Emerging MoS2 Wafer-Scale Technique for Integrated Circuits
Corresponding Author: Mingdong Dong
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 38
Abstract
As an outstanding representative of layered materials, molybdenum disulfide (MoS2) has excellent physical properties, such as high carrier mobility, stability, and abundance on earth. Moreover, its reasonable band gap and microelectronic compatible fabrication characteristics makes it the most promising candidate in future advanced integrated circuits such as logical electronics, flexible electronics, and focal-plane photodetector. However, to realize the all-aspects application of MoS2, the research on obtaining high-quality and large-area films need to be continuously explored to promote its industrialization. Although the MoS2 grain size has already improved from several micrometers to sub-millimeters, the high-quality growth of wafer-scale MoS2 is still of great challenge. Herein, this review mainly focuses on the evolution of MoS2 by including chemical vapor deposition, metal–organic chemical vapor deposition, physical vapor deposition, and thermal conversion technology methods. The state-of-the-art research on the growth and optimization mechanism, including nucleation, orientation, grain, and defect engineering, is systematically summarized. Then, this review summarizes the wafer-scale application of MoS2 in a transistor, inverter, electronics, and photodetectors. Finally, the current challenges and future perspectives are outlined for the wafer-scale growth and application of MoS2.
Highlights:
1 This review summarized the state of the art of MoS2 from their controllable growth and potential application in integrated circuit.
2 The influence of promoter, substrate, pressure, catalyst and precursor on the nucleation and growth are discussed.
3 The current challenges and future perspectives of wafer-scale MoS2 are outlined from the materials and device applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Liu, Y. Huang, X. Duan, Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019). https://doi.org/10.1038/s41586-019-1013-x
- P.C. Shen, C. Su, Y. Lin, A.S. Chou, C.C. Cheng et al., Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021). https://doi.org/10.1038/s41586-021-03472-9
- N. Li, Q. Wang, C. Shen, Z. Wei, H. Yu et al., Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron. 3, 711–717 (2020). https://doi.org/10.1038/s41928-020-00475-8
- S.B. Desai, S.R. Madhvapathy, A.B. Sachid, J.P. Llinas, Q. Wang et al., MoS2 transistors with 1-nanometer gate lengths. Science 354, 99 (2016). https://doi.org/10.1126/science.aah4698
- L. Zeng, D. Wu, J. Jie, X. Ren, X. Hu et al., Van der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 µm. Adv. Mater. 32(52), 2004412 (2020). https://doi.org/10.1002/adma.202004412
- Y. Liu, J. Guo, E. Zhu, L. Liao, S.J. Lee et al., Approaching the Schottky-Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018). https://doi.org/10.1038/s41586-018-0129-8
- B. Cao, Z. Ye, L. Yang, L. Gou, Z. Wang, Recent progress in Van der Waals 2D PtSe2. Nanotechnology 32, 412001 (2021). https://doi.org/10.1088/1361-6528/ac0d7c
- H. Xu, L. Hao, H. Liu, S. Dong, Y. Wu et al., Flexible SnSe photodetectors with ultrabroad spectral response up to 10.6 μm enabled by photobolometric effect. ACS Appl. Mater. Interfaces 12(31), 35250–35258 (2020). https://doi.org/10.1021/acsami.0c09561
- T. Qin, Z. Wang, Y. Wang, F. Besenbacher, M. Otyepka et al., Recent progress in emerging two-dimensional transition metal carbides. Nano-Micro Lett. 13, 183 (2021). https://doi.org/10.1007/s40820-021-00710-7
- S. Yang, Y. Chen, C. Jiang, Strain engineering of two-dimensional materials: methods, properties, and applications. InfoMat 3, 397–420 (2021). https://doi.org/10.1002/inf2.12177
- L. Yin, R. Cheng, Y. Wen, C. Liu, J. He, Emerging 2D memory devices for in-memory computing. Adv. Mater. 33(29), 2007081 (2021). https://doi.org/10.1002/adma.202007081
- F. Li, T. Shen, C. Wang, Y. Zhang, J. Qi et al., Recent advances in strain-induced piezoelectric and piezoresistive effect-engineered 2D semiconductors for adaptive electronics and optoelectronics. Nano-Micro Lett. 12, 106 (2020). https://doi.org/10.1007/s40820-020-00439-9
- A. Zavabeti, A. Jannat, L. Zhong, A.A. Haidry, Z. Yao et al., Two-dimensional materials in large-areas: synthesis, properties and applications. Nano-Micro Lett. 12, 66 (2020). https://doi.org/10.1007/s40820-020-0402-x
- S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi et al., Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12, 754–759 (2013). https://doi.org/10.1038/NMAT3673
- J. Chen, W. Tang, B. Tian, B. Liu, X. Zhao et al., Chemical vapor deposition of high-quality large-sized MoS2 crystals on silicon dioxide substrates. Adv. Sci. 3(8), 1600033 (2016). https://doi.org/10.1002/advs.201600033
- F. Li, R. Tao, B. Cao, L. Yang, Z. Wang, Manipulate the light-matter interaction of PtS/MoS2 p–n junction for high performance broadband photodetection. Adv. Funct. Mater. 31(36), 2104367 (2021). https://doi.org/10.1002/adfm.202104367
- Z. Wang, J. Qiao, S. Zhao, S. Wang, C. He et al., Recent progress in terahertz modulation using photonic structures based on two-dimensional materials. InfoMat 3, 1110–1133 (2021). https://doi.org/10.1002/inf2.12236
- Q. Ji, Y. Zhang, Y. Zhang, Z. Liu, Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: engineered substrates from amorphous to single crystalline. Chem. Soc. Rev. 44(9), 2587 (2015). https://doi.org/10.1039/c4cs00258j
- K. Kaasbjerg, K.S. Thygesen, K.W. Jacobsen, Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012). https://doi.org/10.1103/PhysRevB.85.115317
- X. Yang, Q. Li, G. Hu, Z. Wang, Z. Yang et al., Controlled synthesis of high-quality crystals of monolayer MoS2 for nanoelectronic device application. Sci. China Mater. 59, 182–190 (2016). https://doi.org/10.1007/s40843-016-0130-1
- B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011). https://doi.org/10.1038/nnano.2010.279
- Z. Wang, X. Xiong, J. Li, M. Dong, Screening fermi-level pinning effect through van der waals contacts to monolayer MoS2. Mater. Today Phys. 16, 100290 (2021). https://doi.org/10.1016/j.mtphys.2020.100290
- Y. Wang, J.C. Kim, R.J. Wu, J. Martinez, X. Song et al., Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019). https://doi.org/10.1038/s41586-019-1052-3
- A.V. Agrawal, N. Kumar, M. Kumar, Strategy and future prospects to develop room-temperature-recoverable NO2 gas sensor based on two-dimensional molybdenum disulfide. Nano-Micro Lett. 13, 38 (2021). https://doi.org/10.1007/s40820-020-00558-3
- M. Wu, Y. Xiao, Y. Zeng, Y. Zhou, X. Zeng et al., Synthesis of two-dimensional transition metal dichalcogenides for electronics and optoelectronics. InfoMat 3, 362–396 (2021). https://doi.org/10.1002/inf2.12161
- X. Ma, M. Shi, Thermal evaporation deposition of few-layer MoS2 films. Nano-Micro Lett. 5, 135–139 (2013). https://doi.org/10.1007/BF03353741
- X. Ling, Y.H. Lee, Y. Lin, W. Fang, L. Yu et al., Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett. 14, 464–472 (2014). https://doi.org/10.1021/nl4033704
- M.L. Shi, L. Chen, T.B. Zhang, J. Xu, H. Zhu et al., Top-down integration of molybdenum disulfide transistors with wafer-scale uniformity and layer controllability. Small 13(35), 1603157 (2017). https://doi.org/10.1002/smll.201603157
- J. Robertson, X. Liu, C. Yue, M. Escarra, J. Wei, Wafer-scale synthesis of monolayer and few-layer MoS2 via thermal vapor sulfurization. 2D Mater. 4, 045007 (2017). https://doi.org/10.1088/2053-1583/aa8678
- X. Wang, H. Feng, Y. Wu, L. Jiao, Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc. 135(14), 5304–5307 (2013). https://doi.org/10.1021/ja4013485
- K.K. Liu, W. Zhang, Y.H. Lee, Y.C. Lin, M.T. Chang et al., Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012). https://doi.org/10.1021/nl2043612
- J. Yu, X. Hu, H. Li, X. Zhou, T. Zhai, Large-scale synthesis of 2D metal dichalcogenides. J. Mater. Chem. C 6(17), 4627 (2018). https://doi.org/10.1039/c8tc00620b
- Y. Zhan, Z. Liu, S. Najmaei, P.M. Ajayan, J. Lou, Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8(7), 966–971 (2012). https://doi.org/10.1002/smll.201102654
- M.R. Laskar, D.N. Nath, L. Ma, E.W. Lee, C.H. Lee et al., p-Type doping of MoS2 thin films using Nb. Appl. Phys. Lett. 104, 092104 (2014). https://doi.org/10.1063/1.4867197
- F. Wang, S. Yang, J. Wu, X. Hu, Y. Li et al., Emerging two-dimensional bismuth oxychalcogenides for electronics and optoelectronics. InfoMat 3, 1251–1271 (2021). https://doi.org/10.1002/inf2.12215
- X. Xu, C. Zhang, M.K. Hota, Z. Liu, X. Zhang et al., Enhanced quality of wafer-scale MoS2 films by a capping layer annealing process. Adv. Funct. Mater. 30(11), 1908040 (2020). https://doi.org/10.1002/adfm.201908040
- X. Xu, G. Das, X. He, M.N. Hedhili, E.D. Fabrizio et al., High-performance monolayer MoS2 films at the wafer scale by two-step growth. Adv. Funct. Mater. 29(32), 1901070 (2019). https://doi.org/10.1002/adfm.201901070
- E. Rotunno, M. Bosi, L. Seravalli, G. Salviati, F. Fabbri, Influence of organic promoter gradient on the MoS2 growth dynamics. Nanoscale Adv. 2, 2352 (2020). https://doi.org/10.1039/d0na00147c
- Y.R. Lim, J.K. Han, S.K. Kim, Y.B. Lee, Y. Yoon et al., Roll-to-roll production of layer-controlled molybdenum disulfide: a platform for 2D semiconductor-based industrial applications. Adv. Mater. 30(5), 1705270 (2018). https://doi.org/10.1002/adma.201705270
- J. Robertson, D. Blomdahl, K. Islam, T. Ismael, M. Woody et al., Rapid-throughput solution-based production of wafer-scale 2D MoS2. Appl. Phys. Lett. 114, 163102 (2019). https://doi.org/10.1063/1.5093039
- Q. Le, T.P. Nguyen, M. Park, W. Sohn, H.W. Jang et al., Bottom-up synthesis of MeSx nanodots for optoelectronic device applications. Adv. Optical Mater. 4(11), 1796–1804 (2016). https://doi.org/10.1002/adom.201600333
- X. Sang, X. Li, A.A. Puretzky, D.B. Geohegan, K. Xiao et al., Atomic insight into thermolysis-driven growth of 2D MoS2. Adv. Funct. Mater. 29(52), 1902149 (2019). https://doi.org/10.1002/adfm.201902149
- N. Kondekar, M.G. Boebinger, M. Tian, M.H. Kirmani, M.T. McDowell, The effect of nickel on MoS2 growth revealed with in situ transmission electron microscopy. ACS Nano 13(6), 7117–7126 (2019). https://doi.org/10.1021/acsnano.9b02528
- W. Jeon, Y. Cho, S. Jo, J.H. Ahn, S.J. Jeong, Wafer-scale synthesis of reliable high-mobility molybdenum disulfide thin films via inhibitor-utilizing atomic layer deposition. Adv. Mater. 29(47), 1703031 (2017). https://doi.org/10.1002/adma.201703031
- D.H. Lee, Y. Sim, J. Wang, S.Y. Kwon, Metal-organic chemical vapor deposition of 2D van der Waals materials-the challenges and the extensive future opportunities. APL Mater. 8, 030901 (2020). https://doi.org/10.1063/1.5142601
- J. Li, W. Yan, Y. Lv, J. Leng, D. Zhang et al., Sub-millimeter size high mobility single crystal MoSe2 monolayers synthesized by NaCl-assisted chemical vapor deposition. RSC Adv. 10(3), 1580 (2020). https://doi.org/10.1039/c9ra09103c
- K. Kang, S. Xie, L. Huang, Y. Han, P.Y. Huang et al., High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015). https://doi.org/10.1038/nature14417
- H. Cun, M. Macha, H. Kim, K. Liu, Y. Zhao et al., Wafer-scale MOCVD growth of monolayer MoS2 on sapphire and SiO2. Nano Res. 12, 2646–2652 (2019). https://doi.org/10.1007/s12274-019-2502-9
- H. Kim, D. Ovchinnikov, D. Deiana, D. Unuchek, A. Kis, Suppressing nucleation in metal−organic chemical vapor deposition of MoS2 monolayers by alkali metal halides. Nano Lett. 17(8), 5056–5063 (2017). https://doi.org/10.1021/acs.nanolett.7b02311
- G. Jin, C.S. Lee, X. Liao, J. Kim, Z. Wang et al., Atomically thin three-dimensional membranes of van der Waals semiconductors by wafer-scale growth. Sci. Adv. 5(7), aaw3180 (2019). https://doi.org/10.1126/sciadv.aaw3180
- L. Liu, K. Ye, Z. Yu, Z. Jia, J. Xiang et al., Photodetection application of one-step synthesized wafer-scale monolayer MoS2 by chemical vapor deposition. 2D Mater. 7, 025020 (2020). https://doi.org/10.1088/2053-1583/ab6d33
- P. Yang, Y. Shan, J. Chen, G. Ekoya, J. Han et al., Remarkable quality improvement of as-grown monolayer MoS2 by sulfur vapor pretreatment of SiO2/Si substrates. Nanoscale 12(3), 1958–1966 (2020). https://doi.org/10.1039/c9nr09129g
- H. Gao, J. Suh, M.C. Cao, A.Y. Joe, F. Mujid et al., Tuning electrical conductance of MoS2 monolayers through substitutional doping. Nano Lett. 20(6), 4095–4101 (2020). https://doi.org/10.1021/acs.nanolett.9b05247
- M. Chubarov, T.H. Choudhury, D.R. Hickey, S. Bachu, T. Zhang et al., Wafer-scale epitaxial growth of unidirectional WS2 monolayers on sapphire. ACS Nano 15(2), 2532–2541 (2021). https://doi.org/10.1021/acsnano.0c06750
- C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo et al., Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater. 2(2), 131–136 (2014). https://doi.org/10.1002/adom.201300428
- M.N. Sial, M. Usman, A.N. Moghaddam, A.I. Channa, Y. Yu et al., CVD-grown 2D molybdenum diselenide: morphology, spectroscopic and mechanical characterization. J. Alloys Compd. 803, 795–803 (2019). https://doi.org/10.1016/j.jallcom.2019.06.163
- L. Liu, T. Li, L. Ma, W. Li, S. Gao et al., Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 605, 69–75 (2022). https://doi.org/10.1038/s41586-022-04523-5
- H. Ko, H.S. Kim, M.S. Ramzan, S. Byeon, S.H. Choi et al., Atomistic mechanisms of seeding promoter-controlled growth of molybdenum disulphide. 2D Mater. 7, 015013 (2020). https://doi.org/10.1088/2053-1583/ab4cd4
- J.K. Huang, J. Pu, C.L. Hsu, M.H. Chiu, Z.Y. Juang et al., Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 8(1), 923–930 (2014). https://doi.org/10.1021/nn405719x
- S. Wang, Y. Rong, Y. Fan, M. Pacios, H. Bhaskaran et al., Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chem. Mater. 26, 6371–6379 (2014). https://doi.org/10.1021/cm5025662
- S.Y. Yang, G.W. Shim, S.B. Seo, S.Y. Choi, Effective shape-controlled growth of monolayer MoS2 flakes by powder-based chemical vapor deposition. Nano Res. 10, 255–262 (2017). https://doi.org/10.1007/s12274-016-1284-6
- Z. Tu, G. Li, X. Ni, L. Meng, S. Bai et al., Synthesis of large monolayer single crystal MoS2 nanosheets with uniform size through a double-tube technology. Appl. Phys. Lett. 109, 223101 (2016). https://doi.org/10.1063/1.4968582
- R. Guan, J. Duan, A. Yuan, Z. Wang, S. Yang et al., Chemical vapor deposition of clean and pure MoS2 crystals by the inhibition of MoO3−x intermediates. CrystEngComm 23, 146–152 (2021). https://doi.org/10.1039/D0CE01354D
- B. Li, Y. Gong, Z. Hu, G. Brunetto, Y. Yang et al., Solid-vapor reaction growth of transition-metal dichalcogenide monolayers. Angew. Chem. Int. Ed. 55(36), 10656–10661 (2016). https://doi.org/10.1002/anie.201604445
- Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang et al., Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci. Rep. 3, 1866 (2013). https://doi.org/10.1038/srep01866
- P. Yang, X. Zou, Z. Zhang, M. Hong, J. Shi et al., Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 9, 979 (2018). https://doi.org/10.1038/s41467-018-03388-5
- H. Liu, G. Qi, C. Tang, M. Chen, Y. Chen et al., Growth of large-area homogeneous monolayer transition-metal disulfides via a molten liquid intermediate process. ACS Appl. Mater. Interfaces 12(11), 13174–13181 (2020). https://doi.org/10.1021/acsami.9b22397
- J. Zheng, X. Yan, Z. Lu, H. Qiu, G. Xu et al., High-mobility multilayered MoS2 flakes with low contact resistance grown by chemical vapor deposition. Adv. Mater. 29(13), 1604540 (2017). https://doi.org/10.1002/adma.201604540
- L. Samad, S.M. Bladow, Q. Ding, J. Zhuo, R.M. Jacobberger et al., Layer-controlled chemical vapor deposition growth of MoS2 vertical heterostructures via van der Waals epitaxy. ACS Nano 10(7), 7039–7046 (2016). https://doi.org/10.1021/acsnano.6b03112
- L. Liu, Y. Huang, J. Sha, Y. Chen, Layer-controlled precise fabrication of ultrathin MoS2 films by atomic layer deposition. Nanotechnology 28, 195605 (2017). https://doi.org/10.1088/1361-6528/aa6827
- R. Browning, P. Padigi, R. Solanki, D.J. Tweet, P. Schuele et al., Atomic layer deposition of MoS2 thin films. Mater. Res. Express 2, 035006 (2015). https://doi.org/10.1088/2053-1591/2/3/035006
- S.J. Yun, S.H. Chae, H. Kim, J.C. Park, J.H. Park et al., Synthesis of centimeter-scale monolayer tungsten disulfide film on gold foils. ACS Nano 9(5), 5510–5519 (2015). https://doi.org/10.1021/acsnano.5b01529
- Z. Qin, L. Loh, J. Wang, X. Xu, Q. Zhang et al., Growth of Nb-doped monolayer WS2 by liquid-phase precursor mixing. ACS Nano 13(9), 10768–10775 (2019). https://doi.org/10.1021/acsnano.9b05574
- M.C. Chang, P.H. Ho, M.F. Tseng, F.Y. Lin, C.H. Hou et al., Fast growth of large-grain and continuous MoS2 films through a self-capping vapor-liquid-solid method. Nat. Commun. 11, 3682 (2020). https://doi.org/10.1038/s41467-020-17517-6
- T. Nisar, T. Balster, A. Haider, U. Kortz, V. Wagner, Growth of ultra-thin large sized 2D flakes at air–liquid interface to obtain 2D-WS2 monolayers. J. Phys. D-Appl. Phys. 54, 065301 (2020). https://doi.org/10.1088/1361-6463/abc198
- O.A. Abbas, I. Zeimpekis, H. Wang, A.H. Lewis, N.P. Sessions et al., Solution-based synthesis of few-layer WS2 large area continuous films for electronic applications. Sci. Rep. 10, 1696 (2020). https://doi.org/10.1038/s41598-020-58694-0
- S. Jiang, X. Yin, J. Zhang, X. Zhu, J. Li et al., Vertical ultrathin MoS2 nanosheets on a flexible substrate as an efficient counter electrode for dye-sensitized solar cells. Nanoscale 7, 10459–10464 (2015). https://doi.org/10.1039/C5NR00788G
- K. Almeida, M. Wurch, A. Geremew, K. Yamaguchi, T.A. Empante et al., High-vacuum particulate-free deposition of wafer-scale mono-, bi-, and trilayer molybdenum disulfide with superior transport properties. ACS Appl. Mater. Interfaces 10(39), 33457–33463 (2018). https://doi.org/10.1021/acsami.8b10857
- Z.L. Tian, D.H. Zhao, H. Liu, H. Zhu, L. Chen et al., Optimization of defects in large-area synthetic MoS2 thin films by CS2 treatment for switching and sensing devices. ACS Appl. Nano Mater. 2(12), 7810–7818 (2019). https://doi.org/10.1021/acsanm.9b01591
- Z. Wang, Q. Li, H. Xu, C. Dahl-Petersen, Q. Yang et al., Controllable etching of MoS2 basal planes for enhanced hydrogen evolution through the formation of active edge sites. Nano Energy 49, 634–643 (2018). https://doi.org/10.1016/j.nanoen.2018.04.067
- J. Xu, D.J. Srolovitz, D. Ho, The adatom concentration profile: a paradigm for understanding two-dimensional MoS2 morphological evolution in chemical vapor deposition growth. ACS Nano 15(4), 6839–6848 (2021). https://doi.org/10.1021/acsnano.0c10474
- J. Chen, X. Zhao, G. Grinblat, Z. Chen, S.J.R. Tan et al., Homoepitaxial growth of large-scale highly organized transition metal dichalcogenide patterns. Adv. Mater. 30(4), 1704674 (2018). https://doi.org/10.1002/adma.201704674
- P. Yang, A.G. Yang, L. Chen, J. Chen, Y. Zhang et al., Influence of seeding promoters on the properties of CVD grown monolayer molybdenum disulfide. Nano Res. 12, 823–827 (2019). https://doi.org/10.1007/s12274-019-2294-y
- P. Yang, S. Zhang, S. Pan, B. Tang, Y. Liang et al., Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au(111). ACS Nano 14(4), 5036–5045 (2020). https://doi.org/10.1021/acsnano.0c01478
- W. Wan, L. Zhan, T.M. Shih, Z. Zhu, J. Lu et al., Controlled growth of MoS2 via surface-energy alterations. Nanotechnology 31, 035601 (2020). https://doi.org/10.1088/1361-6528/ab49a2
- Y. Gong, G. Ye, S. Lei, G. Shi, Y. He et al., Synthesis of millimeter-scale transition metal dichalcogenides single crystals. Adv. Funct. Mater. 26(12), 2009–2015 (2016). https://doi.org/10.1002/adfm.201504633
- A. Aljarb, Z. Cao, H.L. Tang, J.K. Huang, M. Li et al., Substrate lattice-guided seed formation controls the orientation of 2D transition-metal dichalcogenides. ACS Nano 11(9), 9215–9222 (2017). https://doi.org/10.1021/acsnano.7b04323
- A. Özden, F. Ay, C. Sevik, N.K. Perkgöz, CVD growth of monolayer MoS2: role of growth zone configuration and precursors ratio. Jpn. J. Appl. Phys. 56, 06GG05 (2017). https://doi.org/10.7567/JJAP.56.06GG05
- A.M. Zande, P.Y. Huang, D.A. Chenet, T.C. Berkelbach, Y. You et al., Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554–561 (2013). https://doi.org/10.1038/NMAT3633
- W. Chen, J. Zhao, J. Zhang, L. Gu, Z. Yang et al., Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2. J. Am. Chem. Soc. 137(50), 15632–15635 (2015). https://doi.org/10.1021/jacs.5b10519
- C. Kastl, C.T. Chen, T. Kuykendall, B. Shevitski, T.P. Darlington et al., The important role of water in growth of monolayer transition metal dichalcogenides. 2D Mater. 4, 021024 (2017). https://doi.org/10.1088/2053-1583/aa5f4d
- J. Chen, X. Zhao, S.J.R. Tan, H. Xu, B. Wu et al., Chemical vapor deposition of large-size monolayer MoSe2 crystals on molten glass. J. Am. Chem. Soc. 139(3), 1073–1076 (2017). https://doi.org/10.1021/jacs.6b12156
- C. Lan, X. Kang, R. Wei, Y. Meng, S. Yip et al., Utilizing a NaOH promoter to achieve large single-domain monolayer WS2 films via modified chemical vapor deposition. ACS Appl. Mater. Interfaces 11(38), 35238–35246 (2019). https://doi.org/10.1021/acsami.9b12516
- T. He, Y. Li, Z. Zhou, C. Zeng, L. Qiao et al., Synthesis of large-area uniform MoS2 films by substrate-moving atmospheric pressure chemical vapor deposition: from monolayer to multilayer. 2D Mater. 6, 025030 (2019). https://doi.org/10.1088/2053-1583/ab0760
- X. Li, E. Kahn, G. Chen, X. Sang, J. Lei et al., Surfactant-mediated growth and patterning of atomically thin transition metal dichalcogenides. ACS Nano 14(6), 6570–6581 (2020). https://doi.org/10.1021/acsnano.0c00132
- Y. Gao, Z. Liu, D.M. Sun, L. Huang, L.P. Ma et al., Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun. 6, 8569 (2015). https://doi.org/10.1038/ncomms9569
- H. Wang, X. Huang, J. Lin, J. Cui, Y. Chen et al., High-quality monolayer superconductor NbSe2 grown by chemical vapour deposition. Nat. Commun. 8, 394 (2017). https://doi.org/10.1038/s41467-017-00427-5
- Z. Zhang, P. Chen, X. Yang, Y. Liu, H. Ma et al., Ultrafast growth of large single crystals of monolayer WS2 and WSe2. Natl. Sci. Rev. 7, 737–744 (2020). https://doi.org/10.1093/nsr/nwz223
- M. Kim, J. Seo, J. Kim, J.S. Moon, J. Lee et al., High-crystalline monolayer transition metal dichalcogenides films for wafer-scale electronics. ACS Nano 15(2), 3038–3046 (2021). https://doi.org/10.1021/acsnano.0c09430
- J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen et al., A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018). https://doi.org/10.1038/s41586-018-0008-3
- X. Luo, Z. Peng, Z. Wang, M. Dong, Layer-by-layer growth of AA-stacking MoS2 for tunable broadband phototransistors. ACS Appl. Mater. Interfaces 13(49), 59154–59163 (2021). https://doi.org/10.1021/acsami.1c19906
- F. Lan, R. Yang, S. Hao, B. Zhou, K. Sun et al., Controllable synthesis of millimeter-size single crystal WS2. Appl. Surf. Sci. 504, 144378 (2020). https://doi.org/10.1016/j.apsusc.2019.144378
- J.G. Song, G.H. Ryu, Y. Kim, W.J. Woo, K.Y. Ko et al., Catalytic chemical vapor deposition of large-area uniform two-dimensional molybdenum disulfide using sodium chloride. Nanotechnology 28, 465103 (2017). https://doi.org/10.1088/1361-6528/aa8f15
- C. Liu, X. Xu, L. Qiu, M. Wu, R. Qiao et al., Kinetic modulation of graphene growth by fluorine through spatially confined decomposition of metal fluorides. Nat. Chem. 11, 730–736 (2019). https://doi.org/10.1038/s41557-019-0290-1
- Y. Hao, M.S. Bharathi, L. Wang, Y. Liu, H. Chen et al., The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342, 720–723 (2013). https://doi.org/10.1126/science.1243879
- C. Liu, L. Wang, J. Qi, K. Liu, Designed growth of large-size 2D single crystals. Adv. Mater. 32(19), 2000046 (2020). https://doi.org/10.1002/adma.202000046
- J. Zhu, H. Xu, G. Zou, W. Zhang, R. Chai et al., MoS2-OH bilayer-mediated growth of inch-sized monolayer MoS2 on arbitrary substrates. J. Am. Chem. Soc. 141(13), 5392–5401 (2019). https://doi.org/10.1021/jacs.9b00047
- T. Li, W. Guo, L. Ma, W. Li, Z. Yu et al., Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021). https://doi.org/10.1038/s41565-021-00963-8
- S. Li, Y.C. Lin, W. Zhao, J. Wu, Z. Wang et al., Vapour-liquid-solid growth of monolayer MoS2 nanoribbons. Nat. Mater. 17, 535–542 (2018). https://doi.org/10.1038/s41563-018-0055-z
- D. Fu, X. Zhao, Y.Y. Zhang, L. Li, H. Xu et al., Molecular beam epitaxy of highly crystalline monolayer molybdenum disulfide on hexagonal boron nitride. J. Am. Chem. Soc. 139(27), 9392–9400 (2017). https://doi.org/10.1021/jacs.7b05131
- Q. Ji, M. Kan, Y. Zhang, Y. Guo, D. Ma et al., Unravelling orientation distribution and merging behavior of monolayer MoS2 domains on sapphire. Nano Lett. 15(1), 198–205 (2014). https://doi.org/10.1021/nl503373x
- M. Ju, X. Liang, J. Liu, L. Zhou, Z. Liu et al., Universal substrate-trapping strategy to grow strictly monolayer transition metal dichalcogenides crystals. Chem. Mater. 29, 6095–6103 (2017). https://doi.org/10.1021/acs.chemmater.7b01984
- X. Lu, M.I.B. Utama, J. Lin, X. Gong, J. Zhang et al., Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates. Nano Lett. 14(5), 2419–2425 (2014). https://doi.org/10.1021/nl5000906
- Z. Cheng, M. Xia, S. Liu, R. Hu, G. Liang et al., Role of rough substrate on the growth of large single-crystal MoS2 by chemical vapor deposition. Appl. Surf. Sci. 476, 1008–1015 (2019). https://doi.org/10.1016/j.apsusc.2019.01.211
- H. Yin, X. Zhang, J. Lu, X. Geng, Y. Wan et al., Substrate effects on the CVD growth of MoS2 and WS2. J. Mater. Sci. 55, 990–996 (2020). https://doi.org/10.1007/s10853-019-03993-9
- Y. Bao, J. Han, H. Li, K. Huang, Flexible, heat-resistant photodetector based on MoS2 nanosheets thin film on transparent muscovite mica substrate. Nanotechnology 32, 025206 (2020). https://doi.org/10.1088/1361-6528/abbb4b
- J. Liu, X. Li, H. Wang, G. Yuan, A. Suvorova et al., Ultrathin high-quality snte nanoplates for fabricating flexible near-infrared photodetectors. ACS Appl. Mater. Interfaces 12(28), 31810–31822 (2020). https://doi.org/10.1021/acsami.0c07847
- M. Mattinen, P.J. King, P. Brüner, M. Leskelä, M. Ritala, Controlling atomic layer deposition of 2D semiconductor SnS2 by the choice of substrate. Adv. Mater. Interfaces 7(19), 2001046 (2020). https://doi.org/10.1002/admi.202001046
- M. Huang, P.V. Bakharev, Z.J. Wang, M. Biswal, Z. Yang et al., Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(111) foil. Nat. Nanotechnol. 15, 289–295 (2020). https://doi.org/10.1038/s41565-019-0622-8
- M. Wang, M. Huang, D. Luo, Y. Li, M. Choe et al., Single-crystal, large-area, fold-free monolayer graphene. Nature 596, 519–524 (2021). https://doi.org/10.1038/s41586-021-03753-3
- G. Yuan, D. Lin, Y. Wang, X. Huang, W. Chen et al., Proton-assisted growth of ultra-flat graphene films. Nature 577, 204–208 (2020). https://doi.org/10.1038/s41586-019-1870-3
- S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010). https://doi.org/10.1038/nnano.2010.132
- J. Shi, D. Ma, G.F. Han, Y. Zhang, Q. Ji et al., Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. ACS Nano 8(10), 10196–101204 (2014). https://doi.org/10.1021/nn503211t
- J. Li, S. Wang, Q. Jiang, H. Qian, S. Hu et al., Single-crystal MoS2 monolayer wafer grown on Au (111) film substrates. Small 17(30), 2100743 (2021). https://doi.org/10.1002/smll.202100743
- G.H. Han, N.J. Kybert, C.H. Naylor, B.S. Lee, J. Ping et al., Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations. Nat. Commun. 6, 6128 (2015). https://doi.org/10.1038/ncomms7128
- J. Zhou, X. Kong, M.C. Sekhar, J. Lin, F.L. Goualher et al., Epitaxial synthesis of monolayer PtSe2 single crystal on MoSe2 with strong interlayer coupling. ACS Nano 13(10), 10929–10938 (2019). https://doi.org/10.1021/acsnano.8b09479
- G.U. Özküçük, C. Odacı, E. Şahin, F. Ay, N.K. Perkgöz, Glass-assisted CVD growth of large-area MoS2, WS2 and MoSe2 monolayers on Si/SiO2 substrate. Mater. Sci. Semicond. Proc. 105, 104679 (2020). https://doi.org/10.1016/j.mssp.2019.104679
- Z. Cai, Y. Lai, S. Zhao, R. Zhang, J. Tan et al., Dissolution-precipitation growth of uniform and clean two dimensional transition metal dichalcogenides. Nat. Sci. Rev. 8, nwaa115 (2021). https://doi.org/10.1093/nsr/nwaa115
- C. Graham, M.M.M. Frances, R.A. Maniyara, Y. Wen, P. Mazumder et al., NaCl substrates for high temperature processing and transfer of ultrathin materials. Sci. Rep. 10, 7253 (2020). https://doi.org/10.1038/s41598-020-64313-9
- N. Barreau, J.C. Bernède, J. Pouzet, M. Guilloux-Viry, A. Perrin, Characteristics of photoconductive MoS2 films grown on NaCl substrates by a sequential process. Phys. Status Solidi A 187, 427–437 (2001). https://doi.org/10.1002/1521-396X
- X. Tong, K. Liu, M. Zeng, L. Fu, Vapor-phase growth of high-quality wafer-scale two-dimensional materials. InfoMat 1, 460–478 (2019). https://doi.org/10.1002/inf2.12038
- S. Zhao, J. Zhang, L. Fu, Liquid metals: a novel possibility of fabricating 2D metal oxides. Adv. Mater. 33(9), 2005544 (2021). https://doi.org/10.1002/adma.202005544
- F. Cao, S. Zheng, J. Liang, Z. Li, B. Wei et al., Growth of 2D MoP single crystals on liquid metals by chemical vapor deposition. Sci. China Mater. 64, 1182–1188 (2021). https://doi.org/10.1007/s40843-020-1521-0
- A. Zavabeti, J.Z. Ou, B.J. Carey, N. Syed, R. Orrell-Trigg et al., A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science 358, 332 (2017). https://doi.org/10.1126/science.aao4249
- B. Zheng, Z. Wang, F. Qi, X. Wang, B. Yu et al., CVD growth of large-area and high-quality HfS2 nanoforest on diverse substrates. Appl. Surf. Sci. 435, 563–567 (2018). https://doi.org/10.1016/j.apsusc.2017.11.060
- Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin et al., Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24(17), 2320–2325 (2012). https://doi.org/10.1002/adma.201104798
- Y. Chen, L. Gan, H. Li, Y. Ma, T. Zhai, Achieving uniform monolayer transition metal dichalcogenides film on silicon wafer via silanization treatment: a typical study on WS2. Adv. Mater. 29(7), 1603550 (2017). https://doi.org/10.1002/adma.201603550
- H. Xu, H. Zhang, Z. Guo, Y. Shan, S. Wu et al., High-performance wafer-scale MoS2 transistors toward practical application. Small 14(48), 1803465 (2018). https://doi.org/10.1002/smll.201803465
- Y. Zuo, C. Liu, L. Ding, R. Qiao, J. Tian et al., Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply. Nat. Commun. 13, 1007 (2022). https://doi.org/10.1038/s41467-022-28628-7
- J. Wang, X. Xu, T. Cheng, L. Gu, R. Qiao et al., Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. Nat. Nanotechnol. 17, 33–38 (2022). https://doi.org/10.1038/s41565-021-01004-0
- J.G. Song, J. Park, W. Lee, T. Choi, H. Jung et al., Layer-controlled, wafer-scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition. ACS Nano 7(12), 11333–11340 (2013). https://doi.org/10.1021/nn405194e
- F. Lan, R. Yang, S. Hao, B. Zhou, K. Sun et al., Controllable synthesis of millimeter-size single crystal WS2. Appl. Surf. Sci. 504, 144378 (2019). https://doi.org/10.1016/j.apsusc.2019.144378
- C. Muratore, J.J. Hu, B. Wang, M.A. Haque, J.E. Bultman et al., Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition. Appl. Phys. Lett. 104, 261604 (2014). https://doi.org/10.1063/1.4885391
- Z. Chen, J. Chang, C. Liang, W. Wang, Y. Li et al., Size-dependent and support-enhanced electrocatalysis of 2H-MoS2 for hydrogen evolution. Nano Today 46, 101592 (2022). https://doi.org/10.1016/j.nantod.2022.101592
- F. Wu, H. Tian, Y. Shen, Z. Hou, J. Ren et al., Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 603, 259–264 (2022). https://doi.org/10.1038/s41586-021-04323-3
- X. Wang, P. Wang, J. Wang, W. Hu, X. Zhou et al., Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv. Mater. 27(42), 6575–6581 (2015). https://doi.org/10.1002/adma.201503340
- J. Liu, Z. Hu, Y. Zhang, H.Y. Li, N. Gao et al., MoS2 nanosheets sensitized with quantum dots for room-temperature gas sensors. Nano-Micro Lett. 12, 59 (2020). https://doi.org/10.1007/s40820-020-0394-6
- T. Pham, G. Li, E. Bekyarova, M.E. Itkis, A. Mulchandani, MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano 13(3), 3196–3205 (2019). https://doi.org/10.1021/acsnano.8b08778
- H. Tabata, H. Matsuyama, T. Goto, O. Kubo, M. Katayama, Visible-light-activated response originating from carrier-mobility modulation of NO2 gas sensors based on MoS2 monolayers. ACS Nano 15(2), 2542–2553 (2021). https://doi.org/10.1021/acsnano.0c06996
- F. Chen, Q. Tang, T. Ma, B. Zhu, L. Wang et al., Structures, properties, and challenges of emerging 2D materials in bioelectronics and biosensors. InfoMat 4, e12299 (2022). https://doi.org/10.1002/inf2.12299
- D. Wang, Z. Wang, Z. Yang, S. Wang, C. Tan et al., Facile damage-free double exposure for high-performance 2D semiconductor based transistors. Mater. Today Phys. 24, 100678 (2022). https://doi.org/10.1016/j.mtphys.2022.100678
- L.H. Zeng, S.H. Lin, Z.J. Li, Z.X. Zhang, T.F. Zhang et al., Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Funct. Mater. 28(16), 1705970 (2018). https://doi.org/10.1002/adfm.201705970
- H. Wang, L. Yu, Y.H. Lee, Y. Shi, A. Hsu et al., Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12(9), 4674–4680 (2012). https://doi.org/10.1021/nl302015v
- W. Meng, F. Xu, Z. Yu, T. Tao, L. Shao et al., Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix. Nat. Nanotechnol. 16, 1231–1236 (2021). https://doi.org/10.1038/s41565-021-00966-5
- M. Long, P. Wang, H. Fang, W. Hu, Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 29(19), 1803807 (2019). https://doi.org/10.1002/adfm.201803807
- L.H. Zeng, D. Wu, S.H. Lin, C. Xie, H.Y. Yuan et al., Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 29(1), 1806878 (2019). https://doi.org/10.1002/adfm.201806878
- Z. Shen, C. Zhang, Y. Meng, Z. Wang, Highly tunable, broadband, and negative photoresponse MoS2 photodetector driven by ion-gel gate dielectrics. ACS Appl. Mater. Interfaces 14(28), 32412–32419 (2022). https://doi.org/10.1021/acsami.2c08341
- R. Tao, X. Qu, Z. Wang, F. Li, L. Yang et al., Tune the electronic structure of MoS2 homojunction for broadband photodetection. J. Mater. Sci. Technol. 119, 61–68 (2022). https://doi.org/10.1016/j.jmst.2021.12.032
- O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013). https://doi.org/10.1038/nnano.2013.100
- G. Wu, B. Tian, L. Liu, W. Lv, S. Wu et al., Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nat. Electron. 3, 43–50 (2020). https://doi.org/10.1038/s41928-019-0350-y
- G. Wu, X. Wang, Y. Chen, S. Wu, B. Wu et al., MoTe2 p–n homojunctions defined by ferroelectric polarization. Adv. Mater. 32(16), 1907937 (2020). https://doi.org/10.1002/adma.201907937
- L. Tu, R. Cao, X. Wang, Y. Chen, S. Wu et al., Ultrasensitive negative capacitance phototransistors. Nat. Commun. 11, 101 (2020). https://doi.org/10.1038/s41467-019-13769-z
- Y. Chen, X. Wang, L. Huang, X. Wang, W. Jiang et al., Ferroelectric-tuned van der Waals heterojunction with band alignment evolution. Nat. Commun. 12, 4030 (2021). https://doi.org/10.1038/s41467-021-24296-1
- Y. Huang, F. Zhuge, J. Hou, L. Lv, P. Luo et al., Van der Waals coupled organic molecules with monolayer MoS2 for fast response photodetectors with gate-tunable responsivity. ACS Nano 12(4), 4062–4073 (2018). https://doi.org/10.1021/acsnano.8b02380
- T.R. Kafle, B. Kattel, P. Yao, P. Zereshki, H. Zhao et al., Effect of the interfacial energy landscape on photoinduced charge generation at the ZnPc/MoS2 interface. J. Am. Chem. Soc. 141(28), 11328–11336 (2019). https://doi.org/10.1021/jacs.9b05893
- Z.H. Xu, L. Tang, S.W. Zhang, J.Z. Li, B.L. Liu et al., 2D MoS2/CuPc heterojunction based highly sensitive photodetectors through ultrafast charge transfer. Mater. Today Phys. 15, 100273 (2020). https://doi.org/10.1016/j.mtphys.2020.100273
- C. Tan, R. Tao, Z. Yang, L. Yang, X. Huang et al., Tune the photoresponse of monolayer MoS2 by decorating CsPbBr3 perovskite nanops. Chin. Chem. Lett. (2022). https://doi.org/10.1016/j.cclet.2022.107979
- A. Dodda, D. Jayachandran, A. Pannone, N. Trainor, S.P. Stepanoff et al., Active pixel sensor matrix based on monolayer MoS2 phototransistor array. Nat. Mater. 21, 1379–1387 (2022). https://doi.org/10.1038/s41563-022-01398-9
- S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J.J. Piqueras et al., Broadband image sensor array based on graphene–CMOS integration. Nat. Photon. 11, 366–371 (2017). https://doi.org/10.1038/nphoton.2017.75
- P. Wang, S. Liu, W. Luo, H. Fang, F. Gong et al., Arrayed van der Waals broadband detectors for dual-band detection. Adv. Mater. 29(16), 1604439 (2017). https://doi.org/10.1002/adma.201604439
References
Y. Liu, Y. Huang, X. Duan, Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019). https://doi.org/10.1038/s41586-019-1013-x
P.C. Shen, C. Su, Y. Lin, A.S. Chou, C.C. Cheng et al., Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021). https://doi.org/10.1038/s41586-021-03472-9
N. Li, Q. Wang, C. Shen, Z. Wei, H. Yu et al., Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron. 3, 711–717 (2020). https://doi.org/10.1038/s41928-020-00475-8
S.B. Desai, S.R. Madhvapathy, A.B. Sachid, J.P. Llinas, Q. Wang et al., MoS2 transistors with 1-nanometer gate lengths. Science 354, 99 (2016). https://doi.org/10.1126/science.aah4698
L. Zeng, D. Wu, J. Jie, X. Ren, X. Hu et al., Van der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 µm. Adv. Mater. 32(52), 2004412 (2020). https://doi.org/10.1002/adma.202004412
Y. Liu, J. Guo, E. Zhu, L. Liao, S.J. Lee et al., Approaching the Schottky-Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018). https://doi.org/10.1038/s41586-018-0129-8
B. Cao, Z. Ye, L. Yang, L. Gou, Z. Wang, Recent progress in Van der Waals 2D PtSe2. Nanotechnology 32, 412001 (2021). https://doi.org/10.1088/1361-6528/ac0d7c
H. Xu, L. Hao, H. Liu, S. Dong, Y. Wu et al., Flexible SnSe photodetectors with ultrabroad spectral response up to 10.6 μm enabled by photobolometric effect. ACS Appl. Mater. Interfaces 12(31), 35250–35258 (2020). https://doi.org/10.1021/acsami.0c09561
T. Qin, Z. Wang, Y. Wang, F. Besenbacher, M. Otyepka et al., Recent progress in emerging two-dimensional transition metal carbides. Nano-Micro Lett. 13, 183 (2021). https://doi.org/10.1007/s40820-021-00710-7
S. Yang, Y. Chen, C. Jiang, Strain engineering of two-dimensional materials: methods, properties, and applications. InfoMat 3, 397–420 (2021). https://doi.org/10.1002/inf2.12177
L. Yin, R. Cheng, Y. Wen, C. Liu, J. He, Emerging 2D memory devices for in-memory computing. Adv. Mater. 33(29), 2007081 (2021). https://doi.org/10.1002/adma.202007081
F. Li, T. Shen, C. Wang, Y. Zhang, J. Qi et al., Recent advances in strain-induced piezoelectric and piezoresistive effect-engineered 2D semiconductors for adaptive electronics and optoelectronics. Nano-Micro Lett. 12, 106 (2020). https://doi.org/10.1007/s40820-020-00439-9
A. Zavabeti, A. Jannat, L. Zhong, A.A. Haidry, Z. Yao et al., Two-dimensional materials in large-areas: synthesis, properties and applications. Nano-Micro Lett. 12, 66 (2020). https://doi.org/10.1007/s40820-020-0402-x
S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi et al., Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12, 754–759 (2013). https://doi.org/10.1038/NMAT3673
J. Chen, W. Tang, B. Tian, B. Liu, X. Zhao et al., Chemical vapor deposition of high-quality large-sized MoS2 crystals on silicon dioxide substrates. Adv. Sci. 3(8), 1600033 (2016). https://doi.org/10.1002/advs.201600033
F. Li, R. Tao, B. Cao, L. Yang, Z. Wang, Manipulate the light-matter interaction of PtS/MoS2 p–n junction for high performance broadband photodetection. Adv. Funct. Mater. 31(36), 2104367 (2021). https://doi.org/10.1002/adfm.202104367
Z. Wang, J. Qiao, S. Zhao, S. Wang, C. He et al., Recent progress in terahertz modulation using photonic structures based on two-dimensional materials. InfoMat 3, 1110–1133 (2021). https://doi.org/10.1002/inf2.12236
Q. Ji, Y. Zhang, Y. Zhang, Z. Liu, Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: engineered substrates from amorphous to single crystalline. Chem. Soc. Rev. 44(9), 2587 (2015). https://doi.org/10.1039/c4cs00258j
K. Kaasbjerg, K.S. Thygesen, K.W. Jacobsen, Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012). https://doi.org/10.1103/PhysRevB.85.115317
X. Yang, Q. Li, G. Hu, Z. Wang, Z. Yang et al., Controlled synthesis of high-quality crystals of monolayer MoS2 for nanoelectronic device application. Sci. China Mater. 59, 182–190 (2016). https://doi.org/10.1007/s40843-016-0130-1
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011). https://doi.org/10.1038/nnano.2010.279
Z. Wang, X. Xiong, J. Li, M. Dong, Screening fermi-level pinning effect through van der waals contacts to monolayer MoS2. Mater. Today Phys. 16, 100290 (2021). https://doi.org/10.1016/j.mtphys.2020.100290
Y. Wang, J.C. Kim, R.J. Wu, J. Martinez, X. Song et al., Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019). https://doi.org/10.1038/s41586-019-1052-3
A.V. Agrawal, N. Kumar, M. Kumar, Strategy and future prospects to develop room-temperature-recoverable NO2 gas sensor based on two-dimensional molybdenum disulfide. Nano-Micro Lett. 13, 38 (2021). https://doi.org/10.1007/s40820-020-00558-3
M. Wu, Y. Xiao, Y. Zeng, Y. Zhou, X. Zeng et al., Synthesis of two-dimensional transition metal dichalcogenides for electronics and optoelectronics. InfoMat 3, 362–396 (2021). https://doi.org/10.1002/inf2.12161
X. Ma, M. Shi, Thermal evaporation deposition of few-layer MoS2 films. Nano-Micro Lett. 5, 135–139 (2013). https://doi.org/10.1007/BF03353741
X. Ling, Y.H. Lee, Y. Lin, W. Fang, L. Yu et al., Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett. 14, 464–472 (2014). https://doi.org/10.1021/nl4033704
M.L. Shi, L. Chen, T.B. Zhang, J. Xu, H. Zhu et al., Top-down integration of molybdenum disulfide transistors with wafer-scale uniformity and layer controllability. Small 13(35), 1603157 (2017). https://doi.org/10.1002/smll.201603157
J. Robertson, X. Liu, C. Yue, M. Escarra, J. Wei, Wafer-scale synthesis of monolayer and few-layer MoS2 via thermal vapor sulfurization. 2D Mater. 4, 045007 (2017). https://doi.org/10.1088/2053-1583/aa8678
X. Wang, H. Feng, Y. Wu, L. Jiao, Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc. 135(14), 5304–5307 (2013). https://doi.org/10.1021/ja4013485
K.K. Liu, W. Zhang, Y.H. Lee, Y.C. Lin, M.T. Chang et al., Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012). https://doi.org/10.1021/nl2043612
J. Yu, X. Hu, H. Li, X. Zhou, T. Zhai, Large-scale synthesis of 2D metal dichalcogenides. J. Mater. Chem. C 6(17), 4627 (2018). https://doi.org/10.1039/c8tc00620b
Y. Zhan, Z. Liu, S. Najmaei, P.M. Ajayan, J. Lou, Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8(7), 966–971 (2012). https://doi.org/10.1002/smll.201102654
M.R. Laskar, D.N. Nath, L. Ma, E.W. Lee, C.H. Lee et al., p-Type doping of MoS2 thin films using Nb. Appl. Phys. Lett. 104, 092104 (2014). https://doi.org/10.1063/1.4867197
F. Wang, S. Yang, J. Wu, X. Hu, Y. Li et al., Emerging two-dimensional bismuth oxychalcogenides for electronics and optoelectronics. InfoMat 3, 1251–1271 (2021). https://doi.org/10.1002/inf2.12215
X. Xu, C. Zhang, M.K. Hota, Z. Liu, X. Zhang et al., Enhanced quality of wafer-scale MoS2 films by a capping layer annealing process. Adv. Funct. Mater. 30(11), 1908040 (2020). https://doi.org/10.1002/adfm.201908040
X. Xu, G. Das, X. He, M.N. Hedhili, E.D. Fabrizio et al., High-performance monolayer MoS2 films at the wafer scale by two-step growth. Adv. Funct. Mater. 29(32), 1901070 (2019). https://doi.org/10.1002/adfm.201901070
E. Rotunno, M. Bosi, L. Seravalli, G. Salviati, F. Fabbri, Influence of organic promoter gradient on the MoS2 growth dynamics. Nanoscale Adv. 2, 2352 (2020). https://doi.org/10.1039/d0na00147c
Y.R. Lim, J.K. Han, S.K. Kim, Y.B. Lee, Y. Yoon et al., Roll-to-roll production of layer-controlled molybdenum disulfide: a platform for 2D semiconductor-based industrial applications. Adv. Mater. 30(5), 1705270 (2018). https://doi.org/10.1002/adma.201705270
J. Robertson, D. Blomdahl, K. Islam, T. Ismael, M. Woody et al., Rapid-throughput solution-based production of wafer-scale 2D MoS2. Appl. Phys. Lett. 114, 163102 (2019). https://doi.org/10.1063/1.5093039
Q. Le, T.P. Nguyen, M. Park, W. Sohn, H.W. Jang et al., Bottom-up synthesis of MeSx nanodots for optoelectronic device applications. Adv. Optical Mater. 4(11), 1796–1804 (2016). https://doi.org/10.1002/adom.201600333
X. Sang, X. Li, A.A. Puretzky, D.B. Geohegan, K. Xiao et al., Atomic insight into thermolysis-driven growth of 2D MoS2. Adv. Funct. Mater. 29(52), 1902149 (2019). https://doi.org/10.1002/adfm.201902149
N. Kondekar, M.G. Boebinger, M. Tian, M.H. Kirmani, M.T. McDowell, The effect of nickel on MoS2 growth revealed with in situ transmission electron microscopy. ACS Nano 13(6), 7117–7126 (2019). https://doi.org/10.1021/acsnano.9b02528
W. Jeon, Y. Cho, S. Jo, J.H. Ahn, S.J. Jeong, Wafer-scale synthesis of reliable high-mobility molybdenum disulfide thin films via inhibitor-utilizing atomic layer deposition. Adv. Mater. 29(47), 1703031 (2017). https://doi.org/10.1002/adma.201703031
D.H. Lee, Y. Sim, J. Wang, S.Y. Kwon, Metal-organic chemical vapor deposition of 2D van der Waals materials-the challenges and the extensive future opportunities. APL Mater. 8, 030901 (2020). https://doi.org/10.1063/1.5142601
J. Li, W. Yan, Y. Lv, J. Leng, D. Zhang et al., Sub-millimeter size high mobility single crystal MoSe2 monolayers synthesized by NaCl-assisted chemical vapor deposition. RSC Adv. 10(3), 1580 (2020). https://doi.org/10.1039/c9ra09103c
K. Kang, S. Xie, L. Huang, Y. Han, P.Y. Huang et al., High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015). https://doi.org/10.1038/nature14417
H. Cun, M. Macha, H. Kim, K. Liu, Y. Zhao et al., Wafer-scale MOCVD growth of monolayer MoS2 on sapphire and SiO2. Nano Res. 12, 2646–2652 (2019). https://doi.org/10.1007/s12274-019-2502-9
H. Kim, D. Ovchinnikov, D. Deiana, D. Unuchek, A. Kis, Suppressing nucleation in metal−organic chemical vapor deposition of MoS2 monolayers by alkali metal halides. Nano Lett. 17(8), 5056–5063 (2017). https://doi.org/10.1021/acs.nanolett.7b02311
G. Jin, C.S. Lee, X. Liao, J. Kim, Z. Wang et al., Atomically thin three-dimensional membranes of van der Waals semiconductors by wafer-scale growth. Sci. Adv. 5(7), aaw3180 (2019). https://doi.org/10.1126/sciadv.aaw3180
L. Liu, K. Ye, Z. Yu, Z. Jia, J. Xiang et al., Photodetection application of one-step synthesized wafer-scale monolayer MoS2 by chemical vapor deposition. 2D Mater. 7, 025020 (2020). https://doi.org/10.1088/2053-1583/ab6d33
P. Yang, Y. Shan, J. Chen, G. Ekoya, J. Han et al., Remarkable quality improvement of as-grown monolayer MoS2 by sulfur vapor pretreatment of SiO2/Si substrates. Nanoscale 12(3), 1958–1966 (2020). https://doi.org/10.1039/c9nr09129g
H. Gao, J. Suh, M.C. Cao, A.Y. Joe, F. Mujid et al., Tuning electrical conductance of MoS2 monolayers through substitutional doping. Nano Lett. 20(6), 4095–4101 (2020). https://doi.org/10.1021/acs.nanolett.9b05247
M. Chubarov, T.H. Choudhury, D.R. Hickey, S. Bachu, T. Zhang et al., Wafer-scale epitaxial growth of unidirectional WS2 monolayers on sapphire. ACS Nano 15(2), 2532–2541 (2021). https://doi.org/10.1021/acsnano.0c06750
C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo et al., Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater. 2(2), 131–136 (2014). https://doi.org/10.1002/adom.201300428
M.N. Sial, M. Usman, A.N. Moghaddam, A.I. Channa, Y. Yu et al., CVD-grown 2D molybdenum diselenide: morphology, spectroscopic and mechanical characterization. J. Alloys Compd. 803, 795–803 (2019). https://doi.org/10.1016/j.jallcom.2019.06.163
L. Liu, T. Li, L. Ma, W. Li, S. Gao et al., Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 605, 69–75 (2022). https://doi.org/10.1038/s41586-022-04523-5
H. Ko, H.S. Kim, M.S. Ramzan, S. Byeon, S.H. Choi et al., Atomistic mechanisms of seeding promoter-controlled growth of molybdenum disulphide. 2D Mater. 7, 015013 (2020). https://doi.org/10.1088/2053-1583/ab4cd4
J.K. Huang, J. Pu, C.L. Hsu, M.H. Chiu, Z.Y. Juang et al., Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 8(1), 923–930 (2014). https://doi.org/10.1021/nn405719x
S. Wang, Y. Rong, Y. Fan, M. Pacios, H. Bhaskaran et al., Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chem. Mater. 26, 6371–6379 (2014). https://doi.org/10.1021/cm5025662
S.Y. Yang, G.W. Shim, S.B. Seo, S.Y. Choi, Effective shape-controlled growth of monolayer MoS2 flakes by powder-based chemical vapor deposition. Nano Res. 10, 255–262 (2017). https://doi.org/10.1007/s12274-016-1284-6
Z. Tu, G. Li, X. Ni, L. Meng, S. Bai et al., Synthesis of large monolayer single crystal MoS2 nanosheets with uniform size through a double-tube technology. Appl. Phys. Lett. 109, 223101 (2016). https://doi.org/10.1063/1.4968582
R. Guan, J. Duan, A. Yuan, Z. Wang, S. Yang et al., Chemical vapor deposition of clean and pure MoS2 crystals by the inhibition of MoO3−x intermediates. CrystEngComm 23, 146–152 (2021). https://doi.org/10.1039/D0CE01354D
B. Li, Y. Gong, Z. Hu, G. Brunetto, Y. Yang et al., Solid-vapor reaction growth of transition-metal dichalcogenide monolayers. Angew. Chem. Int. Ed. 55(36), 10656–10661 (2016). https://doi.org/10.1002/anie.201604445
Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang et al., Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci. Rep. 3, 1866 (2013). https://doi.org/10.1038/srep01866
P. Yang, X. Zou, Z. Zhang, M. Hong, J. Shi et al., Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 9, 979 (2018). https://doi.org/10.1038/s41467-018-03388-5
H. Liu, G. Qi, C. Tang, M. Chen, Y. Chen et al., Growth of large-area homogeneous monolayer transition-metal disulfides via a molten liquid intermediate process. ACS Appl. Mater. Interfaces 12(11), 13174–13181 (2020). https://doi.org/10.1021/acsami.9b22397
J. Zheng, X. Yan, Z. Lu, H. Qiu, G. Xu et al., High-mobility multilayered MoS2 flakes with low contact resistance grown by chemical vapor deposition. Adv. Mater. 29(13), 1604540 (2017). https://doi.org/10.1002/adma.201604540
L. Samad, S.M. Bladow, Q. Ding, J. Zhuo, R.M. Jacobberger et al., Layer-controlled chemical vapor deposition growth of MoS2 vertical heterostructures via van der Waals epitaxy. ACS Nano 10(7), 7039–7046 (2016). https://doi.org/10.1021/acsnano.6b03112
L. Liu, Y. Huang, J. Sha, Y. Chen, Layer-controlled precise fabrication of ultrathin MoS2 films by atomic layer deposition. Nanotechnology 28, 195605 (2017). https://doi.org/10.1088/1361-6528/aa6827
R. Browning, P. Padigi, R. Solanki, D.J. Tweet, P. Schuele et al., Atomic layer deposition of MoS2 thin films. Mater. Res. Express 2, 035006 (2015). https://doi.org/10.1088/2053-1591/2/3/035006
S.J. Yun, S.H. Chae, H. Kim, J.C. Park, J.H. Park et al., Synthesis of centimeter-scale monolayer tungsten disulfide film on gold foils. ACS Nano 9(5), 5510–5519 (2015). https://doi.org/10.1021/acsnano.5b01529
Z. Qin, L. Loh, J. Wang, X. Xu, Q. Zhang et al., Growth of Nb-doped monolayer WS2 by liquid-phase precursor mixing. ACS Nano 13(9), 10768–10775 (2019). https://doi.org/10.1021/acsnano.9b05574
M.C. Chang, P.H. Ho, M.F. Tseng, F.Y. Lin, C.H. Hou et al., Fast growth of large-grain and continuous MoS2 films through a self-capping vapor-liquid-solid method. Nat. Commun. 11, 3682 (2020). https://doi.org/10.1038/s41467-020-17517-6
T. Nisar, T. Balster, A. Haider, U. Kortz, V. Wagner, Growth of ultra-thin large sized 2D flakes at air–liquid interface to obtain 2D-WS2 monolayers. J. Phys. D-Appl. Phys. 54, 065301 (2020). https://doi.org/10.1088/1361-6463/abc198
O.A. Abbas, I. Zeimpekis, H. Wang, A.H. Lewis, N.P. Sessions et al., Solution-based synthesis of few-layer WS2 large area continuous films for electronic applications. Sci. Rep. 10, 1696 (2020). https://doi.org/10.1038/s41598-020-58694-0
S. Jiang, X. Yin, J. Zhang, X. Zhu, J. Li et al., Vertical ultrathin MoS2 nanosheets on a flexible substrate as an efficient counter electrode for dye-sensitized solar cells. Nanoscale 7, 10459–10464 (2015). https://doi.org/10.1039/C5NR00788G
K. Almeida, M. Wurch, A. Geremew, K. Yamaguchi, T.A. Empante et al., High-vacuum particulate-free deposition of wafer-scale mono-, bi-, and trilayer molybdenum disulfide with superior transport properties. ACS Appl. Mater. Interfaces 10(39), 33457–33463 (2018). https://doi.org/10.1021/acsami.8b10857
Z.L. Tian, D.H. Zhao, H. Liu, H. Zhu, L. Chen et al., Optimization of defects in large-area synthetic MoS2 thin films by CS2 treatment for switching and sensing devices. ACS Appl. Nano Mater. 2(12), 7810–7818 (2019). https://doi.org/10.1021/acsanm.9b01591
Z. Wang, Q. Li, H. Xu, C. Dahl-Petersen, Q. Yang et al., Controllable etching of MoS2 basal planes for enhanced hydrogen evolution through the formation of active edge sites. Nano Energy 49, 634–643 (2018). https://doi.org/10.1016/j.nanoen.2018.04.067
J. Xu, D.J. Srolovitz, D. Ho, The adatom concentration profile: a paradigm for understanding two-dimensional MoS2 morphological evolution in chemical vapor deposition growth. ACS Nano 15(4), 6839–6848 (2021). https://doi.org/10.1021/acsnano.0c10474
J. Chen, X. Zhao, G. Grinblat, Z. Chen, S.J.R. Tan et al., Homoepitaxial growth of large-scale highly organized transition metal dichalcogenide patterns. Adv. Mater. 30(4), 1704674 (2018). https://doi.org/10.1002/adma.201704674
P. Yang, A.G. Yang, L. Chen, J. Chen, Y. Zhang et al., Influence of seeding promoters on the properties of CVD grown monolayer molybdenum disulfide. Nano Res. 12, 823–827 (2019). https://doi.org/10.1007/s12274-019-2294-y
P. Yang, S. Zhang, S. Pan, B. Tang, Y. Liang et al., Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au(111). ACS Nano 14(4), 5036–5045 (2020). https://doi.org/10.1021/acsnano.0c01478
W. Wan, L. Zhan, T.M. Shih, Z. Zhu, J. Lu et al., Controlled growth of MoS2 via surface-energy alterations. Nanotechnology 31, 035601 (2020). https://doi.org/10.1088/1361-6528/ab49a2
Y. Gong, G. Ye, S. Lei, G. Shi, Y. He et al., Synthesis of millimeter-scale transition metal dichalcogenides single crystals. Adv. Funct. Mater. 26(12), 2009–2015 (2016). https://doi.org/10.1002/adfm.201504633
A. Aljarb, Z. Cao, H.L. Tang, J.K. Huang, M. Li et al., Substrate lattice-guided seed formation controls the orientation of 2D transition-metal dichalcogenides. ACS Nano 11(9), 9215–9222 (2017). https://doi.org/10.1021/acsnano.7b04323
A. Özden, F. Ay, C. Sevik, N.K. Perkgöz, CVD growth of monolayer MoS2: role of growth zone configuration and precursors ratio. Jpn. J. Appl. Phys. 56, 06GG05 (2017). https://doi.org/10.7567/JJAP.56.06GG05
A.M. Zande, P.Y. Huang, D.A. Chenet, T.C. Berkelbach, Y. You et al., Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554–561 (2013). https://doi.org/10.1038/NMAT3633
W. Chen, J. Zhao, J. Zhang, L. Gu, Z. Yang et al., Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2. J. Am. Chem. Soc. 137(50), 15632–15635 (2015). https://doi.org/10.1021/jacs.5b10519
C. Kastl, C.T. Chen, T. Kuykendall, B. Shevitski, T.P. Darlington et al., The important role of water in growth of monolayer transition metal dichalcogenides. 2D Mater. 4, 021024 (2017). https://doi.org/10.1088/2053-1583/aa5f4d
J. Chen, X. Zhao, S.J.R. Tan, H. Xu, B. Wu et al., Chemical vapor deposition of large-size monolayer MoSe2 crystals on molten glass. J. Am. Chem. Soc. 139(3), 1073–1076 (2017). https://doi.org/10.1021/jacs.6b12156
C. Lan, X. Kang, R. Wei, Y. Meng, S. Yip et al., Utilizing a NaOH promoter to achieve large single-domain monolayer WS2 films via modified chemical vapor deposition. ACS Appl. Mater. Interfaces 11(38), 35238–35246 (2019). https://doi.org/10.1021/acsami.9b12516
T. He, Y. Li, Z. Zhou, C. Zeng, L. Qiao et al., Synthesis of large-area uniform MoS2 films by substrate-moving atmospheric pressure chemical vapor deposition: from monolayer to multilayer. 2D Mater. 6, 025030 (2019). https://doi.org/10.1088/2053-1583/ab0760
X. Li, E. Kahn, G. Chen, X. Sang, J. Lei et al., Surfactant-mediated growth and patterning of atomically thin transition metal dichalcogenides. ACS Nano 14(6), 6570–6581 (2020). https://doi.org/10.1021/acsnano.0c00132
Y. Gao, Z. Liu, D.M. Sun, L. Huang, L.P. Ma et al., Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun. 6, 8569 (2015). https://doi.org/10.1038/ncomms9569
H. Wang, X. Huang, J. Lin, J. Cui, Y. Chen et al., High-quality monolayer superconductor NbSe2 grown by chemical vapour deposition. Nat. Commun. 8, 394 (2017). https://doi.org/10.1038/s41467-017-00427-5
Z. Zhang, P. Chen, X. Yang, Y. Liu, H. Ma et al., Ultrafast growth of large single crystals of monolayer WS2 and WSe2. Natl. Sci. Rev. 7, 737–744 (2020). https://doi.org/10.1093/nsr/nwz223
M. Kim, J. Seo, J. Kim, J.S. Moon, J. Lee et al., High-crystalline monolayer transition metal dichalcogenides films for wafer-scale electronics. ACS Nano 15(2), 3038–3046 (2021). https://doi.org/10.1021/acsnano.0c09430
J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen et al., A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018). https://doi.org/10.1038/s41586-018-0008-3
X. Luo, Z. Peng, Z. Wang, M. Dong, Layer-by-layer growth of AA-stacking MoS2 for tunable broadband phototransistors. ACS Appl. Mater. Interfaces 13(49), 59154–59163 (2021). https://doi.org/10.1021/acsami.1c19906
F. Lan, R. Yang, S. Hao, B. Zhou, K. Sun et al., Controllable synthesis of millimeter-size single crystal WS2. Appl. Surf. Sci. 504, 144378 (2020). https://doi.org/10.1016/j.apsusc.2019.144378
J.G. Song, G.H. Ryu, Y. Kim, W.J. Woo, K.Y. Ko et al., Catalytic chemical vapor deposition of large-area uniform two-dimensional molybdenum disulfide using sodium chloride. Nanotechnology 28, 465103 (2017). https://doi.org/10.1088/1361-6528/aa8f15
C. Liu, X. Xu, L. Qiu, M. Wu, R. Qiao et al., Kinetic modulation of graphene growth by fluorine through spatially confined decomposition of metal fluorides. Nat. Chem. 11, 730–736 (2019). https://doi.org/10.1038/s41557-019-0290-1
Y. Hao, M.S. Bharathi, L. Wang, Y. Liu, H. Chen et al., The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342, 720–723 (2013). https://doi.org/10.1126/science.1243879
C. Liu, L. Wang, J. Qi, K. Liu, Designed growth of large-size 2D single crystals. Adv. Mater. 32(19), 2000046 (2020). https://doi.org/10.1002/adma.202000046
J. Zhu, H. Xu, G. Zou, W. Zhang, R. Chai et al., MoS2-OH bilayer-mediated growth of inch-sized monolayer MoS2 on arbitrary substrates. J. Am. Chem. Soc. 141(13), 5392–5401 (2019). https://doi.org/10.1021/jacs.9b00047
T. Li, W. Guo, L. Ma, W. Li, Z. Yu et al., Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021). https://doi.org/10.1038/s41565-021-00963-8
S. Li, Y.C. Lin, W. Zhao, J. Wu, Z. Wang et al., Vapour-liquid-solid growth of monolayer MoS2 nanoribbons. Nat. Mater. 17, 535–542 (2018). https://doi.org/10.1038/s41563-018-0055-z
D. Fu, X. Zhao, Y.Y. Zhang, L. Li, H. Xu et al., Molecular beam epitaxy of highly crystalline monolayer molybdenum disulfide on hexagonal boron nitride. J. Am. Chem. Soc. 139(27), 9392–9400 (2017). https://doi.org/10.1021/jacs.7b05131
Q. Ji, M. Kan, Y. Zhang, Y. Guo, D. Ma et al., Unravelling orientation distribution and merging behavior of monolayer MoS2 domains on sapphire. Nano Lett. 15(1), 198–205 (2014). https://doi.org/10.1021/nl503373x
M. Ju, X. Liang, J. Liu, L. Zhou, Z. Liu et al., Universal substrate-trapping strategy to grow strictly monolayer transition metal dichalcogenides crystals. Chem. Mater. 29, 6095–6103 (2017). https://doi.org/10.1021/acs.chemmater.7b01984
X. Lu, M.I.B. Utama, J. Lin, X. Gong, J. Zhang et al., Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates. Nano Lett. 14(5), 2419–2425 (2014). https://doi.org/10.1021/nl5000906
Z. Cheng, M. Xia, S. Liu, R. Hu, G. Liang et al., Role of rough substrate on the growth of large single-crystal MoS2 by chemical vapor deposition. Appl. Surf. Sci. 476, 1008–1015 (2019). https://doi.org/10.1016/j.apsusc.2019.01.211
H. Yin, X. Zhang, J. Lu, X. Geng, Y. Wan et al., Substrate effects on the CVD growth of MoS2 and WS2. J. Mater. Sci. 55, 990–996 (2020). https://doi.org/10.1007/s10853-019-03993-9
Y. Bao, J. Han, H. Li, K. Huang, Flexible, heat-resistant photodetector based on MoS2 nanosheets thin film on transparent muscovite mica substrate. Nanotechnology 32, 025206 (2020). https://doi.org/10.1088/1361-6528/abbb4b
J. Liu, X. Li, H. Wang, G. Yuan, A. Suvorova et al., Ultrathin high-quality snte nanoplates for fabricating flexible near-infrared photodetectors. ACS Appl. Mater. Interfaces 12(28), 31810–31822 (2020). https://doi.org/10.1021/acsami.0c07847
M. Mattinen, P.J. King, P. Brüner, M. Leskelä, M. Ritala, Controlling atomic layer deposition of 2D semiconductor SnS2 by the choice of substrate. Adv. Mater. Interfaces 7(19), 2001046 (2020). https://doi.org/10.1002/admi.202001046
M. Huang, P.V. Bakharev, Z.J. Wang, M. Biswal, Z. Yang et al., Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(111) foil. Nat. Nanotechnol. 15, 289–295 (2020). https://doi.org/10.1038/s41565-019-0622-8
M. Wang, M. Huang, D. Luo, Y. Li, M. Choe et al., Single-crystal, large-area, fold-free monolayer graphene. Nature 596, 519–524 (2021). https://doi.org/10.1038/s41586-021-03753-3
G. Yuan, D. Lin, Y. Wang, X. Huang, W. Chen et al., Proton-assisted growth of ultra-flat graphene films. Nature 577, 204–208 (2020). https://doi.org/10.1038/s41586-019-1870-3
S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010). https://doi.org/10.1038/nnano.2010.132
J. Shi, D. Ma, G.F. Han, Y. Zhang, Q. Ji et al., Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. ACS Nano 8(10), 10196–101204 (2014). https://doi.org/10.1021/nn503211t
J. Li, S. Wang, Q. Jiang, H. Qian, S. Hu et al., Single-crystal MoS2 monolayer wafer grown on Au (111) film substrates. Small 17(30), 2100743 (2021). https://doi.org/10.1002/smll.202100743
G.H. Han, N.J. Kybert, C.H. Naylor, B.S. Lee, J. Ping et al., Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations. Nat. Commun. 6, 6128 (2015). https://doi.org/10.1038/ncomms7128
J. Zhou, X. Kong, M.C. Sekhar, J. Lin, F.L. Goualher et al., Epitaxial synthesis of monolayer PtSe2 single crystal on MoSe2 with strong interlayer coupling. ACS Nano 13(10), 10929–10938 (2019). https://doi.org/10.1021/acsnano.8b09479
G.U. Özküçük, C. Odacı, E. Şahin, F. Ay, N.K. Perkgöz, Glass-assisted CVD growth of large-area MoS2, WS2 and MoSe2 monolayers on Si/SiO2 substrate. Mater. Sci. Semicond. Proc. 105, 104679 (2020). https://doi.org/10.1016/j.mssp.2019.104679
Z. Cai, Y. Lai, S. Zhao, R. Zhang, J. Tan et al., Dissolution-precipitation growth of uniform and clean two dimensional transition metal dichalcogenides. Nat. Sci. Rev. 8, nwaa115 (2021). https://doi.org/10.1093/nsr/nwaa115
C. Graham, M.M.M. Frances, R.A. Maniyara, Y. Wen, P. Mazumder et al., NaCl substrates for high temperature processing and transfer of ultrathin materials. Sci. Rep. 10, 7253 (2020). https://doi.org/10.1038/s41598-020-64313-9
N. Barreau, J.C. Bernède, J. Pouzet, M. Guilloux-Viry, A. Perrin, Characteristics of photoconductive MoS2 films grown on NaCl substrates by a sequential process. Phys. Status Solidi A 187, 427–437 (2001). https://doi.org/10.1002/1521-396X
X. Tong, K. Liu, M. Zeng, L. Fu, Vapor-phase growth of high-quality wafer-scale two-dimensional materials. InfoMat 1, 460–478 (2019). https://doi.org/10.1002/inf2.12038
S. Zhao, J. Zhang, L. Fu, Liquid metals: a novel possibility of fabricating 2D metal oxides. Adv. Mater. 33(9), 2005544 (2021). https://doi.org/10.1002/adma.202005544
F. Cao, S. Zheng, J. Liang, Z. Li, B. Wei et al., Growth of 2D MoP single crystals on liquid metals by chemical vapor deposition. Sci. China Mater. 64, 1182–1188 (2021). https://doi.org/10.1007/s40843-020-1521-0
A. Zavabeti, J.Z. Ou, B.J. Carey, N. Syed, R. Orrell-Trigg et al., A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science 358, 332 (2017). https://doi.org/10.1126/science.aao4249
B. Zheng, Z. Wang, F. Qi, X. Wang, B. Yu et al., CVD growth of large-area and high-quality HfS2 nanoforest on diverse substrates. Appl. Surf. Sci. 435, 563–567 (2018). https://doi.org/10.1016/j.apsusc.2017.11.060
Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin et al., Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24(17), 2320–2325 (2012). https://doi.org/10.1002/adma.201104798
Y. Chen, L. Gan, H. Li, Y. Ma, T. Zhai, Achieving uniform monolayer transition metal dichalcogenides film on silicon wafer via silanization treatment: a typical study on WS2. Adv. Mater. 29(7), 1603550 (2017). https://doi.org/10.1002/adma.201603550
H. Xu, H. Zhang, Z. Guo, Y. Shan, S. Wu et al., High-performance wafer-scale MoS2 transistors toward practical application. Small 14(48), 1803465 (2018). https://doi.org/10.1002/smll.201803465
Y. Zuo, C. Liu, L. Ding, R. Qiao, J. Tian et al., Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply. Nat. Commun. 13, 1007 (2022). https://doi.org/10.1038/s41467-022-28628-7
J. Wang, X. Xu, T. Cheng, L. Gu, R. Qiao et al., Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. Nat. Nanotechnol. 17, 33–38 (2022). https://doi.org/10.1038/s41565-021-01004-0
J.G. Song, J. Park, W. Lee, T. Choi, H. Jung et al., Layer-controlled, wafer-scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition. ACS Nano 7(12), 11333–11340 (2013). https://doi.org/10.1021/nn405194e
F. Lan, R. Yang, S. Hao, B. Zhou, K. Sun et al., Controllable synthesis of millimeter-size single crystal WS2. Appl. Surf. Sci. 504, 144378 (2019). https://doi.org/10.1016/j.apsusc.2019.144378
C. Muratore, J.J. Hu, B. Wang, M.A. Haque, J.E. Bultman et al., Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition. Appl. Phys. Lett. 104, 261604 (2014). https://doi.org/10.1063/1.4885391
Z. Chen, J. Chang, C. Liang, W. Wang, Y. Li et al., Size-dependent and support-enhanced electrocatalysis of 2H-MoS2 for hydrogen evolution. Nano Today 46, 101592 (2022). https://doi.org/10.1016/j.nantod.2022.101592
F. Wu, H. Tian, Y. Shen, Z. Hou, J. Ren et al., Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 603, 259–264 (2022). https://doi.org/10.1038/s41586-021-04323-3
X. Wang, P. Wang, J. Wang, W. Hu, X. Zhou et al., Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv. Mater. 27(42), 6575–6581 (2015). https://doi.org/10.1002/adma.201503340
J. Liu, Z. Hu, Y. Zhang, H.Y. Li, N. Gao et al., MoS2 nanosheets sensitized with quantum dots for room-temperature gas sensors. Nano-Micro Lett. 12, 59 (2020). https://doi.org/10.1007/s40820-020-0394-6
T. Pham, G. Li, E. Bekyarova, M.E. Itkis, A. Mulchandani, MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano 13(3), 3196–3205 (2019). https://doi.org/10.1021/acsnano.8b08778
H. Tabata, H. Matsuyama, T. Goto, O. Kubo, M. Katayama, Visible-light-activated response originating from carrier-mobility modulation of NO2 gas sensors based on MoS2 monolayers. ACS Nano 15(2), 2542–2553 (2021). https://doi.org/10.1021/acsnano.0c06996
F. Chen, Q. Tang, T. Ma, B. Zhu, L. Wang et al., Structures, properties, and challenges of emerging 2D materials in bioelectronics and biosensors. InfoMat 4, e12299 (2022). https://doi.org/10.1002/inf2.12299
D. Wang, Z. Wang, Z. Yang, S. Wang, C. Tan et al., Facile damage-free double exposure for high-performance 2D semiconductor based transistors. Mater. Today Phys. 24, 100678 (2022). https://doi.org/10.1016/j.mtphys.2022.100678
L.H. Zeng, S.H. Lin, Z.J. Li, Z.X. Zhang, T.F. Zhang et al., Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Funct. Mater. 28(16), 1705970 (2018). https://doi.org/10.1002/adfm.201705970
H. Wang, L. Yu, Y.H. Lee, Y. Shi, A. Hsu et al., Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12(9), 4674–4680 (2012). https://doi.org/10.1021/nl302015v
W. Meng, F. Xu, Z. Yu, T. Tao, L. Shao et al., Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix. Nat. Nanotechnol. 16, 1231–1236 (2021). https://doi.org/10.1038/s41565-021-00966-5
M. Long, P. Wang, H. Fang, W. Hu, Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 29(19), 1803807 (2019). https://doi.org/10.1002/adfm.201803807
L.H. Zeng, D. Wu, S.H. Lin, C. Xie, H.Y. Yuan et al., Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 29(1), 1806878 (2019). https://doi.org/10.1002/adfm.201806878
Z. Shen, C. Zhang, Y. Meng, Z. Wang, Highly tunable, broadband, and negative photoresponse MoS2 photodetector driven by ion-gel gate dielectrics. ACS Appl. Mater. Interfaces 14(28), 32412–32419 (2022). https://doi.org/10.1021/acsami.2c08341
R. Tao, X. Qu, Z. Wang, F. Li, L. Yang et al., Tune the electronic structure of MoS2 homojunction for broadband photodetection. J. Mater. Sci. Technol. 119, 61–68 (2022). https://doi.org/10.1016/j.jmst.2021.12.032
O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013). https://doi.org/10.1038/nnano.2013.100
G. Wu, B. Tian, L. Liu, W. Lv, S. Wu et al., Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nat. Electron. 3, 43–50 (2020). https://doi.org/10.1038/s41928-019-0350-y
G. Wu, X. Wang, Y. Chen, S. Wu, B. Wu et al., MoTe2 p–n homojunctions defined by ferroelectric polarization. Adv. Mater. 32(16), 1907937 (2020). https://doi.org/10.1002/adma.201907937
L. Tu, R. Cao, X. Wang, Y. Chen, S. Wu et al., Ultrasensitive negative capacitance phototransistors. Nat. Commun. 11, 101 (2020). https://doi.org/10.1038/s41467-019-13769-z
Y. Chen, X. Wang, L. Huang, X. Wang, W. Jiang et al., Ferroelectric-tuned van der Waals heterojunction with band alignment evolution. Nat. Commun. 12, 4030 (2021). https://doi.org/10.1038/s41467-021-24296-1
Y. Huang, F. Zhuge, J. Hou, L. Lv, P. Luo et al., Van der Waals coupled organic molecules with monolayer MoS2 for fast response photodetectors with gate-tunable responsivity. ACS Nano 12(4), 4062–4073 (2018). https://doi.org/10.1021/acsnano.8b02380
T.R. Kafle, B. Kattel, P. Yao, P. Zereshki, H. Zhao et al., Effect of the interfacial energy landscape on photoinduced charge generation at the ZnPc/MoS2 interface. J. Am. Chem. Soc. 141(28), 11328–11336 (2019). https://doi.org/10.1021/jacs.9b05893
Z.H. Xu, L. Tang, S.W. Zhang, J.Z. Li, B.L. Liu et al., 2D MoS2/CuPc heterojunction based highly sensitive photodetectors through ultrafast charge transfer. Mater. Today Phys. 15, 100273 (2020). https://doi.org/10.1016/j.mtphys.2020.100273
C. Tan, R. Tao, Z. Yang, L. Yang, X. Huang et al., Tune the photoresponse of monolayer MoS2 by decorating CsPbBr3 perovskite nanops. Chin. Chem. Lett. (2022). https://doi.org/10.1016/j.cclet.2022.107979
A. Dodda, D. Jayachandran, A. Pannone, N. Trainor, S.P. Stepanoff et al., Active pixel sensor matrix based on monolayer MoS2 phototransistor array. Nat. Mater. 21, 1379–1387 (2022). https://doi.org/10.1038/s41563-022-01398-9
S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J.J. Piqueras et al., Broadband image sensor array based on graphene–CMOS integration. Nat. Photon. 11, 366–371 (2017). https://doi.org/10.1038/nphoton.2017.75
P. Wang, S. Liu, W. Luo, H. Fang, F. Gong et al., Arrayed van der Waals broadband detectors for dual-band detection. Adv. Mater. 29(16), 1604439 (2017). https://doi.org/10.1002/adma.201604439