Biomass Microcapsules with Stem Cell Encapsulation for Bone Repair
Corresponding Author: Yuanjin Zhao
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 4
Abstract
Bone defects caused by trauma, tumor, or osteoarthritis remain challenging due to the lack of effective treatments in clinic. Stem cell transplantation has emerged as an alternative approach for bone repair and attracted widespread attention owing to its excellent biological activities and therapy effect. The attempts to develop this therapeutic approach focus on the generation of effective cell delivery vehicles, since the shortcomings of direct injection of stem cells into target tissues. Here, we developed a novel core-shell microcapsule with a stem cell-laden core and a biomass shell by using all-aqueous phase microfluidic electrospray technology. The designed core-shell microcapsules showed a high cell viability during the culture procedure. In addition, the animal experiments exhibited that stem cell-laden core-shell microcapsules have good biocompatibility and therapeutic effect for bone defects. This study indicated that the core-shell biomass microcapsules generated by microfluidic electrospray have promising potential in tissue engineering and regenerative medicine.
Highlights:
1 A novel stem cell delivery core-shell biomass microcapsule was generated by an all-aqueous phase microfluidic electrospray technique.
2 Microcapsule with a certain mechanical strength and porous structure is beneficial for substances exchange between cells and the external environment, together with avoiding cell damage during treatment.
3 Core-shell microcapsule provided a favorable cell growth microenvironment, which mimics a physicochemical microenvironment and protects the cells from the immune attack from body.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.L. Koons, M. Diba, A.G. Mikos, Materials design for bone-tissue engineering. Nat. Rev. Mater. 5, 584–603 (2020). https://doi.org/10.1038/s41578-020-0204-2
- Z. Lin, D. Shen, W. Zhou, Y. Zheng, T. Kong et al., Regulation of extracellular bioactive cations in bone tissue microenvironment induces favorable osteoimmune conditions to accelerate in situ bone regeneration. Bioact. Mater. 6(8), 2315–2330 (2021). https://doi.org/10.1016/j.bioactmat.2021.01.018
- A. Petersen, A. Princ, G. Korus, A. Ellinghaus, H. Leemhuis et al., A biomaterial with a channel-like pore architecture induces endochondral healing of bone defects. Nat. Commun. 9, 4430 (2018). https://doi.org/10.1038/s41467-018-06504-7
- Z. Lin, Y. Zhao, P.K. Chu, L. Wang, H. Pan et al., A functionalized TiO2/Mg2TiO4 nano-layer on biodegradable magnesium implant enables superior bone-implant integration and bacterial disinfection. Biomaterials 219, 119372 (2019). https://doi.org/10.1016/j.biomaterials.2019.119372
- Y. Yang, Q. Zhang, T. Xu, H. Zhang, M. Zhang et al., Photocrosslinkable nanocomposite ink for printing strong, biodegradable and bioactive bone graft. Biomaterials 263, 120378 (2020). https://doi.org/10.1016/j.biomaterials.2020.120378
- J. Yang, Y.S. Zhang, K. Yue, A. Khademhosseini, Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater. 57, 1–25 (2017). https://doi.org/10.1016/j.actbio.2017.01.036
- J. Wu, G. Li, T. Ye, G. Lu, R. Li et al., Stem cell-laden injectable hydrogel microspheres for cancellous bone regeneration. Chem. Eng. J. 393, 124715 (2020). https://doi.org/10.1016/j.cej.2020.124715
- X. Zhao, S. Liu, L. Yildirimer, H. Zhao, R. Ding et al., Injectable stem cell-laden photocrosslinkable microspheres fabricated using microfluidics for rapid generation of osteogenic tissue constructs. Adv. Funct. Mater. 26(17), 2809–2819 (2016). https://doi.org/10.1002/adfm.201504943
- H. Wang, D. Zhu, A. Paul, L. Cai, A. Enejder et al., Covalently adaptable elastin-like protein–hyaluronic acid (ELP–HA) hybrid hydrogels with secondary thermoresponsive crosslinking for injectable stem cell delivery. Adv. Funct. Mater. 27(28), 1605609 (2017). https://doi.org/10.1002/adfm.201605609
- L. Yang, Y. Liu, X. Shou, D. Ni, T. Kong et al., Bio-inspired lubricant drug delivery particles for the treatment of osteoarthritis. Nanoscale 12(32), 17093–17102 (2020). https://doi.org/10.1039/D0NR04013D
- M. Dovedytis, Z.J. Liu, S. Bartlett, Hyaluronic acid and its biomedical applications: a review. Eng. Regener. 1, 102–113 (2020). https://doi.org/10.1016/j.engreg.2020.10.001
- A.M. Sisso, M.O. Boit, C.A. DeForest, Self-healing injectable gelatin hydrogels for localized therapeutic cell delivery. J. Biomed. Mater. Res. A 108(5), 1112–1121 (2020). https://doi.org/10.1002/jbm.a.36886
- D.A. Feyen, R. Gaetani, J. Deddens, D. Keulen, C. Opbergen et al., Gelatin microspheres as vehicle for cardiac progenitor cells delivery to the myocardium. Adv. Healthc. Mater. 5(9), 1071–1079 (2016). https://doi.org/10.1002/adhm.201500861
- R. Cheng, Y. Yan, H. Liu, H. Chen, G. Pan et al., Mechanically enhanced lipo-hydrogel with controlled release of multi-type drugs for bone regeneration. Appl. Mater. Today 12, 294–308 (2018). https://doi.org/10.1016/j.apmt.2018.06.008
- H. Wang, H. Liu, H. Liu, W. Su, W. Chen et al., One-step generation of core-shell gelatin methacrylate (Gelma) microgels using a droplet microfluidic system. Adv. Mater. Technol. 4(6), 1800632 (2019). https://doi.org/10.1002/admt.201800632
- Y. Piao, H. You, T. Xu, H.P. Bei, I.Z. Piwko et al., Biomedical applications of gelatin methacryloyl hydrogels. Eng. Regener. 2, 47–56 (2021). https://doi.org/10.1016/j.engreg.2021.03.002
- J. Wang, G. Chen, Z. Zhao, L. Sun, M. Zou et al., Responsive graphene oxide hydrogel microcarriers for controllable cell capture and release. Sci. China Mater. 61, 1314–1324 (2018). https://doi.org/10.1007/s40843-018-9251-9
- Y.S. Chen, P.C. Tsou, J.M. Lo, H.C. Tsai, Y.Z. Wang et al., Poly (N-isopropylacrylamide) hydrogels with interpenetrating multiwalled carbon nanotubes for cell sheet engineering. Biomaterials 34(30), 7328–7334 (2013). https://doi.org/10.1016/j.biomaterials.2013.06.017
- K.M. Rao, A. Kumar, S.S. Han, Polysaccharide based bionanocomposite hydrogels reinforced with cellulose nanocrystals: drug release and biocompatibility analyses. Int. J. Biol. Macromol. 101, 165–171 (2017). https://doi.org/10.1016/j.ijbiomac.2017.03.080
- S. Dong, M. Roman, Fluorescently labeled cellulose nanocrystals for bioimaging applications. J. Am. Chem. Soc. 129(45), 13810–13811 (2007). https://doi.org/10.1021/ja076196l
- C. Chen, Y. Wang, D. Zhang, X. Wu, Y. Zhao et al., Natural polysaccharide based complex drug delivery system from microfluidic electrospray for wound healing. Appl. Mater. Today 23, 101000 (2021). https://doi.org/10.1016/j.apmt.2021.101000
- H. Zhang, Y. Zhu, L. Qu, H. Wu, H. Kong et al., Gold nanorods conjugated porous silicon nanoparticles encapsulated in calcium alginate nano hydrogels using microemulsion templates. Nano Lett. 18(2), 1448–1453 (2018). https://doi.org/10.1021/acs.nanolett.7b05210
- R.A. Perez, M. Kim, T.H. Kim, J.H. Kim, J.H. Lee et al., Utilizing core-shell fibrous collagen-alginate hydrogel cell delivery system for bone tissue engineering. Tissue Eng. Part A 20, 103–114 (2014). https://doi.org/10.1089/ten.tea.2013.0198
- K.T. Campbell, R.S. Stilhano, E.A. Silva, Enzymatically degradable alginate hydrogel systems to deliver endothelial progenitor cells for potential revasculature applications. Biomaterials 179, 109–121 (2018). https://doi.org/10.1016/j.biomaterials.2018.06.038
- K. Maeda, H. Onoe, M. Takinoue, S. Takeuchi, Controlled synthesis of 3D multi-compartmental particles with centrifuge-based microdroplet formation from a multi-barrelled capillary. Adv. Mater. 24(10), 1340–1346 (2012). https://doi.org/10.1002/adma.201102560
- Y. Cheng, X. Zhang, Y. Cao, C. Tian, Y. Li et al., Centrifugal microfluidics for ultra-rapid fabrication of versatile hydrogel microcarriers. Appl. Mater. Today 13, 116–125 (2018). https://doi.org/10.1016/j.apmt.2018.08.012
- R. Dong, Y. Liu, L. Mou, J. Deng, X. Jiang, Microfluidics-based biomaterials and biodevices. Adv. Mater. 31(45), 1805033 (2019). https://doi.org/10.1002/adma.201805033
- P. Agarwal, S. Zhao, P. Bielecki, W. Rao, J.K. Choi et al., One-step microfluidic generation of pre-hatching embryo-like core-shell microcapsules for miniaturized 3D culture of pluripotent stem cells. Lab Chip 13(23), 4525–4533 (2013). https://doi.org/10.1039/C3LC50678A
- H.C. Shum, J. Varnell, D.A. Weitz, Microfluidic fabrication of water-in-water (w/w) jets and emulsions. Biomicrofluidics 6(1), 012808 (2012). https://doi.org/10.1063/1.3670365
- Y. Song, Y.K. Chan, Q. Ma, Z. Liu, H.C. Shum, All-aqueous electrosprayed emulsion for templated fabrication of cytocompatible microcapsules. ACS Appl. Mater. Interfaces 7(25), 13925–13933 (2015). https://doi.org/10.1021/acsami.5b02708
- L. Lei, Y. Zhu, X. Qin, S. Chai, G. Liu et al., Magnetic biohybrid microspheres for protein purification and chronic wound healing in diabetic mice. Chem. Eng. J. 425, 130671 (2021). https://doi.org/10.1016/j.cej.2021.130671
- L. Shang, Y. Cheng, Y. Zhao, Emerging droplet microfluidics. Chem. Rev. 117(12), 7964–8040 (2017). https://doi.org/10.1021/acs.chemrev.6b00848
- H. Zhang, D. Liu, M.A. Shahbazi, E. Mäkilä, B. Herranz-Blanco et al., Fabrication of a multifunctional Nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix. Adv. Mater. 26(26), 4497–4503 (2014). https://doi.org/10.1002/adma.201400953
- C. Zhao, Y. Yu, X. Zhang, X. Wu, J. Ren et al., Biomimetic intestinal barrier based on microfluidic encapsulated sucralfate microcapsules. Sci. Bull. 64(19), 1418–1425 (2019). https://doi.org/10.1016/j.scib.2019.07.020
- P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson et al., Microfluidic diagnostic technologies for global public health. Nature 442, 412–418 (2006). https://doi.org/10.1038/nature05064
- O. Catanzano, A. Soriente, A.L. Gatta, M. Cammarota, G. Ricci et al., Macroporous alginate foams crosslinked with strontium for bone tissue engineering. Carbohyd. Polym. 202, 72–83 (2018). https://doi.org/10.1016/j.carbpol.2018.08.086
- N. Mohammed, N. Grishkewich, H.A. Waeijen, R.M. Berry, K.C. Tam, Continuous flow adsorption of methylene blue by cellulose nanocrystal-alginate hydrogel beads in fixed bed columns. Carbohyd. Polym. 136, 1194–1202 (2016). https://doi.org/10.1016/j.carbpol.2015.09.099
- S.S. Bhutada, M. Sriram, D.S. Katti, Sulfated carboxymethylcellulose conjugated electrospun fibers as a growth factor presenting system for tissue engineering. Carbohyd. Polym. 268, 118256 (2021). https://doi.org/10.1016/j.carbpol.2021.118256
- D. Wu, Y. Yu, C. Zhao, X. Shou, Y. Piao et al., NK-Cell-Encapsulated porous microspheres via microfluidic electrospray for tumor immunotherapy. ACS Appl. Mater. Interfaces 11(37), 33716–33724 (2019). https://doi.org/10.1021/acsami.9b12816
- M. Nie, G. Chen, C. Zhao, J. Gan, M. Alip et al., Bio-inspired adhesive porous particles with human MSCs encapsulation for systemic lupus erythematosus treatment. Bioact. Mater. 6(1), 84–90 (2021). https://doi.org/10.1016/j.bioactmat.2020.07.018
- G. Chen, Y. Yu, X. Wu, G. Wang, G. Gu et al., Microfluidic electrospray niacin metal-organic frameworks encapsulated microcapsules for wound healing. Research 2019, 6175398 (2019). https://doi.org/10.34133/2019/6175398
- H. Huang, Y. Yu, Y. Hu, X. He, O.B. Usta et al., Generation and manipulation of hydrogel microcapsules by droplet-based microfluidics for mammalian cell culture. Lab Chip 17(11), 1913–1932 (2017). https://doi.org/10.1039/C7LC00262A
- T. Wang, C. Zhang, C. Wu, J. Liu, H. Yu et al., miR-765 inhibits the osteogenic differentiation of human bone marrow mesenchymal stem cells by targeting BMP6 via regulating the BMP6/Smad1/5/9 signaling pathway. Stem Cell Res. Ther. 11, 62 (2020). https://doi.org/10.1186/s13287-020-1579-0
- N. Amiryaghoubi, M. Fathi, N.N. Pesyan, M. Samiei, J. Barar et al., Bioactive polymeric scaffolds for osteogenic repair and bone regenerative medicine. Med. Res. Rev. 40(5), 1833–1870 (2020). https://doi.org/10.1002/med.21672
- L. Bagne, M.A. Oliveira, A.T. Pereira, G.F. Caetano, C.A. Oliveira et al., Electrical therapies act on the Ca2+/CaM signaling pathway to enhance bone regeneration with bioactive glass [S53P4] and allogeneic grafts. J. Biomed. Mater. Res. B 109(12), 2104–2116 (2021). https://doi.org/10.1002/jbm.b.34858
- Z. Li, X. Zhang, J. Ouyang, D. Chu, F. Han et al., Ca2+-supplying black phosphorus-based scaffolds fabricated with microfluidic technology for osteogenesis. Bioact. Mater. 6(11), 4053–4064 (2021). https://doi.org/10.1016/j.bioactmat.2021.04.014
- L. Wu, G. Zhang, C. Guo, Y. Pan, Intracellular Ca2+ signaling mediates IGF-1-induced osteogenic differentiation in bone marrow mesenchymal stem cells. Biochem. Bioph. Res. Comunn. 527(1), 200–206 (2020). https://doi.org/10.1016/j.bbrc.2020.04.048
- Y. Qin, L. Wang, Z. Gao, G. Chen, C. Zhang, Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Sci. Rep. 6, 21961 (2016). https://doi.org/10.1038/srep21961
- W. Li, Y. Liu, P. Zhang, Y. Tang, M. Zhou et al., Tissue-engineered bone immobilized with human adipose stem cells-derived exosomes promotes bone regeneration. ACS Appl. Mater. Interfaces 10(6), 5240–5254 (2018). https://doi.org/10.1021/acsami.7b17620
- M. Zhai, Y. Zhu, M. Yang, C. Mao, Human mesenchymal stem cell derived exosomes enhance cell-free bone regeneration by altering their mirnas profiles. Adv. Sci. 7(19), 2001334 (2020). https://doi.org/10.1002/advs.202001334
References
G.L. Koons, M. Diba, A.G. Mikos, Materials design for bone-tissue engineering. Nat. Rev. Mater. 5, 584–603 (2020). https://doi.org/10.1038/s41578-020-0204-2
Z. Lin, D. Shen, W. Zhou, Y. Zheng, T. Kong et al., Regulation of extracellular bioactive cations in bone tissue microenvironment induces favorable osteoimmune conditions to accelerate in situ bone regeneration. Bioact. Mater. 6(8), 2315–2330 (2021). https://doi.org/10.1016/j.bioactmat.2021.01.018
A. Petersen, A. Princ, G. Korus, A. Ellinghaus, H. Leemhuis et al., A biomaterial with a channel-like pore architecture induces endochondral healing of bone defects. Nat. Commun. 9, 4430 (2018). https://doi.org/10.1038/s41467-018-06504-7
Z. Lin, Y. Zhao, P.K. Chu, L. Wang, H. Pan et al., A functionalized TiO2/Mg2TiO4 nano-layer on biodegradable magnesium implant enables superior bone-implant integration and bacterial disinfection. Biomaterials 219, 119372 (2019). https://doi.org/10.1016/j.biomaterials.2019.119372
Y. Yang, Q. Zhang, T. Xu, H. Zhang, M. Zhang et al., Photocrosslinkable nanocomposite ink for printing strong, biodegradable and bioactive bone graft. Biomaterials 263, 120378 (2020). https://doi.org/10.1016/j.biomaterials.2020.120378
J. Yang, Y.S. Zhang, K. Yue, A. Khademhosseini, Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater. 57, 1–25 (2017). https://doi.org/10.1016/j.actbio.2017.01.036
J. Wu, G. Li, T. Ye, G. Lu, R. Li et al., Stem cell-laden injectable hydrogel microspheres for cancellous bone regeneration. Chem. Eng. J. 393, 124715 (2020). https://doi.org/10.1016/j.cej.2020.124715
X. Zhao, S. Liu, L. Yildirimer, H. Zhao, R. Ding et al., Injectable stem cell-laden photocrosslinkable microspheres fabricated using microfluidics for rapid generation of osteogenic tissue constructs. Adv. Funct. Mater. 26(17), 2809–2819 (2016). https://doi.org/10.1002/adfm.201504943
H. Wang, D. Zhu, A. Paul, L. Cai, A. Enejder et al., Covalently adaptable elastin-like protein–hyaluronic acid (ELP–HA) hybrid hydrogels with secondary thermoresponsive crosslinking for injectable stem cell delivery. Adv. Funct. Mater. 27(28), 1605609 (2017). https://doi.org/10.1002/adfm.201605609
L. Yang, Y. Liu, X. Shou, D. Ni, T. Kong et al., Bio-inspired lubricant drug delivery particles for the treatment of osteoarthritis. Nanoscale 12(32), 17093–17102 (2020). https://doi.org/10.1039/D0NR04013D
M. Dovedytis, Z.J. Liu, S. Bartlett, Hyaluronic acid and its biomedical applications: a review. Eng. Regener. 1, 102–113 (2020). https://doi.org/10.1016/j.engreg.2020.10.001
A.M. Sisso, M.O. Boit, C.A. DeForest, Self-healing injectable gelatin hydrogels for localized therapeutic cell delivery. J. Biomed. Mater. Res. A 108(5), 1112–1121 (2020). https://doi.org/10.1002/jbm.a.36886
D.A. Feyen, R. Gaetani, J. Deddens, D. Keulen, C. Opbergen et al., Gelatin microspheres as vehicle for cardiac progenitor cells delivery to the myocardium. Adv. Healthc. Mater. 5(9), 1071–1079 (2016). https://doi.org/10.1002/adhm.201500861
R. Cheng, Y. Yan, H. Liu, H. Chen, G. Pan et al., Mechanically enhanced lipo-hydrogel with controlled release of multi-type drugs for bone regeneration. Appl. Mater. Today 12, 294–308 (2018). https://doi.org/10.1016/j.apmt.2018.06.008
H. Wang, H. Liu, H. Liu, W. Su, W. Chen et al., One-step generation of core-shell gelatin methacrylate (Gelma) microgels using a droplet microfluidic system. Adv. Mater. Technol. 4(6), 1800632 (2019). https://doi.org/10.1002/admt.201800632
Y. Piao, H. You, T. Xu, H.P. Bei, I.Z. Piwko et al., Biomedical applications of gelatin methacryloyl hydrogels. Eng. Regener. 2, 47–56 (2021). https://doi.org/10.1016/j.engreg.2021.03.002
J. Wang, G. Chen, Z. Zhao, L. Sun, M. Zou et al., Responsive graphene oxide hydrogel microcarriers for controllable cell capture and release. Sci. China Mater. 61, 1314–1324 (2018). https://doi.org/10.1007/s40843-018-9251-9
Y.S. Chen, P.C. Tsou, J.M. Lo, H.C. Tsai, Y.Z. Wang et al., Poly (N-isopropylacrylamide) hydrogels with interpenetrating multiwalled carbon nanotubes for cell sheet engineering. Biomaterials 34(30), 7328–7334 (2013). https://doi.org/10.1016/j.biomaterials.2013.06.017
K.M. Rao, A. Kumar, S.S. Han, Polysaccharide based bionanocomposite hydrogels reinforced with cellulose nanocrystals: drug release and biocompatibility analyses. Int. J. Biol. Macromol. 101, 165–171 (2017). https://doi.org/10.1016/j.ijbiomac.2017.03.080
S. Dong, M. Roman, Fluorescently labeled cellulose nanocrystals for bioimaging applications. J. Am. Chem. Soc. 129(45), 13810–13811 (2007). https://doi.org/10.1021/ja076196l
C. Chen, Y. Wang, D. Zhang, X. Wu, Y. Zhao et al., Natural polysaccharide based complex drug delivery system from microfluidic electrospray for wound healing. Appl. Mater. Today 23, 101000 (2021). https://doi.org/10.1016/j.apmt.2021.101000
H. Zhang, Y. Zhu, L. Qu, H. Wu, H. Kong et al., Gold nanorods conjugated porous silicon nanoparticles encapsulated in calcium alginate nano hydrogels using microemulsion templates. Nano Lett. 18(2), 1448–1453 (2018). https://doi.org/10.1021/acs.nanolett.7b05210
R.A. Perez, M. Kim, T.H. Kim, J.H. Kim, J.H. Lee et al., Utilizing core-shell fibrous collagen-alginate hydrogel cell delivery system for bone tissue engineering. Tissue Eng. Part A 20, 103–114 (2014). https://doi.org/10.1089/ten.tea.2013.0198
K.T. Campbell, R.S. Stilhano, E.A. Silva, Enzymatically degradable alginate hydrogel systems to deliver endothelial progenitor cells for potential revasculature applications. Biomaterials 179, 109–121 (2018). https://doi.org/10.1016/j.biomaterials.2018.06.038
K. Maeda, H. Onoe, M. Takinoue, S. Takeuchi, Controlled synthesis of 3D multi-compartmental particles with centrifuge-based microdroplet formation from a multi-barrelled capillary. Adv. Mater. 24(10), 1340–1346 (2012). https://doi.org/10.1002/adma.201102560
Y. Cheng, X. Zhang, Y. Cao, C. Tian, Y. Li et al., Centrifugal microfluidics for ultra-rapid fabrication of versatile hydrogel microcarriers. Appl. Mater. Today 13, 116–125 (2018). https://doi.org/10.1016/j.apmt.2018.08.012
R. Dong, Y. Liu, L. Mou, J. Deng, X. Jiang, Microfluidics-based biomaterials and biodevices. Adv. Mater. 31(45), 1805033 (2019). https://doi.org/10.1002/adma.201805033
P. Agarwal, S. Zhao, P. Bielecki, W. Rao, J.K. Choi et al., One-step microfluidic generation of pre-hatching embryo-like core-shell microcapsules for miniaturized 3D culture of pluripotent stem cells. Lab Chip 13(23), 4525–4533 (2013). https://doi.org/10.1039/C3LC50678A
H.C. Shum, J. Varnell, D.A. Weitz, Microfluidic fabrication of water-in-water (w/w) jets and emulsions. Biomicrofluidics 6(1), 012808 (2012). https://doi.org/10.1063/1.3670365
Y. Song, Y.K. Chan, Q. Ma, Z. Liu, H.C. Shum, All-aqueous electrosprayed emulsion for templated fabrication of cytocompatible microcapsules. ACS Appl. Mater. Interfaces 7(25), 13925–13933 (2015). https://doi.org/10.1021/acsami.5b02708
L. Lei, Y. Zhu, X. Qin, S. Chai, G. Liu et al., Magnetic biohybrid microspheres for protein purification and chronic wound healing in diabetic mice. Chem. Eng. J. 425, 130671 (2021). https://doi.org/10.1016/j.cej.2021.130671
L. Shang, Y. Cheng, Y. Zhao, Emerging droplet microfluidics. Chem. Rev. 117(12), 7964–8040 (2017). https://doi.org/10.1021/acs.chemrev.6b00848
H. Zhang, D. Liu, M.A. Shahbazi, E. Mäkilä, B. Herranz-Blanco et al., Fabrication of a multifunctional Nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix. Adv. Mater. 26(26), 4497–4503 (2014). https://doi.org/10.1002/adma.201400953
C. Zhao, Y. Yu, X. Zhang, X. Wu, J. Ren et al., Biomimetic intestinal barrier based on microfluidic encapsulated sucralfate microcapsules. Sci. Bull. 64(19), 1418–1425 (2019). https://doi.org/10.1016/j.scib.2019.07.020
P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson et al., Microfluidic diagnostic technologies for global public health. Nature 442, 412–418 (2006). https://doi.org/10.1038/nature05064
O. Catanzano, A. Soriente, A.L. Gatta, M. Cammarota, G. Ricci et al., Macroporous alginate foams crosslinked with strontium for bone tissue engineering. Carbohyd. Polym. 202, 72–83 (2018). https://doi.org/10.1016/j.carbpol.2018.08.086
N. Mohammed, N. Grishkewich, H.A. Waeijen, R.M. Berry, K.C. Tam, Continuous flow adsorption of methylene blue by cellulose nanocrystal-alginate hydrogel beads in fixed bed columns. Carbohyd. Polym. 136, 1194–1202 (2016). https://doi.org/10.1016/j.carbpol.2015.09.099
S.S. Bhutada, M. Sriram, D.S. Katti, Sulfated carboxymethylcellulose conjugated electrospun fibers as a growth factor presenting system for tissue engineering. Carbohyd. Polym. 268, 118256 (2021). https://doi.org/10.1016/j.carbpol.2021.118256
D. Wu, Y. Yu, C. Zhao, X. Shou, Y. Piao et al., NK-Cell-Encapsulated porous microspheres via microfluidic electrospray for tumor immunotherapy. ACS Appl. Mater. Interfaces 11(37), 33716–33724 (2019). https://doi.org/10.1021/acsami.9b12816
M. Nie, G. Chen, C. Zhao, J. Gan, M. Alip et al., Bio-inspired adhesive porous particles with human MSCs encapsulation for systemic lupus erythematosus treatment. Bioact. Mater. 6(1), 84–90 (2021). https://doi.org/10.1016/j.bioactmat.2020.07.018
G. Chen, Y. Yu, X. Wu, G. Wang, G. Gu et al., Microfluidic electrospray niacin metal-organic frameworks encapsulated microcapsules for wound healing. Research 2019, 6175398 (2019). https://doi.org/10.34133/2019/6175398
H. Huang, Y. Yu, Y. Hu, X. He, O.B. Usta et al., Generation and manipulation of hydrogel microcapsules by droplet-based microfluidics for mammalian cell culture. Lab Chip 17(11), 1913–1932 (2017). https://doi.org/10.1039/C7LC00262A
T. Wang, C. Zhang, C. Wu, J. Liu, H. Yu et al., miR-765 inhibits the osteogenic differentiation of human bone marrow mesenchymal stem cells by targeting BMP6 via regulating the BMP6/Smad1/5/9 signaling pathway. Stem Cell Res. Ther. 11, 62 (2020). https://doi.org/10.1186/s13287-020-1579-0
N. Amiryaghoubi, M. Fathi, N.N. Pesyan, M. Samiei, J. Barar et al., Bioactive polymeric scaffolds for osteogenic repair and bone regenerative medicine. Med. Res. Rev. 40(5), 1833–1870 (2020). https://doi.org/10.1002/med.21672
L. Bagne, M.A. Oliveira, A.T. Pereira, G.F. Caetano, C.A. Oliveira et al., Electrical therapies act on the Ca2+/CaM signaling pathway to enhance bone regeneration with bioactive glass [S53P4] and allogeneic grafts. J. Biomed. Mater. Res. B 109(12), 2104–2116 (2021). https://doi.org/10.1002/jbm.b.34858
Z. Li, X. Zhang, J. Ouyang, D. Chu, F. Han et al., Ca2+-supplying black phosphorus-based scaffolds fabricated with microfluidic technology for osteogenesis. Bioact. Mater. 6(11), 4053–4064 (2021). https://doi.org/10.1016/j.bioactmat.2021.04.014
L. Wu, G. Zhang, C. Guo, Y. Pan, Intracellular Ca2+ signaling mediates IGF-1-induced osteogenic differentiation in bone marrow mesenchymal stem cells. Biochem. Bioph. Res. Comunn. 527(1), 200–206 (2020). https://doi.org/10.1016/j.bbrc.2020.04.048
Y. Qin, L. Wang, Z. Gao, G. Chen, C. Zhang, Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Sci. Rep. 6, 21961 (2016). https://doi.org/10.1038/srep21961
W. Li, Y. Liu, P. Zhang, Y. Tang, M. Zhou et al., Tissue-engineered bone immobilized with human adipose stem cells-derived exosomes promotes bone regeneration. ACS Appl. Mater. Interfaces 10(6), 5240–5254 (2018). https://doi.org/10.1021/acsami.7b17620
M. Zhai, Y. Zhu, M. Yang, C. Mao, Human mesenchymal stem cell derived exosomes enhance cell-free bone regeneration by altering their mirnas profiles. Adv. Sci. 7(19), 2001334 (2020). https://doi.org/10.1002/advs.202001334