Electron-Induced Perpendicular Graphene Sheets Embedded Porous Carbon Film for Flexible Touch Sensors
Corresponding Author: Lei Yang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 136
Abstract
Graphene-based materials on wearable electronics and bendable displays have received considerable attention for the mechanical flexibility, superior electrical conductivity, and high surface area, which are proved to be one of the most promising candidates of stretching and wearable sensors. However, polarized electric charges need to overcome the barrier of graphene sheets to cross over flakes to penetrate into the electrode, as the graphene planes are usually parallel to the electrode surface. By introducing electron-induced perpendicular graphene (EIPG) electrodes incorporated with a stretchable dielectric layer, a flexible and stretchable touch sensor with “in-sheet-charges-transportation” is developed to lower the resistance of carrier movement. The electrode was fabricated with porous nanostructured architecture design to enable wider variety of dielectric constants of only 50-μm-thick Ecoflex layer, leading to fast response time of only 66 ms, as well as high sensitivities of 0.13 kPa−1 below 0.1 kPa and 4.41 MPa−1 above 10 kPa, respectively. Moreover, the capacitance-decrease phenomenon of capacitive sensor is explored to exhibit an object recognition function in one pixel without any other integrated sensor. This not only suggests promising applications of the EIPG electrode in flexible touch sensors but also provides a strategy for internet of things security functions.
Highlights:
1 An efficient method was proposed to prepare perpendicular graphene nano-sheets in flexible sensor electrode.
2 The nanostructure in carbon electrode was fabricated to further enhance the sensitivity of sensor device using a simple method.
3 The capacitance showed high performance within only 50-μm dielectric thickness, and an exciting phenomenon of decreasing in capacitance was analyzed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Chen, P. Xiao, H. Chen, H. Zhang, Q. Zhang, Y. Chen, Polymeric graphene bulk materials with a 3d cross-linked monolithic graphene network. Adv. Mater. 31(9), 1802403 (2019). https://doi.org/10.1002/adma.201802403
- P. Miao, J. Wang, C. Zhang, M. Sun, S. Cheng, H. Liu, Graphene nanostructure-based tactile sensors for electronic skin applications. Nano-Micro Lett. 11, 71 (2019). https://doi.org/10.1007/s40820-019-0302-0
- A. Shoghmand Nazarloo, M.T. Ahmadian, K. Firoozbakhsh, On the mechanical characteristics of graphene nanosheets: a fully nonlinear modified morse model. Nanotechnology 31(11), 115708 (2020). https://doi.org/10.1088/1361-6528/ab598e
- M. Kang, J. Kim, B. Jang, Y. Chae, J.H. Kim, J.H. Ahn, Graphene-based three-dimensional capacitive touch sensor for wearable electronics. ACS Nano 11(8), 7950–7957 (2017). https://doi.org/10.1021/acsnano.7b02474
- Y.M. Chen, S.M. He, C.H. Huang, C.C. Huang, W.P. Shih et al., Ultra-large suspended graphene as a highly elastic membrane for capacitive pressure sensors. Nanoscale 8(6), 3555–3564 (2016). https://doi.org/10.1039/c5nr08668j
- E. Singh, H.S. Nalwa, Nanomaterial-Based Flexible and Multifunctional Sensors (American Scientific Publishers, Los Angeles, 2019), pp. 1–50
- Google Scholar
- Q. Sun, D.H. Kim, S.S. Park, N.Y. Lee, Y. Zhang, J.H. Lee, K. Cho, J.H. Cho, Transparent, low-power pressure sensor matrix based on coplanar-gate graphene transistors. Adv. Mater. 26(27), 4735–4740 (2014). https://doi.org/10.1002/adma.201400918
- Q. Sun, W. Seung, B.J. Kim, S. Seo, S.W. Kim, J.H. Cho, Active matrix electronic skin strain sensor based on piezopotential-powered graphene transistors. Adv. Mater. 27(22), 3411–3417 (2015). https://doi.org/10.1002/adma.201500582
- Y. Meng, J. Zhao, X. Yang, C. Zhao, S. Qin, J.H. Cho, C. Zhang, Q. Sun, Z.L. Wang, Mechanosensation-active matrix based on direct-contact tribotronic planar graphene transistor array. ACS Nano 12(9), 9381–9389 (2018). https://doi.org/10.1021/acsnano.8b04490
- Y. Chen, G. Gao, J. Zhao, H. Zhang, J. Yu et al., Piezotronic graphene artificial sensory synapse. Adv. Funct. Mater. 29(41), 1900959 (2019). https://doi.org/10.1002/adfm.201900959
- S. Mukherjee, Z. Ren, G. Singh, Beyond graphene anode materials for emerging metal ion batteries and supercapacitors. Nano-Micro Lett. 10(4), 70 (2018). https://doi.org/10.1007/s40820-018-0224-2
- S.Y. Kim, S. Park, H.W. Park, D.H. Park, Y. Jeong, D.H. Kim, Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli. Adv. Mater. 27(28), 4178–4185 (2015). https://doi.org/10.1002/adma.201501408
- D.J. Lipomi, M. Vosgueritchian, B.C. Tee, S.L. Hellstrom, J.A. Lee, C.H. Fox, Z. Bao, Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6(12), 788–792 (2011). https://doi.org/10.1038/nnano.2011.184
- S.R. Kim, J.H. Kim, J.W. Park, Wearable and transparent capacitive strain sensor with high sensitivity based on patterned Ag nanowire networks. ACS Appl. Mater. Interfaces 9(31), 26407–26416 (2017). https://doi.org/10.1021/acsami.7b06474
- L. Yu, Y. Yi, T. Yao, Y. Song, Y. Chen et al., All VN-graphene architecture derived self-powered wearable sensors for ultrasensitive health monitoring. Nano Res. 12(2), 331–338 (2019). https://doi.org/10.1007/s12274-018-2219-1
- O. Atalay, A. Atalay, J. Gafford, C. Walsh, A highly sensitive capacitive-based soft pressure sensor based on a conductive fabric and a microporous dielectric layer. Adv. Mater. Technol. 3(1), 1700237 (2018). https://doi.org/10.1002/admt.201700237
- Q. Zhou, B. Ji, G. Chen, Y. Ding, J. Wu, J. She, S. Wang, B. Zhou, Lithography-free formation of controllable microdomes via droplet templates for robust, ultrasensitive, and flexible pressure sensors. ACS Appl. Nano Mater. 2(11), 7178–7187 (2019). https://doi.org/10.1021/acsanm.9b01680
- D. Kwon, T.I. Lee, J. Shim, S. Ryu, M.S. Kim, S. Kim, T.S. Kim, I. Park, Highly sensitive, flexible, and wearable pressure sensor based on a giant piezocapacitive effect of three-dimensional microporous elastomeric dielectric layer. ACS Appl. Mater. Interfaces 8(26), 16922–16931 (2016). https://doi.org/10.1021/acsami.6b04225
- J.J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B.G. Sumpter et al., Ultrathin planar graphene supercapacitors. Nano Lett. 11(4), 1423–1427 (2011). https://doi.org/10.1021/nl200225j
- J.R. Miller, R.A. Outlaw, B.C.J.S. Holloway, Graphene double-layer capacitor with ac line-filtering performance. Science 329(5999), 1637–1639 (2010). https://doi.org/10.1126/science.1194372
- X. Shuai, P. Zhu, W. Zeng, Y. Hu, X. Liang, Y. Zhang, R. Sun, C.P. Wong, Highly sensitive flexible pressure sensor based on silver nanowires-embedded polydimethylsiloxane electrode with microarray structure. ACS Appl. Mater. Interfaces 9(31), 26314–26324 (2017). https://doi.org/10.1021/acsami.7b05753
- A. Chhetry, H. Yoon, J.Y. Park, A flexible and highly sensitive capacitive pressure sensor based on conductive fibers with a microporous dielectric for wearable electronics. J. Mater. Chem. C 5(38), 10068–10076 (2017). https://doi.org/10.1039/c7tc02926h
- S. Baek, H. Jang, S.Y. Kim, H. Jeong, S. Han, Y. Jang, D.H. Kim, H.S. Lee, Flexible piezocapacitive sensors based on wrinkled microstructures: toward low-cost fabrication of pressure sensors over large areas. RSC Adv. 7(63), 39420–39426 (2017). https://doi.org/10.1039/c7ra06997a
- R. Wu, L. Ma, A. Patil, C. Hou, S. Zhu et al., All-textile electronic skin enabled by highly elastic spacer fabric and conductive fibers. ACS Appl. Mater. Interfaces 11(36), 33336–33346 (2019). https://doi.org/10.1021/acsami.9b10928
- T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, T. Sakurai, A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. U.S.A. 101(27), 9966–9970 (2004). https://doi.org/10.1073/pnas.0401918101
- B. Meng, W. Tang, Z.-H. Too, X. Zhang, M. Han, W. Liu, H. Zhang, A transparent single-friction-surface triboelectric generator and self-powered touch sensor. Energy Environ. Sci. 6(11), 3235–3240 (2013). https://doi.org/10.1039/c3ee42311e
- L. Miao, J. Wan, Y. Song, H. Guo, H. Chen, X. Cheng, H. Zhang, Skin-inspired humidity and pressure sensor with a wrinkle-on-sponge structure. ACS Appl. Mater. Interfaces 11(42), 39219–39227 (2019). https://doi.org/10.1021/acsami.9b13383
- X. Li, L. Colombo, R.S. Ruoff, Synthesis of graphene films on copper foils by chemical vapor deposition. Adv. Mater. 28(29), 6247–6252 (2016). https://doi.org/10.1002/adma.201504760
- C. Moreno, M. Vilas-Varela, B. Kretz, A. Garcia-Lekue, M.V. Costache et al., Bottom-up synthesis of multifunctional nanoporous graphene. Science 360(6385), 199–203 (2018). https://doi.org/10.1126/science.aar2009
- P. Xue, C. Chen, D. Diao, Ultra-sensitive flexible strain sensor based on graphene nanocrystallite carbon film with wrinkle structures. Carbon 147, 227–235 (2019). https://doi.org/10.1016/j.carbon.2019.03.001
- M. Karbalaei, D. Dideban, H. Heidari, Improvement in electrical characteristics of silicon on insulator (SOI) transistor using graphene material. Results Phys. 15, 102806 (2019). https://doi.org/10.1016/j.rinp.2019.102806
- H. Park, J.W. Kim, S.Y. Hong, G. Lee, D.S. Kim et al., Microporous polypyrrole-coated graphene foam for high-performance multifunctional sensors and flexible supercapacitors. Adv. Funct. Mater. 28(33), 1707013 (2018). https://doi.org/10.1002/adfm.201707013
- D. Choi, S. Jang, J.S. Kim, H.J. Kim, D.H. Kim, J.Y. Kwon, A highly sensitive tactile sensor using a pyramid-plug structure for detecting pressure, shear force, and torsion. Adv. Mater. Technol. 4(3), 1800284 (2019). https://doi.org/10.1002/admt.201800284
- S. Chen, G. Qian, L. Yang, Precise control of surface texture on carbon film by ion etching through filter: optimization of texture size for improving tribological behavior. Surf. Coat. Technol. 362, 105–112 (2019). https://doi.org/10.1016/j.surfcoat.2019.01.095
- J. Zeng, J. Liu, H.J. Yao, P.F. Zhai, S.X. Zhang et al., Comparative study of irradiation effects in graphite and graphene induced by swift heavy ions and highly charged ions. Carbon 100, 16–26 (2016). https://doi.org/10.1016/j.carbon.2015.12.101
- L. Ma, X. Shuai, Y. Hu, X. Liang, P. Zhu, R. Sun, C.-P. Wong, A highly sensitive and flexible capacitive pressure sensor based on a micro-arrayed polydimethylsiloxane dielectric layer. J. Mater. Chem. C 6(48), 13232–13240 (2018). https://doi.org/10.1039/c8tc04297g
- N. Ferrer-Anglada, J. Perez-Puigdemont, J. Figueras, M.Z. Iqbal, S. Roth, Flexible, transparent electrodes using carbon nanotubes. Nanoscale Res. Lett. 7, 1–4 (2012). https://doi.org/10.1186/1556-276x-7-571
- E. Singh, M. Meyyappan, H.S. Nalwa, Flexible graphene-based wearable gas and chemical sensors. ACS Appl. Mater. Interfaces 9(40), 34544–34586 (2017). https://doi.org/10.1021/acsami.7b07063
- C. Wang, X. Zhang, D. Diao, Nanosized graphene crystallite induced strong magnetism in pure carbon films. Nanoscale 7(10), 4475–4481 (2015). https://doi.org/10.1039/c4nr06711h
- S. Yao, Y. Zhu, Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 6(4), 2345–2352 (2014). https://doi.org/10.1039/c3nr05496a
- W. Hu, X. Niu, R. Zhao, Q. Pei, Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane. Appl. Phys. Lett. 102(8), 083303 (2013). https://doi.org/10.1063/1.4794143
- Y. Cheng, R. Wang, J. Sun, L. Gao, A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv. Mater. 27(45), 7365–7371 (2015). https://doi.org/10.1002/adma.201503558
- X. Wang, T. Li, J. Adam, J. Yang, Transparent, stretchable, carbon-nanotube-inlaid conductors enabled by standard replication technology for capacitive pressure, strain and touch sensors. J. Mater. Chem. A 1(11), 3580–3586 (2013). https://doi.org/10.1039/c3ta00079f
- X. Wang, Y. Gu, Z. Xiong, Z. Cui, T. Zhang, Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 26(9), 1336–1342 (2014). https://doi.org/10.1002/adma.201304248
- C.L. Choong, M.B. Shim, B.S. Lee, S. Jeon, D.S. Ko et al., Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater. 26(21), 3451–3458 (2014). https://doi.org/10.1002/adma.201305182
- J. Park, Y. Lee, J. Hong, M. Ha, Y.-D. Jung, H. Lim, S.Y. Kim, H. Ko, Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 8(5), 4689–4697 (2014). https://doi.org/10.1021/nn500441k
- M. Bai, Y. Zhai, F. Liu, Y. Wang, S. Luo, Stretchable graphene thin film enabled yarn sensors with tunable piezoresistivity for human motion monitoring. Sci. Rep. 9, 18644 (2019). https://doi.org/10.1038/s41598-019-55262-z
- S. Nuthalapati, V. Shirhatti, V. Kedambaimoole, N. Neella, M.M. Nayak, K. Rajanna, H. Takao, Highly sensitive, scalable reduced graphene oxide with palladium nano-composite as strain sensor. Nanotechnology 31(3), 035501 (2020). https://doi.org/10.1088/1361-6528/ab4855
References
W. Chen, P. Xiao, H. Chen, H. Zhang, Q. Zhang, Y. Chen, Polymeric graphene bulk materials with a 3d cross-linked monolithic graphene network. Adv. Mater. 31(9), 1802403 (2019). https://doi.org/10.1002/adma.201802403
P. Miao, J. Wang, C. Zhang, M. Sun, S. Cheng, H. Liu, Graphene nanostructure-based tactile sensors for electronic skin applications. Nano-Micro Lett. 11, 71 (2019). https://doi.org/10.1007/s40820-019-0302-0
A. Shoghmand Nazarloo, M.T. Ahmadian, K. Firoozbakhsh, On the mechanical characteristics of graphene nanosheets: a fully nonlinear modified morse model. Nanotechnology 31(11), 115708 (2020). https://doi.org/10.1088/1361-6528/ab598e
M. Kang, J. Kim, B. Jang, Y. Chae, J.H. Kim, J.H. Ahn, Graphene-based three-dimensional capacitive touch sensor for wearable electronics. ACS Nano 11(8), 7950–7957 (2017). https://doi.org/10.1021/acsnano.7b02474
Y.M. Chen, S.M. He, C.H. Huang, C.C. Huang, W.P. Shih et al., Ultra-large suspended graphene as a highly elastic membrane for capacitive pressure sensors. Nanoscale 8(6), 3555–3564 (2016). https://doi.org/10.1039/c5nr08668j
E. Singh, H.S. Nalwa, Nanomaterial-Based Flexible and Multifunctional Sensors (American Scientific Publishers, Los Angeles, 2019), pp. 1–50
Google Scholar
Q. Sun, D.H. Kim, S.S. Park, N.Y. Lee, Y. Zhang, J.H. Lee, K. Cho, J.H. Cho, Transparent, low-power pressure sensor matrix based on coplanar-gate graphene transistors. Adv. Mater. 26(27), 4735–4740 (2014). https://doi.org/10.1002/adma.201400918
Q. Sun, W. Seung, B.J. Kim, S. Seo, S.W. Kim, J.H. Cho, Active matrix electronic skin strain sensor based on piezopotential-powered graphene transistors. Adv. Mater. 27(22), 3411–3417 (2015). https://doi.org/10.1002/adma.201500582
Y. Meng, J. Zhao, X. Yang, C. Zhao, S. Qin, J.H. Cho, C. Zhang, Q. Sun, Z.L. Wang, Mechanosensation-active matrix based on direct-contact tribotronic planar graphene transistor array. ACS Nano 12(9), 9381–9389 (2018). https://doi.org/10.1021/acsnano.8b04490
Y. Chen, G. Gao, J. Zhao, H. Zhang, J. Yu et al., Piezotronic graphene artificial sensory synapse. Adv. Funct. Mater. 29(41), 1900959 (2019). https://doi.org/10.1002/adfm.201900959
S. Mukherjee, Z. Ren, G. Singh, Beyond graphene anode materials for emerging metal ion batteries and supercapacitors. Nano-Micro Lett. 10(4), 70 (2018). https://doi.org/10.1007/s40820-018-0224-2
S.Y. Kim, S. Park, H.W. Park, D.H. Park, Y. Jeong, D.H. Kim, Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli. Adv. Mater. 27(28), 4178–4185 (2015). https://doi.org/10.1002/adma.201501408
D.J. Lipomi, M. Vosgueritchian, B.C. Tee, S.L. Hellstrom, J.A. Lee, C.H. Fox, Z. Bao, Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6(12), 788–792 (2011). https://doi.org/10.1038/nnano.2011.184
S.R. Kim, J.H. Kim, J.W. Park, Wearable and transparent capacitive strain sensor with high sensitivity based on patterned Ag nanowire networks. ACS Appl. Mater. Interfaces 9(31), 26407–26416 (2017). https://doi.org/10.1021/acsami.7b06474
L. Yu, Y. Yi, T. Yao, Y. Song, Y. Chen et al., All VN-graphene architecture derived self-powered wearable sensors for ultrasensitive health monitoring. Nano Res. 12(2), 331–338 (2019). https://doi.org/10.1007/s12274-018-2219-1
O. Atalay, A. Atalay, J. Gafford, C. Walsh, A highly sensitive capacitive-based soft pressure sensor based on a conductive fabric and a microporous dielectric layer. Adv. Mater. Technol. 3(1), 1700237 (2018). https://doi.org/10.1002/admt.201700237
Q. Zhou, B. Ji, G. Chen, Y. Ding, J. Wu, J. She, S. Wang, B. Zhou, Lithography-free formation of controllable microdomes via droplet templates for robust, ultrasensitive, and flexible pressure sensors. ACS Appl. Nano Mater. 2(11), 7178–7187 (2019). https://doi.org/10.1021/acsanm.9b01680
D. Kwon, T.I. Lee, J. Shim, S. Ryu, M.S. Kim, S. Kim, T.S. Kim, I. Park, Highly sensitive, flexible, and wearable pressure sensor based on a giant piezocapacitive effect of three-dimensional microporous elastomeric dielectric layer. ACS Appl. Mater. Interfaces 8(26), 16922–16931 (2016). https://doi.org/10.1021/acsami.6b04225
J.J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B.G. Sumpter et al., Ultrathin planar graphene supercapacitors. Nano Lett. 11(4), 1423–1427 (2011). https://doi.org/10.1021/nl200225j
J.R. Miller, R.A. Outlaw, B.C.J.S. Holloway, Graphene double-layer capacitor with ac line-filtering performance. Science 329(5999), 1637–1639 (2010). https://doi.org/10.1126/science.1194372
X. Shuai, P. Zhu, W. Zeng, Y. Hu, X. Liang, Y. Zhang, R. Sun, C.P. Wong, Highly sensitive flexible pressure sensor based on silver nanowires-embedded polydimethylsiloxane electrode with microarray structure. ACS Appl. Mater. Interfaces 9(31), 26314–26324 (2017). https://doi.org/10.1021/acsami.7b05753
A. Chhetry, H. Yoon, J.Y. Park, A flexible and highly sensitive capacitive pressure sensor based on conductive fibers with a microporous dielectric for wearable electronics. J. Mater. Chem. C 5(38), 10068–10076 (2017). https://doi.org/10.1039/c7tc02926h
S. Baek, H. Jang, S.Y. Kim, H. Jeong, S. Han, Y. Jang, D.H. Kim, H.S. Lee, Flexible piezocapacitive sensors based on wrinkled microstructures: toward low-cost fabrication of pressure sensors over large areas. RSC Adv. 7(63), 39420–39426 (2017). https://doi.org/10.1039/c7ra06997a
R. Wu, L. Ma, A. Patil, C. Hou, S. Zhu et al., All-textile electronic skin enabled by highly elastic spacer fabric and conductive fibers. ACS Appl. Mater. Interfaces 11(36), 33336–33346 (2019). https://doi.org/10.1021/acsami.9b10928
T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, T. Sakurai, A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. U.S.A. 101(27), 9966–9970 (2004). https://doi.org/10.1073/pnas.0401918101
B. Meng, W. Tang, Z.-H. Too, X. Zhang, M. Han, W. Liu, H. Zhang, A transparent single-friction-surface triboelectric generator and self-powered touch sensor. Energy Environ. Sci. 6(11), 3235–3240 (2013). https://doi.org/10.1039/c3ee42311e
L. Miao, J. Wan, Y. Song, H. Guo, H. Chen, X. Cheng, H. Zhang, Skin-inspired humidity and pressure sensor with a wrinkle-on-sponge structure. ACS Appl. Mater. Interfaces 11(42), 39219–39227 (2019). https://doi.org/10.1021/acsami.9b13383
X. Li, L. Colombo, R.S. Ruoff, Synthesis of graphene films on copper foils by chemical vapor deposition. Adv. Mater. 28(29), 6247–6252 (2016). https://doi.org/10.1002/adma.201504760
C. Moreno, M. Vilas-Varela, B. Kretz, A. Garcia-Lekue, M.V. Costache et al., Bottom-up synthesis of multifunctional nanoporous graphene. Science 360(6385), 199–203 (2018). https://doi.org/10.1126/science.aar2009
P. Xue, C. Chen, D. Diao, Ultra-sensitive flexible strain sensor based on graphene nanocrystallite carbon film with wrinkle structures. Carbon 147, 227–235 (2019). https://doi.org/10.1016/j.carbon.2019.03.001
M. Karbalaei, D. Dideban, H. Heidari, Improvement in electrical characteristics of silicon on insulator (SOI) transistor using graphene material. Results Phys. 15, 102806 (2019). https://doi.org/10.1016/j.rinp.2019.102806
H. Park, J.W. Kim, S.Y. Hong, G. Lee, D.S. Kim et al., Microporous polypyrrole-coated graphene foam for high-performance multifunctional sensors and flexible supercapacitors. Adv. Funct. Mater. 28(33), 1707013 (2018). https://doi.org/10.1002/adfm.201707013
D. Choi, S. Jang, J.S. Kim, H.J. Kim, D.H. Kim, J.Y. Kwon, A highly sensitive tactile sensor using a pyramid-plug structure for detecting pressure, shear force, and torsion. Adv. Mater. Technol. 4(3), 1800284 (2019). https://doi.org/10.1002/admt.201800284
S. Chen, G. Qian, L. Yang, Precise control of surface texture on carbon film by ion etching through filter: optimization of texture size for improving tribological behavior. Surf. Coat. Technol. 362, 105–112 (2019). https://doi.org/10.1016/j.surfcoat.2019.01.095
J. Zeng, J. Liu, H.J. Yao, P.F. Zhai, S.X. Zhang et al., Comparative study of irradiation effects in graphite and graphene induced by swift heavy ions and highly charged ions. Carbon 100, 16–26 (2016). https://doi.org/10.1016/j.carbon.2015.12.101
L. Ma, X. Shuai, Y. Hu, X. Liang, P. Zhu, R. Sun, C.-P. Wong, A highly sensitive and flexible capacitive pressure sensor based on a micro-arrayed polydimethylsiloxane dielectric layer. J. Mater. Chem. C 6(48), 13232–13240 (2018). https://doi.org/10.1039/c8tc04297g
N. Ferrer-Anglada, J. Perez-Puigdemont, J. Figueras, M.Z. Iqbal, S. Roth, Flexible, transparent electrodes using carbon nanotubes. Nanoscale Res. Lett. 7, 1–4 (2012). https://doi.org/10.1186/1556-276x-7-571
E. Singh, M. Meyyappan, H.S. Nalwa, Flexible graphene-based wearable gas and chemical sensors. ACS Appl. Mater. Interfaces 9(40), 34544–34586 (2017). https://doi.org/10.1021/acsami.7b07063
C. Wang, X. Zhang, D. Diao, Nanosized graphene crystallite induced strong magnetism in pure carbon films. Nanoscale 7(10), 4475–4481 (2015). https://doi.org/10.1039/c4nr06711h
S. Yao, Y. Zhu, Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 6(4), 2345–2352 (2014). https://doi.org/10.1039/c3nr05496a
W. Hu, X. Niu, R. Zhao, Q. Pei, Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane. Appl. Phys. Lett. 102(8), 083303 (2013). https://doi.org/10.1063/1.4794143
Y. Cheng, R. Wang, J. Sun, L. Gao, A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv. Mater. 27(45), 7365–7371 (2015). https://doi.org/10.1002/adma.201503558
X. Wang, T. Li, J. Adam, J. Yang, Transparent, stretchable, carbon-nanotube-inlaid conductors enabled by standard replication technology for capacitive pressure, strain and touch sensors. J. Mater. Chem. A 1(11), 3580–3586 (2013). https://doi.org/10.1039/c3ta00079f
X. Wang, Y. Gu, Z. Xiong, Z. Cui, T. Zhang, Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 26(9), 1336–1342 (2014). https://doi.org/10.1002/adma.201304248
C.L. Choong, M.B. Shim, B.S. Lee, S. Jeon, D.S. Ko et al., Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater. 26(21), 3451–3458 (2014). https://doi.org/10.1002/adma.201305182
J. Park, Y. Lee, J. Hong, M. Ha, Y.-D. Jung, H. Lim, S.Y. Kim, H. Ko, Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 8(5), 4689–4697 (2014). https://doi.org/10.1021/nn500441k
M. Bai, Y. Zhai, F. Liu, Y. Wang, S. Luo, Stretchable graphene thin film enabled yarn sensors with tunable piezoresistivity for human motion monitoring. Sci. Rep. 9, 18644 (2019). https://doi.org/10.1038/s41598-019-55262-z
S. Nuthalapati, V. Shirhatti, V. Kedambaimoole, N. Neella, M.M. Nayak, K. Rajanna, H. Takao, Highly sensitive, scalable reduced graphene oxide with palladium nano-composite as strain sensor. Nanotechnology 31(3), 035501 (2020). https://doi.org/10.1088/1361-6528/ab4855