Ultrathin Ti3C2Tx (MXene) Nanosheet-Wrapped NiSe2 Octahedral Crystal for Enhanced Supercapacitor Performance and Synergetic Electrocatalytic Water Splitting
Corresponding Author: Mingdong Dong
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 31
Abstract
Metal selenides, such as NiSe2, have exhibited great potentials as multifunctional materials for energy storage and conversation. However, the utilization of pure NiSe2 as electrode materials is limited by its poor cycling stability, low electrical conductivity, and insufficient electrochemically active sites. To remedy these defects, herein, a novel NiSe2/Ti3C2Tx hybrid with strong interfacial interaction and electrical properties is fabricated, by wrapping NiSe2 octahedral crystal with ultrathin Ti3C2Tx MXene nanosheet. The NiSe2/Ti3C2Tx hybrid exhibits excellent electrochemical performance, with a high specific capacitance of 531.2 F g−1 at 1 A g−1 for supercapacitor, low overpotential of 200 mV at 10 mA g−1, and small Tafel slope of 37.7 mV dec−1 for hydrogen evolution reaction (HER). Furthermore, greater cycling stabilities for NiSe2/Ti3C2Tx hybrid in both supercapacitor and HER have also been achieved. These significant improvements compared with unmodified NiSe2 should be owing to the strong interfacial interaction between NiSe2 octahedral crystal and Ti3C2Tx MXene, which provides enhanced conductivity, fast charge transfer as well as abundant active sites, and highlight the promising potentials in combinations of MXene with metal selenides for multifunctional applications such as energy storage and conversion.
Highlights:
1 A strong interfacial chemical interaction between the NiSe2 nanocrystal and Ti3C2Tx MXene nanosheet (NiSe2/Ti3C2Tx) was established by wrapping NiSe2 octahedral crystal with ultrathin Ti3C2Tx MXene nanosheet.
2 NiSe2/Ti3C2Tx hybrid exhibits excellent performance and cycling stability both in supercapacitor and hydrogen evolution reaction.
3 NiSe2 nanocrystals are stabilized by the covering of Ti3C2Tx MXene nanosheet which served as a protective layer from its oxidation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z.P. Cano, D. Banham, S.Y. Ye, A. Hintennach, J. Lu, M. Fowler, Z.W. Chen, Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3(4), 279–289 (2018). https://doi.org/10.1038/s41560-018-0108-1
- W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, X.M. Tao, Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv. Mater. 26(31), 5310–5336 (2014). https://doi.org/10.1002/adma.201400633
- L. Li, Z. Wu, S. Yuan, X.B. Zhang, Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ. Sci. 7(7), 2101–2122 (2014). https://doi.org/10.1039/c4ee00318g
- Y. Yang, H.L. Fei, G.D. Ruan, C.S. Xiang, J.M. Tour, Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices. Adv. Mater. 26(48), 8163–8168 (2014). https://doi.org/10.1002/adma.201402847
- X. Liu, J. Iocozzia, Y. Wang, X. Cui, Y. Chen, S. Zhao, Z. Li, Z. Lin, Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ. Sci. 10(2), 402–434 (2017). https://doi.org/10.1039/c6ee02265k
- J.M. Wei, M. Zhou, A.C. Long, Y.M. Xue, H.B. Liao, C. Wei, Z.C.J. Xu, Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nano-Micro Lett. 10(4), 75–84 (2018). https://doi.org/10.1007/s40820-018-0229-x
- J. Yang, C. Wang, H. Ju, Y. Sun, S. Xing, J. Zhu, Q. Yang, Integrated quasiplane heteronanostructures of MoSe2/Bi2Se3 hexagonal nanosheets: synergetic electrocatalytic water splitting and enhanced supercapacitor performance. Adv. Funct. Mater. 27(48), 1703864 (2017). https://doi.org/10.1002/adfm.201703864
- S. Li, C. Cheng, X. Zhao, J. Schmidt, A. Thomas, Active salt/silica-templated 2D mesoporous FeCo-Nx-carbon as bifunctional oxygen electrodes for zinc–air batteries. Angew. Chem. Int. Ed. 57(7), 1856–1862 (2018). https://doi.org/10.1002/anie.201710852
- S. Li, C. Cheng, A. Sagaltchik, P. Pachfule, C.S. Zhao, A. Thomas, Metal–organic precursor-derived mesoporous carbon spheres with homogeneously distributed molybdenum carbide/nitride nanoparticles for efficient hydrogen evolution in alkaline media. Adv. Funct. Mater. 29(3), 1807419 (2019). https://doi.org/10.1002/adfm.201807419
- X. Tian, X. Li, T. Yang, Y. Song, Z. Liu, Q. Guo, Recent advances on synthesis and supercapacitor application of binary metal oxide. J. Inorg. Mater. 32(5), 459–468 (2017). https://doi.org/10.15541/jim20160452
- G.C. Lau, N.A. Sather, H. Sai, E.M. Waring, E. Deiss-Yehiely et al., Oriented multiwalled organic–Co(OH)2 nanotubes for energy storage. Adv. Funct. Mater. 28(3), 1702320 (2018). https://doi.org/10.1002/adfm.201702320
- Z. Fan, J. Liang, W. Yu, S. Ding, S. Cheng et al., Ultrathin NiO nanosheets anchored on a highly ordered nanostructured carbon as an enhanced anode material for lithium ion batteries. Nano Energy 16, 152–162 (2015). https://doi.org/10.1016/j.nanoen.2015.06.009
- X. Yang, K. Xu, R. Zou, J. Hu, A hybrid electrode of Co3O4@PPy core/shell nanosheet arrays for high-performance supercapacitors. Nano-Micro Lett. 8(2), 143–150 (2016). https://doi.org/10.1007/s40820-015-0069-x
- J. Wang, F. Xu, H.Y. Jin, Y.Q. Chen, Y. Wang, Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv. Mater. 29(14), 1605838 (2017). https://doi.org/10.1002/Adma.201605838
- T. Chen, S. Li, J. Wen, P. Gui, G. Fang, Metal–organic framework template derived porous CoSe2 nanosheet arrays for energy conversion and storage. ACS Appl. Mater. Interfaces 9(41), 35927–35935 (2017). https://doi.org/10.1021/acsami.7b12403
- Z. Wang, Q. Li, Y. Chen, B. Cui, Y. Li, F. Besenbacher, M. Dong, The ambipolar transistor behavior of WSe2 transistors and its analogue circuits. NPG Asia Mater. 10, 703–712 (2018). https://doi.org/10.1038/s41427-018-0062-1
- Z.G. Wang, Q. Li, F. Besenbacher, M.D. Dong, Facile synthesis of single crystal PtSe2 nanosheets for nanoscale electronics. Adv. Mater. 28(46), 10224–10229 (2016). https://doi.org/10.1002/adma.201602889
- L. Xie, Z. Yang, J. Sun, H. Zhou, X. Cui et al., Bi2Se3/C nanocomposite as a new sodium-ion battery anode material. Nano Micro Lett. 10(3), 50 (2018). https://doi.org/10.1007/s40820-018-0201-9
- H. Fan, H. Yu, X. Wu, Y. Zhang, Z. Luo et al., Controllable preparation of square nickel chalcogenide (NiS and NiSe2) nanoplates for superior Li/Na ion storage properties. ACS Appl. Mater. Interfaces 8(38), 25261–25267 (2016). https://doi.org/10.1021/acsami.6b07300
- X. Ou, J. Li, F. Zheng, P. Wu, Q. Pan, X. Xiong, C. Yang, M. Liu, In situ X-ray diffraction characterization of NiSe2 as a promising anode material for sodium ion batteries. J. Power Sources 343, 483–491 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.097
- S. Zhu, Q. Li, Q. Wei, R. Sun, X. Liu, Q. An, L. Mai, NiSe2 nanooctahedra as an anode material for high-rate and long-life sodium-ion battery. ACS Appl. Mater. Interfaces 9(1), 311–316 (2017). https://doi.org/10.1021/acsami.6b10143
- M. Lu, X.P. Yuan, X.H. Guan, G.S. Wang, Synthesis of nickel chalcogenide hollow spheres using an l-cysteine-assisted hydrothermal process for efficient supercapacitor electrodes. J. Mater. Chem. A 5(7), 3621–3627 (2017). https://doi.org/10.1039/c6ta10426f
- K. Guo, F. Yang, S. Cui, W. Chen, L. Mi, Controlled synthesis of 3D hierarchical NiSe microspheres for high-performance supercapacitor design. RSC Adv. 6(52), 46523–46530 (2016). https://doi.org/10.1039/c6ra06909f
- W. Wei, L. Mi, Y. Gao, Z. Zheng, W. Chen, X. Guan, Partial ion-exchange of nickel-sulfide-derived electrodes for high performance supercapacitors. Chem. Mater. 26(11), 3418–3426 (2014). https://doi.org/10.1021/cm5006482
- A. Chang, C. Zhang, Y. Yu, Y. Yu, B. Zhang, Plasma-assisted synthesis of NiSe2 ultrathin porous nanosheets with selenium vacancies for supercapacitor. ACS Appl. Mater. Interfaces 10, 4161–4165 (2018). https://doi.org/10.1021/acsami.8b16072
- B. Yu, X. Wang, F. Qi, B. Zheng, J. He et al., Self-assembled coral-like hierarchical architecture constructed by NiSe2 nanocrystals with comparable hydrogen-evolution performance of precious platinum catalyst. ACS Appl. Mater. Interfaces 9(8), 7154–7159 (2017). https://doi.org/10.1021/acsami.6b15719
- J. Liang, Y. Yang, J. Zhang, J. Wu, P. Dong, J. Yuan, G. Zhang, J. Lou, Metal diselenide nanoparticles as highly active and stable electrocatalysts for the hydrogen evolution reaction. Nanoscale 7(36), 14813–14816 (2015). https://doi.org/10.1039/c5nr03724g
- Z. Gao, J. Qi, M. Chen, W. Zhang, R. Cao, An electrodeposited NiSe for electrocatalytic hydrogen and oxygen evolution reactions in alkaline solution. Electrochim. Acta 224, 412–418 (2017). https://doi.org/10.1016/j.electacta.2016.12.070
- Q.L. Liu, Y.J. Dong, Y. Cao, H.Y. Chen, D.B. Kuang, C.Y. Su, NixSy/NiSe2 hybrid catalyst grown in situ on conductive glass substrate as efficient counter electrode for dye-sensitized solar cells. Electrochim. Acta 250, 244–250 (2017). https://doi.org/10.1016/j.electacta.2017.08.085
- Z. Wang, H.H. Wu, Q. Li, F. Besenbacher, X.C. Zeng, M. Dong, Self-scrolling MoS2 metallic wires. Nanoscale 10, 18178–18185 (2018). https://doi.org/10.1039/c8nr04611e
- P. Zhang, Z. Wang, L. Liu, L.H. Klausen, Y. Wang, J.L. Mi, M. Dong, Modulation the electronic property of 2D monolayer MoS2 by amino acid. Appl. Mater. Today 14, 151–158 (2019). https://doi.org/10.1016/j.apmt.2018.12.003
- D.Y. Song, H.Q. Wang, X.Q. Wang, B. Yu, Y.F. Chen, NiSe2 nanoparticles embedded in carbon nanowires as highly efficient and stable electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 254, 230–237 (2017). https://doi.org/10.1016/j.electacta.2017.09.056
- S. Zheng, L. Zheng, Z. Zhu, J. Chen, J. Kang, Z. Huang, D. Yang, MoS2 nanosheet arrays rooted on hollow rGO spheres as bifunctional hydrogen evolution catalyst and supercapacitor electrode. Nano-Micro Lett. 10(4), 62–72 (2018). https://doi.org/10.1007/s40820-018-0215-3
- Q.H. Wang, C. Guo, Y.X. Zhu, J.P. He, H.Q. Wang, Reduced graphene oxide-wrapped FeS2 composite as anode for high-performance sodium-ion batteries. Nano-Micro Lett. 10(2), 30–40 (2018). https://doi.org/10.1007/s40820-017-0183-z
- Y.Y. Peng, B. Akuzum, N. Kurra, M.Q. Zhao, M. Alhabe et al., All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy Environ. Sci. 9(9), 2847–2854 (2016). https://doi.org/10.1039/c6ee01717g
- M. Beidaghi, Y. Gogotsi, Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Sci. 7(3), 867–884 (2014). https://doi.org/10.1039/c3ee43526a
- M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153), 1502–1505 (2013). https://doi.org/10.1126/science.1241488
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th Anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014). https://doi.org/10.1002/adma.201304138
- M.R. Lukatskaya, S. Kota, Z. Lin, M.Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2(8), 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
- M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516(7529), 78–81 (2014). https://doi.org/10.1038/nature13970
- C.J. Zhang, B. Anasori, A. Seral-Ascaso, S.H. Park, N. McEvoy et al., Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29(36), 1702678 (2017). https://doi.org/10.1002/adma.201702678
- M.Q. Zhao, M. Torelli, C.E. Ren, M. Ghidiu, Z. Ling, B. Anasori, M.W. Barsoum, Y. Gogotsi, 2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage. Nano Energy 30, 603–613 (2016). https://doi.org/10.1016/j.nanoen.2016.10.062
- M. Hu, T. Hu, Z. Li, Y. Yang, R. Cheng, J. Yang, C. Cui, X. Wang, Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2Tx MXene. ACS Nano 12(4), 3578–3586 (2018). https://doi.org/10.1021/acsnano.8b00676
- H.M. Jiang, Z.G. Wang, Q. Yang, M. Hanif, Z.M. Wang, L.C. Dong, M.D. Dong, A novel MnO2/Ti3C2Tx MXene nanocomposite as high performance electrode materials for flexible supercapacitors. Electrochim. Acta 290, 695–703 (2018). https://doi.org/10.1016/j.electacta.2018.08.096
- J.L.C. Tian, Y. Ma, M. Jaroniec, S.Z. Qiao, Interacting carbon nitride and titanium carbide nanosheets for high performance oxygen evolution. Angew. Chem. Int. Ed. 55, 1138–1142 (2016). https://doi.org/10.1002/anie.201509758
- L. Zhao, B. Dong, S. Li, L. Zhou, L. Lai et al., Interdiffusion reaction-assisted hybridization of two-dimensional metal-organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano 11(6), 5800–5807 (2017). https://doi.org/10.1021/acsnano.7b01409
- X. Wu, Z. Wang, M. Yu, L. Xiu, J. Qiu, Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv. Mater. 29(24), 1607017 (2017). https://doi.org/10.1002/adma.201607017
- N.S. Arul, J.I. Han, Facile hydrothermal synthesis of hexapod-like two dimensional dichalcogenide NiSe2 for supercapacitor. Mater. Lett. 181, 345–349 (2016). https://doi.org/10.1016/j.matlet.2016.06.065
- T. Chen, S.Z. Li, J. Wen, P.B. Gui, Y.X. Guo, C. Guan, J.P. Liu, G.J. Fang, Rational construction of hollow core-branch CoSe2 nanoarrays for high-performance asymmetric supercapacitor and efficient oxygen evolution. Small 14(5), 8 (2018). https://doi.org/10.1002/smll.201700979
- Z. Zhuang, Q. Peng, J. Zhuang, X. Wang, Y. Li, Controlled hydrothermal synthesis and structural characterization of a nickel selenide series. Chem. Eur. J. 12(1), 211–217 (2006). https://doi.org/10.1002/chem.200500724
- T.A. Babkova, H. Fei, N.E. Kazantseva, I.Y. Sapurina, P. Saha, Enhancing the supercapacitor performance of flexible MnO(x)Carbon cloth electrodes by Pd-decoration. Electrochim. Acta 272, 1–10 (2018). https://doi.org/10.1016/j.electacta.2018.03.143
- G.H. Yu, L.B. Hu, N.A. Liu, H.L. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, Z.A. Bao, Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett. 11(10), 4438–4442 (2011). https://doi.org/10.1021/nl2026635
- Z. Wang, Q. Li, H. Xu, C. Dahl-Petersen, Q. Yang et al., Controllable etching of MoS2 basal planes for enhanced hydrogen evolution through the formation of active edge sites. Nano Energy 49, 634–643 (2018). https://doi.org/10.1016/j.nanoen.2018.04.067
- Y. Zhao, Z. Song, X. Li, Q. Sun, N. Cheng, S. Lawes, X. Sun, Metal organic frameworks for energy storage and conversion. Energy Storage Mater. 2, 35–62 (2016). https://doi.org/10.1016/j.ensm.2015.11.005
- M. Yu, S. Zhou, Z. Wang, J. Zhao, J. Qiu, Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene. Nano Energy 44, 181–190 (2018). https://doi.org/10.1016/j.nanoen.2017.12.003
- H.X. Liu, X.J. Liu, Z.Y. Mao, Z. Zhao, X.Y. Peng, J. Luo, X.M. Sun, Plasma-activated Co3(PO4)(2) nanosheet arrays with Co3+-rich surfaces for overall water splitting. J. Power Sources 400, 190–197 (2018). https://doi.org/10.1016/j.jpowsour.2018.08.028
- Z.L. Li, Z.C. Zhuang, F. Lv, H. Zhu, L. Zhou et al., The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe 3D electron delocalization matters. Adv. Mater. 30(43), 1803220 (2018). https://doi.org/10.1002/Adma.201803220
- X. Qing, S. Liu, K. Huang, K. Lv, Y. Yang, Z. Lu, D. Fang, X. Liang, Facile synthesis of Co3O4 nanoflowers grown on Ni foam with superior electrochemical performance. Electrochim. Acta 56(14), 4985–4991 (2011). https://doi.org/10.1016/j.electacta.2011.03.118
- H. Wang, J.J. Zhu, J.M. Zhu, H. Chen, Sonochemical method for the preparation of bismuth sulfide nanorods. J. Phys. Chem. B 106(15), 3848–3854 (2002). https://doi.org/10.1021/jp0135003
- Z. Wang, Y. Chen, P. Li, J. He, W. Zhang, Z. Guo, Y. Li, M. Dong, Synthesis of silicon-doped reduced graphene oxide and its applications in dye-sensitive solar cells and supercapacitors. RSC Adv. 6(18), 15080–15086 (2016). https://doi.org/10.1039/c5ra25962b
- S.B. Li, Z.F. Wang, H.M. Jiang, L.M. Zhang, J.Z. Ren et al., Plasma-induced highly efficient synthesis of boron doped reduced graphene oxide for supercapacitors. Chem. Commun. 52(73), 10988–10991 (2016). https://doi.org/10.1039/c6cc04052g
- H.A. Bandal, A.R. Jadhav, A.H. Tamboli, H. Kim, Bimetallic iron cobalt oxide self-supported on Ni-Foam: an efficient bifunctional electrocatalyst for oxygen and hydrogen evolution reaction. Electrochim. Acta 249, 253–262 (2017). https://doi.org/10.1016/j.electacta.2017.07.178
- Z. Chen, K. Leng, X. Zhao, S. Malkhandi, W. Tang et al., Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide. Nat. Commun. 8, 14548 (2017). https://doi.org/10.1038/ncomms14548
References
Z.P. Cano, D. Banham, S.Y. Ye, A. Hintennach, J. Lu, M. Fowler, Z.W. Chen, Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3(4), 279–289 (2018). https://doi.org/10.1038/s41560-018-0108-1
W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, X.M. Tao, Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv. Mater. 26(31), 5310–5336 (2014). https://doi.org/10.1002/adma.201400633
L. Li, Z. Wu, S. Yuan, X.B. Zhang, Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ. Sci. 7(7), 2101–2122 (2014). https://doi.org/10.1039/c4ee00318g
Y. Yang, H.L. Fei, G.D. Ruan, C.S. Xiang, J.M. Tour, Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices. Adv. Mater. 26(48), 8163–8168 (2014). https://doi.org/10.1002/adma.201402847
X. Liu, J. Iocozzia, Y. Wang, X. Cui, Y. Chen, S. Zhao, Z. Li, Z. Lin, Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ. Sci. 10(2), 402–434 (2017). https://doi.org/10.1039/c6ee02265k
J.M. Wei, M. Zhou, A.C. Long, Y.M. Xue, H.B. Liao, C. Wei, Z.C.J. Xu, Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nano-Micro Lett. 10(4), 75–84 (2018). https://doi.org/10.1007/s40820-018-0229-x
J. Yang, C. Wang, H. Ju, Y. Sun, S. Xing, J. Zhu, Q. Yang, Integrated quasiplane heteronanostructures of MoSe2/Bi2Se3 hexagonal nanosheets: synergetic electrocatalytic water splitting and enhanced supercapacitor performance. Adv. Funct. Mater. 27(48), 1703864 (2017). https://doi.org/10.1002/adfm.201703864
S. Li, C. Cheng, X. Zhao, J. Schmidt, A. Thomas, Active salt/silica-templated 2D mesoporous FeCo-Nx-carbon as bifunctional oxygen electrodes for zinc–air batteries. Angew. Chem. Int. Ed. 57(7), 1856–1862 (2018). https://doi.org/10.1002/anie.201710852
S. Li, C. Cheng, A. Sagaltchik, P. Pachfule, C.S. Zhao, A. Thomas, Metal–organic precursor-derived mesoporous carbon spheres with homogeneously distributed molybdenum carbide/nitride nanoparticles for efficient hydrogen evolution in alkaline media. Adv. Funct. Mater. 29(3), 1807419 (2019). https://doi.org/10.1002/adfm.201807419
X. Tian, X. Li, T. Yang, Y. Song, Z. Liu, Q. Guo, Recent advances on synthesis and supercapacitor application of binary metal oxide. J. Inorg. Mater. 32(5), 459–468 (2017). https://doi.org/10.15541/jim20160452
G.C. Lau, N.A. Sather, H. Sai, E.M. Waring, E. Deiss-Yehiely et al., Oriented multiwalled organic–Co(OH)2 nanotubes for energy storage. Adv. Funct. Mater. 28(3), 1702320 (2018). https://doi.org/10.1002/adfm.201702320
Z. Fan, J. Liang, W. Yu, S. Ding, S. Cheng et al., Ultrathin NiO nanosheets anchored on a highly ordered nanostructured carbon as an enhanced anode material for lithium ion batteries. Nano Energy 16, 152–162 (2015). https://doi.org/10.1016/j.nanoen.2015.06.009
X. Yang, K. Xu, R. Zou, J. Hu, A hybrid electrode of Co3O4@PPy core/shell nanosheet arrays for high-performance supercapacitors. Nano-Micro Lett. 8(2), 143–150 (2016). https://doi.org/10.1007/s40820-015-0069-x
J. Wang, F. Xu, H.Y. Jin, Y.Q. Chen, Y. Wang, Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv. Mater. 29(14), 1605838 (2017). https://doi.org/10.1002/Adma.201605838
T. Chen, S. Li, J. Wen, P. Gui, G. Fang, Metal–organic framework template derived porous CoSe2 nanosheet arrays for energy conversion and storage. ACS Appl. Mater. Interfaces 9(41), 35927–35935 (2017). https://doi.org/10.1021/acsami.7b12403
Z. Wang, Q. Li, Y. Chen, B. Cui, Y. Li, F. Besenbacher, M. Dong, The ambipolar transistor behavior of WSe2 transistors and its analogue circuits. NPG Asia Mater. 10, 703–712 (2018). https://doi.org/10.1038/s41427-018-0062-1
Z.G. Wang, Q. Li, F. Besenbacher, M.D. Dong, Facile synthesis of single crystal PtSe2 nanosheets for nanoscale electronics. Adv. Mater. 28(46), 10224–10229 (2016). https://doi.org/10.1002/adma.201602889
L. Xie, Z. Yang, J. Sun, H. Zhou, X. Cui et al., Bi2Se3/C nanocomposite as a new sodium-ion battery anode material. Nano Micro Lett. 10(3), 50 (2018). https://doi.org/10.1007/s40820-018-0201-9
H. Fan, H. Yu, X. Wu, Y. Zhang, Z. Luo et al., Controllable preparation of square nickel chalcogenide (NiS and NiSe2) nanoplates for superior Li/Na ion storage properties. ACS Appl. Mater. Interfaces 8(38), 25261–25267 (2016). https://doi.org/10.1021/acsami.6b07300
X. Ou, J. Li, F. Zheng, P. Wu, Q. Pan, X. Xiong, C. Yang, M. Liu, In situ X-ray diffraction characterization of NiSe2 as a promising anode material for sodium ion batteries. J. Power Sources 343, 483–491 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.097
S. Zhu, Q. Li, Q. Wei, R. Sun, X. Liu, Q. An, L. Mai, NiSe2 nanooctahedra as an anode material for high-rate and long-life sodium-ion battery. ACS Appl. Mater. Interfaces 9(1), 311–316 (2017). https://doi.org/10.1021/acsami.6b10143
M. Lu, X.P. Yuan, X.H. Guan, G.S. Wang, Synthesis of nickel chalcogenide hollow spheres using an l-cysteine-assisted hydrothermal process for efficient supercapacitor electrodes. J. Mater. Chem. A 5(7), 3621–3627 (2017). https://doi.org/10.1039/c6ta10426f
K. Guo, F. Yang, S. Cui, W. Chen, L. Mi, Controlled synthesis of 3D hierarchical NiSe microspheres for high-performance supercapacitor design. RSC Adv. 6(52), 46523–46530 (2016). https://doi.org/10.1039/c6ra06909f
W. Wei, L. Mi, Y. Gao, Z. Zheng, W. Chen, X. Guan, Partial ion-exchange of nickel-sulfide-derived electrodes for high performance supercapacitors. Chem. Mater. 26(11), 3418–3426 (2014). https://doi.org/10.1021/cm5006482
A. Chang, C. Zhang, Y. Yu, Y. Yu, B. Zhang, Plasma-assisted synthesis of NiSe2 ultrathin porous nanosheets with selenium vacancies for supercapacitor. ACS Appl. Mater. Interfaces 10, 4161–4165 (2018). https://doi.org/10.1021/acsami.8b16072
B. Yu, X. Wang, F. Qi, B. Zheng, J. He et al., Self-assembled coral-like hierarchical architecture constructed by NiSe2 nanocrystals with comparable hydrogen-evolution performance of precious platinum catalyst. ACS Appl. Mater. Interfaces 9(8), 7154–7159 (2017). https://doi.org/10.1021/acsami.6b15719
J. Liang, Y. Yang, J. Zhang, J. Wu, P. Dong, J. Yuan, G. Zhang, J. Lou, Metal diselenide nanoparticles as highly active and stable electrocatalysts for the hydrogen evolution reaction. Nanoscale 7(36), 14813–14816 (2015). https://doi.org/10.1039/c5nr03724g
Z. Gao, J. Qi, M. Chen, W. Zhang, R. Cao, An electrodeposited NiSe for electrocatalytic hydrogen and oxygen evolution reactions in alkaline solution. Electrochim. Acta 224, 412–418 (2017). https://doi.org/10.1016/j.electacta.2016.12.070
Q.L. Liu, Y.J. Dong, Y. Cao, H.Y. Chen, D.B. Kuang, C.Y. Su, NixSy/NiSe2 hybrid catalyst grown in situ on conductive glass substrate as efficient counter electrode for dye-sensitized solar cells. Electrochim. Acta 250, 244–250 (2017). https://doi.org/10.1016/j.electacta.2017.08.085
Z. Wang, H.H. Wu, Q. Li, F. Besenbacher, X.C. Zeng, M. Dong, Self-scrolling MoS2 metallic wires. Nanoscale 10, 18178–18185 (2018). https://doi.org/10.1039/c8nr04611e
P. Zhang, Z. Wang, L. Liu, L.H. Klausen, Y. Wang, J.L. Mi, M. Dong, Modulation the electronic property of 2D monolayer MoS2 by amino acid. Appl. Mater. Today 14, 151–158 (2019). https://doi.org/10.1016/j.apmt.2018.12.003
D.Y. Song, H.Q. Wang, X.Q. Wang, B. Yu, Y.F. Chen, NiSe2 nanoparticles embedded in carbon nanowires as highly efficient and stable electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 254, 230–237 (2017). https://doi.org/10.1016/j.electacta.2017.09.056
S. Zheng, L. Zheng, Z. Zhu, J. Chen, J. Kang, Z. Huang, D. Yang, MoS2 nanosheet arrays rooted on hollow rGO spheres as bifunctional hydrogen evolution catalyst and supercapacitor electrode. Nano-Micro Lett. 10(4), 62–72 (2018). https://doi.org/10.1007/s40820-018-0215-3
Q.H. Wang, C. Guo, Y.X. Zhu, J.P. He, H.Q. Wang, Reduced graphene oxide-wrapped FeS2 composite as anode for high-performance sodium-ion batteries. Nano-Micro Lett. 10(2), 30–40 (2018). https://doi.org/10.1007/s40820-017-0183-z
Y.Y. Peng, B. Akuzum, N. Kurra, M.Q. Zhao, M. Alhabe et al., All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy Environ. Sci. 9(9), 2847–2854 (2016). https://doi.org/10.1039/c6ee01717g
M. Beidaghi, Y. Gogotsi, Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Sci. 7(3), 867–884 (2014). https://doi.org/10.1039/c3ee43526a
M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153), 1502–1505 (2013). https://doi.org/10.1126/science.1241488
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th Anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014). https://doi.org/10.1002/adma.201304138
M.R. Lukatskaya, S. Kota, Z. Lin, M.Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2(8), 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516(7529), 78–81 (2014). https://doi.org/10.1038/nature13970
C.J. Zhang, B. Anasori, A. Seral-Ascaso, S.H. Park, N. McEvoy et al., Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29(36), 1702678 (2017). https://doi.org/10.1002/adma.201702678
M.Q. Zhao, M. Torelli, C.E. Ren, M. Ghidiu, Z. Ling, B. Anasori, M.W. Barsoum, Y. Gogotsi, 2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage. Nano Energy 30, 603–613 (2016). https://doi.org/10.1016/j.nanoen.2016.10.062
M. Hu, T. Hu, Z. Li, Y. Yang, R. Cheng, J. Yang, C. Cui, X. Wang, Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2Tx MXene. ACS Nano 12(4), 3578–3586 (2018). https://doi.org/10.1021/acsnano.8b00676
H.M. Jiang, Z.G. Wang, Q. Yang, M. Hanif, Z.M. Wang, L.C. Dong, M.D. Dong, A novel MnO2/Ti3C2Tx MXene nanocomposite as high performance electrode materials for flexible supercapacitors. Electrochim. Acta 290, 695–703 (2018). https://doi.org/10.1016/j.electacta.2018.08.096
J.L.C. Tian, Y. Ma, M. Jaroniec, S.Z. Qiao, Interacting carbon nitride and titanium carbide nanosheets for high performance oxygen evolution. Angew. Chem. Int. Ed. 55, 1138–1142 (2016). https://doi.org/10.1002/anie.201509758
L. Zhao, B. Dong, S. Li, L. Zhou, L. Lai et al., Interdiffusion reaction-assisted hybridization of two-dimensional metal-organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano 11(6), 5800–5807 (2017). https://doi.org/10.1021/acsnano.7b01409
X. Wu, Z. Wang, M. Yu, L. Xiu, J. Qiu, Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv. Mater. 29(24), 1607017 (2017). https://doi.org/10.1002/adma.201607017
N.S. Arul, J.I. Han, Facile hydrothermal synthesis of hexapod-like two dimensional dichalcogenide NiSe2 for supercapacitor. Mater. Lett. 181, 345–349 (2016). https://doi.org/10.1016/j.matlet.2016.06.065
T. Chen, S.Z. Li, J. Wen, P.B. Gui, Y.X. Guo, C. Guan, J.P. Liu, G.J. Fang, Rational construction of hollow core-branch CoSe2 nanoarrays for high-performance asymmetric supercapacitor and efficient oxygen evolution. Small 14(5), 8 (2018). https://doi.org/10.1002/smll.201700979
Z. Zhuang, Q. Peng, J. Zhuang, X. Wang, Y. Li, Controlled hydrothermal synthesis and structural characterization of a nickel selenide series. Chem. Eur. J. 12(1), 211–217 (2006). https://doi.org/10.1002/chem.200500724
T.A. Babkova, H. Fei, N.E. Kazantseva, I.Y. Sapurina, P. Saha, Enhancing the supercapacitor performance of flexible MnO(x)Carbon cloth electrodes by Pd-decoration. Electrochim. Acta 272, 1–10 (2018). https://doi.org/10.1016/j.electacta.2018.03.143
G.H. Yu, L.B. Hu, N.A. Liu, H.L. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, Z.A. Bao, Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett. 11(10), 4438–4442 (2011). https://doi.org/10.1021/nl2026635
Z. Wang, Q. Li, H. Xu, C. Dahl-Petersen, Q. Yang et al., Controllable etching of MoS2 basal planes for enhanced hydrogen evolution through the formation of active edge sites. Nano Energy 49, 634–643 (2018). https://doi.org/10.1016/j.nanoen.2018.04.067
Y. Zhao, Z. Song, X. Li, Q. Sun, N. Cheng, S. Lawes, X. Sun, Metal organic frameworks for energy storage and conversion. Energy Storage Mater. 2, 35–62 (2016). https://doi.org/10.1016/j.ensm.2015.11.005
M. Yu, S. Zhou, Z. Wang, J. Zhao, J. Qiu, Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene. Nano Energy 44, 181–190 (2018). https://doi.org/10.1016/j.nanoen.2017.12.003
H.X. Liu, X.J. Liu, Z.Y. Mao, Z. Zhao, X.Y. Peng, J. Luo, X.M. Sun, Plasma-activated Co3(PO4)(2) nanosheet arrays with Co3+-rich surfaces for overall water splitting. J. Power Sources 400, 190–197 (2018). https://doi.org/10.1016/j.jpowsour.2018.08.028
Z.L. Li, Z.C. Zhuang, F. Lv, H. Zhu, L. Zhou et al., The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe 3D electron delocalization matters. Adv. Mater. 30(43), 1803220 (2018). https://doi.org/10.1002/Adma.201803220
X. Qing, S. Liu, K. Huang, K. Lv, Y. Yang, Z. Lu, D. Fang, X. Liang, Facile synthesis of Co3O4 nanoflowers grown on Ni foam with superior electrochemical performance. Electrochim. Acta 56(14), 4985–4991 (2011). https://doi.org/10.1016/j.electacta.2011.03.118
H. Wang, J.J. Zhu, J.M. Zhu, H. Chen, Sonochemical method for the preparation of bismuth sulfide nanorods. J. Phys. Chem. B 106(15), 3848–3854 (2002). https://doi.org/10.1021/jp0135003
Z. Wang, Y. Chen, P. Li, J. He, W. Zhang, Z. Guo, Y. Li, M. Dong, Synthesis of silicon-doped reduced graphene oxide and its applications in dye-sensitive solar cells and supercapacitors. RSC Adv. 6(18), 15080–15086 (2016). https://doi.org/10.1039/c5ra25962b
S.B. Li, Z.F. Wang, H.M. Jiang, L.M. Zhang, J.Z. Ren et al., Plasma-induced highly efficient synthesis of boron doped reduced graphene oxide for supercapacitors. Chem. Commun. 52(73), 10988–10991 (2016). https://doi.org/10.1039/c6cc04052g
H.A. Bandal, A.R. Jadhav, A.H. Tamboli, H. Kim, Bimetallic iron cobalt oxide self-supported on Ni-Foam: an efficient bifunctional electrocatalyst for oxygen and hydrogen evolution reaction. Electrochim. Acta 249, 253–262 (2017). https://doi.org/10.1016/j.electacta.2017.07.178
Z. Chen, K. Leng, X. Zhao, S. Malkhandi, W. Tang et al., Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide. Nat. Commun. 8, 14548 (2017). https://doi.org/10.1038/ncomms14548