Developing mRNA Nanomedicines with Advanced Targeting Functions
Corresponding Author: Yuanjin Zhao
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 155
Abstract
The emerging messenger RNA (mRNA) nanomedicines have sprung up for disease treatment. Developing targeted mRNA nanomedicines has become a thrilling research hotspot in recent years, as they can be precisely delivered to specific organs or tissues to enhance efficiency and avoid side effects. Herein, we give a comprehensive review on the latest research progress of mRNA nanomedicines with targeting functions. mRNA and its carriers are first described in detail. Then, mechanisms of passive targeting, endogenous targeting, and active targeting are outlined, with a focus on various biological barriers that mRNA may encounter during in vivo delivery. Next, emphasis is placed on summarizing mRNA-based organ-targeting strategies. Lastly, the advantages and challenges of mRNA nanomedicines in clinical translation are mentioned. This review is expected to inspire researchers in this field and drive further development of mRNA targeting technology.
Highlights:
1 The structure and modification strategies of messenger RNA (mRNA), along with advanced delivery carriers, are thoroughly reviewed to showcase their role in targeted drug delivery.
2 Recent advancements in mRNA nanomedicines, focusing on targeted strategies for various organs, are summarized to illustrate their therapeutic potential.
3 The major challenges and future perspectives for the clinical translation of targeted mRNA nanomedicines are discussed, emphasizing solutions to biological barriers.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Zhang, L. Zhang, A. Lin, C. Xu, Z. Li et al., Algorithm for optimized mRNA design improves stability and immunogenicity. Nature 621, 396–403 (2023). https://doi.org/10.1038/s41586-023-06127-z
- M. Metkar, C.S. Pepin, M.J. Moore, Tailor made: the art of therapeutic mRNA design. Nat. Rev. Drug Discov. 23, 67–83 (2024). https://doi.org/10.1038/s41573-023-00827-x
- P.A. Mudd, A.A. Minervina, M.V. Pogorelyy, J.S. Turner, W. Kim et al., SARS-CoV-2 mRNA vaccination elicits a robust and persistent T follicular helper cell response in humans. Cell 185, 603-613.e15 (2022). https://doi.org/10.1016/j.cell.2021.12.026
- L. Qu, Z. Yi, Y. Shen, L. Lin, F. Chen et al., Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell 185, 1728-1744.e16 (2022). https://doi.org/10.1016/j.cell.2022.03.044
- J. Conde, R. Langer, J. Rueff, mRNA therapy at the convergence of genetics and nanomedicine. Nat. Nanotechnol. 18, 537–540 (2023). https://doi.org/10.1038/s41565-023-01347-w
- B. Ying, B. Whitener, L.A. VanBlargan, A.O. Hassan, S. Shrihari et al., Protective activity of mRNA vaccines against ancestral and variant SARS-CoV-2 strains. Sci. Transl. Med. 14, eabm3302 (2022). https://doi.org/10.1126/scitranslmed.abm3302
- L.H. Rhym, R.S. Manan, A. Koller, G. Stephanie, D.G. Anderson, Peptide-encoding mRNA barcodes for the high-throughput in vivo screening of libraries of lipid nanops for mRNA delivery. Nat. Biomed. Eng. 7, 901–910 (2023). https://doi.org/10.1038/s41551-023-01030-4
- Z. Xie, Y.-C. Lin, J.M. Steichen, G. Ozorowski, S. Kratochvil et al., mRNA-LNP HIV-1 trimer boosters elicit precursors to broad neutralizing antibodies. Science 384, eadk0582 (2024). https://doi.org/10.1126/science.adk0582
- E. Rohner, R. Yang, K.S. Foo, A. Goedel, K.R. Chien, Unlocking the promise of mRNA therapeutics. Nat. Biotechnol. 40, 1586–1600 (2022). https://doi.org/10.1038/s41587-022-01491-z
- X. Huang, N. Kong, X. Zhang, Y. Cao, R. Langer et al., The landscape of mRNA nanomedicine. Nat. Med. 28, 2273–2287 (2022). https://doi.org/10.1038/s41591-022-02061-1
- B. Sun, W. Wu, E.A. Narasipura, Y. Ma, C. Yu et al., Engineering nanop toolkits for mRNA delivery. Adv. Drug Deliv. Rev. 200, 115042 (2023). https://doi.org/10.1016/j.addr.2023.115042
- S. Qin, X. Tang, Y. Chen, K. Chen, N. Fan et al., mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct. Target. Ther. 7, 166 (2022). https://doi.org/10.1038/s41392-022-01007-w
- Y. Xiao, Z. Tang, X. Huang, W. Chen, J. Zhou et al., Emerging mRNA technologies: delivery strategies and biomedical applications. Chem. Soc. Rev. 51, 3828–3845 (2022). https://doi.org/10.1039/d1cs00617g
- K. Paunovska, A.J. Da Silva Sanchez, C.D. Sago, Z. Gan, M.P. Lokugamage et al., Nanops containing oxidized cholesterol deliver mRNA to the liver microenvironment at clinically relevant doses. Adv. Mater. 31, 1807748 (2019). https://doi.org/10.1002/adma.201807748
- C.K.H. Wong, L.Y. Mak, I.C.H. Au, F.T.T. Lai, X. Li et al., Risk of acute liver injury following the mRNA (BNT162b2) and inactivated (CoronaVac) COVID-19 vaccines. J. Hepatol. 77, 1339–1348 (2022). https://doi.org/10.1016/j.jhep.2022.06.032
- J. Wang, Y. Zhang, C. Liu, W. Zha, S. Dong et al., Trivalent mRNA vaccine against SARS-CoV-2 and variants with effective immunization. Mol. Pharm. 20, 4971–4983 (2023). https://doi.org/10.1021/acs.molpharmaceut.2c00860
- X. Hou, T. Zaks, R. Langer, Y. Dong, Lipid nanops for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021). https://doi.org/10.1038/s41578-021-00358-0
- J. Wang, H. Zhu, J. Gan, G. Liang, L. Li et al., Engineered mRNA delivery systems for biomedical applications. Adv. Mater. 36, 2308029 (2024). https://doi.org/10.1002/adma.202308029
- Y. Wang, P. Chengzhong Yu, Emerging concepts of nanobiotechnology in mRNA delivery. Angew. Chem. Int. Ed. 59, 23374–23385 (2020). https://doi.org/10.1002/anie.202003545
- Q. Cheng, T. Wei, L. Farbiak, L.T. Johnson, S.A. Dilliard et al., Selective organ targeting (SORT) nanops for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020). https://doi.org/10.1038/s41565-020-0669-6
- S.A. Dilliard, Y. Sun, M.O. Brown, Y.-C. Sung, S. Chatterjee et al., The interplay of quaternary ammonium lipid structure and protein Corona on lung-specific mRNA delivery by selective organ targeting (SORT) nanops. J. Control. Release 361, 361–372 (2023). https://doi.org/10.1016/j.jconrel.2023.07.058
- S.A. Dilliard, Q. Cheng, D.J. Siegwart, On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanops. Proc. Natl. Acad. Sci. U.S.A. 118, e2109256118 (2021). https://doi.org/10.1073/pnas.2109256118
- R.A. Meyer, S.Y. Neshat, J.J. Green, J.L. Santos, A.D. Tuesca, Targeting strategies for mRNA delivery. Mater. Today Adv. 14, 100240 (2022). https://doi.org/10.1016/j.mtadv.2022.100240
- J.R. Melamed, S.S. Yerneni, M.L. Arral, S.T. LoPresti, N. Chaudhary et al., Ionizable lipid nanops deliver mRNA to pancreatic β cells via macrophage-mediated gene transfer. Sci. Adv. 9, eade1444 (2023). https://doi.org/10.1126/sciadv.ade1444
- G. Zeng, Z. He, H. Yang, Z. Gao, X. Ge et al., Cationic lipid pairs enhance liver-to-lung tropism of lipid nanops for in vivo mRNA delivery. ACS Appl. Mater. Interfaces 16, 25698–25709 (2024). https://doi.org/10.1021/acsami.4c02415
- H. Ni, M.Z.C. Hatit, K. Zhao, D. Loughrey, M.P. Lokugamage et al., Piperazine-derived lipid nanops deliver mRNA to immune cells in vivo. Nat. Commun. 13, 4766 (2022). https://doi.org/10.1038/s41467-022-32281-5
- Z. Tang, F. Yu, J.C. Hsu, J. Shi, W. Cai, Soybean oil-derived lipids for efficient mRNA delivery. Adv. Mater. 36, e2302901 (2024). https://doi.org/10.1002/adma.202302901
- E. Kon, N. Ad-El, I. Hazan-Halevy, L. Stotsky-Oterin, D. Peer, Targeting cancer with mRNA-lipid nanops: key considerations and future prospects. Nat. Rev. Clin. Oncol. 20, 739–754 (2023). https://doi.org/10.1038/s41571-023-00811-9
- O.A. Marcos-Contreras, C.F. Greineder, R.Y. Kiseleva, H. Parhiz, L.R. Walsh et al., Selective targeting of nanomedicine to inflamed cerebral vasculature to enhance the blood-brain barrier. Proc. Natl. Acad. Sci. U.S.A. 117, 3405–3414 (2020). https://doi.org/10.1073/pnas.1912012117
- J. Popovitz, R. Sharma, R. Hoshyar, B.S. Kim, N. Murthy et al., Gene editing therapeutics based on mRNA delivery. Adv. Drug Deliv. Rev. 200, 115026 (2023). https://doi.org/10.1016/j.addr.2023.115026
- J. Wang, Y. Zhang, S. Dong, W. Zha, C. Liu et al., Bivalent mRNA vaccines against three SARS-CoV-2 variants mediated by new ionizable lipid nanops. Int. J. Pharm. 642, 123155 (2023). https://doi.org/10.1016/j.ijpharm.2023.123155
- J. Wang, Y. Fang, Z. Luo, J. Wang, Y. Zhao, Emerging mRNA technology for liver disease therapy. ACS Nano 18, 17378–17406 (2024). https://doi.org/10.1021/acsnano.4c02987
- N. Al Fayez, M.S. Nassar, A.A. Alshehri, M.K. Alnefaie, F.A. Almughem et al., Recent advancement in mRNA vaccine development and applications. Pharmaceutics 15, 1972 (2023). https://doi.org/10.3390/pharmaceutics15071972
- K. Xu, W. Lei, B. Kang, H. Yang, Y. Wang et al., A novel mRNA vaccine, SYS6006, against SARS-CoV-2. Front. Immunol. 13, 1051576 (2023). https://doi.org/10.3389/fimmu.2022.1051576
- E.U.S. Locations, D. March, M.G. Thompson, J.L. Burgess, A.L. Naleway et al., Interim estimates of vaccine effectiveness of BNT162b2 and mRNA-1273 COVID-19 vaccines in preventing SARS-CoV-2 infection among health care personnel, first responders, and other essential and frontline workers. Morb. Mortal. Wkly Rep. 70, 495 (2021). https://doi.org/10.15585/mmwr.mm7013e3
- S. Benenson, Y. Oster, M.J. Cohen, R. Nir-Paz, BNT162b2 mRNA covid-19 vaccine effectiveness among health care workers. N. Engl. J. Med. 384, 1775–1777 (2021). https://doi.org/10.1056/nejmc2101951
- C. Buddy Creech, E. Anderson, V. Berthaud, I. Yildirim, A.M. Atz et al., Evaluation of mRNA-1273 covid-19 vaccine in children 6 to 11 years of age. N. Engl. J. Med. 386, 2011–2023 (2022). https://doi.org/10.1056/NEJMoa2203315
- Q.-F. Meng, W. Tai, M. Tian, X. Zhuang, Y. Pan et al., Inhalation delivery of dexamethasone with iSEND nanops attenuates the COVID-19 cytokine storm in mice and nonhuman Primates. Sci. Adv. 9, eadg3277 (2023). https://doi.org/10.1126/sciadv.adg3277
- S. Brenner, F. Jacob, M. Meselson, An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature 190, 576–581 (1961). https://doi.org/10.1038/190576a0
- A. Hussain, H. Yang, M. Zhang, Q. Liu, G. Alotaibi et al., mRNA vaccines for COVID-19 and diverse diseases. J. Control. Release 345, 314–333 (2022). https://doi.org/10.1016/j.jconrel.2022.03.032
- M.S. Gebre, S. Rauch, N. Roth, J. Yu, A. Chandrashekar et al., Optimization of non-coding regions for a non-modified mRNA COVID-19 vaccine. Nature 601, 410–414 (2022). https://doi.org/10.1038/s41586-021-04231-6
- S.C. Kim, S.S. Sekhon, W.R. Shin, G. Ahn, B.K. Cho et al., Modifications of mRNA vaccine structural elements for improving mRNA stability and translation efficiency. Mol. Cell. Toxicol. 18, 1–8 (2022). https://doi.org/10.1007/s13273-021-00171-4
- D.R. Gallie, The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 5, 2108–2116 (1991). https://doi.org/10.1101/gad.5.11.2108
- Y. Chu, D. Yu, Y. Li, K. Huang, Y. Shen et al., A 5’ UTR language model for decoding untranslated regions of mRNA and function predictions. Nat. Mach. Intell. 6, 449–460 (2024). https://doi.org/10.1038/s42256-024-00823-9
- C. Andreassi, A. Riccio, To localize or not to localize: mRNA fate is in 3’UTR ends. Trends Cell Biol. 19, 465–474 (2009). https://doi.org/10.1016/j.tcb.2009.06.001
- W. Li, C. Wang, Y. Zhang, Y. Lu, Lipid nanocarrier-based mRNA therapy: challenges and promise for clinical transformation. Small 20, e2310531 (2024). https://doi.org/10.1002/smll.202310531
- S. Chen, X. Huang, Y. Xue, E. Álvarez-Benedicto, Y. Shi et al., Nanotechnology-based mRNA vaccines. Nat. Rev. Meth. Primers 3, 63 (2023). https://doi.org/10.1038/s43586-023-00246-7
- A.B. Sachs, R.W. Davis, The poly(A) binding protein is required for poly(A) shortening and 60S ribosomal subunit-dependent translation initiation. Cell 58, 857–867 (1989). https://doi.org/10.1016/0092-8674(89)90938-0
- L.A. Passmore, J. Coller, Roles of mRNA poly(A) tails in regulation of eukaryotic gene expression. Nat. Rev. Mol. Cell Biol. 23, 93–106 (2022). https://doi.org/10.1038/s41580-021-00417-y
- R. Kasprzyk, T.J. Spiewla, M. Smietanski, S. Golojuch, L. Vangeel et al., Identification and evaluation of potential SARS-CoV-2 antiviral agents targeting mRNA cap guanine N7-Methyltransferase. Antiviral Res. 193, 105142 (2021). https://doi.org/10.1016/j.antiviral.2021.105142
- M. Sevajol, L. Subissi, E. Decroly, B. Canard, I. Imbert, Insights into RNA synthesis, capping, and proofreading mechanisms of SARS-coronavirus. Virus Res. 194, 90–99 (2014). https://doi.org/10.1016/j.virusres.2014.10.008
- Y. Tu, A. Das, C. Redwood-Sawyerr, K.M. Polizzi, Capped or uncapped? Techniques to assess the quality of mRNA molecules. Curr. Opin. Syst. Biol. 37, 100503 (2024). https://doi.org/10.1016/j.coisb.2023.100503
- J. Stepinski, C. Waddell, R. Stolarski, E. Darzynkiewicz, R.E. Rhoads, Synthesis and properties of mRNAs containing the novel “anti-reverse” cap analogs 7-methyl(3’-O-methyl)GpppG and 7-methyl (3’-deoxy)GpppG. RNA 7, 1486–1495 (2001)
- E. Grudzien-Nogalska, J. Jemielity, J. Kowalska, E. Darzynkiewicz, R.E. Rhoads, Phosphorothioate cap analogs stabilize mRNA and increase translational efficiency in mammalian cells. RNA 13, 1745–1755 (2007). https://doi.org/10.1261/rna.701307
- J. Kowalska, M. Lewdorowicz, J. Zuberek, E. Grudzien-Nogalska, E. Bojarska et al., Synthesis and characterization of mRNA cap analogs containing phosphorothioate substitutions that bind tightly to eIF4E and are resistant to the decapping pyrophosphatase DcpS. RNA 14, 1119–1131 (2008). https://doi.org/10.1261/rna.990208
- Y. Weng, C. Li, T. Yang, B. Hu, M. Zhang et al., The challenge and prospect of mRNA therapeutics landscape. Biotechnol. Adv. 40, 107534 (2020). https://doi.org/10.1016/j.biotechadv.2020.107534
- M. Strenkowska, R. Grzela, M. Majewski, K. Wnek, J. Kowalska et al., Cap analogs modified with 1, 2-dithiodiphosphate moiety protect mRNA from decapping and enhance its translational potential. Nucleic Acids Res. 44, 9578–9590 (2016). https://doi.org/10.1093/nar/gkw896
- Z. Trepotec, M.K. Aneja, J. Geiger, G. Hasenpusch, C. Plank et al., Maximizing the translational yield of mRNA therapeutics by minimizing 5’-UTRs. Tissue Eng. Part A 25, 69–79 (2019). https://doi.org/10.1089/ten.TEA.2017.0485
- J. Xie, Z. Zhuang, S. Gou, Q. Zhang, X. Wang et al., Precise genome editing of the Kozak sequence enables bidirectional and quantitative modulation of protein translation to anticipated levels without affecting transcription. Nucleic Acids Res. 51, 10075–10093 (2023). https://doi.org/10.1093/nar/gkad687
- X. Zhuang, Y. Qi, M. Wang, N. Yu, F. Nan et al., mRNA vaccines encoding the HA protein of influenza A H1N1 virus delivered by cationic lipid nanops induce protective immune responses in mice. Vaccines 8, 123 (2020). https://doi.org/10.3390/vaccines8010123
- C.A. Chen, A.-B. Shyu, AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem. Sci. 20, 465–470 (1995). https://doi.org/10.1016/S0968-0004(00)89102-1
- S. Castillo-Hair, S. Fedak, B. Wang, J. Linder, K. Havens et al., Optimizing 5’UTRs for mRNA-delivered gene editing using deep learning. Nat. Commun. 15, 5284 (2024). https://doi.org/10.1038/s41467-024-49508-2
- S.H. Boo, Y.K. Kim, The emerging role of RNA modifications in the regulation of mRNA stability. Exp. Mol. Med. 52, 400–408 (2020). https://doi.org/10.1038/s12276-020-0407-z
- M.-C. Bernard, E. Bazin, N. Petiot, K. Lemdani, S. Commandeur et al., The impact of nucleoside base modification in mRNA vaccine is influenced by the chemistry of its lipid nanop delivery system. Mol. Ther. Nucleic Acids 32, 794–806 (2023). https://doi.org/10.1016/j.omtn.2023.05.004
- K. Li, J. Peng, C. Yi, Sequencing methods and functional decoding of mRNA modifications. Fundam. Res. 3, 738–748 (2023). https://doi.org/10.1016/j.fmre.2023.05.010
- K. Karikó, H. Muramatsu, F.A. Welsh, J. Ludwig, H. Kato et al., Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16, 1833–1840 (2008). https://doi.org/10.1038/mt.2008.200
- M.D. Buschmann, M.J. Carrasco, S. Alishetty, M. Paige, M.G. Alameh et al., Nanomaterial delivery systems for mRNA vaccines. Vaccines 9, 65 (2021). https://doi.org/10.3390/vaccines9010065
- P. Morais, H. Adachi, Y.-T. Yu, The critical contribution of pseudouridine to mRNA COVID-19 vaccines. Front. Cell Dev. Biol. 9, 789427 (2021). https://doi.org/10.3389/fcell.2021.789427
- H. Fu, Y. Liang, X. Zhong, Z. Pan, L. Huang et al., Codon optimization with deep learning to enhance protein expression. Sci. Rep. 10, 17617 (2020). https://doi.org/10.1038/s41598-020-74091-z
- C.-J. Lai, D. Kim, S. Kang, K. Li, I. Cha et al., Viral Codon optimization on SARS-CoV-2 Spike boosts immunity in the development of COVID-19 mRNA vaccines. J. Med. Virol. 95, e29183 (2023). https://doi.org/10.1002/jmv.29183
- S. Rauch, N. Roth, K. Schwendt, M. Fotin-Mleczek, S.O. Mueller et al., mRNA-based SARS-CoV-2 vaccine candidate CVnCoV induces high levels of virus-neutralising antibodies and mediates protection in rodents. npj Vaccines 6, 57 (2021). https://doi.org/10.1038/s41541-021-00311-w
- V. Presnyak, N. Alhusaini, Y.-H. Chen, S. Martin, N. Morris et al., Codon optimality is a major determinant of mRNA stability. Cell 160, 1111–1124 (2015). https://doi.org/10.1016/j.cell.2015.02.029
- S. Holtkamp, S. Kreiter, A. Selmi, P. Simon, M. Koslowski et al., Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 108, 4009–4017 (2006). https://doi.org/10.1182/blood-2006-04-015024
- H. Chen, D. Liu, J. Guo, A. Aditham, Y. Zhou et al., Branched chemically modified poly(A) tails enhance the translation capacity of mRNA. Nat. Biotechnol. (2024). https://doi.org/10.1038/s41587-024-02174-7
- C.Y. Li, Z. Liang, Y. Hu, H. Zhang, K.D. Setiasabda et al., Cytidine-containing tails robustly enhance and prolong protein production of synthetic mRNA in cell and in vivo. Mol Ther Nucleic Acids 30, 300–310 (2022). https://doi.org/10.1016/j.omtn.2022.10.003
- C.R. Stadler, H. Bähr-Mahmud, L. Celik, B. Hebich, A.S. Roth et al., Elimination of large tumors in mice by mRNA-encoded bispecific antibodies. Nat. Med. 23, 815–817 (2017). https://doi.org/10.1038/nm.4356
- P. Trucillo, R. Campardelli, E. Reverchon, Liposomes: from bangham to supercritical fluids. Processes 8, 1022 (2020). https://doi.org/10.3390/pr8091022
- W. Zhang, Y. Jiang, Y. He, H. Boucetta, J. Wu et al., Lipid carriers for mRNA delivery. Acta Pharm. Sin. B 13, 4105–4126 (2023). https://doi.org/10.1016/j.apsb.2022.11.026
- W. Zha, J. Wang, Z. Guo, Y. Zhang, Y. Wang et al., Efficient delivery of VEGF-A mRNA for promoting diabetic wound healing via ionizable lipid nanops. Int. J. Pharm. 632, 122565 (2023). https://doi.org/10.1016/j.ijpharm.2022.122565
- J. Wang, W. He, L. Cheng, H. Zhang, Y. Wang et al., A modified thin film method for large scale production of dimeric artesunate phospholipid liposomes and comparison with conventional approaches. Int. J. Pharm. 619, 121714 (2022). https://doi.org/10.1016/j.ijpharm.2022.121714
- M. Jeong, Y. Lee, J. Park, H. Jung, H. Lee, Lipid nanops (LNPs) for in vivo RNA delivery and their breakthrough technology for future applications. Adv. Drug Deliv. Rev. 200, 114990 (2023). https://doi.org/10.1016/j.addr.2023.114990
- V. Gote, P.K. Bolla, N. Kommineni, A. Butreddy, P.K. Nukala et al., A comprehensive review of mRNA vaccines. Int. J. Mol. Sci. 24, 2700 (2023). https://doi.org/10.3390/ijms24032700
- Y. Zhang, J. Wang, H. Xing, C. Liu, W. Zha et al., Enhanced immunogenicity induced by mRNA vaccines with various lipid nanops as carriers for SARS-CoV-2 infection. J. Mater. Chem. B 11, 7454–7465 (2023). https://doi.org/10.1039/d3tb00303e
- X. Xu, X. Wang, Y.-P. Liao, L. Luo, T. Xia et al., Use of a liver-targeting immune-tolerogenic mRNA lipid nanop platform to treat peanut-induced anaphylaxis by single- and multiple-epitope nucleotide sequence delivery. ACS Nano 17, 4942–4957 (2023). https://doi.org/10.1021/acsnano.2c12420
- F. Ferraresso, A.W. Strilchuk, L.J. Juang, L.G. Poole, J.P. Luyendyk et al., Comparison of DLin-MC3-DMA and ALC-0315 for siRNA delivery to hepatocytes and hepatic stellate cells. Mol. Pharm. 19, 2175–2182 (2022). https://doi.org/10.1021/acs.molpharmaceut.2c00033
- C. Zhang, Y. Ma, J. Zhang, J.C. Kuo, Z. Zhang et al., Modification of lipid-based nanops: an efficient delivery system for nucleic acid-based immunotherapy. Molecules 27, 1943 (2022). https://doi.org/10.3390/molecules27061943
- F. Ma, L. Yang, Z. Sun, J. Chen, X. Rui et al., Neurotransmitter-derived lipidoids (NT-lipidoids) for enhanced brain delivery through intravenous injection. Sci. Adv. 6, eabb4429 (2020). https://doi.org/10.1126/sciadv.abb4429
- X. Zhao, J. Chen, M. Qiu, Y. Li, Z. Glass et al., Imidazole-based synthetic lipidoids for in vivo mRNA delivery into primary T lymphocytes. Angew. Chem. Int. Ed. 59, 20083–20089 (2020). https://doi.org/10.1002/anie.202008082
- X. Hou, X. Zhang, W. Zhao, C. Zeng, B. Deng et al., Vitamin lipid nanops enable adoptive macrophage transfer for the treatment of multidrug-resistant bacterial sepsis. Nat. Nanotechnol. 15, 41–46 (2020). https://doi.org/10.1038/s41565-019-0600-1
- W. Cai, T. Luo, X. Chen, L. Mao, M. Wang, A combinatorial library of biodegradable lipid nanops preferentially deliver mRNA into tumor cells to block mutant RAS signaling. Adv. Funct. Mater. 32, 2204947 (2022). https://doi.org/10.1002/adfm.202204947
- M. Estapé Senti, L. García del Valle, R.M. Schiffelers, mRNA delivery systems for cancer immunotherapy: lipid nanops and beyond. Adv. Drug Deliv. Rev. 206, 115190 (2024). https://doi.org/10.1016/j.addr.2024.115190
- M.M. Billingsley, N. Gong, A.J. Mukalel, A.S. Thatte, R. El-Mayta et al., In vivo mRNA CAR T cell engineering via targeted ionizable lipid nanops with extrahepatic tropism. Small 20, 2304378 (2024). https://doi.org/10.1002/smll.202304378
- R. Bejarano-Escobar, H. Sánchez-Calderón, J. Otero-Arenas, G. Martín-Partido, J. Francisco-Morcillo, Müller Glia and phagocytosis of cell debris in retinal tissue. J. Anat. 231, 471–483 (2017). https://doi.org/10.1111/joa.12653
- R.C. Ryals, S. Patel, C. Acosta, M. McKinney, M.E. Pennesi et al., The effects of PEGylation on LNP based mRNA delivery to the eye. PLoS ONE 15, e0241006 (2020). https://doi.org/10.1371/journal.pone.0241006
- M. Herrera-Barrera, R.C. Ryals, M. Gautam, A. Jozic, M. Landry et al., Peptide-guided lipid nanops deliver mRNA to the neural retina of rodents and nonhuman Primates. Sci. Adv. 9, eadd4623 (2023). https://doi.org/10.1126/sciadv.add4623
- A.-S. Darrigade, H. Théophile, P. Sanchez-Pena, B. Milpied, M. Colbert et al., Sweet syndrome induced by SARS-CoV-2 Pfizer-BioNTech mRNA vaccine. Allergy 76, 3194–3196 (2021). https://doi.org/10.1111/all.14981
- M.D. McSweeney, M. Mohan, S.P. Commins, S.K. Lai, Anaphylaxis to pfizer/BioNTech mRNA COVID-19 vaccine in a patient with clinically confirmed PEG allergy. Front. Allergy 2, 715844 (2021). https://doi.org/10.3389/falgy.2021.715844
- T. Wang, T. Yu, Q. Liu, T.-C. Sung, A. Higuchi, Lipid nanop technology-mediated therapeutic gene manipulation in the eyes. Mol. Ther. Nucleic Acids 35, 102236 (2024). https://doi.org/10.1016/j.omtn.2024.102236
- R. Zhang, R. El-Mayta, T.J. Murdoch, C.C. Warzecha, M.M. Billingsley et al., Helper lipid structure influences protein adsorption and delivery of lipid nanops to spleen and liver. Biomater. Sci. 9, 1449–1463 (2021). https://doi.org/10.1039/d0bm01609h
- E. Álvarez-Benedicto, L. Farbiak, M.M. Ramírez, X. Wang, L.T. Johnson et al., Optimization of phospholipid chemistry for improved lipid nanop (LNP) delivery of messenger RNA (mRNA). Biomater. Sci. 10, 549–559 (2022). https://doi.org/10.1039/d1bm01454d
- S. Liu, Q. Cheng, T. Wei, X. Yu, L.T. Johnson et al., Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR-Cas gene editing. Nat. Mater. 20, 701–710 (2021). https://doi.org/10.1038/s41563-020-00886-0
- S.K. Patel, M.M. Billingsley, C. Frazee, X. Han, K.L. Swingle et al., Hydroxycholesterol substitution in ionizable lipid nanops for mRNA delivery to T cells. J. Control. Release 347, 521–532 (2022). https://doi.org/10.1016/j.jconrel.2022.05.020
- O. Jung, H.-Y. Jung, L.T. Thuy, M. Choi, S. Kim et al., Modulating lipid nanops with histidinamide-conjugated cholesterol for improved intracellular delivery of mRNA. Adv. Healthc Mater. 13, 2303857 (2024). https://doi.org/10.1002/adhm.202303857
- S. Patel, N. Ashwanikumar, E. Robinson, Y. Xia, C. Mihai et al., Naturally-occurring cholesterol analogues in lipid nanops induce polymorphic shape and enhance intracellular delivery of mRNA. Nat. Commun. 11, 983 (2020). https://doi.org/10.1038/s41467-020-14527-2
- Q. Wan, Y. Sun, X. Sun, Z. Zhou, Rational design of polymer-based mRNA delivery systems for cancer treatment. Polym. Chem. 15, 2437–2456 (2024). https://doi.org/10.1039/d4py00206g
- S. Liu, X. Wang, X. Yu, Q. Cheng, L.T. Johnson et al., Zwitterionic phospholipidation of cationic polymers facilitates systemic mRNA delivery to spleen and lymph nodes. J. Am. Chem. Soc. 143, 21321–21330 (2021). https://doi.org/10.1021/jacs.1c09822
- R.-Q. Li, Y. Wu, Y. Zhi, X. Yang, Y. Li et al., PGMA-based star-like polycations with plentiful hydroxyl groups act as highly efficient miRNA delivery nanovectors for effective applications in heart diseases. Adv. Mater. 28, 7204–7212 (2016). https://doi.org/10.1002/adma.201602319
- M.M. Abd Elwakil, T. Gao, T. Isono, Y. Sato, Y.H.A. Elewa et al., Engineered ε-decalactone lipomers bypass the liver to selectively in vivo deliver mRNA to the lungs without targeting ligands. Mater. Horiz. 8, 2251–2259 (2021). https://doi.org/10.1039/d1mh00185j
- M. Thomas, J.J. Lu, Q. Ge, C. Zhang, J. Chen et al., Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc. Natl. Acad. Sci. U.S.A. 102, 5679–5684 (2005). https://doi.org/10.1073/pnas.0502067102
- J.E. Dahlman, C. Barnes, O. Khan, A. Thiriot, S. Jhunjunwala et al., In vivo endothelial siRNA delivery using polymeric nanops with low molecular weight. Nat. Nanotechnol. 9, 648–655 (2014). https://doi.org/10.1038/nnano.2014.84
- T. Miyazaki, S. Uchida, S. Nagatoishi, K. Koji, T. Hong et al., Polymeric nanocarriers with controlled chain flexibility boost mRNA delivery in vivo through enhanced structural fastening. Adv. Healthc. Mater. 9, e2000538 (2020). https://doi.org/10.1002/adhm.202000538
- R. Yang, S.-G. Yang, W.-S. Shim, F. Cui, G. Cheng et al., Lung-specific delivery of paclitaxel by chitosan-modified PLGA nanops via transient formation of microaggregates. J. Pharm. Sci. 98, 970–984 (2009). https://doi.org/10.1002/jps.21487
- N. Ignjatović, S. Vranješ Djurić, Z. Mitić, D. Janković, D. Uskoković, Investigating an organ-targeting platform based on hydroxyapatite nanops using a novel in situ method of radioactive 125Iodine labeling. Mater. Sci. Eng. C Mater. Biol. Appl. 43, 439–446 (2014). https://doi.org/10.1016/j.msec.2014.07.046
- F. Zhang, N.N. Parayath, C.I. Ene, S.B. Stephan, A.L. Koehne et al., Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat. Commun. 10, 3974 (2019). https://doi.org/10.1038/s41467-019-11911-5
- R. Sharma, K. Liaw, A. Sharma, A. Jimenez, M. Chang et al., Glycosylation of PAMAM dendrimers significantly improves tumor macrophage targeting and specificity in glioblastoma. J. Control. Release 337, 179–192 (2021). https://doi.org/10.1016/j.jconrel.2021.07.018
- D. Gong, E. Ben-Akiva, A. Singh, H. Yamagata, S. Est-Witte et al., Machine learning guided structure function predictions enable in silico nanop screening for polymeric gene delivery. Acta Biomater. 154, 349–358 (2022). https://doi.org/10.1016/j.actbio.2022.09.072
- A. Hasanzadeh, M.R. Hamblin, J. Kiani, H. Noori, J.M. Hardie et al., Could artificial intelligence revolutionize the development of nanovectors for gene therapy and mRNA vaccines? Nano Today 47, 101665 (2022). https://doi.org/10.1016/j.nantod.2022.101665
- R. Yang, Y. Deng, B. Huang, L. Huang, A. Lin et al., A core-shell structured COVID-19 mRNA vaccine with favorable biodistribution pattern and promising immunity. Signal Transduct. Target. Ther. 6, 213 (2021). https://doi.org/10.1038/s41392-021-00634-z
- C.J. McKinlay, J.R. Vargas, T.R. Blake, J.W. Hardy, M. Kanada et al., Charge-altering releasable transporters (CARTs) for the delivery and release of mRNA in living animals. Proc. Natl. Acad. Sci. U.S.A. 114, E448–E456 (2017). https://doi.org/10.1073/pnas.1614193114
- L. Rao, Y. Yuan, X. Shen, G. Yu, X. Chen, Designing nanotheranostics with machine learning. Nat. Nanotechnol. 19, 1769–1781 (2024). https://doi.org/10.1038/s41565-024-01753-8
- F. Mazahir, A.K. Yadav, Recent progress in engineered extracellular vesicles and their biomedical applications. Life Sci. 350, 122747 (2024). https://doi.org/10.1016/j.lfs.2024.122747
- C. Yang, Y. Xue, Y. Duan, C. Mao, M. Wan, Extracellular vesicles and their engineering strategies, delivery systems, and biomedical applications. J. Control. Release 365, 1089–1123 (2024). https://doi.org/10.1016/j.jconrel.2023.11.057
- D. Parashar, T. Mukherjee, S. Gupta, U. Kumar, K. Das, microRNAs in extracellular vesicles: a potential role in cancer progression. Cell. Signal. 121, 111263 (2024). https://doi.org/10.1016/j.cellsig.2024.111263
- T. Liu, L. Sun, Y. Ji, W. Zhu, Extracellular vesicles in cancer therapy: roles, potential application, and challenges. Biochim. Biophys. Acta BBA Rev. Cancer 1879, 189101 (2024). https://doi.org/10.1016/j.bbcan.2024.189101
- Z. Zhuo, J. Wang, Y. Luo, R. Zeng, C. Zhang et al., Targeted extracellular vesicle delivery systems employing superparamagnetic iron oxide nanops. Acta Biomater. 134, 13–31 (2021). https://doi.org/10.1016/j.actbio.2021.07.027
- K. O’Brien, K. Breyne, S. Ughetto, L.C. Laurent, X.O. Breakefield, RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat. Rev. Mol. Cell Biol. 21, 585–606 (2020). https://doi.org/10.1038/s41580-020-0251-y
- M. Schulz-Siegmund, A. Aigner, Nucleic acid delivery with extracellular vesicles. Adv. Drug Deliv. Rev. 173, 89–111 (2021). https://doi.org/10.1016/j.addr.2021.03.005
- Z. Li, Z. Liu, J. Wu, B. Li, Cell-derived vesicles for mRNA delivery. Pharmaceutics 14, 2699 (2022). https://doi.org/10.3390/pharmaceutics14122699
- Z. Li, P. Zhao, Y. Zhang, J. Wang, C. Wang et al., Exosome-based Ldlr gene therapy for familial hypercholesterolemia in a mouse model. Theranostics 11, 2953–2965 (2021). https://doi.org/10.7150/thno.49874
- T.C. Pham, M.K. Jayasinghe, T.T. Pham, Y. Yang, L. Wei et al., Covalent conjugation of extracellular vesicles with peptides and nanobodies for targeted therapeutic delivery. J. Extracell. Vesicles 10, e12057 (2021). https://doi.org/10.1002/jev2.12057
- W.M. Usman, T.C. Pham, Y.Y. Kwok, L.T. Vu, V. Ma et al., Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat. Commun. 9, 2359 (2018). https://doi.org/10.1038/s41467-018-04791-8
- K.D. Popowski, B.L. de Juan Abad, A. George, D. Silkstone, E. Belcher et al., Inhalable exosomes outperform liposomes as mRNA and protein drug carriers to the lung. Extracell. Vesicle 1, 100002 (2022). https://doi.org/10.1016/j.vesic.2022.100002
- K.D. Popowski, A. Moatti, G. Scull, D. Silkstone, H. Lutz et al., Inhalable dry powder mRNA vaccines based on extracellular vesicles. Matter 5, 2960–2974 (2022). https://doi.org/10.1016/j.matt.2022.06.012
- J. Yang, S. Wu, L. Hou, D. Zhu, S. Yin et al., Therapeutic effects of simultaneous delivery of nerve growth factor mRNA and protein via exosomes on cerebral ischemia. Mol. Ther. Nucleic Acids 21, 512–522 (2020). https://doi.org/10.1016/j.omtn.2020.06.013
- S. Zhang, Y. Dong, Y. Wang, W. Sun, M. Wei et al., Selective encapsulation of therapeutic mRNA in engineered extracellular vesicles by DNA aptamer. Nano Lett. 21, 8563–8570 (2021). https://doi.org/10.1021/acs.nanolett.1c01817
- J.-H. Wang, A.V. Forterre, J. Zhao, D.O. Frimannsson, A. Delcayre et al., Anti-HER2 scFv-directed extracellular vesicle-mediated mRNA-based gene delivery inhibits growth of HER2-positive human breast tumor xenografts by prodrug activation. Mol. Cancer Ther. 17, 1133–1142 (2018). https://doi.org/10.1158/1535-7163.MCT-17-0827
- P. Schult, H. Roth, R.L. Adams, C. Mas, L. Imbert et al., microRNA-122 amplifies hepatitis C virus translation by shaping the structure of the internal ribosomal entry site. Nat. Commun. 9, 2613 (2018). https://doi.org/10.1038/s41467-018-05053-3
- W. Sun, C. Xing, L. Zhao, P. Zhao, G. Yang et al., Ultrasound assisted exosomal delivery of tissue responsive mRNA for enhanced efficacy and minimized off-target effects. Mol. Ther. Nucleic Acids 20, 558–567 (2020). https://doi.org/10.1016/j.omtn.2020.03.016
- Y. Guo, Z. Wan, P. Zhao, M. Wei, Y. Liu et al., Ultrasound triggered topical delivery of Bmp7 mRNA for white fat browning induction via engineered smart exosomes. J. Nanobiotechnol. 19, 402 (2021). https://doi.org/10.1186/s12951-021-01145-3
- N.C. Homem, C.S. Miranda, M.A. Teixeira, M.O. Teixeira, J.M. Domingues et al., Graphene oxide-based platforms for wound dressings and drug delivery systems: a 10 year overview. J. Drug Deliv. Sci. Technol. 78, 103992 (2022). https://doi.org/10.1016/j.jddst.2022.103992
- V.P. Jain, S. Chaudhary, D. Sharma, N. Dabas, R.S.K. Lalji et al., Advanced functionalized nanographene oxide as a biomedical agent for drug delivery and anti-cancerous therapy: a review. Eur. Polym. J. 142, 110124 (2021). https://doi.org/10.1016/j.eurpolymj.2020.110124
- R. Kumar, D.P. Singh, R. Muñoz, M. Amami, R.K. Singh et al., Graphene-based materials for biotechnological and biomedical applications: drug delivery, bioimaging and biosensing. Mater. Today Chem. 33, 101750 (2023). https://doi.org/10.1016/j.mtchem.2023.101750
- Y. Yin, X. Li, H. Ma, J. Zhang, D. Yu et al., In situ transforming RNA nanovaccines from polyethylenimine functionalized graphene oxide hydrogel for durable cancer immunotherapy. Nano Lett. 21, 2224–2231 (2021). https://doi.org/10.1021/acs.nanolett.0c05039
- V. Andretto, M. Repellin, M. Pujol, E. Almouazen, J. Sidi-Boumedine et al., Hybrid core-shell ps for mRNA systemic delivery. J. Control. Release 353, 1037–1049 (2023). https://doi.org/10.1016/j.jconrel.2022.11.042
- M.A. Islam, Y. Xu, W. Tao, J.M. Ubellacker, M. Lim et al., Restoration of tumour-growth suppression in vivo via systemic nanop-mediated delivery of PTEN mRNA. Nat. Biomed. Eng. 2, 850–864 (2018). https://doi.org/10.1038/s41551-018-0284-0
- M. Yin, H. Sun, Y. Li, J. Zhang, J. Wang et al., Delivery of mRNA using biomimetic vectors: progress and challenges. Small 20, e2402715 (2024). https://doi.org/10.1002/smll.202402715
- J. Chen, J. Tan, J. Li, W. Cheng, L. Ke et al., Genetically engineered biomimetic nanops for targeted delivery of mRNA to treat rheumatoid arthritis. Small Methods 7, e2300678 (2023). https://doi.org/10.1002/smtd.202300678
- J.H. Park, A. Mohapatra, J. Zhou, M. Holay, N. Krishnan et al., Virus-mimicking cell membrane-coated nanops for cytosolic delivery of mRNA. Angew. Chem. Int. Ed. 61, e202113671 (2022). https://doi.org/10.1002/anie.202113671
- Y. Liang, J. Zhang, C. Xu, J. Wang, W. Han et al., Biomimetic mineralized CRISPR/cas RNA nanops for efficient tumor-specific multiplex gene editing. ACS Nano 17, 15025–15043 (2023). https://doi.org/10.1021/acsnano.3c04116
- M. Dhawan, A.A. Saied, M. Sharma, Virus-like ps (VLPs)-based vaccines against COVID-19: where do we stand amid the ongoing evolution of SARS-CoV-2? Health Sci. Rev. 9, 100127 (2023). https://doi.org/10.1016/j.hsr.2023.100127
- W. Lu, Z. Zhao, Y.-W. Huang, B. Wang, Review: a systematic review of virus-like ps of coronavirus: assembly, generation, chimerism and their application in basic research and in the clinic. Int. J. Biol. Macromol. 200, 487–497 (2022). https://doi.org/10.1016/j.ijbiomac.2022.01.108
- B. Ikwuagwu, D. Tullman-Ercek, Virus-like ps for drug delivery: a review of methods and applications. Curr. Opin. Biotechnol. 78, 102785 (2022). https://doi.org/10.1016/j.copbio.2022.102785
- M. Segel, B. Lash, J. Song, A. Ladha, C.C. Liu et al., Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science 373, 882–889 (2021). https://doi.org/10.1126/science.abg6155
- M. Li, Z. Liu, D. Wang, J. Ye, Z. Shi et al., Intraocular mRNA delivery with endogenous MmPEG10-based virus-like ps. Exp. Eye Res. 243, 109899 (2024). https://doi.org/10.1016/j.exer.2024.109899
- D. Yin, Y. Zhong, S. Ling, S. Lu, X. Wang et al., Dendritic-cell-targeting virus-like ps as potent mRNA vaccine carriers. Nat. Biomed. Eng. (2024). https://doi.org/10.1038/s41551-024-01208-4
- S.A. Dilliard, D.J. Siegwart, Passive, active and endogenous organ-targeted lipid and polymer nanops for delivery of genetic drugs. Nat. Rev. Mater. 8, 282–300 (2023). https://doi.org/10.1038/s41578-022-00529-7
- N. Bertrand, J. Wu, X. Xu, N. Kamaly, O.C. Farokhzad, Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 66, 2–25 (2014). https://doi.org/10.1016/j.addr.2013.11.009
- B. Farran, E. Pavitra, P. Kasa, S. Peela, G.S. Rama Raju et al., Folate-targeted immunotherapies: passive and active strategies for cancer. Cytokine Growth Factor Rev. 45, 45–52 (2019). https://doi.org/10.1016/j.cytogfr.2019.02.001
- S. Puri, M. Mazza, G. Roy, R.M. England, L. Zhou et al., Evolution of nanomedicine formulations for targeted delivery and controlled release. Adv. Drug Deliv. Rev. 200, 114962 (2023). https://doi.org/10.1016/j.addr.2023.114962
- W. Sun, Q. Hu, W. Ji, G. Wright, Z. Gu, Leveraging physiology for precision drug delivery. Physiol. Rev. 97, 189–225 (2017). https://doi.org/10.1152/physrev.00015.2016
- M. Xu, Y. Qi, G. Liu, Y. Song, X. Jiang et al., Size-dependent in vivo transport of nanops: implications for delivery, targeting, and clearance. ACS Nano 17, 20825–20849 (2023). https://doi.org/10.1021/acsnano.3c05853
- D.H. Jo, J.H. Kim, T.G. Lee, J.H. Kim, Size, surface charge, and shape determine therapeutic effects of nanops on brain and retinal diseases. Nanomedicine 11, 1603–1611 (2015). https://doi.org/10.1016/j.nano.2015.04.015
- W.-C. Chou, Z. Lin, Impact of protein coronas on nanop interactions with tissues and targeted delivery. Curr. Opin. Biotechnol. 85, 103046 (2024). https://doi.org/10.1016/j.copbio.2023.103046
- S. Wang, J. Zhang, H. Zhou, Y.C. Lu, X. Jin et al., The role of protein Corona on nanodrugs for organ-targeting and its prospects of application. J. Control. Release 360, 15–43 (2023). https://doi.org/10.1016/j.jconrel.2023.06.014
- M. Yuan, Z. Han, Y. Liang, Y. Sun, B. He et al., mRNA nanodelivery systems: targeting strategies and administration routes. Biomater. Res. 27, 90 (2023). https://doi.org/10.1186/s40824-023-00425-3
- K. Paunovska, A.J. Da Silva Sanchez, M.P. Lokugamage, D. Loughrey, E.S. Echeverri et al., The extent to which lipid nanops require apolipoprotein E and low-density lipoprotein receptor for delivery changes with ionizable lipid structure. Nano Lett. 22, 10025–10033 (2022). https://doi.org/10.1021/acs.nanolett.2c03741
- M. Li, X. Jin, T. Liu, F. Fan, F. Gao et al., Nanop elasticity affects systemic circulation lifetime by modulating adsorption of apolipoprotein A-I in Corona formation. Nat. Commun. 13, 4137 (2022). https://doi.org/10.1038/s41467-022-31882-4
- J. Li, K. Kataoka, Chemo-physical strategies to advance the in vivo functionality of targeted nanomedicine: the next generation. J. Am. Chem. Soc. 143, 538–559 (2021). https://doi.org/10.1021/jacs.0c09029
- Z. Zhao, A. Ukidve, J. Kim, S. Mitragotri, Targeting strategies for tissue-specific drug delivery. Cell 181, 151–167 (2020). https://doi.org/10.1016/j.cell.2020.02.001
- P.V. Nguyen, K. Hervé-Aubert, I. Chourpa, E. Allard-Vannier, Active targeting strategy in nanomedicines using anti-EGFR ligands—a promising approach for cancer therapy and diagnosis. Int. J. Pharm. 609, 121134 (2021). https://doi.org/10.1016/j.ijpharm.2021.121134
- L. Breda, T.E. Papp, M.P. Triebwasser, A. Yadegari, M.T. Fedorky et al., In vivo hematopoietic stem cell modification by mRNA delivery. Science 381, 436–443 (2023). https://doi.org/10.1126/science.ade6967
- H. Parhiz, V.V. Shuvaev, N. Pardi, M. Khoshnejad, R.Y. Kiseleva et al., PECAM-1 directed re-targeting of exogenous mRNA providing two orders of magnitude enhancement of vascular delivery and expression in lungs independent of apolipoprotein E-mediated uptake. J. Control. Release 291, 106–115 (2018). https://doi.org/10.1016/j.jconrel.2018.10.015
- Y. Zhang, J. Cao, Z. Yuan, Strategies and challenges to improve the performance of tumor-associated active targeting. J. Mater. Chem. B 8, 3959–3971 (2020). https://doi.org/10.1039/d0tb00289e
- B. Mukherjee, B. Satapathy, L. Mondal, N. Dey, R. Maji, Potentials and challenges of active targeting at the tumor cells by engineered polymeric nanops. Curr. Pharm. Biotechnol. 14, 1250–1263 (2014). https://doi.org/10.2174/1389201015666140608143235
- I. Menon, M. Zaroudi, Y. Zhang, E. Aisenbrey, L. Hui, Fabrication of active targeting lipid nanops: challenges and perspectives. Mater. Today Adv. 16, 100299 (2022). https://doi.org/10.1016/j.mtadv.2022.100299
- I. Gómez-Aguado, J. Rodríguez-Castejón, M. Vicente-Pascual, A. Rodríguez-Gascón, M.Á. Solinís et al., Nanomedicines to deliver mRNA: state of the art and future perspectives. Nanomaterials 10, 364 (2020). https://doi.org/10.3390/nano10020364
- J.S. Suk, Q. Xu, N. Kim, J. Hanes, L.M. Ensign, PEGylation as a strategy for improving nanop-based drug and gene delivery. Adv. Drug Deliv. Rev. 99, 28–51 (2016). https://doi.org/10.1016/j.addr.2015.09.012
- X. Yang, Q. Chen, J. Yang, S. Wu, J. Liu et al., Tumor-targeted accumulation of ligand-installed polymeric micelles influenced by surface PEGylation crowdedness. ACS Appl. Mater. Interfaces 9, 44045–44052 (2017). https://doi.org/10.1021/acsami.7b16764
- Q. Chen, R. Qi, X. Chen, X. Yang, S. Wu et al., A targeted and stable polymeric nanoformulation enhances systemic delivery of mRNA to tumors. Mol. Ther. 25, 92–101 (2017). https://doi.org/10.1016/j.ymthe.2016.10.006
- E.T. Dams, P. Laverman, W.J. Oyen, G. Storm, G.L. Scherphof et al., Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J. Pharmacol Exp. Ther. 292, 1071–1079 (2000). https://doi.org/10.1016/S0022-3565(24)35391-1
- S. Mishra, P. Webster, M.E. Davis, PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery ps. Eur. J. Cell Biol. 83, 97–111 (2004). https://doi.org/10.1078/0171-9335-00363
- H. Takata, T. Shimizu, R. Yamade, N.E. Elsadek, S.E. Emam et al., Anti-PEG IgM production induced by PEGylated liposomes as a function of administration route. J. Control. Release 360, 285–292 (2023). https://doi.org/10.1016/j.jconrel.2023.06.027
- Q. Yang, S.K. Lai, Anti-PEG immunity: emergence, characteristics, and unaddressed questions. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7, 655–677 (2015). https://doi.org/10.1002/wnan.1339
- G.T. Kozma, T. Mészáros, I. Vashegyi, T. Fülöp, E. Örfi et al., Pseudo-anaphylaxis to polyethylene glycol (PEG)-coated liposomes: roles of anti-PEG IgM and complement activation in a porcine model of human infusion reactions. ACS Nano 13, 9315–9324 (2019). https://doi.org/10.1021/acsnano.9b03942
- T.V. Erdeljic, Anaphylaxis associated with the mRNA COVID-19 vaccines: approach to allergy investigation. Clin. Immunol. 227, 108748 (2021). https://doi.org/10.1016/j.clim.2021.108748
- X.R. Lim, B.P. Leung, C.Y.L. Ng, J.W.L. Tan, G.Y.L. Chan et al., Pseudo-anaphylactic reactions to pfizer BNT162b2 vaccine: report of 3 cases of anaphylaxis post pfizer BNT162b2 vaccination. Vaccines 9, 974 (2021). https://doi.org/10.3390/vaccines9090974
- P. Zhao, Y. Tian, Y. Lu, J. Zhang, A. Tao et al., Biomimetic calcium carbonate nanops delivered IL-12 mRNA for targeted glioblastoma sono-immunotherapy by ultrasound-induced necroptosis. J. Nanobiotechnology 20, 525 (2022). https://doi.org/10.1186/s12951-022-01731-z
- W. Li, X. Zhang, C. Zhang, J. Yan, X. Hou et al., Biomimetic nanops deliver mRNAs encoding costimulatory receptors and enhance T cell mediated cancer immunotherapy. Nat. Commun. 12, 7264 (2021). https://doi.org/10.1038/s41467-021-27434-x
- K. Chen, D. Wang, M. Qian, M. Weng, Z. Lu et al., Endothelial cell dysfunction and targeted therapeutic drugs in sepsis. Heliyon 10, e33340 (2024). https://doi.org/10.1016/j.heliyon.2024.e33340
- N.A. Rahman, A.N.H.M. Rasil, U. Meyding-Lamade, E.M. Craemer, S. Diah et al., Immortalized endothelial cell lines for in vitro blood–brain barrier models: a systematic review. Brain Res. 1642, 532–545 (2016). https://doi.org/10.1016/j.brainres.2016.04.024
- J.G. Schnitzler, K.E. Dzobo, N.S. Nurmohamed, E.S.G. Stroes, J. Kroon, Surmounting the endothelial barrier for delivery of drugs and imaging tracers. Atherosclerosis 315, 93–101 (2020). https://doi.org/10.1016/j.atherosclerosis.2020.04.025
- L. Claesson-Welsh, E. Dejana, D.M. McDonald, Permeability of the endothelial barrier: identifying and reconciling controversies. Trends Mol. Med. 27, 314–331 (2021). https://doi.org/10.1016/j.molmed.2020.11.006
- J. Aman, E.M. Weijers, G.P. van Nieuw Amerongen, A.B. Malik, V.W. van Hinsbergh, Using cultured endothelial cells to study endothelial barrier dysfunction: challenges and opportunities. Am. J. Physiol. Lung Cell. Mol. Physiol. 311, L453–L466 (2016). https://doi.org/10.1152/ajplung.00393.2015
- A. Amruta, D. Iannotta, S.W. Cheetham, T. Lammers, J. Wolfram, Vasculature organotropism in drug delivery. Adv. Drug Deliv. Rev. 201, 115054 (2023). https://doi.org/10.1016/j.addr.2023.115054
- J. Di, P. Huang, X. Chen, Targeting strategies for site-specific mRNA delivery. Bioconjugate Chem. 35, 453–456 (2024). https://doi.org/10.1021/acs.bioconjchem.4c00038
- H.J. Kim, S.K. Seo, H.Y. Park, Physical and chemical advances of synthetic delivery vehicles to enhance mRNA vaccine efficacy. J. Control. Release 345, 405–416 (2022). https://doi.org/10.1016/j.jconrel.2022.03.029
- K. Li, M. Lu, X. Xia, Y. Huang, Recent advances in photothermal and RNA interfering synergistic therapy. Chin. Chem. Lett. 32, 1010–1016 (2021). https://doi.org/10.1016/j.cclet.2020.09.010
- T. Yoshikawa, Y. Mori, H. Feng, K.Q. Phan, A. Kishimura et al., Rapid and continuous accumulation of nitric oxide-releasing liposomes in tumors to augment the enhanced permeability and retention (EPR) effect. Int. J. Pharm. 565, 481–487 (2019). https://doi.org/10.1016/j.ijpharm.2019.05.043
- F.N. Kiskin, Y. Yang, H. Yang, J.Z. Zhang, Cracking the code of the cardiovascular Enigma: hPSC-derived endothelial cells unveil the secrets of endothelial dysfunction. J. Mol. Cell. Cardiol. 192, 65–78 (2024). https://doi.org/10.1016/j.yjmcc.2024.05.005
- I. Yao Mattisson, C. Christoffersen, Apolipoprotein M and its impact on endothelial dysfunction and inflammation in the cardiovascular system. Atherosclerosis 334, 76–84 (2021). https://doi.org/10.1016/j.atherosclerosis.2021.08.039
- O.V. Halaidych, C. Freund, F. van den Hil, D.C.F. Salvatori, M. Riminucci et al., Inflammatory responses and barrier function of endothelial cells derived from human induced pluripotent stem cells. Stem Cell Rep. 10, 1642–1656 (2018). https://doi.org/10.1016/j.stemcr.2018.03.012
- E. Voltà-Durán, E. Parladé, N. Serna, A. Villaverde, E. Vazquez et al., Endosomal escape for cell-targeted proteins. Going out after going in. Biotechnol. Adv. 63, 108103 (2023). https://doi.org/10.1016/j.biotechadv.2023.108103
- B. Winkeljann, D.C. Keul, O.M. Merkel, Engineering poly- and micelleplexes for nucleic acid delivery—a reflection on their endosomal escape. J. Control. Release 353, 518–534 (2023). https://doi.org/10.1016/j.jconrel.2022.12.008
- A. Ahmad, J.M. Khan, pH-sensitive endosomolytic peptides in gene and drug delivery: endosomal escape and current challenges. J. Drug Deliv. Sci. Technol. 76, 103786 (2022). https://doi.org/10.1016/j.jddst.2022.103786
- S. Chatterjee, E. Kon, P. Sharma, D. Peer, Endosomal escape: a bottleneck for LNP-mediated therapeutics. Proc. Natl. Acad. Sci. U.S.A. 121, e2307800120 (2024). https://doi.org/10.1073/pnas.2307800120
- J. Wang, Y. Zhang, C. Liu, W. Zha, S. Dong et al., Multifunctional lipid nanops for protein kinase N3 shRNA delivery and prostate cancer therapy. Mol. Pharm. 19, 4588–4600 (2022). https://doi.org/10.1021/acs.molpharmaceut.2c00244
- K. Sakamoto, M. Akishiba, T. Iwata, K. Murata, S. Mizuno et al., Optimizing charge switching in membrane lytic peptides for endosomal release of biomacromolecules. Angew. Chem. Int. Ed. 59, 19990–19998 (2020). https://doi.org/10.1002/anie.202005887
- H. Zhou, Y. Liao, X. Han, D.S. Chen, X. Hong et al., ROS-responsive nanop delivery of mRNA and photosensitizer for combinatorial cancer therapy. Nano Lett. 23, 3661–3668 (2023). https://doi.org/10.1021/acs.nanolett.2c03784
- S.D. Shirsat, P.V. Londhe, A.P. Gaikwad, M. Rizwan, S.S. Laha et al., Endosomal escape in magnetic nanostructures: recent advances and future perspectives. Mater. Today Adv. 22, 100484 (2024). https://doi.org/10.1016/j.mtadv.2024.100484
- E.M. Materón, C.M. Miyazaki, O. Carr, N. Joshi, P.H.S. Picciani et al., Magnetic nanops in biomedical applications: a review. Appl. Surf. Sci. Adv. 6, 100163 (2021). https://doi.org/10.1016/j.apsadv.2021.100163
- M.I. Anik, M. Khalid Hossain, I. Hossain, A.M.U.B. Mahfuz, M. Tayebur Rahman et al., Recent progress of magnetic nanops in biomedical applications: a review. Nano Sel. 2, 1146–1186 (2021). https://doi.org/10.1002/nano.202000162
- V.F. Cardoso, A. Francesko, C. Ribeiro, M. Bañobre-López, P. Martins et al., Advances in magnetic nanops for biomedical applications. Adv. Healthc Mater. 7, 1700845 (2018). https://doi.org/10.1002/adhm.201700845
- K. Su, L. Shi, T. Sheng, X. Yan, L. Lin et al., Reformulating lipid nanops for organ-targeted mRNA accumulation and translation. Nat. Commun. 15, 5659 (2024). https://doi.org/10.1038/s41467-024-50093-7
- K. Lam, A. Leung, A. Martin, M. Wood, P. Schreiner et al., Unsaturated, trialkyl ionizable lipids are versatile lipid-nanop components for therapeutic and vaccine applications. Adv. Mater. 35, e2209624 (2023). https://doi.org/10.1002/adma.202209624
- Z. Guo, C. Zeng, Y. Shen, L. Hu, H. Zhang et al., Helper lipid-enhanced mRNA delivery for treating metabolic dysfunction-associated fatty liver disease. Nano Lett. 24, 6743–6752 (2024). https://doi.org/10.1021/acs.nanolett.4c01458
- M. Krawczyk, R. Müllenbach, S.N. Weber, V. Zimmer, F. Lammert, Genome-wide association studies and genetic risk assessment of liver diseases. Nat. Rev. Gastroenterol. Hepatol. 7, 669–681 (2010). https://doi.org/10.1038/nrgastro.2010.170
- J. Poisson, S. Lemoinne, C. Boulanger, F. Durand, R. Moreau et al., Liver sinusoidal endothelial cells: physiology and role in liver diseases. J. Hepatol. 66, 212–227 (2017). https://doi.org/10.1016/j.jhep.2016.07.009
- C.D. Sago, B.R. Krupczak, M.P. Lokugamage, Z. Gan, J.E. Dahlman, Cell subtypes within the liver microenvironment differentially interact with lipid nanops. Cell. Mol. Bioeng. 12, 389–397 (2019). https://doi.org/10.1007/s12195-019-00573-4
- O.F. Khan, E.W. Zaia, H. Yin, R.L. Bogorad, J.M. Pelet et al., Ionizable amphiphilic dendrimer-based nanomaterials with alkyl-chain-substituted amines for tunable siRNA delivery to the liver endothelium in vivo. Angew. Chem. Int. Ed. 53, 14397–14401 (2014). https://doi.org/10.1002/anie.201408221
- M. Kim, M. Jeong, S. Hur, Y. Cho, J. Park et al., Engineered ionizable lipid nanops for targeted delivery of RNA therapeutics into different types of cells in the liver. Sci. Adv. 7, eabf4398 (2021). https://doi.org/10.1126/sciadv.abf4398
- J. Cao, M. Choi, E. Guadagnin, M. Soty, M. Silva et al., mRNA therapy restores euglycemia and prevents liver tumors in murine model of glycogen storage disease. Nat. Commun. 12, 3090 (2021). https://doi.org/10.1038/s41467-021-23318-2
- D. An, J.L. Schneller, A. Frassetto, S. Liang, X. Zhu et al., Systemic messenger RNA therapy as a treatment for methylmalonic acidemia. Cell Rep. 21, 3548–3558 (2017). https://doi.org/10.1016/j.celrep.2017.11.081
- D. Koeberl, A. Schulze, N. Sondheimer, G.S. Lipshutz, T. Geberhiwot et al., Interim analyses of a first-in-human phase 1/2 mRNA trial for propionic acidaemia. Nature 628, 872–877 (2024). https://doi.org/10.1038/s41586-024-07266-7
- M. Liu, S. Hu, N. Yan, K.D. Popowski, K. Cheng, Inhalable extracellular vesicle delivery of IL-12 mRNA to treat lung cancer and promote systemic immunity. Nat. Nanotechnol. 19, 565–575 (2024). https://doi.org/10.1038/s41565-023-01580-3
- L. Rotolo, D. Vanover, N.C. Bruno, H.E. Peck, C. Zurla et al., Species-agnostic polymeric formulations for inhalable messenger RNA delivery to the lung. Nat. Mater. 22, 369–379 (2023). https://doi.org/10.1038/s41563-022-01404-0
- M.P. Lokugamage, D. Vanover, J. Beyersdorf, M.Z.C. Hatit, L. Rotolo et al., Optimization of lipid nanops for the delivery of nebulized therapeutic mRNA to the lungs. Nat. Biomed. Eng. 5, 1059–1068 (2021). https://doi.org/10.1038/s41551-021-00786-x
- J. Witten, T. Samad, K. Ribbeck, Selective permeability of mucus barriers. Curr. Opin. Biotechnol. 52, 124–133 (2018). https://doi.org/10.1016/j.copbio.2018.03.010
- N. Kim, G.A. Duncan, J. Hanes, J.S. Suk, Barriers to inhaled gene therapy of obstructive lung diseases: a review. J. Control. Release 240, 465–488 (2016). https://doi.org/10.1016/j.jconrel.2016.05.031
- A.Y. Jiang, J. Witten, I.O. Raji, F. Eweje, C. MacIsaac et al., Combinatorial development of nebulized mRNA delivery formulations for the lungs. Nat. Nanotechnol. 19, 364–375 (2024). https://doi.org/10.1038/s41565-023-01548-3
- B. Li, R.S. Manan, S.Q. Liang, A. Gordon, A. Jiang et al., Combinatorial design of nanops for pulmonary mRNA delivery and genome editing. Nat. Biotechnol. 41, 1410–1415 (2023). https://doi.org/10.1038/s41587-023-01679-x
- W. Tai, K. Yang, Y. Liu, R. Li, S. Feng et al., A lung-selective delivery of mRNA encoding broadly neutralizing antibody against SARS-CoV-2 infection. Nat. Commun. 14, 8042 (2023). https://doi.org/10.1038/s41467-023-43798-8
- Y. Cao, Z. He, Q. Chen, X. He, L. Su et al., Helper-polymer based five-element nanops (FNPs) for lung-specific mRNA delivery with long-term stability after lyophilization. Nano Lett. 22, 6580–6589 (2022). https://doi.org/10.1021/acs.nanolett.2c01784
- M. Qiu, Y. Tang, J. Chen, R. Muriph, Z. Ye et al., Lung-selective mRNA delivery of synthetic lipid nanops for the treatment of pulmonary lymphangioleiomyomatosis. Proc. Natl. Acad. Sci. U.S.A. 119, e2116271119 (2022). https://doi.org/10.1073/pnas.2116271119
- G. Zhao, L. Xue, A.I. Weiner, N. Gong, S. Adams-Tzivelekidis et al., TGF-βR2 signaling coordinates pulmonary vascular repair after viral injury in mice and human tissue. Sci. Transl. Med. 16, eadg6229 (2024). https://doi.org/10.1126/scitranslmed.adg6229
- Q. Li, C. Chan, N. Peterson, R.N. Hanna, A. Alfaro et al., Engineering caveolae-targeted lipid nanops to deliver mRNA to the lungs. ACS Chem. Biol. 15, 830–836 (2020). https://doi.org/10.1021/acschembio.0c00003
- M.V. Lenti, S. Luu, R. Carsetti, F. Osier, R. Ogwang et al., Asplenia and spleen hypofunction. Nat. Rev. Dis. Primers. 8, 71 (2022). https://doi.org/10.1038/s41572-022-00399-x
- N. Bray, Intervening in the spleen. Nat. Rev. Neurosci. 23, 187 (2022). https://doi.org/10.1038/s41583-022-00573-w
- D. Bitounis, E. Jacquinet, M.A. Rogers, M.M. Amiji, Strategies to reduce the risks of mRNA drug and vaccine toxicity. Nat. Rev. Drug Discov. 23, 281–300 (2024). https://doi.org/10.1038/s41573-023-00859-3
- S. Xu, K. Yang, R. Li, L. Zhang, mRNA vaccine era-mechanisms, drug platform and clinical prospection. Int. J. Mol. Sci. 21, 6582 (2020). https://doi.org/10.3390/ijms21186582
- Q. Saiding, Z. Zhang, S. Chen, F. Xiao, Y. Chen et al., Nano-bio interactions in mRNA nanomedicine: challenges and opportunities for targeted mRNA delivery. Adv. Drug Deliv. Rev. 203, 115116 (2023). https://doi.org/10.1016/j.addr.2023.115116
- L. Pan, L. Zhang, W. Deng, J. Lou, X. Gao et al., Spleen-selective co-delivery of mRNA and TLR4 agonist-loaded LNPs for synergistic immunostimulation and Th1 immune responses. J. Control. Release 357, 133–148 (2023). https://doi.org/10.1016/j.jconrel.2023.03.041
- S.T. LoPresti, M.L. Arral, N. Chaudhary, K.A. Whitehead, The replacement of helper lipids with charged alternatives in lipid nanops facilitates targeted mRNA delivery to the spleen and lungs. J. Control. Release 345, 819–831 (2022). https://doi.org/10.1016/j.jconrel.2022.03.046
- Z. He, Z. Le, Y. Shi, L. Liu, Z. Liu et al., A multidimensional approach to modulating ionizable lipids for high-performing and organ-selective mRNA delivery. Angew. Chem. Int. Ed. 62, e202310401 (2023). https://doi.org/10.1002/anie.202310401
- R. Zhang, S. Shao, Y. Piao, J. Xiang, X. Wei et al., Esterase-labile quaternium lipidoid enabling improved mRNA-LNP stability and spleen-selective mRNA transfection. Adv. Mater. 35, e2303614 (2023). https://doi.org/10.1002/adma.202303614
- C. Wang, C. Zhao, W. Wang, X. Liu, H. Deng, Biomimetic noncationic lipid nanops for mRNA delivery. Proc. Natl. Acad. Sci. U.S.A. 120, e2311276120 (2023). https://doi.org/10.1073/pnas.2311276120
- X. Zhang, K. Su, S. Wu, L. Lin, S. He et al., One-component cationic lipids for systemic mRNA delivery to splenic T cells. Angew. Chem. Int. Ed. 63, e202405444 (2024). https://doi.org/10.1002/anie.202405444
- C.J. McKinlay, N.L. Benner, O.A. Haabeth, R.M. Waymouth, P.A. Wender, Enhanced mRNA delivery into lymphocytes enabled by lipid-varied libraries of charge-altering releasable transporters. Proc. Natl. Acad. Sci. U.S.A. 115, E5859–E5866 (2018). https://doi.org/10.1073/pnas.1805358115
- E. Ben-Akiva, J. Karlsson, S. Hemmati, H. Yu, S.Y. Tzeng et al., Biodegradable lipophilic polymeric mRNA nanops for ligand-free targeting of splenic dendritic cells for cancer vaccination. Proc. Natl. Acad. Sci. U.S.A. 120, e2301606120 (2023). https://doi.org/10.1073/pnas.2301606120
- P. Chen, X. He, Y. Hu, X.-L. Tian, X.-Q. Yu et al., Spleen-targeted mRNA delivery by amphiphilic carbon dots for tumor immunotherapy. ACS Appl. Mater. Interfaces 15, 19937–19950 (2023). https://doi.org/10.1021/acsami.3c00494
- L. Porosk, H.H. Härk, P. Arukuusk, U. Haljasorg, P. Peterson et al., The development of cell-penetrating peptides for efficient and selective in vivo expression of mRNA in spleen tissue. Pharmaceutics 15, 952 (2023). https://doi.org/10.3390/pharmaceutics15030952
- J. Lai, Q. Pan, G. Chen, Y. Liu, C. Chen et al., Triple hybrid cellular nanovesicles promote cardiac repair after ischemic reperfusion. ACS Nano 18, 4443–4455 (2024). https://doi.org/10.1021/acsnano.3c10784
- F. Yu, N. Witman, D. Yan, S. Zhang, M. Zhou et al., Human adipose-derived stem cells enriched with VEGF-modified mRNA promote angiogenesis and long-term graft survival in a fat graft transplantation model. Stem Cell Res. Ther. 11, 490 (2020). https://doi.org/10.1186/s13287-020-02008-8
- V. Anttila, A. Saraste, J. Knuuti, P. Jaakkola, M. Hedman et al., Synthetic mRNA encoding VEGF-A in patients undergoing coronary artery bypass grafting: design of a phase 2a clinical trial. Mol. Ther. Methods Clin. Dev. 18, 464–472 (2020). https://doi.org/10.1016/j.omtm.2020.05.030
- C.L. Reddy, N. Yosef, E.E. Ubogu, VEGF-A165 potently induces human blood-nerve barrier endothelial cell proliferation, angiogenesis, and wound healing in vitro. Cell. Mol. Neurobiol. 33, 789–801 (2013). https://doi.org/10.1007/s10571-013-9946-3
- L. Sun, Y. Wang, D. Xu, Y. Zhao, Emerging technologies for cardiac tissue engineering and artificial hearts. Smart Med. 2, e20220040 (2023). https://doi.org/10.1002/SMMD.20220040
- L. Zangi, K.O. Lui, A. von Gise, Q. Ma, W. Ebina et al., Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat. Biotechnol. 31, 898–907 (2013). https://doi.org/10.1038/nbt.2682
- L. Carlsson, J.C. Clarke, C. Yen, F. Gregoire, T. Albery et al., Biocompatible, purified VEGF-A mRNA improves cardiac function after intracardiac injection 1 week post-myocardial infarction in swine. Mol. Ther. Methods Clin. Dev. 9, 330–346 (2018). https://doi.org/10.1016/j.omtm.2018.04.003
- X. Ai, B. Yan, N. Witman, Y. Gong, L. Yang et al., Transient secretion of VEGF protein from transplanted hiPSC-CMs enhances engraftment and improves rat heart function post MI. Mol. Ther. 31, 211–229 (2023). https://doi.org/10.1016/j.ymthe.2022.08.012
- J.G. Rurik, I. Tombácz, A. Yadegari, P.O. Méndez Fernández, S.V. Shewale et al., CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022). https://doi.org/10.1126/science.abm0594
- V.J. Caride, B.L. Zaret, Liposome accumulation in regions of experimental myocardial infarction. Science 198, 735–738 (1977). https://doi.org/10.1126/science.910155
- I.E. Allijn, B.M.S. Czarny, X. Wang, S.Y. Chong, M. Weiler et al., Liposome encapsulated berberine treatment attenuates cardiac dysfunction after myocardial infarction. J. Control. Release 247, 127–133 (2017). https://doi.org/10.1016/j.jconrel.2016.12.042
- M.J.W. Evers, W. Du, Q. Yang, S.A.A. Kooijmans, A. Vink et al., Delivery of modified mRNA to damaged myocardium by systemic administration of lipid nanops. J. Control. Release 343, 207–216 (2022). https://doi.org/10.1016/j.jconrel.2022.01.027
- H. Cai, Z. Ao, C. Tian, Z. Wu, H. Liu et al., Brain organoid reservoir computing for artificial intelligence. Nat. Electron. 6, 1032–1039 (2023). https://doi.org/10.1038/s41928-023-01069-w
- Z. Yao, C.T.J. van Velthoven, M. Kunst, M. Zhang, D. McMillen et al., A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature 624, 317–332 (2023). https://doi.org/10.1038/s41586-023-06812-z
- M. Zhang, X. Pan, W. Jung, A.R. Halpern, S.W. Eichhorn et al., Molecularly defined and spatially resolved cell atlas of the whole mouse brain. Nature 624, 343–354 (2023). https://doi.org/10.1038/s41586-023-06808-9
- P. Kumar, A.M. Goettemoeller, C. Espinosa-Garcia, B.R. Tobin, A. Tfaily et al., Native-state proteomics of Parvalbumin interneurons identifies unique molecular signatures and vulnerabilities to early Alzheimer’s pathology. Nat. Commun. 15, 2823 (2024). https://doi.org/10.1038/s41467-024-47028-7
- O.J. Mainwaring, H. Weishaupt, M. Zhao, G. Rosén, A. Borgenvik et al., ARF suppression by MYC but not MYCN confers increased malignancy of aggressive pediatric brain tumors. Nat. Commun. 14, 1221 (2023). https://doi.org/10.1038/s41467-023-36847-9
- A. Berger, G.G. Tzarfati, M. Serafimova, P. Valdes, A. Meller et al., Risk factors and prognostic implications of surgery-related strokes following resection of high-grade glioma. Sci. Rep. 12, 22594 (2022). https://doi.org/10.1038/s41598-022-27127-5
- J. Li, H. Zhang, Y. Jiang, N. Li, A. Zhu et al., The landscape of extracellular vesicles combined with intranasal delivery towards brain diseases. Nano Today 55, 102169 (2024). https://doi.org/10.1016/j.nantod.2024.102169
- S. Mignani, X. Shi, A. Karpus, J.-P. Majoral, Non-invasive intranasal administration route directly to the brain using dendrimer nanoplatforms: an opportunity to develop new CNS drugs. Eur. J. Med. Chem. 209, 112905 (2021). https://doi.org/10.1016/j.ejmech.2020.112905
- D.D. Wu, Y.A. Salah, E.E. Ngowi, Y.X. Zhang, S. Khattak et al., Nanotechnology prospects in brain therapeutics concerning gene-targeting and nose-to-brain administration. iScience 26, 107321 (2023). https://doi.org/10.1016/j.isci.2023.107321
- M. Gao, Y. Li, W. Ho, C. Chen, Q. Chen et al., Targeted mRNA nanops ameliorate blood-brain barrier disruption postischemic stroke by modulating microglia polarization. ACS Nano 18, 3260–3275 (2024). https://doi.org/10.1021/acsnano.3c09817
- Y.-S. Zhang, J.-D. Li, C. Yan, An update on vinpocetine: New discoveries and clinical implications. Eur. J. Pharmacol. 819, 30–34 (2018). https://doi.org/10.1016/j.ejphar.2017.11.041
- S. Patyar, A. Prakash, M. Modi, B. Medhi, Role of vinpocetine in cerebrovascular diseases. Pharmacol. Rep. 63, 618–628 (2011). https://doi.org/10.1016/s1734-1140(11)70574-6
- X. Bian, L. Yang, D. Jiang, A.J. Grippin, Y. Ma et al., Regulation of cerebral blood flow boosts precise brain targeting of vinpocetine-derived ionizable-lipidoid nanops. Nat. Commun. 15, 3987 (2024). https://doi.org/10.1038/s41467-024-48461-4
- A.P. Fournier, A. Quenault, S. Martinez de Lizarrondo, M. Gauberti, G. Defer et al., Prediction of disease activity in models of multiple sclerosis by molecular magnetic resonance imaging of P-selectin. Proc. Natl. Acad. Sci. U.S.A. 114, 6116–6121 (2017). https://doi.org/10.1073/pnas.1619424114
- J. Hsu, J. Rappaport, S. Muro, Specific binding, uptake, and transport of ICAM-1-targeted nanocarriers across endothelial and subendothelial cell components of the blood-brain barrier. Pharm. Res. 31, 1855–1866 (2014). https://doi.org/10.1007/s11095-013-1289-8
- G. Ailuno, S. Baldassari, G. Zuccari, M. Schlich, G. Caviglioli, Peptide-based nanosystems for vascular cell adhesion molecule-1 targeting: a real opportunity for therapeutic and diagnostic agents in inflammation associated disorders. J. Drug Deliv. Sci. Technol. 55, 101461 (2020). https://doi.org/10.1016/j.jddst.2019.101461
- K. Ogawa, N. Kato, M. Yoshida, T. Hiu, T. Matsuo et al., Focused ultrasound/microbubbles-assisted BBB opening enhances LNP-mediated mRNA delivery to brain. J. Control. Release 348, 34–41 (2022). https://doi.org/10.1016/j.jconrel.2022.05.042
- Y. Liu, D. Zhang, Y. An, Y. Sun, J. Li et al., Non-invasive PTEN mRNA brain delivery effectively mitigates growth of orthotopic glioblastoma. Nano Today 49, 101790 (2023). https://doi.org/10.1016/j.nantod.2023.101790
- J. Oh, S.-M. Kim, E.-H. Lee, M. Kim, Y. Lee et al., Messenger RNA/polymeric carrier nanops for delivery of heme oxygenase-1 gene in the post-ischemic brain. Biomater. Sci. 8, 3063–3071 (2020). https://doi.org/10.1039/d0bm00076k
- K. Koji, N. Yoshinaga, Y. Mochida, T. Hong, T. Miyazaki et al., Bundling of mRNA strands inside polyion complexes improves mRNA delivery efficiency in vitro and in vivo. Biomaterials 261, 120332 (2020). https://doi.org/10.1016/j.biomaterials.2020.120332
- C. Aslan, S.H. Kiaie, N.M. Zolbanin, P. Lotfinejad, R. Ramezani et al., Exosomes for mRNA delivery: a novel biotherapeutic strategy with hurdles and hope. BMC Biotechnol. 21, 20 (2021). https://doi.org/10.1186/s12896-021-00683-w
- W. Gu, S. Luozhong, S.
References
H. Zhang, L. Zhang, A. Lin, C. Xu, Z. Li et al., Algorithm for optimized mRNA design improves stability and immunogenicity. Nature 621, 396–403 (2023). https://doi.org/10.1038/s41586-023-06127-z
M. Metkar, C.S. Pepin, M.J. Moore, Tailor made: the art of therapeutic mRNA design. Nat. Rev. Drug Discov. 23, 67–83 (2024). https://doi.org/10.1038/s41573-023-00827-x
P.A. Mudd, A.A. Minervina, M.V. Pogorelyy, J.S. Turner, W. Kim et al., SARS-CoV-2 mRNA vaccination elicits a robust and persistent T follicular helper cell response in humans. Cell 185, 603-613.e15 (2022). https://doi.org/10.1016/j.cell.2021.12.026
L. Qu, Z. Yi, Y. Shen, L. Lin, F. Chen et al., Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell 185, 1728-1744.e16 (2022). https://doi.org/10.1016/j.cell.2022.03.044
J. Conde, R. Langer, J. Rueff, mRNA therapy at the convergence of genetics and nanomedicine. Nat. Nanotechnol. 18, 537–540 (2023). https://doi.org/10.1038/s41565-023-01347-w
B. Ying, B. Whitener, L.A. VanBlargan, A.O. Hassan, S. Shrihari et al., Protective activity of mRNA vaccines against ancestral and variant SARS-CoV-2 strains. Sci. Transl. Med. 14, eabm3302 (2022). https://doi.org/10.1126/scitranslmed.abm3302
L.H. Rhym, R.S. Manan, A. Koller, G. Stephanie, D.G. Anderson, Peptide-encoding mRNA barcodes for the high-throughput in vivo screening of libraries of lipid nanops for mRNA delivery. Nat. Biomed. Eng. 7, 901–910 (2023). https://doi.org/10.1038/s41551-023-01030-4
Z. Xie, Y.-C. Lin, J.M. Steichen, G. Ozorowski, S. Kratochvil et al., mRNA-LNP HIV-1 trimer boosters elicit precursors to broad neutralizing antibodies. Science 384, eadk0582 (2024). https://doi.org/10.1126/science.adk0582
E. Rohner, R. Yang, K.S. Foo, A. Goedel, K.R. Chien, Unlocking the promise of mRNA therapeutics. Nat. Biotechnol. 40, 1586–1600 (2022). https://doi.org/10.1038/s41587-022-01491-z
X. Huang, N. Kong, X. Zhang, Y. Cao, R. Langer et al., The landscape of mRNA nanomedicine. Nat. Med. 28, 2273–2287 (2022). https://doi.org/10.1038/s41591-022-02061-1
B. Sun, W. Wu, E.A. Narasipura, Y. Ma, C. Yu et al., Engineering nanop toolkits for mRNA delivery. Adv. Drug Deliv. Rev. 200, 115042 (2023). https://doi.org/10.1016/j.addr.2023.115042
S. Qin, X. Tang, Y. Chen, K. Chen, N. Fan et al., mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct. Target. Ther. 7, 166 (2022). https://doi.org/10.1038/s41392-022-01007-w
Y. Xiao, Z. Tang, X. Huang, W. Chen, J. Zhou et al., Emerging mRNA technologies: delivery strategies and biomedical applications. Chem. Soc. Rev. 51, 3828–3845 (2022). https://doi.org/10.1039/d1cs00617g
K. Paunovska, A.J. Da Silva Sanchez, C.D. Sago, Z. Gan, M.P. Lokugamage et al., Nanops containing oxidized cholesterol deliver mRNA to the liver microenvironment at clinically relevant doses. Adv. Mater. 31, 1807748 (2019). https://doi.org/10.1002/adma.201807748
C.K.H. Wong, L.Y. Mak, I.C.H. Au, F.T.T. Lai, X. Li et al., Risk of acute liver injury following the mRNA (BNT162b2) and inactivated (CoronaVac) COVID-19 vaccines. J. Hepatol. 77, 1339–1348 (2022). https://doi.org/10.1016/j.jhep.2022.06.032
J. Wang, Y. Zhang, C. Liu, W. Zha, S. Dong et al., Trivalent mRNA vaccine against SARS-CoV-2 and variants with effective immunization. Mol. Pharm. 20, 4971–4983 (2023). https://doi.org/10.1021/acs.molpharmaceut.2c00860
X. Hou, T. Zaks, R. Langer, Y. Dong, Lipid nanops for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021). https://doi.org/10.1038/s41578-021-00358-0
J. Wang, H. Zhu, J. Gan, G. Liang, L. Li et al., Engineered mRNA delivery systems for biomedical applications. Adv. Mater. 36, 2308029 (2024). https://doi.org/10.1002/adma.202308029
Y. Wang, P. Chengzhong Yu, Emerging concepts of nanobiotechnology in mRNA delivery. Angew. Chem. Int. Ed. 59, 23374–23385 (2020). https://doi.org/10.1002/anie.202003545
Q. Cheng, T. Wei, L. Farbiak, L.T. Johnson, S.A. Dilliard et al., Selective organ targeting (SORT) nanops for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020). https://doi.org/10.1038/s41565-020-0669-6
S.A. Dilliard, Y. Sun, M.O. Brown, Y.-C. Sung, S. Chatterjee et al., The interplay of quaternary ammonium lipid structure and protein Corona on lung-specific mRNA delivery by selective organ targeting (SORT) nanops. J. Control. Release 361, 361–372 (2023). https://doi.org/10.1016/j.jconrel.2023.07.058
S.A. Dilliard, Q. Cheng, D.J. Siegwart, On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanops. Proc. Natl. Acad. Sci. U.S.A. 118, e2109256118 (2021). https://doi.org/10.1073/pnas.2109256118
R.A. Meyer, S.Y. Neshat, J.J. Green, J.L. Santos, A.D. Tuesca, Targeting strategies for mRNA delivery. Mater. Today Adv. 14, 100240 (2022). https://doi.org/10.1016/j.mtadv.2022.100240
J.R. Melamed, S.S. Yerneni, M.L. Arral, S.T. LoPresti, N. Chaudhary et al., Ionizable lipid nanops deliver mRNA to pancreatic β cells via macrophage-mediated gene transfer. Sci. Adv. 9, eade1444 (2023). https://doi.org/10.1126/sciadv.ade1444
G. Zeng, Z. He, H. Yang, Z. Gao, X. Ge et al., Cationic lipid pairs enhance liver-to-lung tropism of lipid nanops for in vivo mRNA delivery. ACS Appl. Mater. Interfaces 16, 25698–25709 (2024). https://doi.org/10.1021/acsami.4c02415
H. Ni, M.Z.C. Hatit, K. Zhao, D. Loughrey, M.P. Lokugamage et al., Piperazine-derived lipid nanops deliver mRNA to immune cells in vivo. Nat. Commun. 13, 4766 (2022). https://doi.org/10.1038/s41467-022-32281-5
Z. Tang, F. Yu, J.C. Hsu, J. Shi, W. Cai, Soybean oil-derived lipids for efficient mRNA delivery. Adv. Mater. 36, e2302901 (2024). https://doi.org/10.1002/adma.202302901
E. Kon, N. Ad-El, I. Hazan-Halevy, L. Stotsky-Oterin, D. Peer, Targeting cancer with mRNA-lipid nanops: key considerations and future prospects. Nat. Rev. Clin. Oncol. 20, 739–754 (2023). https://doi.org/10.1038/s41571-023-00811-9
O.A. Marcos-Contreras, C.F. Greineder, R.Y. Kiseleva, H. Parhiz, L.R. Walsh et al., Selective targeting of nanomedicine to inflamed cerebral vasculature to enhance the blood-brain barrier. Proc. Natl. Acad. Sci. U.S.A. 117, 3405–3414 (2020). https://doi.org/10.1073/pnas.1912012117
J. Popovitz, R. Sharma, R. Hoshyar, B.S. Kim, N. Murthy et al., Gene editing therapeutics based on mRNA delivery. Adv. Drug Deliv. Rev. 200, 115026 (2023). https://doi.org/10.1016/j.addr.2023.115026
J. Wang, Y. Zhang, S. Dong, W. Zha, C. Liu et al., Bivalent mRNA vaccines against three SARS-CoV-2 variants mediated by new ionizable lipid nanops. Int. J. Pharm. 642, 123155 (2023). https://doi.org/10.1016/j.ijpharm.2023.123155
J. Wang, Y. Fang, Z. Luo, J. Wang, Y. Zhao, Emerging mRNA technology for liver disease therapy. ACS Nano 18, 17378–17406 (2024). https://doi.org/10.1021/acsnano.4c02987
N. Al Fayez, M.S. Nassar, A.A. Alshehri, M.K. Alnefaie, F.A. Almughem et al., Recent advancement in mRNA vaccine development and applications. Pharmaceutics 15, 1972 (2023). https://doi.org/10.3390/pharmaceutics15071972
K. Xu, W. Lei, B. Kang, H. Yang, Y. Wang et al., A novel mRNA vaccine, SYS6006, against SARS-CoV-2. Front. Immunol. 13, 1051576 (2023). https://doi.org/10.3389/fimmu.2022.1051576
E.U.S. Locations, D. March, M.G. Thompson, J.L. Burgess, A.L. Naleway et al., Interim estimates of vaccine effectiveness of BNT162b2 and mRNA-1273 COVID-19 vaccines in preventing SARS-CoV-2 infection among health care personnel, first responders, and other essential and frontline workers. Morb. Mortal. Wkly Rep. 70, 495 (2021). https://doi.org/10.15585/mmwr.mm7013e3
S. Benenson, Y. Oster, M.J. Cohen, R. Nir-Paz, BNT162b2 mRNA covid-19 vaccine effectiveness among health care workers. N. Engl. J. Med. 384, 1775–1777 (2021). https://doi.org/10.1056/nejmc2101951
C. Buddy Creech, E. Anderson, V. Berthaud, I. Yildirim, A.M. Atz et al., Evaluation of mRNA-1273 covid-19 vaccine in children 6 to 11 years of age. N. Engl. J. Med. 386, 2011–2023 (2022). https://doi.org/10.1056/NEJMoa2203315
Q.-F. Meng, W. Tai, M. Tian, X. Zhuang, Y. Pan et al., Inhalation delivery of dexamethasone with iSEND nanops attenuates the COVID-19 cytokine storm in mice and nonhuman Primates. Sci. Adv. 9, eadg3277 (2023). https://doi.org/10.1126/sciadv.adg3277
S. Brenner, F. Jacob, M. Meselson, An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature 190, 576–581 (1961). https://doi.org/10.1038/190576a0
A. Hussain, H. Yang, M. Zhang, Q. Liu, G. Alotaibi et al., mRNA vaccines for COVID-19 and diverse diseases. J. Control. Release 345, 314–333 (2022). https://doi.org/10.1016/j.jconrel.2022.03.032
M.S. Gebre, S. Rauch, N. Roth, J. Yu, A. Chandrashekar et al., Optimization of non-coding regions for a non-modified mRNA COVID-19 vaccine. Nature 601, 410–414 (2022). https://doi.org/10.1038/s41586-021-04231-6
S.C. Kim, S.S. Sekhon, W.R. Shin, G. Ahn, B.K. Cho et al., Modifications of mRNA vaccine structural elements for improving mRNA stability and translation efficiency. Mol. Cell. Toxicol. 18, 1–8 (2022). https://doi.org/10.1007/s13273-021-00171-4
D.R. Gallie, The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 5, 2108–2116 (1991). https://doi.org/10.1101/gad.5.11.2108
Y. Chu, D. Yu, Y. Li, K. Huang, Y. Shen et al., A 5’ UTR language model for decoding untranslated regions of mRNA and function predictions. Nat. Mach. Intell. 6, 449–460 (2024). https://doi.org/10.1038/s42256-024-00823-9
C. Andreassi, A. Riccio, To localize or not to localize: mRNA fate is in 3’UTR ends. Trends Cell Biol. 19, 465–474 (2009). https://doi.org/10.1016/j.tcb.2009.06.001
W. Li, C. Wang, Y. Zhang, Y. Lu, Lipid nanocarrier-based mRNA therapy: challenges and promise for clinical transformation. Small 20, e2310531 (2024). https://doi.org/10.1002/smll.202310531
S. Chen, X. Huang, Y. Xue, E. Álvarez-Benedicto, Y. Shi et al., Nanotechnology-based mRNA vaccines. Nat. Rev. Meth. Primers 3, 63 (2023). https://doi.org/10.1038/s43586-023-00246-7
A.B. Sachs, R.W. Davis, The poly(A) binding protein is required for poly(A) shortening and 60S ribosomal subunit-dependent translation initiation. Cell 58, 857–867 (1989). https://doi.org/10.1016/0092-8674(89)90938-0
L.A. Passmore, J. Coller, Roles of mRNA poly(A) tails in regulation of eukaryotic gene expression. Nat. Rev. Mol. Cell Biol. 23, 93–106 (2022). https://doi.org/10.1038/s41580-021-00417-y
R. Kasprzyk, T.J. Spiewla, M. Smietanski, S. Golojuch, L. Vangeel et al., Identification and evaluation of potential SARS-CoV-2 antiviral agents targeting mRNA cap guanine N7-Methyltransferase. Antiviral Res. 193, 105142 (2021). https://doi.org/10.1016/j.antiviral.2021.105142
M. Sevajol, L. Subissi, E. Decroly, B. Canard, I. Imbert, Insights into RNA synthesis, capping, and proofreading mechanisms of SARS-coronavirus. Virus Res. 194, 90–99 (2014). https://doi.org/10.1016/j.virusres.2014.10.008
Y. Tu, A. Das, C. Redwood-Sawyerr, K.M. Polizzi, Capped or uncapped? Techniques to assess the quality of mRNA molecules. Curr. Opin. Syst. Biol. 37, 100503 (2024). https://doi.org/10.1016/j.coisb.2023.100503
J. Stepinski, C. Waddell, R. Stolarski, E. Darzynkiewicz, R.E. Rhoads, Synthesis and properties of mRNAs containing the novel “anti-reverse” cap analogs 7-methyl(3’-O-methyl)GpppG and 7-methyl (3’-deoxy)GpppG. RNA 7, 1486–1495 (2001)
E. Grudzien-Nogalska, J. Jemielity, J. Kowalska, E. Darzynkiewicz, R.E. Rhoads, Phosphorothioate cap analogs stabilize mRNA and increase translational efficiency in mammalian cells. RNA 13, 1745–1755 (2007). https://doi.org/10.1261/rna.701307
J. Kowalska, M. Lewdorowicz, J. Zuberek, E. Grudzien-Nogalska, E. Bojarska et al., Synthesis and characterization of mRNA cap analogs containing phosphorothioate substitutions that bind tightly to eIF4E and are resistant to the decapping pyrophosphatase DcpS. RNA 14, 1119–1131 (2008). https://doi.org/10.1261/rna.990208
Y. Weng, C. Li, T. Yang, B. Hu, M. Zhang et al., The challenge and prospect of mRNA therapeutics landscape. Biotechnol. Adv. 40, 107534 (2020). https://doi.org/10.1016/j.biotechadv.2020.107534
M. Strenkowska, R. Grzela, M. Majewski, K. Wnek, J. Kowalska et al., Cap analogs modified with 1, 2-dithiodiphosphate moiety protect mRNA from decapping and enhance its translational potential. Nucleic Acids Res. 44, 9578–9590 (2016). https://doi.org/10.1093/nar/gkw896
Z. Trepotec, M.K. Aneja, J. Geiger, G. Hasenpusch, C. Plank et al., Maximizing the translational yield of mRNA therapeutics by minimizing 5’-UTRs. Tissue Eng. Part A 25, 69–79 (2019). https://doi.org/10.1089/ten.TEA.2017.0485
J. Xie, Z. Zhuang, S. Gou, Q. Zhang, X. Wang et al., Precise genome editing of the Kozak sequence enables bidirectional and quantitative modulation of protein translation to anticipated levels without affecting transcription. Nucleic Acids Res. 51, 10075–10093 (2023). https://doi.org/10.1093/nar/gkad687
X. Zhuang, Y. Qi, M. Wang, N. Yu, F. Nan et al., mRNA vaccines encoding the HA protein of influenza A H1N1 virus delivered by cationic lipid nanops induce protective immune responses in mice. Vaccines 8, 123 (2020). https://doi.org/10.3390/vaccines8010123
C.A. Chen, A.-B. Shyu, AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem. Sci. 20, 465–470 (1995). https://doi.org/10.1016/S0968-0004(00)89102-1
S. Castillo-Hair, S. Fedak, B. Wang, J. Linder, K. Havens et al., Optimizing 5’UTRs for mRNA-delivered gene editing using deep learning. Nat. Commun. 15, 5284 (2024). https://doi.org/10.1038/s41467-024-49508-2
S.H. Boo, Y.K. Kim, The emerging role of RNA modifications in the regulation of mRNA stability. Exp. Mol. Med. 52, 400–408 (2020). https://doi.org/10.1038/s12276-020-0407-z
M.-C. Bernard, E. Bazin, N. Petiot, K. Lemdani, S. Commandeur et al., The impact of nucleoside base modification in mRNA vaccine is influenced by the chemistry of its lipid nanop delivery system. Mol. Ther. Nucleic Acids 32, 794–806 (2023). https://doi.org/10.1016/j.omtn.2023.05.004
K. Li, J. Peng, C. Yi, Sequencing methods and functional decoding of mRNA modifications. Fundam. Res. 3, 738–748 (2023). https://doi.org/10.1016/j.fmre.2023.05.010
K. Karikó, H. Muramatsu, F.A. Welsh, J. Ludwig, H. Kato et al., Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16, 1833–1840 (2008). https://doi.org/10.1038/mt.2008.200
M.D. Buschmann, M.J. Carrasco, S. Alishetty, M. Paige, M.G. Alameh et al., Nanomaterial delivery systems for mRNA vaccines. Vaccines 9, 65 (2021). https://doi.org/10.3390/vaccines9010065
P. Morais, H. Adachi, Y.-T. Yu, The critical contribution of pseudouridine to mRNA COVID-19 vaccines. Front. Cell Dev. Biol. 9, 789427 (2021). https://doi.org/10.3389/fcell.2021.789427
H. Fu, Y. Liang, X. Zhong, Z. Pan, L. Huang et al., Codon optimization with deep learning to enhance protein expression. Sci. Rep. 10, 17617 (2020). https://doi.org/10.1038/s41598-020-74091-z
C.-J. Lai, D. Kim, S. Kang, K. Li, I. Cha et al., Viral Codon optimization on SARS-CoV-2 Spike boosts immunity in the development of COVID-19 mRNA vaccines. J. Med. Virol. 95, e29183 (2023). https://doi.org/10.1002/jmv.29183
S. Rauch, N. Roth, K. Schwendt, M. Fotin-Mleczek, S.O. Mueller et al., mRNA-based SARS-CoV-2 vaccine candidate CVnCoV induces high levels of virus-neutralising antibodies and mediates protection in rodents. npj Vaccines 6, 57 (2021). https://doi.org/10.1038/s41541-021-00311-w
V. Presnyak, N. Alhusaini, Y.-H. Chen, S. Martin, N. Morris et al., Codon optimality is a major determinant of mRNA stability. Cell 160, 1111–1124 (2015). https://doi.org/10.1016/j.cell.2015.02.029
S. Holtkamp, S. Kreiter, A. Selmi, P. Simon, M. Koslowski et al., Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 108, 4009–4017 (2006). https://doi.org/10.1182/blood-2006-04-015024
H. Chen, D. Liu, J. Guo, A. Aditham, Y. Zhou et al., Branched chemically modified poly(A) tails enhance the translation capacity of mRNA. Nat. Biotechnol. (2024). https://doi.org/10.1038/s41587-024-02174-7
C.Y. Li, Z. Liang, Y. Hu, H. Zhang, K.D. Setiasabda et al., Cytidine-containing tails robustly enhance and prolong protein production of synthetic mRNA in cell and in vivo. Mol Ther Nucleic Acids 30, 300–310 (2022). https://doi.org/10.1016/j.omtn.2022.10.003
C.R. Stadler, H. Bähr-Mahmud, L. Celik, B. Hebich, A.S. Roth et al., Elimination of large tumors in mice by mRNA-encoded bispecific antibodies. Nat. Med. 23, 815–817 (2017). https://doi.org/10.1038/nm.4356
P. Trucillo, R. Campardelli, E. Reverchon, Liposomes: from bangham to supercritical fluids. Processes 8, 1022 (2020). https://doi.org/10.3390/pr8091022
W. Zhang, Y. Jiang, Y. He, H. Boucetta, J. Wu et al., Lipid carriers for mRNA delivery. Acta Pharm. Sin. B 13, 4105–4126 (2023). https://doi.org/10.1016/j.apsb.2022.11.026
W. Zha, J. Wang, Z. Guo, Y. Zhang, Y. Wang et al., Efficient delivery of VEGF-A mRNA for promoting diabetic wound healing via ionizable lipid nanops. Int. J. Pharm. 632, 122565 (2023). https://doi.org/10.1016/j.ijpharm.2022.122565
J. Wang, W. He, L. Cheng, H. Zhang, Y. Wang et al., A modified thin film method for large scale production of dimeric artesunate phospholipid liposomes and comparison with conventional approaches. Int. J. Pharm. 619, 121714 (2022). https://doi.org/10.1016/j.ijpharm.2022.121714
M. Jeong, Y. Lee, J. Park, H. Jung, H. Lee, Lipid nanops (LNPs) for in vivo RNA delivery and their breakthrough technology for future applications. Adv. Drug Deliv. Rev. 200, 114990 (2023). https://doi.org/10.1016/j.addr.2023.114990
V. Gote, P.K. Bolla, N. Kommineni, A. Butreddy, P.K. Nukala et al., A comprehensive review of mRNA vaccines. Int. J. Mol. Sci. 24, 2700 (2023). https://doi.org/10.3390/ijms24032700
Y. Zhang, J. Wang, H. Xing, C. Liu, W. Zha et al., Enhanced immunogenicity induced by mRNA vaccines with various lipid nanops as carriers for SARS-CoV-2 infection. J. Mater. Chem. B 11, 7454–7465 (2023). https://doi.org/10.1039/d3tb00303e
X. Xu, X. Wang, Y.-P. Liao, L. Luo, T. Xia et al., Use of a liver-targeting immune-tolerogenic mRNA lipid nanop platform to treat peanut-induced anaphylaxis by single- and multiple-epitope nucleotide sequence delivery. ACS Nano 17, 4942–4957 (2023). https://doi.org/10.1021/acsnano.2c12420
F. Ferraresso, A.W. Strilchuk, L.J. Juang, L.G. Poole, J.P. Luyendyk et al., Comparison of DLin-MC3-DMA and ALC-0315 for siRNA delivery to hepatocytes and hepatic stellate cells. Mol. Pharm. 19, 2175–2182 (2022). https://doi.org/10.1021/acs.molpharmaceut.2c00033
C. Zhang, Y. Ma, J. Zhang, J.C. Kuo, Z. Zhang et al., Modification of lipid-based nanops: an efficient delivery system for nucleic acid-based immunotherapy. Molecules 27, 1943 (2022). https://doi.org/10.3390/molecules27061943
F. Ma, L. Yang, Z. Sun, J. Chen, X. Rui et al., Neurotransmitter-derived lipidoids (NT-lipidoids) for enhanced brain delivery through intravenous injection. Sci. Adv. 6, eabb4429 (2020). https://doi.org/10.1126/sciadv.abb4429
X. Zhao, J. Chen, M. Qiu, Y. Li, Z. Glass et al., Imidazole-based synthetic lipidoids for in vivo mRNA delivery into primary T lymphocytes. Angew. Chem. Int. Ed. 59, 20083–20089 (2020). https://doi.org/10.1002/anie.202008082
X. Hou, X. Zhang, W. Zhao, C. Zeng, B. Deng et al., Vitamin lipid nanops enable adoptive macrophage transfer for the treatment of multidrug-resistant bacterial sepsis. Nat. Nanotechnol. 15, 41–46 (2020). https://doi.org/10.1038/s41565-019-0600-1
W. Cai, T. Luo, X. Chen, L. Mao, M. Wang, A combinatorial library of biodegradable lipid nanops preferentially deliver mRNA into tumor cells to block mutant RAS signaling. Adv. Funct. Mater. 32, 2204947 (2022). https://doi.org/10.1002/adfm.202204947
M. Estapé Senti, L. García del Valle, R.M. Schiffelers, mRNA delivery systems for cancer immunotherapy: lipid nanops and beyond. Adv. Drug Deliv. Rev. 206, 115190 (2024). https://doi.org/10.1016/j.addr.2024.115190
M.M. Billingsley, N. Gong, A.J. Mukalel, A.S. Thatte, R. El-Mayta et al., In vivo mRNA CAR T cell engineering via targeted ionizable lipid nanops with extrahepatic tropism. Small 20, 2304378 (2024). https://doi.org/10.1002/smll.202304378
R. Bejarano-Escobar, H. Sánchez-Calderón, J. Otero-Arenas, G. Martín-Partido, J. Francisco-Morcillo, Müller Glia and phagocytosis of cell debris in retinal tissue. J. Anat. 231, 471–483 (2017). https://doi.org/10.1111/joa.12653
R.C. Ryals, S. Patel, C. Acosta, M. McKinney, M.E. Pennesi et al., The effects of PEGylation on LNP based mRNA delivery to the eye. PLoS ONE 15, e0241006 (2020). https://doi.org/10.1371/journal.pone.0241006
M. Herrera-Barrera, R.C. Ryals, M. Gautam, A. Jozic, M. Landry et al., Peptide-guided lipid nanops deliver mRNA to the neural retina of rodents and nonhuman Primates. Sci. Adv. 9, eadd4623 (2023). https://doi.org/10.1126/sciadv.add4623
A.-S. Darrigade, H. Théophile, P. Sanchez-Pena, B. Milpied, M. Colbert et al., Sweet syndrome induced by SARS-CoV-2 Pfizer-BioNTech mRNA vaccine. Allergy 76, 3194–3196 (2021). https://doi.org/10.1111/all.14981
M.D. McSweeney, M. Mohan, S.P. Commins, S.K. Lai, Anaphylaxis to pfizer/BioNTech mRNA COVID-19 vaccine in a patient with clinically confirmed PEG allergy. Front. Allergy 2, 715844 (2021). https://doi.org/10.3389/falgy.2021.715844
T. Wang, T. Yu, Q. Liu, T.-C. Sung, A. Higuchi, Lipid nanop technology-mediated therapeutic gene manipulation in the eyes. Mol. Ther. Nucleic Acids 35, 102236 (2024). https://doi.org/10.1016/j.omtn.2024.102236
R. Zhang, R. El-Mayta, T.J. Murdoch, C.C. Warzecha, M.M. Billingsley et al., Helper lipid structure influences protein adsorption and delivery of lipid nanops to spleen and liver. Biomater. Sci. 9, 1449–1463 (2021). https://doi.org/10.1039/d0bm01609h
E. Álvarez-Benedicto, L. Farbiak, M.M. Ramírez, X. Wang, L.T. Johnson et al., Optimization of phospholipid chemistry for improved lipid nanop (LNP) delivery of messenger RNA (mRNA). Biomater. Sci. 10, 549–559 (2022). https://doi.org/10.1039/d1bm01454d
S. Liu, Q. Cheng, T. Wei, X. Yu, L.T. Johnson et al., Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR-Cas gene editing. Nat. Mater. 20, 701–710 (2021). https://doi.org/10.1038/s41563-020-00886-0
S.K. Patel, M.M. Billingsley, C. Frazee, X. Han, K.L. Swingle et al., Hydroxycholesterol substitution in ionizable lipid nanops for mRNA delivery to T cells. J. Control. Release 347, 521–532 (2022). https://doi.org/10.1016/j.jconrel.2022.05.020
O. Jung, H.-Y. Jung, L.T. Thuy, M. Choi, S. Kim et al., Modulating lipid nanops with histidinamide-conjugated cholesterol for improved intracellular delivery of mRNA. Adv. Healthc Mater. 13, 2303857 (2024). https://doi.org/10.1002/adhm.202303857
S. Patel, N. Ashwanikumar, E. Robinson, Y. Xia, C. Mihai et al., Naturally-occurring cholesterol analogues in lipid nanops induce polymorphic shape and enhance intracellular delivery of mRNA. Nat. Commun. 11, 983 (2020). https://doi.org/10.1038/s41467-020-14527-2
Q. Wan, Y. Sun, X. Sun, Z. Zhou, Rational design of polymer-based mRNA delivery systems for cancer treatment. Polym. Chem. 15, 2437–2456 (2024). https://doi.org/10.1039/d4py00206g
S. Liu, X. Wang, X. Yu, Q. Cheng, L.T. Johnson et al., Zwitterionic phospholipidation of cationic polymers facilitates systemic mRNA delivery to spleen and lymph nodes. J. Am. Chem. Soc. 143, 21321–21330 (2021). https://doi.org/10.1021/jacs.1c09822
R.-Q. Li, Y. Wu, Y. Zhi, X. Yang, Y. Li et al., PGMA-based star-like polycations with plentiful hydroxyl groups act as highly efficient miRNA delivery nanovectors for effective applications in heart diseases. Adv. Mater. 28, 7204–7212 (2016). https://doi.org/10.1002/adma.201602319
M.M. Abd Elwakil, T. Gao, T. Isono, Y. Sato, Y.H.A. Elewa et al., Engineered ε-decalactone lipomers bypass the liver to selectively in vivo deliver mRNA to the lungs without targeting ligands. Mater. Horiz. 8, 2251–2259 (2021). https://doi.org/10.1039/d1mh00185j
M. Thomas, J.J. Lu, Q. Ge, C. Zhang, J. Chen et al., Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc. Natl. Acad. Sci. U.S.A. 102, 5679–5684 (2005). https://doi.org/10.1073/pnas.0502067102
J.E. Dahlman, C. Barnes, O. Khan, A. Thiriot, S. Jhunjunwala et al., In vivo endothelial siRNA delivery using polymeric nanops with low molecular weight. Nat. Nanotechnol. 9, 648–655 (2014). https://doi.org/10.1038/nnano.2014.84
T. Miyazaki, S. Uchida, S. Nagatoishi, K. Koji, T. Hong et al., Polymeric nanocarriers with controlled chain flexibility boost mRNA delivery in vivo through enhanced structural fastening. Adv. Healthc. Mater. 9, e2000538 (2020). https://doi.org/10.1002/adhm.202000538
R. Yang, S.-G. Yang, W.-S. Shim, F. Cui, G. Cheng et al., Lung-specific delivery of paclitaxel by chitosan-modified PLGA nanops via transient formation of microaggregates. J. Pharm. Sci. 98, 970–984 (2009). https://doi.org/10.1002/jps.21487
N. Ignjatović, S. Vranješ Djurić, Z. Mitić, D. Janković, D. Uskoković, Investigating an organ-targeting platform based on hydroxyapatite nanops using a novel in situ method of radioactive 125Iodine labeling. Mater. Sci. Eng. C Mater. Biol. Appl. 43, 439–446 (2014). https://doi.org/10.1016/j.msec.2014.07.046
F. Zhang, N.N. Parayath, C.I. Ene, S.B. Stephan, A.L. Koehne et al., Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat. Commun. 10, 3974 (2019). https://doi.org/10.1038/s41467-019-11911-5
R. Sharma, K. Liaw, A. Sharma, A. Jimenez, M. Chang et al., Glycosylation of PAMAM dendrimers significantly improves tumor macrophage targeting and specificity in glioblastoma. J. Control. Release 337, 179–192 (2021). https://doi.org/10.1016/j.jconrel.2021.07.018
D. Gong, E. Ben-Akiva, A. Singh, H. Yamagata, S. Est-Witte et al., Machine learning guided structure function predictions enable in silico nanop screening for polymeric gene delivery. Acta Biomater. 154, 349–358 (2022). https://doi.org/10.1016/j.actbio.2022.09.072
A. Hasanzadeh, M.R. Hamblin, J. Kiani, H. Noori, J.M. Hardie et al., Could artificial intelligence revolutionize the development of nanovectors for gene therapy and mRNA vaccines? Nano Today 47, 101665 (2022). https://doi.org/10.1016/j.nantod.2022.101665
R. Yang, Y. Deng, B. Huang, L. Huang, A. Lin et al., A core-shell structured COVID-19 mRNA vaccine with favorable biodistribution pattern and promising immunity. Signal Transduct. Target. Ther. 6, 213 (2021). https://doi.org/10.1038/s41392-021-00634-z
C.J. McKinlay, J.R. Vargas, T.R. Blake, J.W. Hardy, M. Kanada et al., Charge-altering releasable transporters (CARTs) for the delivery and release of mRNA in living animals. Proc. Natl. Acad. Sci. U.S.A. 114, E448–E456 (2017). https://doi.org/10.1073/pnas.1614193114
L. Rao, Y. Yuan, X. Shen, G. Yu, X. Chen, Designing nanotheranostics with machine learning. Nat. Nanotechnol. 19, 1769–1781 (2024). https://doi.org/10.1038/s41565-024-01753-8
F. Mazahir, A.K. Yadav, Recent progress in engineered extracellular vesicles and their biomedical applications. Life Sci. 350, 122747 (2024). https://doi.org/10.1016/j.lfs.2024.122747
C. Yang, Y. Xue, Y. Duan, C. Mao, M. Wan, Extracellular vesicles and their engineering strategies, delivery systems, and biomedical applications. J. Control. Release 365, 1089–1123 (2024). https://doi.org/10.1016/j.jconrel.2023.11.057
D. Parashar, T. Mukherjee, S. Gupta, U. Kumar, K. Das, microRNAs in extracellular vesicles: a potential role in cancer progression. Cell. Signal. 121, 111263 (2024). https://doi.org/10.1016/j.cellsig.2024.111263
T. Liu, L. Sun, Y. Ji, W. Zhu, Extracellular vesicles in cancer therapy: roles, potential application, and challenges. Biochim. Biophys. Acta BBA Rev. Cancer 1879, 189101 (2024). https://doi.org/10.1016/j.bbcan.2024.189101
Z. Zhuo, J. Wang, Y. Luo, R. Zeng, C. Zhang et al., Targeted extracellular vesicle delivery systems employing superparamagnetic iron oxide nanops. Acta Biomater. 134, 13–31 (2021). https://doi.org/10.1016/j.actbio.2021.07.027
K. O’Brien, K. Breyne, S. Ughetto, L.C. Laurent, X.O. Breakefield, RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat. Rev. Mol. Cell Biol. 21, 585–606 (2020). https://doi.org/10.1038/s41580-020-0251-y
M. Schulz-Siegmund, A. Aigner, Nucleic acid delivery with extracellular vesicles. Adv. Drug Deliv. Rev. 173, 89–111 (2021). https://doi.org/10.1016/j.addr.2021.03.005
Z. Li, Z. Liu, J. Wu, B. Li, Cell-derived vesicles for mRNA delivery. Pharmaceutics 14, 2699 (2022). https://doi.org/10.3390/pharmaceutics14122699
Z. Li, P. Zhao, Y. Zhang, J. Wang, C. Wang et al., Exosome-based Ldlr gene therapy for familial hypercholesterolemia in a mouse model. Theranostics 11, 2953–2965 (2021). https://doi.org/10.7150/thno.49874
T.C. Pham, M.K. Jayasinghe, T.T. Pham, Y. Yang, L. Wei et al., Covalent conjugation of extracellular vesicles with peptides and nanobodies for targeted therapeutic delivery. J. Extracell. Vesicles 10, e12057 (2021). https://doi.org/10.1002/jev2.12057
W.M. Usman, T.C. Pham, Y.Y. Kwok, L.T. Vu, V. Ma et al., Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat. Commun. 9, 2359 (2018). https://doi.org/10.1038/s41467-018-04791-8
K.D. Popowski, B.L. de Juan Abad, A. George, D. Silkstone, E. Belcher et al., Inhalable exosomes outperform liposomes as mRNA and protein drug carriers to the lung. Extracell. Vesicle 1, 100002 (2022). https://doi.org/10.1016/j.vesic.2022.100002
K.D. Popowski, A. Moatti, G. Scull, D. Silkstone, H. Lutz et al., Inhalable dry powder mRNA vaccines based on extracellular vesicles. Matter 5, 2960–2974 (2022). https://doi.org/10.1016/j.matt.2022.06.012
J. Yang, S. Wu, L. Hou, D. Zhu, S. Yin et al., Therapeutic effects of simultaneous delivery of nerve growth factor mRNA and protein via exosomes on cerebral ischemia. Mol. Ther. Nucleic Acids 21, 512–522 (2020). https://doi.org/10.1016/j.omtn.2020.06.013
S. Zhang, Y. Dong, Y. Wang, W. Sun, M. Wei et al., Selective encapsulation of therapeutic mRNA in engineered extracellular vesicles by DNA aptamer. Nano Lett. 21, 8563–8570 (2021). https://doi.org/10.1021/acs.nanolett.1c01817
J.-H. Wang, A.V. Forterre, J. Zhao, D.O. Frimannsson, A. Delcayre et al., Anti-HER2 scFv-directed extracellular vesicle-mediated mRNA-based gene delivery inhibits growth of HER2-positive human breast tumor xenografts by prodrug activation. Mol. Cancer Ther. 17, 1133–1142 (2018). https://doi.org/10.1158/1535-7163.MCT-17-0827
P. Schult, H. Roth, R.L. Adams, C. Mas, L. Imbert et al., microRNA-122 amplifies hepatitis C virus translation by shaping the structure of the internal ribosomal entry site. Nat. Commun. 9, 2613 (2018). https://doi.org/10.1038/s41467-018-05053-3
W. Sun, C. Xing, L. Zhao, P. Zhao, G. Yang et al., Ultrasound assisted exosomal delivery of tissue responsive mRNA for enhanced efficacy and minimized off-target effects. Mol. Ther. Nucleic Acids 20, 558–567 (2020). https://doi.org/10.1016/j.omtn.2020.03.016
Y. Guo, Z. Wan, P. Zhao, M. Wei, Y. Liu et al., Ultrasound triggered topical delivery of Bmp7 mRNA for white fat browning induction via engineered smart exosomes. J. Nanobiotechnol. 19, 402 (2021). https://doi.org/10.1186/s12951-021-01145-3
N.C. Homem, C.S. Miranda, M.A. Teixeira, M.O. Teixeira, J.M. Domingues et al., Graphene oxide-based platforms for wound dressings and drug delivery systems: a 10 year overview. J. Drug Deliv. Sci. Technol. 78, 103992 (2022). https://doi.org/10.1016/j.jddst.2022.103992
V.P. Jain, S. Chaudhary, D. Sharma, N. Dabas, R.S.K. Lalji et al., Advanced functionalized nanographene oxide as a biomedical agent for drug delivery and anti-cancerous therapy: a review. Eur. Polym. J. 142, 110124 (2021). https://doi.org/10.1016/j.eurpolymj.2020.110124
R. Kumar, D.P. Singh, R. Muñoz, M. Amami, R.K. Singh et al., Graphene-based materials for biotechnological and biomedical applications: drug delivery, bioimaging and biosensing. Mater. Today Chem. 33, 101750 (2023). https://doi.org/10.1016/j.mtchem.2023.101750
Y. Yin, X. Li, H. Ma, J. Zhang, D. Yu et al., In situ transforming RNA nanovaccines from polyethylenimine functionalized graphene oxide hydrogel for durable cancer immunotherapy. Nano Lett. 21, 2224–2231 (2021). https://doi.org/10.1021/acs.nanolett.0c05039
V. Andretto, M. Repellin, M. Pujol, E. Almouazen, J. Sidi-Boumedine et al., Hybrid core-shell ps for mRNA systemic delivery. J. Control. Release 353, 1037–1049 (2023). https://doi.org/10.1016/j.jconrel.2022.11.042
M.A. Islam, Y. Xu, W. Tao, J.M. Ubellacker, M. Lim et al., Restoration of tumour-growth suppression in vivo via systemic nanop-mediated delivery of PTEN mRNA. Nat. Biomed. Eng. 2, 850–864 (2018). https://doi.org/10.1038/s41551-018-0284-0
M. Yin, H. Sun, Y. Li, J. Zhang, J. Wang et al., Delivery of mRNA using biomimetic vectors: progress and challenges. Small 20, e2402715 (2024). https://doi.org/10.1002/smll.202402715
J. Chen, J. Tan, J. Li, W. Cheng, L. Ke et al., Genetically engineered biomimetic nanops for targeted delivery of mRNA to treat rheumatoid arthritis. Small Methods 7, e2300678 (2023). https://doi.org/10.1002/smtd.202300678
J.H. Park, A. Mohapatra, J. Zhou, M. Holay, N. Krishnan et al., Virus-mimicking cell membrane-coated nanops for cytosolic delivery of mRNA. Angew. Chem. Int. Ed. 61, e202113671 (2022). https://doi.org/10.1002/anie.202113671
Y. Liang, J. Zhang, C. Xu, J. Wang, W. Han et al., Biomimetic mineralized CRISPR/cas RNA nanops for efficient tumor-specific multiplex gene editing. ACS Nano 17, 15025–15043 (2023). https://doi.org/10.1021/acsnano.3c04116
M. Dhawan, A.A. Saied, M. Sharma, Virus-like ps (VLPs)-based vaccines against COVID-19: where do we stand amid the ongoing evolution of SARS-CoV-2? Health Sci. Rev. 9, 100127 (2023). https://doi.org/10.1016/j.hsr.2023.100127
W. Lu, Z. Zhao, Y.-W. Huang, B. Wang, Review: a systematic review of virus-like ps of coronavirus: assembly, generation, chimerism and their application in basic research and in the clinic. Int. J. Biol. Macromol. 200, 487–497 (2022). https://doi.org/10.1016/j.ijbiomac.2022.01.108
B. Ikwuagwu, D. Tullman-Ercek, Virus-like ps for drug delivery: a review of methods and applications. Curr. Opin. Biotechnol. 78, 102785 (2022). https://doi.org/10.1016/j.copbio.2022.102785
M. Segel, B. Lash, J. Song, A. Ladha, C.C. Liu et al., Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science 373, 882–889 (2021). https://doi.org/10.1126/science.abg6155
M. Li, Z. Liu, D. Wang, J. Ye, Z. Shi et al., Intraocular mRNA delivery with endogenous MmPEG10-based virus-like ps. Exp. Eye Res. 243, 109899 (2024). https://doi.org/10.1016/j.exer.2024.109899
D. Yin, Y. Zhong, S. Ling, S. Lu, X. Wang et al., Dendritic-cell-targeting virus-like ps as potent mRNA vaccine carriers. Nat. Biomed. Eng. (2024). https://doi.org/10.1038/s41551-024-01208-4
S.A. Dilliard, D.J. Siegwart, Passive, active and endogenous organ-targeted lipid and polymer nanops for delivery of genetic drugs. Nat. Rev. Mater. 8, 282–300 (2023). https://doi.org/10.1038/s41578-022-00529-7
N. Bertrand, J. Wu, X. Xu, N. Kamaly, O.C. Farokhzad, Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 66, 2–25 (2014). https://doi.org/10.1016/j.addr.2013.11.009
B. Farran, E. Pavitra, P. Kasa, S. Peela, G.S. Rama Raju et al., Folate-targeted immunotherapies: passive and active strategies for cancer. Cytokine Growth Factor Rev. 45, 45–52 (2019). https://doi.org/10.1016/j.cytogfr.2019.02.001
S. Puri, M. Mazza, G. Roy, R.M. England, L. Zhou et al., Evolution of nanomedicine formulations for targeted delivery and controlled release. Adv. Drug Deliv. Rev. 200, 114962 (2023). https://doi.org/10.1016/j.addr.2023.114962
W. Sun, Q. Hu, W. Ji, G. Wright, Z. Gu, Leveraging physiology for precision drug delivery. Physiol. Rev. 97, 189–225 (2017). https://doi.org/10.1152/physrev.00015.2016
M. Xu, Y. Qi, G. Liu, Y. Song, X. Jiang et al., Size-dependent in vivo transport of nanops: implications for delivery, targeting, and clearance. ACS Nano 17, 20825–20849 (2023). https://doi.org/10.1021/acsnano.3c05853
D.H. Jo, J.H. Kim, T.G. Lee, J.H. Kim, Size, surface charge, and shape determine therapeutic effects of nanops on brain and retinal diseases. Nanomedicine 11, 1603–1611 (2015). https://doi.org/10.1016/j.nano.2015.04.015
W.-C. Chou, Z. Lin, Impact of protein coronas on nanop interactions with tissues and targeted delivery. Curr. Opin. Biotechnol. 85, 103046 (2024). https://doi.org/10.1016/j.copbio.2023.103046
S. Wang, J. Zhang, H. Zhou, Y.C. Lu, X. Jin et al., The role of protein Corona on nanodrugs for organ-targeting and its prospects of application. J. Control. Release 360, 15–43 (2023). https://doi.org/10.1016/j.jconrel.2023.06.014
M. Yuan, Z. Han, Y. Liang, Y. Sun, B. He et al., mRNA nanodelivery systems: targeting strategies and administration routes. Biomater. Res. 27, 90 (2023). https://doi.org/10.1186/s40824-023-00425-3
K. Paunovska, A.J. Da Silva Sanchez, M.P. Lokugamage, D. Loughrey, E.S. Echeverri et al., The extent to which lipid nanops require apolipoprotein E and low-density lipoprotein receptor for delivery changes with ionizable lipid structure. Nano Lett. 22, 10025–10033 (2022). https://doi.org/10.1021/acs.nanolett.2c03741
M. Li, X. Jin, T. Liu, F. Fan, F. Gao et al., Nanop elasticity affects systemic circulation lifetime by modulating adsorption of apolipoprotein A-I in Corona formation. Nat. Commun. 13, 4137 (2022). https://doi.org/10.1038/s41467-022-31882-4
J. Li, K. Kataoka, Chemo-physical strategies to advance the in vivo functionality of targeted nanomedicine: the next generation. J. Am. Chem. Soc. 143, 538–559 (2021). https://doi.org/10.1021/jacs.0c09029
Z. Zhao, A. Ukidve, J. Kim, S. Mitragotri, Targeting strategies for tissue-specific drug delivery. Cell 181, 151–167 (2020). https://doi.org/10.1016/j.cell.2020.02.001
P.V. Nguyen, K. Hervé-Aubert, I. Chourpa, E. Allard-Vannier, Active targeting strategy in nanomedicines using anti-EGFR ligands—a promising approach for cancer therapy and diagnosis. Int. J. Pharm. 609, 121134 (2021). https://doi.org/10.1016/j.ijpharm.2021.121134
L. Breda, T.E. Papp, M.P. Triebwasser, A. Yadegari, M.T. Fedorky et al., In vivo hematopoietic stem cell modification by mRNA delivery. Science 381, 436–443 (2023). https://doi.org/10.1126/science.ade6967
H. Parhiz, V.V. Shuvaev, N. Pardi, M. Khoshnejad, R.Y. Kiseleva et al., PECAM-1 directed re-targeting of exogenous mRNA providing two orders of magnitude enhancement of vascular delivery and expression in lungs independent of apolipoprotein E-mediated uptake. J. Control. Release 291, 106–115 (2018). https://doi.org/10.1016/j.jconrel.2018.10.015
Y. Zhang, J. Cao, Z. Yuan, Strategies and challenges to improve the performance of tumor-associated active targeting. J. Mater. Chem. B 8, 3959–3971 (2020). https://doi.org/10.1039/d0tb00289e
B. Mukherjee, B. Satapathy, L. Mondal, N. Dey, R. Maji, Potentials and challenges of active targeting at the tumor cells by engineered polymeric nanops. Curr. Pharm. Biotechnol. 14, 1250–1263 (2014). https://doi.org/10.2174/1389201015666140608143235
I. Menon, M. Zaroudi, Y. Zhang, E. Aisenbrey, L. Hui, Fabrication of active targeting lipid nanops: challenges and perspectives. Mater. Today Adv. 16, 100299 (2022). https://doi.org/10.1016/j.mtadv.2022.100299
I. Gómez-Aguado, J. Rodríguez-Castejón, M. Vicente-Pascual, A. Rodríguez-Gascón, M.Á. Solinís et al., Nanomedicines to deliver mRNA: state of the art and future perspectives. Nanomaterials 10, 364 (2020). https://doi.org/10.3390/nano10020364
J.S. Suk, Q. Xu, N. Kim, J. Hanes, L.M. Ensign, PEGylation as a strategy for improving nanop-based drug and gene delivery. Adv. Drug Deliv. Rev. 99, 28–51 (2016). https://doi.org/10.1016/j.addr.2015.09.012
X. Yang, Q. Chen, J. Yang, S. Wu, J. Liu et al., Tumor-targeted accumulation of ligand-installed polymeric micelles influenced by surface PEGylation crowdedness. ACS Appl. Mater. Interfaces 9, 44045–44052 (2017). https://doi.org/10.1021/acsami.7b16764
Q. Chen, R. Qi, X. Chen, X. Yang, S. Wu et al., A targeted and stable polymeric nanoformulation enhances systemic delivery of mRNA to tumors. Mol. Ther. 25, 92–101 (2017). https://doi.org/10.1016/j.ymthe.2016.10.006
E.T. Dams, P. Laverman, W.J. Oyen, G. Storm, G.L. Scherphof et al., Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J. Pharmacol Exp. Ther. 292, 1071–1079 (2000). https://doi.org/10.1016/S0022-3565(24)35391-1
S. Mishra, P. Webster, M.E. Davis, PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery ps. Eur. J. Cell Biol. 83, 97–111 (2004). https://doi.org/10.1078/0171-9335-00363
H. Takata, T. Shimizu, R. Yamade, N.E. Elsadek, S.E. Emam et al., Anti-PEG IgM production induced by PEGylated liposomes as a function of administration route. J. Control. Release 360, 285–292 (2023). https://doi.org/10.1016/j.jconrel.2023.06.027
Q. Yang, S.K. Lai, Anti-PEG immunity: emergence, characteristics, and unaddressed questions. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7, 655–677 (2015). https://doi.org/10.1002/wnan.1339
G.T. Kozma, T. Mészáros, I. Vashegyi, T. Fülöp, E. Örfi et al., Pseudo-anaphylaxis to polyethylene glycol (PEG)-coated liposomes: roles of anti-PEG IgM and complement activation in a porcine model of human infusion reactions. ACS Nano 13, 9315–9324 (2019). https://doi.org/10.1021/acsnano.9b03942
T.V. Erdeljic, Anaphylaxis associated with the mRNA COVID-19 vaccines: approach to allergy investigation. Clin. Immunol. 227, 108748 (2021). https://doi.org/10.1016/j.clim.2021.108748
X.R. Lim, B.P. Leung, C.Y.L. Ng, J.W.L. Tan, G.Y.L. Chan et al., Pseudo-anaphylactic reactions to pfizer BNT162b2 vaccine: report of 3 cases of anaphylaxis post pfizer BNT162b2 vaccination. Vaccines 9, 974 (2021). https://doi.org/10.3390/vaccines9090974
P. Zhao, Y. Tian, Y. Lu, J. Zhang, A. Tao et al., Biomimetic calcium carbonate nanops delivered IL-12 mRNA for targeted glioblastoma sono-immunotherapy by ultrasound-induced necroptosis. J. Nanobiotechnology 20, 525 (2022). https://doi.org/10.1186/s12951-022-01731-z
W. Li, X. Zhang, C. Zhang, J. Yan, X. Hou et al., Biomimetic nanops deliver mRNAs encoding costimulatory receptors and enhance T cell mediated cancer immunotherapy. Nat. Commun. 12, 7264 (2021). https://doi.org/10.1038/s41467-021-27434-x
K. Chen, D. Wang, M. Qian, M. Weng, Z. Lu et al., Endothelial cell dysfunction and targeted therapeutic drugs in sepsis. Heliyon 10, e33340 (2024). https://doi.org/10.1016/j.heliyon.2024.e33340
N.A. Rahman, A.N.H.M. Rasil, U. Meyding-Lamade, E.M. Craemer, S. Diah et al., Immortalized endothelial cell lines for in vitro blood–brain barrier models: a systematic review. Brain Res. 1642, 532–545 (2016). https://doi.org/10.1016/j.brainres.2016.04.024
J.G. Schnitzler, K.E. Dzobo, N.S. Nurmohamed, E.S.G. Stroes, J. Kroon, Surmounting the endothelial barrier for delivery of drugs and imaging tracers. Atherosclerosis 315, 93–101 (2020). https://doi.org/10.1016/j.atherosclerosis.2020.04.025
L. Claesson-Welsh, E. Dejana, D.M. McDonald, Permeability of the endothelial barrier: identifying and reconciling controversies. Trends Mol. Med. 27, 314–331 (2021). https://doi.org/10.1016/j.molmed.2020.11.006
J. Aman, E.M. Weijers, G.P. van Nieuw Amerongen, A.B. Malik, V.W. van Hinsbergh, Using cultured endothelial cells to study endothelial barrier dysfunction: challenges and opportunities. Am. J. Physiol. Lung Cell. Mol. Physiol. 311, L453–L466 (2016). https://doi.org/10.1152/ajplung.00393.2015
A. Amruta, D. Iannotta, S.W. Cheetham, T. Lammers, J. Wolfram, Vasculature organotropism in drug delivery. Adv. Drug Deliv. Rev. 201, 115054 (2023). https://doi.org/10.1016/j.addr.2023.115054
J. Di, P. Huang, X. Chen, Targeting strategies for site-specific mRNA delivery. Bioconjugate Chem. 35, 453–456 (2024). https://doi.org/10.1021/acs.bioconjchem.4c00038
H.J. Kim, S.K. Seo, H.Y. Park, Physical and chemical advances of synthetic delivery vehicles to enhance mRNA vaccine efficacy. J. Control. Release 345, 405–416 (2022). https://doi.org/10.1016/j.jconrel.2022.03.029
K. Li, M. Lu, X. Xia, Y. Huang, Recent advances in photothermal and RNA interfering synergistic therapy. Chin. Chem. Lett. 32, 1010–1016 (2021). https://doi.org/10.1016/j.cclet.2020.09.010
T. Yoshikawa, Y. Mori, H. Feng, K.Q. Phan, A. Kishimura et al., Rapid and continuous accumulation of nitric oxide-releasing liposomes in tumors to augment the enhanced permeability and retention (EPR) effect. Int. J. Pharm. 565, 481–487 (2019). https://doi.org/10.1016/j.ijpharm.2019.05.043
F.N. Kiskin, Y. Yang, H. Yang, J.Z. Zhang, Cracking the code of the cardiovascular Enigma: hPSC-derived endothelial cells unveil the secrets of endothelial dysfunction. J. Mol. Cell. Cardiol. 192, 65–78 (2024). https://doi.org/10.1016/j.yjmcc.2024.05.005
I. Yao Mattisson, C. Christoffersen, Apolipoprotein M and its impact on endothelial dysfunction and inflammation in the cardiovascular system. Atherosclerosis 334, 76–84 (2021). https://doi.org/10.1016/j.atherosclerosis.2021.08.039
O.V. Halaidych, C. Freund, F. van den Hil, D.C.F. Salvatori, M. Riminucci et al., Inflammatory responses and barrier function of endothelial cells derived from human induced pluripotent stem cells. Stem Cell Rep. 10, 1642–1656 (2018). https://doi.org/10.1016/j.stemcr.2018.03.012
E. Voltà-Durán, E. Parladé, N. Serna, A. Villaverde, E. Vazquez et al., Endosomal escape for cell-targeted proteins. Going out after going in. Biotechnol. Adv. 63, 108103 (2023). https://doi.org/10.1016/j.biotechadv.2023.108103
B. Winkeljann, D.C. Keul, O.M. Merkel, Engineering poly- and micelleplexes for nucleic acid delivery—a reflection on their endosomal escape. J. Control. Release 353, 518–534 (2023). https://doi.org/10.1016/j.jconrel.2022.12.008
A. Ahmad, J.M. Khan, pH-sensitive endosomolytic peptides in gene and drug delivery: endosomal escape and current challenges. J. Drug Deliv. Sci. Technol. 76, 103786 (2022). https://doi.org/10.1016/j.jddst.2022.103786
S. Chatterjee, E. Kon, P. Sharma, D. Peer, Endosomal escape: a bottleneck for LNP-mediated therapeutics. Proc. Natl. Acad. Sci. U.S.A. 121, e2307800120 (2024). https://doi.org/10.1073/pnas.2307800120
J. Wang, Y. Zhang, C. Liu, W. Zha, S. Dong et al., Multifunctional lipid nanops for protein kinase N3 shRNA delivery and prostate cancer therapy. Mol. Pharm. 19, 4588–4600 (2022). https://doi.org/10.1021/acs.molpharmaceut.2c00244
K. Sakamoto, M. Akishiba, T. Iwata, K. Murata, S. Mizuno et al., Optimizing charge switching in membrane lytic peptides for endosomal release of biomacromolecules. Angew. Chem. Int. Ed. 59, 19990–19998 (2020). https://doi.org/10.1002/anie.202005887
H. Zhou, Y. Liao, X. Han, D.S. Chen, X. Hong et al., ROS-responsive nanop delivery of mRNA and photosensitizer for combinatorial cancer therapy. Nano Lett. 23, 3661–3668 (2023). https://doi.org/10.1021/acs.nanolett.2c03784
S.D. Shirsat, P.V. Londhe, A.P. Gaikwad, M. Rizwan, S.S. Laha et al., Endosomal escape in magnetic nanostructures: recent advances and future perspectives. Mater. Today Adv. 22, 100484 (2024). https://doi.org/10.1016/j.mtadv.2024.100484
E.M. Materón, C.M. Miyazaki, O. Carr, N. Joshi, P.H.S. Picciani et al., Magnetic nanops in biomedical applications: a review. Appl. Surf. Sci. Adv. 6, 100163 (2021). https://doi.org/10.1016/j.apsadv.2021.100163
M.I. Anik, M. Khalid Hossain, I. Hossain, A.M.U.B. Mahfuz, M. Tayebur Rahman et al., Recent progress of magnetic nanops in biomedical applications: a review. Nano Sel. 2, 1146–1186 (2021). https://doi.org/10.1002/nano.202000162
V.F. Cardoso, A. Francesko, C. Ribeiro, M. Bañobre-López, P. Martins et al., Advances in magnetic nanops for biomedical applications. Adv. Healthc Mater. 7, 1700845 (2018). https://doi.org/10.1002/adhm.201700845
K. Su, L. Shi, T. Sheng, X. Yan, L. Lin et al., Reformulating lipid nanops for organ-targeted mRNA accumulation and translation. Nat. Commun. 15, 5659 (2024). https://doi.org/10.1038/s41467-024-50093-7
K. Lam, A. Leung, A. Martin, M. Wood, P. Schreiner et al., Unsaturated, trialkyl ionizable lipids are versatile lipid-nanop components for therapeutic and vaccine applications. Adv. Mater. 35, e2209624 (2023). https://doi.org/10.1002/adma.202209624
Z. Guo, C. Zeng, Y. Shen, L. Hu, H. Zhang et al., Helper lipid-enhanced mRNA delivery for treating metabolic dysfunction-associated fatty liver disease. Nano Lett. 24, 6743–6752 (2024). https://doi.org/10.1021/acs.nanolett.4c01458
M. Krawczyk, R. Müllenbach, S.N. Weber, V. Zimmer, F. Lammert, Genome-wide association studies and genetic risk assessment of liver diseases. Nat. Rev. Gastroenterol. Hepatol. 7, 669–681 (2010). https://doi.org/10.1038/nrgastro.2010.170
J. Poisson, S. Lemoinne, C. Boulanger, F. Durand, R. Moreau et al., Liver sinusoidal endothelial cells: physiology and role in liver diseases. J. Hepatol. 66, 212–227 (2017). https://doi.org/10.1016/j.jhep.2016.07.009
C.D. Sago, B.R. Krupczak, M.P. Lokugamage, Z. Gan, J.E. Dahlman, Cell subtypes within the liver microenvironment differentially interact with lipid nanops. Cell. Mol. Bioeng. 12, 389–397 (2019). https://doi.org/10.1007/s12195-019-00573-4
O.F. Khan, E.W. Zaia, H. Yin, R.L. Bogorad, J.M. Pelet et al., Ionizable amphiphilic dendrimer-based nanomaterials with alkyl-chain-substituted amines for tunable siRNA delivery to the liver endothelium in vivo. Angew. Chem. Int. Ed. 53, 14397–14401 (2014). https://doi.org/10.1002/anie.201408221
M. Kim, M. Jeong, S. Hur, Y. Cho, J. Park et al., Engineered ionizable lipid nanops for targeted delivery of RNA therapeutics into different types of cells in the liver. Sci. Adv. 7, eabf4398 (2021). https://doi.org/10.1126/sciadv.abf4398
J. Cao, M. Choi, E. Guadagnin, M. Soty, M. Silva et al., mRNA therapy restores euglycemia and prevents liver tumors in murine model of glycogen storage disease. Nat. Commun. 12, 3090 (2021). https://doi.org/10.1038/s41467-021-23318-2
D. An, J.L. Schneller, A. Frassetto, S. Liang, X. Zhu et al., Systemic messenger RNA therapy as a treatment for methylmalonic acidemia. Cell Rep. 21, 3548–3558 (2017). https://doi.org/10.1016/j.celrep.2017.11.081
D. Koeberl, A. Schulze, N. Sondheimer, G.S. Lipshutz, T. Geberhiwot et al., Interim analyses of a first-in-human phase 1/2 mRNA trial for propionic acidaemia. Nature 628, 872–877 (2024). https://doi.org/10.1038/s41586-024-07266-7
M. Liu, S. Hu, N. Yan, K.D. Popowski, K. Cheng, Inhalable extracellular vesicle delivery of IL-12 mRNA to treat lung cancer and promote systemic immunity. Nat. Nanotechnol. 19, 565–575 (2024). https://doi.org/10.1038/s41565-023-01580-3
L. Rotolo, D. Vanover, N.C. Bruno, H.E. Peck, C. Zurla et al., Species-agnostic polymeric formulations for inhalable messenger RNA delivery to the lung. Nat. Mater. 22, 369–379 (2023). https://doi.org/10.1038/s41563-022-01404-0
M.P. Lokugamage, D. Vanover, J. Beyersdorf, M.Z.C. Hatit, L. Rotolo et al., Optimization of lipid nanops for the delivery of nebulized therapeutic mRNA to the lungs. Nat. Biomed. Eng. 5, 1059–1068 (2021). https://doi.org/10.1038/s41551-021-00786-x
J. Witten, T. Samad, K. Ribbeck, Selective permeability of mucus barriers. Curr. Opin. Biotechnol. 52, 124–133 (2018). https://doi.org/10.1016/j.copbio.2018.03.010
N. Kim, G.A. Duncan, J. Hanes, J.S. Suk, Barriers to inhaled gene therapy of obstructive lung diseases: a review. J. Control. Release 240, 465–488 (2016). https://doi.org/10.1016/j.jconrel.2016.05.031
A.Y. Jiang, J. Witten, I.O. Raji, F. Eweje, C. MacIsaac et al., Combinatorial development of nebulized mRNA delivery formulations for the lungs. Nat. Nanotechnol. 19, 364–375 (2024). https://doi.org/10.1038/s41565-023-01548-3
B. Li, R.S. Manan, S.Q. Liang, A. Gordon, A. Jiang et al., Combinatorial design of nanops for pulmonary mRNA delivery and genome editing. Nat. Biotechnol. 41, 1410–1415 (2023). https://doi.org/10.1038/s41587-023-01679-x
W. Tai, K. Yang, Y. Liu, R. Li, S. Feng et al., A lung-selective delivery of mRNA encoding broadly neutralizing antibody against SARS-CoV-2 infection. Nat. Commun. 14, 8042 (2023). https://doi.org/10.1038/s41467-023-43798-8
Y. Cao, Z. He, Q. Chen, X. He, L. Su et al., Helper-polymer based five-element nanops (FNPs) for lung-specific mRNA delivery with long-term stability after lyophilization. Nano Lett. 22, 6580–6589 (2022). https://doi.org/10.1021/acs.nanolett.2c01784
M. Qiu, Y. Tang, J. Chen, R. Muriph, Z. Ye et al., Lung-selective mRNA delivery of synthetic lipid nanops for the treatment of pulmonary lymphangioleiomyomatosis. Proc. Natl. Acad. Sci. U.S.A. 119, e2116271119 (2022). https://doi.org/10.1073/pnas.2116271119
G. Zhao, L. Xue, A.I. Weiner, N. Gong, S. Adams-Tzivelekidis et al., TGF-βR2 signaling coordinates pulmonary vascular repair after viral injury in mice and human tissue. Sci. Transl. Med. 16, eadg6229 (2024). https://doi.org/10.1126/scitranslmed.adg6229
Q. Li, C. Chan, N. Peterson, R.N. Hanna, A. Alfaro et al., Engineering caveolae-targeted lipid nanops to deliver mRNA to the lungs. ACS Chem. Biol. 15, 830–836 (2020). https://doi.org/10.1021/acschembio.0c00003
M.V. Lenti, S. Luu, R. Carsetti, F. Osier, R. Ogwang et al., Asplenia and spleen hypofunction. Nat. Rev. Dis. Primers. 8, 71 (2022). https://doi.org/10.1038/s41572-022-00399-x
N. Bray, Intervening in the spleen. Nat. Rev. Neurosci. 23, 187 (2022). https://doi.org/10.1038/s41583-022-00573-w
D. Bitounis, E. Jacquinet, M.A. Rogers, M.M. Amiji, Strategies to reduce the risks of mRNA drug and vaccine toxicity. Nat. Rev. Drug Discov. 23, 281–300 (2024). https://doi.org/10.1038/s41573-023-00859-3
S. Xu, K. Yang, R. Li, L. Zhang, mRNA vaccine era-mechanisms, drug platform and clinical prospection. Int. J. Mol. Sci. 21, 6582 (2020). https://doi.org/10.3390/ijms21186582
Q. Saiding, Z. Zhang, S. Chen, F. Xiao, Y. Chen et al., Nano-bio interactions in mRNA nanomedicine: challenges and opportunities for targeted mRNA delivery. Adv. Drug Deliv. Rev. 203, 115116 (2023). https://doi.org/10.1016/j.addr.2023.115116
L. Pan, L. Zhang, W. Deng, J. Lou, X. Gao et al., Spleen-selective co-delivery of mRNA and TLR4 agonist-loaded LNPs for synergistic immunostimulation and Th1 immune responses. J. Control. Release 357, 133–148 (2023). https://doi.org/10.1016/j.jconrel.2023.03.041
S.T. LoPresti, M.L. Arral, N. Chaudhary, K.A. Whitehead, The replacement of helper lipids with charged alternatives in lipid nanops facilitates targeted mRNA delivery to the spleen and lungs. J. Control. Release 345, 819–831 (2022). https://doi.org/10.1016/j.jconrel.2022.03.046
Z. He, Z. Le, Y. Shi, L. Liu, Z. Liu et al., A multidimensional approach to modulating ionizable lipids for high-performing and organ-selective mRNA delivery. Angew. Chem. Int. Ed. 62, e202310401 (2023). https://doi.org/10.1002/anie.202310401
R. Zhang, S. Shao, Y. Piao, J. Xiang, X. Wei et al., Esterase-labile quaternium lipidoid enabling improved mRNA-LNP stability and spleen-selective mRNA transfection. Adv. Mater. 35, e2303614 (2023). https://doi.org/10.1002/adma.202303614
C. Wang, C. Zhao, W. Wang, X. Liu, H. Deng, Biomimetic noncationic lipid nanops for mRNA delivery. Proc. Natl. Acad. Sci. U.S.A. 120, e2311276120 (2023). https://doi.org/10.1073/pnas.2311276120
X. Zhang, K. Su, S. Wu, L. Lin, S. He et al., One-component cationic lipids for systemic mRNA delivery to splenic T cells. Angew. Chem. Int. Ed. 63, e202405444 (2024). https://doi.org/10.1002/anie.202405444
C.J. McKinlay, N.L. Benner, O.A. Haabeth, R.M. Waymouth, P.A. Wender, Enhanced mRNA delivery into lymphocytes enabled by lipid-varied libraries of charge-altering releasable transporters. Proc. Natl. Acad. Sci. U.S.A. 115, E5859–E5866 (2018). https://doi.org/10.1073/pnas.1805358115
E. Ben-Akiva, J. Karlsson, S. Hemmati, H. Yu, S.Y. Tzeng et al., Biodegradable lipophilic polymeric mRNA nanops for ligand-free targeting of splenic dendritic cells for cancer vaccination. Proc. Natl. Acad. Sci. U.S.A. 120, e2301606120 (2023). https://doi.org/10.1073/pnas.2301606120
P. Chen, X. He, Y. Hu, X.-L. Tian, X.-Q. Yu et al., Spleen-targeted mRNA delivery by amphiphilic carbon dots for tumor immunotherapy. ACS Appl. Mater. Interfaces 15, 19937–19950 (2023). https://doi.org/10.1021/acsami.3c00494
L. Porosk, H.H. Härk, P. Arukuusk, U. Haljasorg, P. Peterson et al., The development of cell-penetrating peptides for efficient and selective in vivo expression of mRNA in spleen tissue. Pharmaceutics 15, 952 (2023). https://doi.org/10.3390/pharmaceutics15030952
J. Lai, Q. Pan, G. Chen, Y. Liu, C. Chen et al., Triple hybrid cellular nanovesicles promote cardiac repair after ischemic reperfusion. ACS Nano 18, 4443–4455 (2024). https://doi.org/10.1021/acsnano.3c10784
F. Yu, N. Witman, D. Yan, S. Zhang, M. Zhou et al., Human adipose-derived stem cells enriched with VEGF-modified mRNA promote angiogenesis and long-term graft survival in a fat graft transplantation model. Stem Cell Res. Ther. 11, 490 (2020). https://doi.org/10.1186/s13287-020-02008-8
V. Anttila, A. Saraste, J. Knuuti, P. Jaakkola, M. Hedman et al., Synthetic mRNA encoding VEGF-A in patients undergoing coronary artery bypass grafting: design of a phase 2a clinical trial. Mol. Ther. Methods Clin. Dev. 18, 464–472 (2020). https://doi.org/10.1016/j.omtm.2020.05.030
C.L. Reddy, N. Yosef, E.E. Ubogu, VEGF-A165 potently induces human blood-nerve barrier endothelial cell proliferation, angiogenesis, and wound healing in vitro. Cell. Mol. Neurobiol. 33, 789–801 (2013). https://doi.org/10.1007/s10571-013-9946-3
L. Sun, Y. Wang, D. Xu, Y. Zhao, Emerging technologies for cardiac tissue engineering and artificial hearts. Smart Med. 2, e20220040 (2023). https://doi.org/10.1002/SMMD.20220040
L. Zangi, K.O. Lui, A. von Gise, Q. Ma, W. Ebina et al., Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat. Biotechnol. 31, 898–907 (2013). https://doi.org/10.1038/nbt.2682
L. Carlsson, J.C. Clarke, C. Yen, F. Gregoire, T. Albery et al., Biocompatible, purified VEGF-A mRNA improves cardiac function after intracardiac injection 1 week post-myocardial infarction in swine. Mol. Ther. Methods Clin. Dev. 9, 330–346 (2018). https://doi.org/10.1016/j.omtm.2018.04.003
X. Ai, B. Yan, N. Witman, Y. Gong, L. Yang et al., Transient secretion of VEGF protein from transplanted hiPSC-CMs enhances engraftment and improves rat heart function post MI. Mol. Ther. 31, 211–229 (2023). https://doi.org/10.1016/j.ymthe.2022.08.012
J.G. Rurik, I. Tombácz, A. Yadegari, P.O. Méndez Fernández, S.V. Shewale et al., CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022). https://doi.org/10.1126/science.abm0594
V.J. Caride, B.L. Zaret, Liposome accumulation in regions of experimental myocardial infarction. Science 198, 735–738 (1977). https://doi.org/10.1126/science.910155
I.E. Allijn, B.M.S. Czarny, X. Wang, S.Y. Chong, M. Weiler et al., Liposome encapsulated berberine treatment attenuates cardiac dysfunction after myocardial infarction. J. Control. Release 247, 127–133 (2017). https://doi.org/10.1016/j.jconrel.2016.12.042
M.J.W. Evers, W. Du, Q. Yang, S.A.A. Kooijmans, A. Vink et al., Delivery of modified mRNA to damaged myocardium by systemic administration of lipid nanops. J. Control. Release 343, 207–216 (2022). https://doi.org/10.1016/j.jconrel.2022.01.027
H. Cai, Z. Ao, C. Tian, Z. Wu, H. Liu et al., Brain organoid reservoir computing for artificial intelligence. Nat. Electron. 6, 1032–1039 (2023). https://doi.org/10.1038/s41928-023-01069-w
Z. Yao, C.T.J. van Velthoven, M. Kunst, M. Zhang, D. McMillen et al., A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature 624, 317–332 (2023). https://doi.org/10.1038/s41586-023-06812-z
M. Zhang, X. Pan, W. Jung, A.R. Halpern, S.W. Eichhorn et al., Molecularly defined and spatially resolved cell atlas of the whole mouse brain. Nature 624, 343–354 (2023). https://doi.org/10.1038/s41586-023-06808-9
P. Kumar, A.M. Goettemoeller, C. Espinosa-Garcia, B.R. Tobin, A. Tfaily et al., Native-state proteomics of Parvalbumin interneurons identifies unique molecular signatures and vulnerabilities to early Alzheimer’s pathology. Nat. Commun. 15, 2823 (2024). https://doi.org/10.1038/s41467-024-47028-7
O.J. Mainwaring, H. Weishaupt, M. Zhao, G. Rosén, A. Borgenvik et al., ARF suppression by MYC but not MYCN confers increased malignancy of aggressive pediatric brain tumors. Nat. Commun. 14, 1221 (2023). https://doi.org/10.1038/s41467-023-36847-9
A. Berger, G.G. Tzarfati, M. Serafimova, P. Valdes, A. Meller et al., Risk factors and prognostic implications of surgery-related strokes following resection of high-grade glioma. Sci. Rep. 12, 22594 (2022). https://doi.org/10.1038/s41598-022-27127-5
J. Li, H. Zhang, Y. Jiang, N. Li, A. Zhu et al., The landscape of extracellular vesicles combined with intranasal delivery towards brain diseases. Nano Today 55, 102169 (2024). https://doi.org/10.1016/j.nantod.2024.102169
S. Mignani, X. Shi, A. Karpus, J.-P. Majoral, Non-invasive intranasal administration route directly to the brain using dendrimer nanoplatforms: an opportunity to develop new CNS drugs. Eur. J. Med. Chem. 209, 112905 (2021). https://doi.org/10.1016/j.ejmech.2020.112905
D.D. Wu, Y.A. Salah, E.E. Ngowi, Y.X. Zhang, S. Khattak et al., Nanotechnology prospects in brain therapeutics concerning gene-targeting and nose-to-brain administration. iScience 26, 107321 (2023). https://doi.org/10.1016/j.isci.2023.107321
M. Gao, Y. Li, W. Ho, C. Chen, Q. Chen et al., Targeted mRNA nanops ameliorate blood-brain barrier disruption postischemic stroke by modulating microglia polarization. ACS Nano 18, 3260–3275 (2024). https://doi.org/10.1021/acsnano.3c09817
Y.-S. Zhang, J.-D. Li, C. Yan, An update on vinpocetine: New discoveries and clinical implications. Eur. J. Pharmacol. 819, 30–34 (2018). https://doi.org/10.1016/j.ejphar.2017.11.041
S. Patyar, A. Prakash, M. Modi, B. Medhi, Role of vinpocetine in cerebrovascular diseases. Pharmacol. Rep. 63, 618–628 (2011). https://doi.org/10.1016/s1734-1140(11)70574-6
X. Bian, L. Yang, D. Jiang, A.J. Grippin, Y. Ma et al., Regulation of cerebral blood flow boosts precise brain targeting of vinpocetine-derived ionizable-lipidoid nanops. Nat. Commun. 15, 3987 (2024). https://doi.org/10.1038/s41467-024-48461-4
A.P. Fournier, A. Quenault, S. Martinez de Lizarrondo, M. Gauberti, G. Defer et al., Prediction of disease activity in models of multiple sclerosis by molecular magnetic resonance imaging of P-selectin. Proc. Natl. Acad. Sci. U.S.A. 114, 6116–6121 (2017). https://doi.org/10.1073/pnas.1619424114
J. Hsu, J. Rappaport, S. Muro, Specific binding, uptake, and transport of ICAM-1-targeted nanocarriers across endothelial and subendothelial cell components of the blood-brain barrier. Pharm. Res. 31, 1855–1866 (2014). https://doi.org/10.1007/s11095-013-1289-8
G. Ailuno, S. Baldassari, G. Zuccari, M. Schlich, G. Caviglioli, Peptide-based nanosystems for vascular cell adhesion molecule-1 targeting: a real opportunity for therapeutic and diagnostic agents in inflammation associated disorders. J. Drug Deliv. Sci. Technol. 55, 101461 (2020). https://doi.org/10.1016/j.jddst.2019.101461
K. Ogawa, N. Kato, M. Yoshida, T. Hiu, T. Matsuo et al., Focused ultrasound/microbubbles-assisted BBB opening enhances LNP-mediated mRNA delivery to brain. J. Control. Release 348, 34–41 (2022). https://doi.org/10.1016/j.jconrel.2022.05.042
Y. Liu, D. Zhang, Y. An, Y. Sun, J. Li et al., Non-invasive PTEN mRNA brain delivery effectively mitigates growth of orthotopic glioblastoma. Nano Today 49, 101790 (2023). https://doi.org/10.1016/j.nantod.2023.101790
J. Oh, S.-M. Kim, E.-H. Lee, M. Kim, Y. Lee et al., Messenger RNA/polymeric carrier nanops for delivery of heme oxygenase-1 gene in the post-ischemic brain. Biomater. Sci. 8, 3063–3071 (2020). https://doi.org/10.1039/d0bm00076k
K. Koji, N. Yoshinaga, Y. Mochida, T. Hong, T. Miyazaki et al., Bundling of mRNA strands inside polyion complexes improves mRNA delivery efficiency in vitro and in vivo. Biomaterials 261, 120332 (2020). https://doi.org/10.1016/j.biomaterials.2020.120332
C. Aslan, S.H. Kiaie, N.M. Zolbanin, P. Lotfinejad, R. Ramezani et al., Exosomes for mRNA delivery: a novel biotherapeutic strategy with hurdles and hope. BMC Biotechnol. 21, 20 (2021). https://doi.org/10.1186/s12896-021-00683-w
W. Gu, S. Luozhong, S.