res. 57(36), 12296–12305 (2018). https://doi.org/10.1021/acs.iecr.8b02755
D. Wu, N. Dong, R. Wang, S. Qi, B. Liu et al., In situ construction of high-safety and non-flammable polyimide “ceramic” lithium-ion battery separator via SiO2 nano-encapsulation. Chem. Eng. J. 420, 129992–130001 (2021). https://doi.org/10.1016/j.cej.2021.129992
N. Dong, J. Wang, N. Chen, B. Liu, G. Tian et al., In situ reinforcing: ZrO2-armored hybrid polyimide separators for advanced and safe lithium-ion batteries. ACS Sustain. Chem. Eng. 9(18), 6250–6257 (2021). https://doi.org/10.1021/acssuschemeng.0c08818
M. Qiao, G. Zhang, J. Deng, J. Guo, J.J. Zhang, Electrospun polyimide@ organic-montmorillonite composite separator with enhanced mechanical and thermal performances for high-safety lithium-ion battery. J. Mater. Sci. 57(25), 11796–11808 (2022). https://doi.org/10.1007/s10853-022-07343-0
M. Holzapfel, H. Buqa, L.J. Hardwick, M. Hahn, A. Würsig et al., Nano silicon for lithium-ion batteries. Electrochim. Acta 52(3), 973–978 (2006). https://doi.org/10.1016/j.electacta.2006.06.034
H. Li, A high capacity nano-Si composite anode material for lithium rechargeable batteries. Electrochem. Solid-State Lett. 2(11), 547–549 (1999). https://doi.org/10.1149/1.1390899
S. You, H. Tan, L. Wei, W. Tan, C. Li, Design strategies of Si/C composite anode for lithium-ion batteries. Chem. Eur. J. 27(48), 12237–12256 (2021). https://doi.org/10.1002/chem.202100842
R. Yi, J. Zai, F. Dai, M.L. Gordin, D. Wang, Dual conductive network-enabled graphene/Si-C composite anode with high areal capacity for lithium-ion batteries. Nano Energy 6, 211–218 (2014). https://doi.org/10.1016/j.nanoen.2014.04.006
X. Gao, W. Lu, J. Xu, Insights into the li diffusion mechanism in Si/C composite anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 13(18), 21362–21370 (2021). https://doi.org/10.1021/acsami.1c03366
Y. Shi, X. Zhou, G. Yu, Material and structural design of novel binder systems for high-energy, high-power lithium-ion batteries. Acc. Chem. Res. 50(11), 2642–2652 (2017). https://doi.org/10.1021/acs.accounts.7b00402
J. Li, R.B. Lewis, J.R. Dahn, Sodium carboxymethyl cellulose: a potential binder for Si negative electrodes for Li-ion batteries. Electrochem. Solid-State Lett. 10(2), A17–A20 (2007). https://doi.org/10.1149/1.2398725
A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy et al., Toward efficient binders for Li-ion battery Si-based anodes: Polyacrylic acid. ACS Appl. Mater. Interfaces 2(11), 3004–3010 (2010). https://doi.org/10.1021/am100871y
J.S. Bridel, T. Azaïs, M. Morcrette, J.M. Tarascon, D. Larcher, Key parameters governing the reversibility of si/carbon/cmc electrodes for li-ion batteries. Chem. Mater. 22(3), 1229–1241 (2010). https://doi.org/10.1021/cm902688w
D. Shao, H. Zhong, L. Zhang, Water-soluble conductive composite binder containing PEDOT:PSS as conduction promoting agent for si anode of lithium-ion batteries. Chem Electro Chem 1(10), 1679–1687 (2014). https://doi.org/10.1002/celc.201402210
C. Wang, H. Wu, Z. Chen, M.T. McDowell, Y. Cui et al., Self-healing chemistry enables the stable operation of silicon microp anodes for high-energy lithium-ion batteries. Nat. Chem. 5(12), 1042–1048 (2013). https://doi.org/10.1038/nchem.1802
M.H. Ryou, J. Kim, I. Lee, S. Kim, Y.K. Jeong et al., Mussel-inspired adhesive binders for high-performance silicon nanop anodes in lithium-ion batteries. Adv. Mater. 25(11), 1571–1576 (2013). https://doi.org/10.1002/adma.201203981
H. Zhao, Y. Wei, C. Wang, R. Qiao, W. Yang et al., Mussel-inspired conductive polymer binder for si-alloy anode in lithium-ion batteries. ACS Appl. Mater. Interfaces 10(6), 5440–5446 (2018). https://doi.org/10.1021/acsami.7b14645
R. Wang, D. Feng, T. Chen, S. Chen, Y. Liu, Mussel-inspired polydopamine treated Si/C electrode as high-performance anode for lithium-ion batteries. J. Alloys Compd. 825, 154081–154090 (2020). https://doi.org/10.1016/j.jallcom.2020.154081
J.H. Lee, U. Paik, V.A. Hackley, Y.M. Choi, Effect of poly(acrylic acid) on adhesion strength and electrochemical performance of natural graphite negative electrode for lithium-ion batteries. J. Power Sources 161(1), 612–616 (2006). https://doi.org/10.1016/j.jpowsour.2006.03.087
M. Murase, N. Yabuuchi, Z.-J. Han, J.-Y. Son, Y.-T. Cui et al., Crop-derived polysaccharides as binders for high-capacity silicon/graphite-based electrodes in lithium-ion batteries. ChemSusChem 5(12), 2307–2311 (2012). https://doi.org/10.1002/cssc.201200650
S. Hu, Z. Cai, T. Huang, H. Zhang, A. Yu, A modified natural polysaccharide as a high-performance binder for silicon anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 11(4), 4311–4317 (2019). https://doi.org/10.1021/acsami.8b15695
L. Gong, M.H.T. Nguyen, E.-S. Oh, High polar polyacrylonitrile as a potential binder for negative electrodes in lithium ion batteries. Electrochem. Commun. 29, 45–47 (2013). https://doi.org/10.1016/j.elecom.2013.01.010
N. Ohta, T. Sogabe, K. Kuroda, A novel binder for the graphite anode of rechargeable lithium ion batteries for the improvement of reversible capacity. Carbon 39(9), 1434–1436 (2001). https://doi.org/10.1016/S0008-6223(01)00079-3
C.H. Tsao, T.K. Yang, K.Y. Chen, C.E. Fang, M. Ueda et al., Comparing the ion-conducting polymers with sulfonate and ether moieties as cathode binders for high-power lithium-ion batteries. ACS Appl. Mater. Interfaces 13(8), 9846–9855 (2021). https://doi.org/10.1021/acsami.0c20657
J.S. Kim, W. Choi, K.Y. Cho, D. Byun, J. Lim et al., Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries. J. Power Sources 244, 521–526 (2013). https://doi.org/10.1016/j.jpowsour.2013.02.049
Z. Xu, J. Yang, T. Zhang, Y. Nuli, J. Wang et al., Silicon microp anodes with self-healing multiple network binder. Joule 2(5), 950–961 (2018). https://doi.org/10.1016/j.joule.2018.02.012
T.M. Higgins, S.H. Park, P.J. King, C. Zhang, N. McEvoy et al., A commercial conducting polymer as both binder and conductive additive for silicon nanop-based lithium-ion battery negative electrodes. ACS Nano 10(3), 3702–3713 (2016). https://doi.org/10.1021/acsnano.6b00218
H. Zhao, Z. Wang, P. Lu, M. Jiang, F. Shi et al., Toward practical application of functional conductive polymer binder for a high-energy lithium-ion battery design. Nano Lett. 14(11), 6704–6710 (2014). https://doi.org/10.1021/nl503490h
D. Yao, Y. Yang, Y. Deng, C. Wang, Flexible polyimides through one-pot synthesis as water-soluble binders for silicon anodes in lithium ion batteries. J. Power Sources 379, 26–32 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.086
L. Ma, J.Q. Meng, Y.J. Cheng, Q. Ji, X. Zuo et al., Poly(siloxane imide) binder for silicon-based lithium-ion battery anodes via rigidness/softness coupling. Chem. Asian J. 15(17), 2674–2680 (2020). https://doi.org/10.1002/asia.202000633
J. Choi, K. Kim, J. Jeong, K.Y. Cho, M.H. Ryou et al., Highly adhesive and soluble copolyimide binder: Improving the long-term cycle life of silicon anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 7(27), 14851–14858 (2015). https://doi.org/10.1021/acsami.5b03364
Y. Xu, Q. Zhang, N. Lv, H. Li, Z. Wei et al., Carboxyl function group introduced to polyimide binders for silicon anode materials. Energy Fuels 37(3), 2441–2448 (2023). https://doi.org/10.1021/acs.energyfuels.2c04024
H.Q. Pham, J. Lee, H.M. Jung, S. Song, Non-flammable LiNi0.8CO0.1Mn0.1O2 cathode via functional binder; stabilizing high-voltage interface and performance for safer and high-energy lithium rechargeable batteries. Electrochim. Acta 317, 711–721 (2019). https://doi.org/10.1016/j.electacta.2019.06.034
K. Qi, Y. Wang, N. Dong, B. Liu, G. Tian et al., Novel polyimide binders integrated with soft and hard functional segments ensuring long-term high-voltage operating stability of high-energy NCM811 lithium-ion batteries up to 4.5 V. Appl. Energy 320, 119282 (2022). https://doi.org/10.1016/j.apenergy.2022.119282
Q. Zhao, S. Stalin, C.Z. Zhao, L.A. Archer, Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5(3), 229–252 (2020). https://doi.org/10.1038/s41578-019-0165-5
T. Famprikis, P. Canepa, J.A. Dawson, M.S. Islam, C. Masquelier, Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18(12), 1278–1291 (2019). https://doi.org/10.1038/s41563-019-0431-3
A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2(4), 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103
J. Lee, C.L. Lee, K. Park, I.D. Kim, Synthesis of an Al2O3-coated polyimide nanofiber mat and its electrochemical characteristics as a separator for lithium ion batteries. J. Power Sources 248, 1211–1217 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.056
M. Higa, K. Yaguchi, R. Kitani, All solid-state polymer electrolytes prepared from a graft copolymer consisting of a polyimide main chain and poly(ethylene oxide) based side chains. Electrochim. Acta. 55(4), 1380–1384 (2010). https://doi.org/10.1016/j.electacta.2009.07.046
J. Wan, J. Xie, X. Kong, Z. Liu, K. Liu et al., Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 14(7), 705–711 (2019). https://doi.org/10.1038/s41565-019-0465-3
Y. Cui, J. Wan, Y. Ye, K. Liu, L.Y. Chou et al., A fireproof, lightweight, polymer-polymer solid-state electrolyte for safe lithium batteries. Nano Lett. 20(3), 1686–1692 (2020). https://doi.org/10.1021/acs.nanolett.9b04815
J. Hu, P. He, B. Zhang, B. Wang, L.Z. Fan, Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries. Energy Storage Mater. 26, 283–289 (2020). https://doi.org/10.1016/j.ensm.2020.01.006
J. Gai, F. Ma, Z. Zhang, D. Sun, Y. Jin et al., Flexible organic-inorganic composite solid electrolyte with asymmetric structure for room temperature solid-state Li-ion batteries. ACS Sustain. Chem. Eng. 7(19), 15896–15903 (2019). https://doi.org/10.1021/acssuschemeng.9b01869
X. Shen, T. Hu, Y. Zeng, X. Huang, P. Zhang et al., Core-shell structured gel polymer electrolyte with single-ion conducting and thermal stability bifunction for lithium-ion batteries. J. Electrochem. Soc. 169(7), 070505–070514 (2022). https://doi.org/10.1149/1945-7111/ac79d5
Y. Li, Z. Fu, S. Lu, X. Sun, X. Zhang et al., Polymer nanofibers framework composite solid electrolyte with lithium dendrite suppression for long life all-solid-state lithium metal battery. Chem. Eng. J. 440, 135816–135825 (2022). https://doi.org/10.1016/j.cej.2022.135816
Z. Song, Y. Qian, X. Liu, T. Zhang, Y. Zhu et al., A quinone-based oligomeric lithium salt for superior Li–organic batteries. Energy Environ. Sci. 7(12), 4077–4086 (2014). https://doi.org/10.1039/C4EE02575J
K. Liu, J. Zheng, G. Zhong, Y. Yang, Poly(2,5-dihydroxy-1,4-benzoquinonyl sulfide) (PDBS) as a cathode material for lithium ion batteries. J. Mater. Chem. 21(12), 4125–4131 (2011). https://doi.org/10.1039/C0JM03127E
T. Janoschka, M.D. Hager, U.S. Schubert, Powering up the future: Radical polymers for battery applications. Adv. Mater. 24(48), 6397–6409 (2012). https://doi.org/10.1002/adma.201203119
A.L. Goodwin, Packing down. Adv. Mater. 9(1), 7–8 (2010). https://doi.org/10.1038/nmat2597
B. Häupler, A. Wild, U.S. Schubert, Carbonyls: powerful organic materials for secondary batteries. Adv. Energy Mater. 5(11), 1402034 (2015). https://doi.org/10.1002/aenm.201402034
H.G. Wang, S. Yuan, D.L. Ma, X.L. Huang, F.L. Meng et al., Tailored aromatic carbonyl derivative polyimides for high-power and long-cycle sodium-organic batteries. Adv. Energy Mater. 4(7), 1301651–1301658 (2014). https://doi.org/10.1002/aenm.201301651
Z. Song, T. Xu, M.L. Gordin, Y.B. Jiang, I.T. Bae et al., Polymer-graphene nanocomposites as ultrafast-charge and -discharge cathodes for rechargeable lithium batteries. Nano Lett. 12(5), 2205–2211 (2012). https://doi.org/10.1021/nl2039666
C. Luo, X. Ji, S. Hou, N. Eidson, X. Fan et al., Azo compounds derived from electrochemical reduction of nitro compounds for high performance Li-ion batteries. Adv. Mater. 30(23), 1706498–1706507 (2018). https://doi.org/10.1002/adma.201706498
C. Luo, O. Borodin, X. Ji, S. Hou, K.J. Gaskell et al., Azo compounds as a family of organic electrode materials for alkali-ion batteries. Proc. Natl. Acad. Sci. USA 115(9), 2004–2009 (2018). https://doi.org/10.1073/pnas.1717892115
J. Wang, A.E. Lakraychi, X. Liu, L. Sieuw, C. Morari et al., Conjugated sulfonamides as a class of organic lithium-ion positive electrodes. Nat. Mater. 20(5), 665–673 (2021). https://doi.org/10.1038/s41563-020-00869-1
J. Wang, X. Guo, P. Apostol, X. Liu, K. Robeyns et al., High performance Li-, Na-, and K-ion storage in electrically conducting coordination polymers. Energy Environ. Sci. 15(9), 3923–3932 (2022). https://doi.org/10.1039/D2EE00566B
J. Wang, X. Liu, H. Jia, P. Apostol, X. Guo et al., A high-voltage organic framework for high-performance Na- and K-ion batteries. ACS Energy Lett. 7(2), 668–674 (2022). https://doi.org/10.1021/acsenergylett.1c02571
M. Ruby Raj, R.V. Mangalaraja, G. Lee, D. Contreras, K. Zaghib et al., Large π-conjugated condensed perylene-based aromatic polyimide as organic cathode for lithium-ion batteries. ACS Appl. Energy Mater. 3(7), 6511–6524 (2020). https://doi.org/10.1021/acsaem.0c00729
K.B. Labasan, H.-J. Lin, F. Baskoro, J.J.H. Togonon, H.Q. Wong et al., Dicyanotriphenylamine-based polyimides as high-performance electrodes for next generation organic lithium-ion batteries. ACS Appl. Mater. Interfaces 13(15), 17467–17477 (2021). https://doi.org/10.1021/acsami.1c00065
H. Yang, S. Liu, L. Cao, S. Jiang, H.Q. Hou, Superlithiation of non-conductive polyimide toward high-performance lithium-ion batteries. J. Mater. Chem. A 6(42), 21216–21224 (2018). https://doi.org/10.1039/C8TA05109G
G. Hernández, M. Salsamendi, S.M. Morozova, E.I. Lozinskaya, S. Devaraj et al., Polyimides as cathodic materials in lithium batteries: Effect of the chemical structure of the diamine monomer. J. Polym. Sci. A: Polym. Chem. 56(7), 714–723 (2018). https://doi.org/10.1002/pola.28937
Z. Ba, Z. Wang, M. Luo, H.-B. Li, Y. Li et al., Benzoquinone-based polyimide derivatives as high-capacity and stable organic cathodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 12(1), 807–817 (2019). https://doi.org/10.1021/acsami.9b18422
J. Wang, H. Liu, C. Du, X. Zhang, Y. Liu et al., Conjugated diketone-linked polyimide cathode material for organic lithium-ion batteries. Chem. Engin. J. 444, 136598 (2022). https://doi.org/10.1016/j.cej.2022.136598
C.N. Gannett, J. Kim, D. Tirtariyadi, P.J. Milner, H. Abruña, Investigation of ion-electrode interactions of linear polyimides and alkali metal ions for next generation alternative-ion batteries. Chem. Sci. 13(32), 9191–9201 (2022). https://doi.org/10.1039/D2SC02939A
J. He, Y. Liao, Q. Hu, Z. Zeng, L. Yi et al., Multi carbonyl polyimide as high capacity anode materials for lithium ion batteries. J. Power Sources 451, 227792 (2020). https://doi.org/10.1016/j.jpowsour.2020.227792
Y. Liao, J. He, L. Yi, Y. Tang, X. Li et al., Electrochemical kinetic study of a polyimide anode for lithium-ion batteries using the ac impedance technique. ACS Appl. Energy Mater. 4(5), 5348–5358 (2021). https://doi.org/10.1021/acsaem.1c00941
H. Kang, H. Liu, C. Li, L. Sun, C. Zhang et al., Polyanthraquinone-triazine-a promising anode material for high-energy lithium-ion batteries. ACS Appl. Mater. Interfaces 10(43), 37023–37030 (2018). https://doi.org/10.1021/acsami.8b12888
Y. Huang, K. Li, J. Liu, X. Zhong, X. Duan et al., Three-dimensional graphene/polyimide composite-derived flexible high-performance organic cathode for rechargeable lithium and sodium batteries. J. Mater. Chem. A 5(6), 2710–2716 (2017). https://doi.org/10.1039/c6ta09754e
A. Ahmad, H. Wu, Y. Guo, Q. Meng, Y. Meng et al., A graphene supported polyimide nanocomposite as a high performance organic cathode material for lithium ion batteries. RSC Adv. 6(40), 33287–33294 (2016). https://doi.org/10.1039/c5ra27471k
Z. Xiao, G. Xiang, Q. Zhang, Y. Wang, Y.J.E. Yang et al., Boosting lithium storage in graphene-sandwiched cathodes containing multi-carbonyl polyquinoneimine nanosheets. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12399
Q. Ban, Y. Liu, P. Liu, Y. Li, Y. Qin et al., Hierarchically nanostructured carbon nanotube/polyimide/mesoporous Fe2O3 nanocomposite for organic-inorganic lithium-ion battery anode. Micropor. Mesopor. Mater. 335, 111803–111812 (2022). https://doi.org/10.1016/j.micromeso.2022.111803
G. Zhang, Z. Xu, P. Liu, Y. Su, T. Huang et al., A facile in-situ polymerization strategy towards polyimide/carbon black composites as high performance lithium ion battery cathodes. Electrochim. Acta 260, 598–605 (2018). https://doi.org/10.1016/j.electacta.2017.12.075
G. Zha, C. Ouyang, S. Yin, K. Yao, S. Agarwal et al., High cycling stability of the LiNi0.8CO0.1Mn0.1O2 cathode via surface modification with polyimide/multi-walled carbon nanotubes composite coating. Small 17(47), 2102981 (2021). https://doi.org/10.1002/smll.202102981
J.-M. Kim, Y. Xu, M.H. Engelhard, J. Hu, H.-S. Lim et al., Facile dual-protection layer and advanced electrolyte enhancing performances of cobalt-free/nickel-rich cathodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 14(15), 17405–17414 (2022). https://doi.org/10.1021/acsami.2c01694
Y. Li, L. Lv, W. Huang, Y. Zhu, In situ polymerized and imidized Si@ polyimide microcapsules with flexible solid-electrolyte interphase and enhanced electrochemical activity for Li-storage. ChemElectroChem 9(2), e202101409 (2022). https://doi.org/10.1002/celc.202101409
Y. Wang, K. Qi, N. Dong, B. Liu, G. Tian, LiNi0.8CO0.1Mn0.1O2 Surface modification enabling 4. 7 v nickel-rich layered cathode with superior long-term cyclability via novel functional polyimide binders. J. Power Sources 545, 231927–231938 (2022). https://doi.org/10.1016/j.jpowsour.2022.231927
Y. Xu, Y. Wang, N. Dong, C. Pu, B. Liu et al., Novel polyimide binder for achieving high-rate capability and long-term cycling stability of LiNi0.8CO0.1Mn0.1O2 cathode via constructing polar and micro-branched crosslinking network structure. J. Energy Chem. 76, 19–31 (2023). https://doi.org/10.1016/j.jechem.2022.09.008
Y. Wang, N. Dong, B. Liu, K. Qi, G. Tian et al., Enhanced electrochemical performance of the LiNi0.8CO0.1Mn0.1O2 cathode via in-situ nanoscale surface modification with poly (imide-siloxane) binder. Chem. Eng. J. 450, 137959–137969 (2022). https://doi.org/10.1016/j.cej.2022.137959