Self-Healing Dynamic Hydrogel Microparticles with Structural Color for Wound Management
Corresponding Author: Luoran Shang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 232
Abstract
Chronic diabetic wounds confront a significant medical challenge because of increasing prevalence and difficult-healing circumstances. It is vital to develop multifunctional hydrogel dressings, with well-designed morphology and structure to enhance flexibility and effectiveness in wound management. To achieve these, we propose a self-healing hydrogel dressing based on structural color microspheres for wound management. The microsphere comprised a photothermal-responsive inverse opal framework, which was constructed by hyaluronic acid methacryloyl, silk fibroin methacryloyl and black phosphorus quantum dots (BPQDs), and was further re-filled with a dynamic hydrogel. The dynamic hydrogel filler was formed by Knoevenagel condensation reaction between cyanoacetate and benzaldehyde-functionalized dextran (DEX-CA and DEX-BA). Notably, the composite microspheres can be applied arbitrarily, and they can adhere together upon near-infrared irradiation by leveraging the BPQDs-mediated photothermal effect and the thermoreversible stiffness change of dynamic hydrogel. Additionally, eumenitin and vascular endothelial growth factor were co-loaded in the microspheres and their release behavior can be regulated by the same mechanism. Moreover, effective monitoring of the drug release process can be achieved through visual color variations. The microsphere system has demonstrated desired capabilities of controllable drug release and efficient wound management. These characteristics suggest broad prospects for the proposed composite microspheres in clinical applications.
Highlights:
1 Derived from silica photonic crystals, inverse opal microspheres have a regularly connected porous structure and inherit structural color properties.
2 Combined with the stable scaffold and the photothermal phase-transition of the secondary filling material, the inverse opal composite microspheres are endowed with self-healing properties and the ability for controllable drug release.
3 Inverse opal microspheres were significantly treated for diabetic wound, via promoting tissue regeneration, collagen deposition and angiogenesis. Meanwhile, the release of drugs could be monitored by the structural color characteristic.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Willenborg, S.A. Eming, Cellular networks in wound healing. Science 362, 891–892 (2018). https://doi.org/10.1126/science.aav5542
- V. Falanga, R.R. Isseroff, A.M. Soulika, M. Romanelli, D. Margolis et al., Chronic wounds. Nat. Rev. Dis. Primers. 8, 50 (2022). https://doi.org/10.1038/s41572-022-00377-3
- H. Chen, Y. Cheng, J. Tian, P. Yang, X. Zhang et al., Dissolved oxygen from microalgae-gel patch promotes chronic wound healing in diabetes. Sci. Adv. 6, eaba4311 (2020). https://doi.org/10.1126/sciadv.aba4311
- Y. Liang, J. He, B. Guo, Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15, 12687–12722 (2021). https://doi.org/10.1021/acsnano.1c04206
- M. Li, F. Fang, M. Sun, Y. Zhang, M. Hu et al., Extracellular vesicles as bioactive nanotherapeutics: an emerging paradigm for regenerative medicine. Theranostics 12, 4879–4903 (2022). https://doi.org/10.7150/thno.72812
- Y. Feng, Z. Zhang, W. Tang, Y. Dai, Gel/hydrogel-based in situ biomaterial platforms for cancer postoperative treatment and recovery. Exploration 3, 20220173 (2023). https://doi.org/10.1002/EXP.20220173
- S. Matoori, A. Veves, D.J. Mooney, Advanced bandages for diabetic wound healing. Sci. Transl. Med. 13, eabe4839 (2021). https://doi.org/10.1126/scitranslmed.abe4839
- Y. Li, D. Hao, G. Feng, F.-J. Xu, A hydrogel wound dressing ideally designed for chronic wound care. Matter 6, 1060–1062 (2023). https://doi.org/10.1016/j.matt.2023.03.006
- M. Kharaziha, A. Baidya, N. Annabi, Rational design of immunomodulatory hydrogels for chronic wound healing. Adv. Mater. 33, e2100176 (2021). https://doi.org/10.1002/adma.202100176
- J. Wang, X.-Y. Chen, Y. Zhao, Y. Yang, W. Wang et al., pH-switchable antimicrobial nanofiber networks of hydrogel eradicate biofilm and rescue stalled healing in chronic wounds. ACS Nano 13, 11686–11697 (2019). https://doi.org/10.1021/acsnano.9b05608
- X. Du, B. Jia, W. Wang, C. Zhang, X. Liu et al., pH-switchable nanozyme cascade catalysis: a strategy for spatial-temporal modulation of pathological wound microenvironment to rescue stalled healing in diabetic ulcer. J. Nanobiotechnol. 20, 12 (2022). https://doi.org/10.1186/s12951-021-01215-6
- X. Ding, Y. Yu, C. Yang, D. Wu, Y. Zhao, Multifunctional GO hybrid hydrogel scaffolds for wound healing. Research 2022, 9850743 (2022). https://doi.org/10.34133/2022/9850743
- R. Yu, H. Zhang, B. Guo, Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nano-Micro Lett. 14, 1 (2021). https://doi.org/10.1007/s40820-021-00751-y
- Q. Zeng, Q. Peng, F. Wang, G. Shi, H. Haick et al., Tailoring food biopolymers into biogels for regenerative wound healing and versatile skin bioelectronics. Nano-Micro Lett. 15, 153 (2023). https://doi.org/10.1007/s40820-023-01099-1
- L. Cai, D. Xu, H. Chen, L. Wang, Y. Zhao, Designing bioactive micro-/nanomotors for engineered regeneration. Eng. Regen. 2, 109–115 (2021). https://doi.org/10.1016/j.engreg.2021.09.003
- T. Cui, J. Yu, C.-F. Wang, S. Chen, Q. Li et al., Micro-gel ensembles for accelerated healing of chronic wound via pH regulation. Adv. Sci. 9, e2201254 (2022). https://doi.org/10.1002/advs.202201254
- J. Lan, L. Shi, W. Xiao, X. Zhang, S. Wang, A rapid self-pumping organohydrogel dressing with hydrophilic fractal microchannels to promote burn wound healing. Adv. Mater. 35, e2301765 (2023). https://doi.org/10.1002/adma.202301765
- Y.S. Zhang, C. Zhu, Y. Xia, Inverse opal scaffolds and their biomedical applications. Adv. Mater. 29, 1701115 (2017). https://doi.org/10.1002/adma.201701115
- B. Gao, M. Guo, K. Lyu, T. Chu, B. He, Intelligent silk fibroin based microneedle dressing (i-SMD). Adv. Funct. Mater. 31, 2006839 (2021). https://doi.org/10.1002/adfm.202006839
- H. Wang, X. Chen, G. Xie, D. Bi, S. Du et al., Inverse opal photonic hydrogels for blue-edge slow photon-enhanced photodynamic antibacterial therapy. Adv. Funct. Mater. 33, 2306025 (2023). https://doi.org/10.1002/adfm.202306025
- Y. Wang, X. Zhang, G. Chen, M. Lu, Y. Zhao, Multifunctional structural color triboelectric microneedle patches for psoriasis treatment. Matter 6, 1555–1568 (2023). https://doi.org/10.1016/j.matt.2023.03.005
- L. Wang, G. Chen, L. Fan, H. Chen, Y. Zhao et al., Biomimetic enzyme cascade structural color hydrogel microps for diabetic wound healing management. Adv. Sci. 10, e2206900 (2023). https://doi.org/10.1002/advs.202206900
- M. Lu, X. Zhang, D. Xu, N. Li, Y. Zhao, Encoded structural color microneedle patches for multiple screening of wound small molecules. Adv. Mater. 35, e2211330 (2023). https://doi.org/10.1002/adma.202211330
- B.-D. Zheng, J. Ye, Y.-C. Yang, Y.-Y. Huang, M.-T. Xiao, Self-healing polysaccharide-based injectable hydrogels with antibacterial activity for wound healing. Carbohydr. Polym. 275, 118770 (2022). https://doi.org/10.1016/j.carbpol.2021.118770
- L. Cai, Y. Wang, L. Sun, J. Guo, Y. Zhao, Bio-inspired multi-responsive structural color hydrogel with constant volume and wide viewing angles. Adv. Opt. Mater. 9, 2100831 (2021). https://doi.org/10.1002/adom.202100831
- S. Kim, A.N. Mitropoulos, J.D. Spitzberg, H. Tao, D.L. Kaplan et al., Silk inverse opals. Nat. Photonics 6, 818 (2012). https://doi.org/10.1038/nphoton.2012.264
- J.E.S.V. Hoeven, A.V. Shneidman, N.J. Nicolas, J. Aizenberg, Evaporation-induced self-assembly of metal oxide inverse opals: from synthesis to applications. Acc. Chem. Res. 55, 1809–1820 (2022). https://doi.org/10.1021/acs.accounts.2c00087
- Y. Wang, L. Sun, G. Chen, H. Chen, Y. Zhao, Structural color ionic hydrogel patches for wound management. ACS Nano (2022). https://doi.org/10.1021/acsnano.2c10142
- Y. Zhao, R. Li, B. Wang, Y. Huang, P. Lyu et al., Scalable structural coloration of carbon nanotube fibers via a facile silica photonic crystal self-assembly strategy. ACS Nano 17, 2893–2900 (2023). https://doi.org/10.1021/acsnano.2c11296
- Z. Zhang, C. Wang, Q. Wang, Y. Zhao, L. Shang, Cholesteric cellulose liquid crystal ink for three-dimensional structural coloration. Proc. Natl. Acad. Sci. U.S.A. 119, e2204113119 (2022). https://doi.org/10.1073/pnas.2204113119
- L. Shang, Y. Yu, Y. Jiang, X. Liu, N. Sui et al., Ultrasound-augmented multienzyme-like nanozyme hydrogel spray for promoting diabetic wound healing. ACS Nano 17, 15962–15977 (2023). https://doi.org/10.1021/acsnano.3c04134
- Z. Liu, W. Tang, J. Liu, Y. Han, Q. Yan et al., A novel sprayable thermosensitive hydrogel coupled with zinc modified metformin promotes the healing of skin wound. Bioact. Mater. 20, 610–626 (2022). https://doi.org/10.1016/j.bioactmat.2022.06.008
- P. Wang, L. Peng, J. Lin, Y. Li, Q. Luo et al., Enzyme hybrid virus-like hollow mesoporous CuO adhesive hydrogel spray through glucose-activated cascade reaction to efficiently promote diabetic wound healing. Chem. Eng. J. 415, 128901 (2021). https://doi.org/10.1016/j.cej.2021.128901
- L. Wang, L. Sun, F. Bian, Y. Wang, Y. Zhao, Self-bonded hydrogel inverse opal ps as sprayed flexible patch for wound healing. ACS Nano 16, 2640–2650 (2022). https://doi.org/10.1021/acsnano.1c09388
- Z. Shao, T. Yin, J. Jiang, Y. He, T. Xiang et al., Wound microenvironment self-adaptive hydrogel with efficient angiogenesis for promoting diabetic wound healing. Bioact. Mater. 20, 561–573 (2022). https://doi.org/10.1016/j.bioactmat.2022.06.018
- Y. Liang, H. Xu, Z. Li, A. Zhangji, B. Guo, Bioinspired injectable self-healing hydrogel sealant with fault-tolerant and repeated thermo-responsive adhesion for sutureless post-wound-closure and wound healing. Nano-Micro Lett. 14, 185 (2022). https://doi.org/10.1007/s40820-022-00928-z
- X. Garrabou, B.I.M. Wicky, D. Hilvert, Fast Knoevenagel condensations catalyzed by an artificial Schiff-base-forming enzyme. J. Am. Chem. Soc. 138, 6972–6974 (2016). https://doi.org/10.1021/jacs.6b00816
- X. Ding, Y. Yu, W. Li, Y. Zhao, In situ 3D-bioprinting MoS2 accelerated gelling hydrogel scaffold for promoting chronic diabetic wound healing. Matter 6, 1000–1014 (2023). https://doi.org/10.1016/j.matt.2023.01.001
- X. Ding, Y. Yu, L. Shang, Y. Zhao, Histidine-triggered GO hybrid hydrogels for microfluidic 3D printing. ACS Nano 16, 19533–19542 (2022). https://doi.org/10.1021/acsnano.2c09850
References
S. Willenborg, S.A. Eming, Cellular networks in wound healing. Science 362, 891–892 (2018). https://doi.org/10.1126/science.aav5542
V. Falanga, R.R. Isseroff, A.M. Soulika, M. Romanelli, D. Margolis et al., Chronic wounds. Nat. Rev. Dis. Primers. 8, 50 (2022). https://doi.org/10.1038/s41572-022-00377-3
H. Chen, Y. Cheng, J. Tian, P. Yang, X. Zhang et al., Dissolved oxygen from microalgae-gel patch promotes chronic wound healing in diabetes. Sci. Adv. 6, eaba4311 (2020). https://doi.org/10.1126/sciadv.aba4311
Y. Liang, J. He, B. Guo, Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15, 12687–12722 (2021). https://doi.org/10.1021/acsnano.1c04206
M. Li, F. Fang, M. Sun, Y. Zhang, M. Hu et al., Extracellular vesicles as bioactive nanotherapeutics: an emerging paradigm for regenerative medicine. Theranostics 12, 4879–4903 (2022). https://doi.org/10.7150/thno.72812
Y. Feng, Z. Zhang, W. Tang, Y. Dai, Gel/hydrogel-based in situ biomaterial platforms for cancer postoperative treatment and recovery. Exploration 3, 20220173 (2023). https://doi.org/10.1002/EXP.20220173
S. Matoori, A. Veves, D.J. Mooney, Advanced bandages for diabetic wound healing. Sci. Transl. Med. 13, eabe4839 (2021). https://doi.org/10.1126/scitranslmed.abe4839
Y. Li, D. Hao, G. Feng, F.-J. Xu, A hydrogel wound dressing ideally designed for chronic wound care. Matter 6, 1060–1062 (2023). https://doi.org/10.1016/j.matt.2023.03.006
M. Kharaziha, A. Baidya, N. Annabi, Rational design of immunomodulatory hydrogels for chronic wound healing. Adv. Mater. 33, e2100176 (2021). https://doi.org/10.1002/adma.202100176
J. Wang, X.-Y. Chen, Y. Zhao, Y. Yang, W. Wang et al., pH-switchable antimicrobial nanofiber networks of hydrogel eradicate biofilm and rescue stalled healing in chronic wounds. ACS Nano 13, 11686–11697 (2019). https://doi.org/10.1021/acsnano.9b05608
X. Du, B. Jia, W. Wang, C. Zhang, X. Liu et al., pH-switchable nanozyme cascade catalysis: a strategy for spatial-temporal modulation of pathological wound microenvironment to rescue stalled healing in diabetic ulcer. J. Nanobiotechnol. 20, 12 (2022). https://doi.org/10.1186/s12951-021-01215-6
X. Ding, Y. Yu, C. Yang, D. Wu, Y. Zhao, Multifunctional GO hybrid hydrogel scaffolds for wound healing. Research 2022, 9850743 (2022). https://doi.org/10.34133/2022/9850743
R. Yu, H. Zhang, B. Guo, Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nano-Micro Lett. 14, 1 (2021). https://doi.org/10.1007/s40820-021-00751-y
Q. Zeng, Q. Peng, F. Wang, G. Shi, H. Haick et al., Tailoring food biopolymers into biogels for regenerative wound healing and versatile skin bioelectronics. Nano-Micro Lett. 15, 153 (2023). https://doi.org/10.1007/s40820-023-01099-1
L. Cai, D. Xu, H. Chen, L. Wang, Y. Zhao, Designing bioactive micro-/nanomotors for engineered regeneration. Eng. Regen. 2, 109–115 (2021). https://doi.org/10.1016/j.engreg.2021.09.003
T. Cui, J. Yu, C.-F. Wang, S. Chen, Q. Li et al., Micro-gel ensembles for accelerated healing of chronic wound via pH regulation. Adv. Sci. 9, e2201254 (2022). https://doi.org/10.1002/advs.202201254
J. Lan, L. Shi, W. Xiao, X. Zhang, S. Wang, A rapid self-pumping organohydrogel dressing with hydrophilic fractal microchannels to promote burn wound healing. Adv. Mater. 35, e2301765 (2023). https://doi.org/10.1002/adma.202301765
Y.S. Zhang, C. Zhu, Y. Xia, Inverse opal scaffolds and their biomedical applications. Adv. Mater. 29, 1701115 (2017). https://doi.org/10.1002/adma.201701115
B. Gao, M. Guo, K. Lyu, T. Chu, B. He, Intelligent silk fibroin based microneedle dressing (i-SMD). Adv. Funct. Mater. 31, 2006839 (2021). https://doi.org/10.1002/adfm.202006839
H. Wang, X. Chen, G. Xie, D. Bi, S. Du et al., Inverse opal photonic hydrogels for blue-edge slow photon-enhanced photodynamic antibacterial therapy. Adv. Funct. Mater. 33, 2306025 (2023). https://doi.org/10.1002/adfm.202306025
Y. Wang, X. Zhang, G. Chen, M. Lu, Y. Zhao, Multifunctional structural color triboelectric microneedle patches for psoriasis treatment. Matter 6, 1555–1568 (2023). https://doi.org/10.1016/j.matt.2023.03.005
L. Wang, G. Chen, L. Fan, H. Chen, Y. Zhao et al., Biomimetic enzyme cascade structural color hydrogel microps for diabetic wound healing management. Adv. Sci. 10, e2206900 (2023). https://doi.org/10.1002/advs.202206900
M. Lu, X. Zhang, D. Xu, N. Li, Y. Zhao, Encoded structural color microneedle patches for multiple screening of wound small molecules. Adv. Mater. 35, e2211330 (2023). https://doi.org/10.1002/adma.202211330
B.-D. Zheng, J. Ye, Y.-C. Yang, Y.-Y. Huang, M.-T. Xiao, Self-healing polysaccharide-based injectable hydrogels with antibacterial activity for wound healing. Carbohydr. Polym. 275, 118770 (2022). https://doi.org/10.1016/j.carbpol.2021.118770
L. Cai, Y. Wang, L. Sun, J. Guo, Y. Zhao, Bio-inspired multi-responsive structural color hydrogel with constant volume and wide viewing angles. Adv. Opt. Mater. 9, 2100831 (2021). https://doi.org/10.1002/adom.202100831
S. Kim, A.N. Mitropoulos, J.D. Spitzberg, H. Tao, D.L. Kaplan et al., Silk inverse opals. Nat. Photonics 6, 818 (2012). https://doi.org/10.1038/nphoton.2012.264
J.E.S.V. Hoeven, A.V. Shneidman, N.J. Nicolas, J. Aizenberg, Evaporation-induced self-assembly of metal oxide inverse opals: from synthesis to applications. Acc. Chem. Res. 55, 1809–1820 (2022). https://doi.org/10.1021/acs.accounts.2c00087
Y. Wang, L. Sun, G. Chen, H. Chen, Y. Zhao, Structural color ionic hydrogel patches for wound management. ACS Nano (2022). https://doi.org/10.1021/acsnano.2c10142
Y. Zhao, R. Li, B. Wang, Y. Huang, P. Lyu et al., Scalable structural coloration of carbon nanotube fibers via a facile silica photonic crystal self-assembly strategy. ACS Nano 17, 2893–2900 (2023). https://doi.org/10.1021/acsnano.2c11296
Z. Zhang, C. Wang, Q. Wang, Y. Zhao, L. Shang, Cholesteric cellulose liquid crystal ink for three-dimensional structural coloration. Proc. Natl. Acad. Sci. U.S.A. 119, e2204113119 (2022). https://doi.org/10.1073/pnas.2204113119
L. Shang, Y. Yu, Y. Jiang, X. Liu, N. Sui et al., Ultrasound-augmented multienzyme-like nanozyme hydrogel spray for promoting diabetic wound healing. ACS Nano 17, 15962–15977 (2023). https://doi.org/10.1021/acsnano.3c04134
Z. Liu, W. Tang, J. Liu, Y. Han, Q. Yan et al., A novel sprayable thermosensitive hydrogel coupled with zinc modified metformin promotes the healing of skin wound. Bioact. Mater. 20, 610–626 (2022). https://doi.org/10.1016/j.bioactmat.2022.06.008
P. Wang, L. Peng, J. Lin, Y. Li, Q. Luo et al., Enzyme hybrid virus-like hollow mesoporous CuO adhesive hydrogel spray through glucose-activated cascade reaction to efficiently promote diabetic wound healing. Chem. Eng. J. 415, 128901 (2021). https://doi.org/10.1016/j.cej.2021.128901
L. Wang, L. Sun, F. Bian, Y. Wang, Y. Zhao, Self-bonded hydrogel inverse opal ps as sprayed flexible patch for wound healing. ACS Nano 16, 2640–2650 (2022). https://doi.org/10.1021/acsnano.1c09388
Z. Shao, T. Yin, J. Jiang, Y. He, T. Xiang et al., Wound microenvironment self-adaptive hydrogel with efficient angiogenesis for promoting diabetic wound healing. Bioact. Mater. 20, 561–573 (2022). https://doi.org/10.1016/j.bioactmat.2022.06.018
Y. Liang, H. Xu, Z. Li, A. Zhangji, B. Guo, Bioinspired injectable self-healing hydrogel sealant with fault-tolerant and repeated thermo-responsive adhesion for sutureless post-wound-closure and wound healing. Nano-Micro Lett. 14, 185 (2022). https://doi.org/10.1007/s40820-022-00928-z
X. Garrabou, B.I.M. Wicky, D. Hilvert, Fast Knoevenagel condensations catalyzed by an artificial Schiff-base-forming enzyme. J. Am. Chem. Soc. 138, 6972–6974 (2016). https://doi.org/10.1021/jacs.6b00816
X. Ding, Y. Yu, W. Li, Y. Zhao, In situ 3D-bioprinting MoS2 accelerated gelling hydrogel scaffold for promoting chronic diabetic wound healing. Matter 6, 1000–1014 (2023). https://doi.org/10.1016/j.matt.2023.01.001
X. Ding, Y. Yu, L. Shang, Y. Zhao, Histidine-triggered GO hybrid hydrogels for microfluidic 3D printing. ACS Nano 16, 19533–19542 (2022). https://doi.org/10.1021/acsnano.2c09850