Stimuli-Responsive Gene Delivery Nanocarriers for Cancer Therapy
Corresponding Author: Yuanjin Zhao
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 44
Abstract
Gene therapy provides a promising approach in treating cancers with high efficacy and selectivity and few adverse effects. Currently, the development of functional vectors with safety and effectiveness is the intense focus for improving the delivery of nucleic acid drugs for gene therapy. For this purpose, stimuli-responsive nanocarriers displayed strong potential in improving the overall efficiencies of gene therapy and reducing adverse effects via effective protection, prolonged blood circulation, specific tumor accumulation, and controlled release profile of nucleic acid drugs. Besides, synergistic therapy could be achieved when combined with other therapeutic regimens. This review summarizes recent advances in various stimuli-responsive nanocarriers for gene delivery. Particularly, the nanocarriers responding to endogenous stimuli including pH, reactive oxygen species, glutathione, and enzyme, etc., and exogenous stimuli including light, thermo, ultrasound, magnetic field, etc., are introduced. Finally, the future challenges and prospects of stimuli-responsive gene delivery nanocarriers toward potential clinical translation are well discussed. The major objective of this review is to present the biomedical potential of stimuli-responsive gene delivery nanocarriers for cancer therapy and provide guidance for developing novel nanoplatforms that are clinically applicable.
Highlights:
1 Stimuli-responsive gene delivery nanocarriers (GDNCs) possess huge potential in the gene therapy field owing to their effective protection, prolonged blood circulation, selective and targeted delivery, and controlled release of nucleic acid drugs.
2 Recent advances in stimuli-responsive GDNCs for cancer therapy are classified, summarized, and exhibited by representative examples.
3 The potential challenges and prospects of stimuli-responsive GDNCs toward clinical translation are outlined and the future research directions are outlooked.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram et al., Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA-Cancer J. Clin. 71(3), 209–249 (2021). https://doi.org/10.3322/caac.21660
- Y. Wang, X. Ma, W. Zhou, C. Liu, H. Zhang, Reregulated mitochondrial dysfunction reverses cisplatin resistance microenvironment in colorectal cancer. Smart Med. 1(1), 20220013 (2022). https://doi.org/10.1002/SMMD.20220013
- Y. Yang, P. Jin, X. Zhang, N. Ravichandran, H. Ying et al., New epigallocatechin gallate (EGCG) nanocomplexes co-assembled with 3-mercapto-1-hexanol and β-lactoglobulin for improvement of antitumor activity. J. Biomed. Nanotechnol. 13(7), 805–814 (2017). https://doi.org/10.1166/jbn.2017.2400
- D. Zhang, D. Zhong, J. Ouyang, J. He, Y. Qi et al., Microalgae-based oral microcarriers for gut microbiota homeostasis and intestinal protection in cancer radiotherapy. Nat. Commun. 13(1), 1413 (2022). https://doi.org/10.1038/s41467-022-28744-4
- Q. Zhang, G. Kuang, L. Zhang, Y. Zhu, Nanocarriers for platinum drug delivery. Biomed. Technol. 2, 77–89 (2023). https://doi.org/10.1016/j.bmt.2022.11.011
- L. Lei, B. Ma, C. Xu, H. Liu, Emerging tumor-on-chips with electrochemical biosensors. Trac-Trend. Anal. Chem. 153, 116640 (2022). https://doi.org/10.1016/j.trac.2022.116640
- X. Zhang, X. Chen, Y. Zhao, Nanozymes: versatile platforms for cancer diagnosis and therapy. Nano-Micro Lett. 14(1), 95 (2022). https://doi.org/10.1007/s40820-022-00828-2
- M.E. Davis, Non-viral gene delivery systems. Curr. Opin. Biotechnol. 13(2), 128–131 (2002). https://doi.org/10.1016/S0958-1669(02)00294-X
- B. Vogelstein, K.W. Kinzler, Cancer genes and the pathways they control. Nat. Med. 10(8), 789–799 (2004). https://doi.org/10.1038/nm1087
- P.Y. Teo, W. Cheng, J.L. Hedrick, Y.Y. Yang, Co-delivery of drugs and plasmid DNA for cancer therapy. Adv. Drug Delivery Rev. 98, 41–63 (2016). https://doi.org/10.1016/j.addr.2015.10.014
- L. Naldini, Gene therapy returns to centre stage. Nature 526(7573), 351–360 (2015). https://doi.org/10.1038/nature15818
- L. Jin, X. Zeng, M. Liu, Y. Deng, N. He, Current progress in gene delivery technology based on chemical methods and nano-carriers. Theranostics 4(3), 240 (2014). https://doi.org/10.7150/thno.6914
- M.H. Amer, Gene therapy for cancer: present status and future perspective. Mol. Cell. Ther. 2(1), 1–19 (2014). https://doi.org/10.1186/2052-8426-2-27
- Z. Yang, D. Gao, Z. Cao, C. Zhang, D. Cheng et al., Drug and gene co-delivery systems for cancer treatment. Biomater. Sci. 3(7), 1035–1049 (2015). https://doi.org/10.1039/c4bm00369a
- H.J. Kim, A. Kim, K. Miyata, K. Kataoka, Recent progress in development of siRNA delivery vehicles for cancer therapy. Adv. Drug Delivery Rev. 104, 61–77 (2016). https://doi.org/10.1016/j.addr.2016.06.011
- Z. Zhou, X. Liu, D. Zhu, Y. Wang, Z. Zhang et al., Nonviral cancer gene therapy: delivery cascade and vector nanoproperty integration. Adv. Drug Delivery Rev. 115, 115–154 (2017). https://doi.org/10.1016/j.addr.2017.07.021
- J.E. Zuckerman, M.E. Davis, Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat. Rev. Drug Discov. 14(12), 843–856 (2015). https://doi.org/10.1038/nrd4685
- X. Huang, G. Wu, C. Liu, X. Hua, Z. Tang et al., Intercalation-driven formation of siRNA nanogels for cancer therapy. Nano Lett. 21(22), 9706–9714 (2021). https://doi.org/10.1021/acs.nanolett.1c03539
- E.P. Thi, C.E. Mire, A.C.H. Lee, J.B. Geisbert, J.Z. Zhou et al., Lipid nanop siRNA treatment of Ebola-virus-Makona-infected nonhuman primates. Nature 521(7552), 362–365 (2015). https://doi.org/10.1038/nature14442
- L. Alvarez-Erviti, Y. Seow, H. Yin, C. Betts, S. Lakhal et al., Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29(4), 341–345 (2011). https://doi.org/10.1038/nbt.1807
- E. Uhlmann, A. Peyman, Antisense oligonucleotides: a new therapeutic principle. Chem. Rev. 90(4), 543–584 (1990). https://doi.org/10.1021/cr00102a001
- A. De Mesmaeker, R. Haener, P. Martin, H.E. Moser, Antisense oligonucleotides. Acc. Chem. Res. 28(9), 366–374 (1995). https://doi.org/10.1021/ar00057a002
- M.D. Jansson, A.H. Lund, MicroRNA and cancer. Mol. Oncol. 6(6), 590–610 (2012). https://doi.org/10.1016/j.molonc.2012.09.006
- G.A. Calin, C.M. Croce, MicroRNA-cancer connection: the beginning of a new tale. Cancer Res. 66(15), 7390–7394 (2006). https://doi.org/10.1158/0008-5472.CAN-06-0800
- Y. Xiao, Z. Tang, X. Huang, W. Chen, J. Zhou et al., Emerging mRNA technologies: delivery strategies and biomedical applications. Chem. Soc. Rev. 51(10), 3828–3845 (2022). https://doi.org/10.1039/d1cs00617g
- N. Kong, R. Zhang, G. Wu, X. Sui, J. Wang et al., Intravesical delivery of KDM6A-mRNA via mucoadhesive nanops inhibits the metastasis of bladder cancer. Proc. Nat. Acad. Sci. (2022). https://doi.org/10.1073/pnas.2112696119
- W. Tao, N.A. Peppas, Robotic pills for gastrointestinal-tract-targeted oral mRNA delivery. Matter 5(3), 775–777 (2022). https://doi.org/10.1016/j.matt.2022.02.008
- N. Kong, W. Tao, X. Ling, J. Wang, Y. Xiao et al., Synthetic mRNA nanop-mediated restoration of p53 tumor suppressor sensitizes p53-deficient cancers to mTOR inhibition. Sci. Transl. Med. 11(523), eaaw1565 (2019). https://doi.org/10.1126/scitranslmed.aaw1565
- D.O. Lopez-Cantu, X. Wang, H. Carrasco-Magallanes, S. Afewerki, X. Zhang et al., From bench to the clinic: The path to translation of nanotechnology-enabled mRNA SARS-CoV-2 vaccines. Nano-Micro Lett. 14(1), 41 (2022). https://doi.org/10.1007/s40820-021-00771-8
- L. Wu, W. Zhou, L. Lin, A. Chen, J. Feng et al., Delivery of therapeutic oligonucleotides in nanoscale. Bioact. Mater. 7, 292–323 (2022). https://doi.org/10.1016/j.bioactmat.2021.05.038
- D. Zhang, L. Cai, X. Wei, Y. Wang, L. Shang et al., Multiplexed CRISPR/Cas9 quantifications based on bioinspired photonic barcodes. Nano Today 40, 101268 (2021). https://doi.org/10.1016/j.nantod.2021.101268
- C. Wu, Z. Chen, C. Li, Y. Hao, Y. Tang et al., CRISPR-Cas12a-empowered electrochemical biosensor for rapid and ultrasensitive detection of SARS-CoV-2 Delta variant. Nano-Micro Lett. 14(1), 159 (2022). https://doi.org/10.1007/s40820-022-00888-4
- Y. Liu, C.F. Xu, S. Iqbal, X.Z. Yang, J. Wang, Responsive nanocarriers as an emerging platform for cascaded delivery of nucleic acids to cancer. Adv. Drug Delivery Rev. 115, 98–114 (2017). https://doi.org/10.1016/j.addr.2017.03.004
- A.I. van den Berg, C.-O. Yun, R.M. Schiffelers, W.E. Hennink, Polymeric delivery systems for nucleic acid therapeutics: approaching the clinic. J. Control. Release 331, 121–141 (2021). https://doi.org/10.1016/j.jconrel.2021.01.014
- L. Li, L. Song, X. Liu, X. Yang, X. Li et al., Artificial virus delivers CRISPR-Cas9 system for genome editing of cells in mice. ACS Nano 11(1), 95–111 (2017). https://doi.org/10.1021/acsnano.6b04261
- A.J. Mellott, M.L. Forrest, M.S. Detamore, Physical non-viral gene delivery methods for tissue engineering. Ann. Biomed. Eng. 41(3), 446–468 (2013). https://doi.org/10.1007/s10439-012-0678-1
- J. Yang, Q. Zhang, H. Chang, Y. Cheng, Surface-engineered dendrimers in gene delivery. Chem. Rev. 115(11), 5274–5300 (2015). https://doi.org/10.1021/cr500542t
- J. Pahle, W. Walther, Vectors and strategies for nonviral cancer gene therapy. Exp. Opin. Biolog. Ther. 16(4), 443–461 (2016). https://doi.org/10.1517/14712598.2016.1134480
- X. Zhang, L. Hai, Y. Gao, G. Yu, Y. Sun, Lipid nanomaterials-based RNA therapy and cancer treatment. Acta Pharm. Sin. B (2022). https://doi.org/10.1016/j.apsb.2022.10.004
- X. Huang, E. Kon, X. Han, X. Zhang, N. Kong et al., Nanotechnology-based strategies against SARS-CoV-2 variants. Nat. Nanotechnol. 17(10), 1027–1037 (2022). https://doi.org/10.1038/s41565-022-01174-5
- Y. Liu, W. Wu, Y. Wang, S. Han, Y. Yuan et al., Recent development of gene therapy for pancreatic cancer using non-viral nanovectors. Biomater. Sci. 9(20), 6673–6690 (2021). https://doi.org/10.1039/D1BM90082J
- R. Mohammadinejad, A. Dehshahri, V.S. Madamsetty, M. Zahmatkeshan, S. Tavakol et al., In vivo gene delivery mediated by non-viral vectors for cancer therapy. J. Control. Release 325, 249–275 (2020). https://doi.org/10.1016/j.jconrel.2020.06.038
- H. Yin, R.L. Kanasty, A.A. Eltoukhy, A.J. Vegas, J.R. Dorkin et al., Non-viral vectors for gene-based therapy. Nat. Rev. Gen. 15(8), 541–555 (2014). https://doi.org/10.1038/nrg3763
- Q. Sun, Z. Wang, B. Liu, F. He, S. Gai et al., Recent advances on endogenous/exogenous stimuli-triggered nanoplatforms for enhanced chemodynamic therapy. Coord. Chem. Rev. 451, 214267 (2022). https://doi.org/10.1016/j.ccr.2021.214267
- Y. Yang, H. Wu, B. Liu, Z. Liu, Tumor microenvironment-responsive dynamic inorganic nanoassemblies for cancer imaging and treatment. Adv. Drug Deliv. Rev. 179, 114004 (2021). https://doi.org/10.1016/j.addr.2021.114004
- Y. Chen, D. Qin, J. Zou, X. Li, X.D. Guo et al., Living leukocyte-based drug delivery systems. Adv. Mater. (2022). https://doi.org/10.1002/adma.202207787
- B.E. Ferdows, D.N. Patel, W. Chen, X. Huang, N. Kong et al., RNA cancer nanomedicine: Nanotechnology-mediated RNA therapy. Nanoscale 14(12), 4448–4455 (2022). https://doi.org/10.1039/d1nr06991h
- X. Huang, N. Kong, X. Zhang, Y. Cao, R. Langer et al., The landscape of mRNA nanomedicine. Nat. Med. 28(11), 2273–2287 (2022). https://doi.org/10.1038/s41591-022-02061-1
- Z. Tang, N. Kong, X. Zhang, Y. Liu, P. Hu et al., A materials-science perspective on tackling COVID-19. Nat. Rev. Mater. 5(11), 847–860 (2020). https://doi.org/10.1038/s41578-020-00247-y
- H. Ruan, Y. Li, C. Wang, Y. Jiang, Y. Han et al., Click chemistry extracellular vesicle/peptide/chemokine nanocarriers for treating central nervous system injuries. Acta Pharm. Sin. B (2022). https://doi.org/10.1016/j.apsb.2022.06.007
- X. Jing, H. Hu, Y. Sun, B. Yu, H. Cong et al., The intracellular and extracellular microenvironment of tumor site: The trigger of stimuli-responsive drug delivery systems. Small Meth. 6(3), 2101437 (2022). https://doi.org/10.1002/smtd.202101437
- P.E. Saw, H. Yao, C. Lin, W. Tao, O.C. Farokhzad et al., Stimuli-responsive polymer-prodrug hybrid nanoplatform for multistage siRNA delivery and combination cancer therapy. Nano Lett. 19(9), 5967–5974 (2019). https://doi.org/10.1021/acs.nanolett.9b01660
- C. He, D. Liu, W. Lin, Self-assembled nanoscale coordination polymers carrying siRNAs and cisplatin for effective treatment of resistant ovarian cancer. Biomaterials 36, 124–133 (2015). https://doi.org/10.1016/j.biomaterials.2014.09.017
- Y. Wu, J. Zheng, Q. Zeng, T. Zhang, D. Xing, Light-responsive charge-reversal nanovector for high-efficiency in vivo CRISPR/Cas9 gene editing with controllable location and time. Nano Res. 13(9), 2399–2406 (2020). https://doi.org/10.1007/s12274-020-2864-z
- C. Yu, B. Ding, X. Zhang, X. Deng, K. Deng et al., Targeted iron nanops with platinum-(IV) prodrugs and anti-EZH2 siRNA show great synergy in combating drug resistance in vitro and in vivo. Biomaterials 155, 112–123 (2018). https://doi.org/10.1016/j.biomaterials.2017.11.014
- M. Furtado, L. Chen, Z. Chen, A. Chen, W. Cui, Development of fish collagen in tissue regeneration and drug delivery. Eng. Reg. 3(3), 217–231 (2022). https://doi.org/10.1016/j.engreg.2022.05.002
- G. Chen, A.A. Abdeen, Y. Wang, P.K. Shahi, S. Robertson et al., A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing. Nat. Nanotechnol. 14(10), 974–980 (2019). https://doi.org/10.1038/s41565-019-0539-2
- K. Lee, M. Conboy, H.M. Park, F. Jiang, H.J. Kim et al., Nanop delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat. Biomed. Eng. 1, 889–901 (2017). https://doi.org/10.1038/s41551-017-0137-2
- H. Lu, Q. Zhang, S. He, S. Liu, Z. Xie et al., Reduction-sensitive fluorinated-Pt(IV) universal transfection nanoplatform facilitating CT45-targeted CRISPR/dCas9 activation for synergistic and individualized treatment of ovarian cancer. Small 17(41), 2102494 (2021). https://doi.org/10.1002/smll.202102494
- J. Wang, X. He, S. Shen, Z. Cao, X. Yang, ROS-sensitive cross-linked polyethylenimine for red-light-activated siRNA therapy. ACS Appl. Mater. Interfaces 11(2), 1855–1863 (2019). https://doi.org/10.1021/acsami.8b18697
- J. Wang, H. He, X. Xu, X. Wang, Y. Chen et al., Far-red light-mediated programmable anti-cancer gene delivery in cooperation with photodynamic therapy. Biomaterials 171, 72–82 (2018). https://doi.org/10.1016/j.biomaterials.2018.04.020
- K. Han, Q. Lei, H.-Z. Jia, S.-B. Wang, W.-N. Yin et al., A tumor targeted chimeric peptide for synergistic endosomal escape and therapy by dual-stage light manipulation. Adv. Funct. Mater. 25(8), 1248–1257 (2015). https://doi.org/10.1002/adfm.201403190
- X. Chen, Y. Chen, H. Xin, T. Wan, Y. Ping, Near-infrared optogenetic engineering of photothermal nanocrispr for programmable genome editing. Proc. Nat. Acad. Sci. USA 117(5), 2395–2405 (2020). https://doi.org/10.1073/pnas.1912220117
- X. Wang, X. Xiao, Y. Feng, J. Li, Y. Zhang, A photoresponsive antibody-siRNA conjugate for activatable immunogene therapy of cancer. Chem. Sci. 13(18), 5345–5352 (2022). https://doi.org/10.1039/d2sc01672a
- Y. Wang, S. Li, P. Zhang, H. Bai, L. Feng et al., Photothermal-responsive conjugated polymer nanops for remote control of gene expression in living cells. Adv. Mater. 30(8), 1705418 (2018). https://doi.org/10.1002/adma.201705418
- Z. Yang, D. Gao, X. Guo, L. Jin, J. Zheng et al., Fighting immune cold and reprogramming immunosuppressive tumor microenvironment with red blood cell membrane-camouflaged nanobullets. ACS Nano 14(12), 17442–17457 (2020). https://doi.org/10.1021/acsnano.0c07721
- Y. Wang, D. Gao, Y. Liu, X. Guo, S. Chen et al., Immunogenic-cell-killing and immunosuppression-inhibiting nanomedicine. Bioact. Mater. 6(6), 1513–1527 (2021). https://doi.org/10.1016/j.bioactmat.2020.11.016
- D. Gao, T. Chen, S. Chen, X. Ren, Y. Han et al., Targeting hypoxic tumors with hybrid nanobullets for oxygen-independent synergistic photothermal and thermodynamic therapy. Nano-Micro Lett. 13(1), 99 (2021). https://doi.org/10.1007/s40820-021-00616-4
- D. Gao, Y. Shi, J. Ni, S. Chen, Y. Wang et al., NIR/MRI-guided oxygen-independent carrier-free anti-tumor nano-theranostics. Small 18(36), 2106000 (2022). https://doi.org/10.1002/smll.202106000
- L. Jin, X. Guo, D. Gao, Y. Liu, J. Ni et al., An NIR photothermal-responsive hybrid hydrogel for enhanced wound healing. Bioact. Mater. 16, 162–172 (2022). https://doi.org/10.1016/j.bioactmat.2022.03.006
- D. Gao, X. Guo, X. Zhang, S. Chen, Y. Wang et al., Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Mater. Today Bio 5, 100035 (2020). https://doi.org/10.1016/j.mtbio.2019.100035
- Z. Yang, J. Zhao, G. Yang, M. Guo, Y. Wang et al., Thermal immuno-nanomedicine in cancer. Nat. Rev. Clin. Oncol. (2023). https://doi.org/10.1038/s41571-022-00717-y
- Y. Wu, D. Zhou, Q. Zhang, Z. Xie, X. Chen et al., Dual-sensitive charge-conversional polymeric prodrug for efficient codelivery of demethylcantharidin and doxorubicin. Biomacromol 17(8), 2650–2661 (2016). https://doi.org/10.1021/acs.biomac.6b00705
- M. Zhou, X. Zhang, J. Xie, R. Qi, H. Lu et al., pH-sensitive poly(β-amino ester)s nanocarriers facilitate the inhibition of drug resistance in breast cancer cells. Nanomaterials 8(11), 952 (2018). https://doi.org/10.3390/nano8110952
- F.J. Voskuil, P.J. Steinkamp, T. Zhao, B. van der Vegt, M. Koller et al., Exploiting metabolic acidosis in solid cancers using a tumor-agnostic pH-activatable nanoprobe for fluorescence-guided surgery. Nat. Commun. 11(1), 3257 (2020). https://doi.org/10.1038/s41467-020-16814-4
- B. Chen, L. Mei, R. Fan, Y. Wang, C. Nie et al., Facile construction of targeted pH-responsive DNA-conjugated gold nanops for synergistic photothermal-chemotherapy. Chin. Chem. Lett. 32(5), 1775–1779 (2021). https://doi.org/10.1016/j.cclet.2020.12.058
- Q. Zhang, S. He, G. Kuang, S. Liu, H. Lu et al., Morphology tunable and acid-sensitive dextran-doxorubicin conjugate assemblies for targeted cancer therapy. J. Mater. Chem. B 8(31), 6898–6904 (2020). https://doi.org/10.1039/d0tb00746c
- S. Li, Z.T. Bennett, B.D. Sumer, J. Gao, Nano-immune-engineering approaches to advance cancer immunotherapy: Lessons from ultra-pH-sensitive nanops. Acc. Chem. Res. 53(11), 2546–2557 (2020). https://doi.org/10.1021/acs.accounts.0c00475
- L. Liang, L. Wen, Y. Weng, J. Song, H. Li et al., Homologous-targeted and tumor microenvironment-activated hydroxyl radical nanogenerator for enhanced chemoimmunotherapy of non-small cell lung cancer. Chem. Eng. J. 425, 131451 (2021). https://doi.org/10.1016/j.cej.2021.131451
- J.-Z. Du, X.-J. Du, C.-Q. Mao, J. Wang, Tailor-made dual pH-sensitive polymer-doxorubicin nanops for efficient anticancer drug delivery. J. Am. Chem. Soc. 133(44), 17560–17563 (2011). https://doi.org/10.1021/ja207150n
- J.-Z. Du, C.-Q. Mao, Y.-Y. Yuan, X.-Z. Yang, J. Wang, Tumor extracellular acidity-activated nanops as drug delivery systems for enhanced cancer therapy. Biotechnol. Adv. 32(4), 789–803 (2014). https://doi.org/10.1016/j.biotechadv.2013.08.002
- P. Mi, D. Kokuryo, H. Cabral, H. Wu, Y. Terada et al., A pH-activatable nanop with signal-amplification capabilities for non-invasive imaging of tumour malignancy. Nat. Nanotechnol. 11(8), 724–730 (2016). https://doi.org/10.1038/nnano.2016.72
- G. Lian, J.R. Gnanaprakasam, Glutathione de novo synthesis but not recycling process coordinates with glutamine catabolism to control redox homeostasis and directs murine T cell differentiation. Elife 7, 36158 (2018). https://doi.org/10.7554/eLife.36158
- Y. Liu, Y. Tian, Y. Tian, Y. Wang, W. Yang, Carbon-dot-based nanosensors for the detection of intracellular redox state. Adv. Mater. 27(44), 7156–7160 (2015). https://doi.org/10.1002/adma.201503662
- G. Kuang, Q. Zhang, S. He, Y. Wu, Y. Huang, Reduction-responsive disulfide linkage core-cross-linked polymeric micelles for site-specific drug delivery. Polym. Chem. 11(44), 7078–7086 (2020). https://doi.org/10.1039/d0py00987c
- M. Bien, S. Longen, N. Wagener, I. Chwalla, J.M. Herrmann et al., Mitochondrial disulfide bond formation is driven by intersubunit electron transfer in Erv1 and proofread by glutathione. Mol. Cell 37(4), 516–528 (2010). https://doi.org/10.1016/j.molcel.2010.01.017
- P. Jangili, N. Kong, J.H. Kim, J. Zhou, H. Liu et al., DNA-damage-response-targeting mitochondria-activated multifunctional prodrug strategy for self-defensive tumor therapy. Angew. Chem. 61(16), 202117075 (2022). https://doi.org/10.1002/anie.202117075
- A. Pompella, A. Visvikis, A. Paolicchi, V. De Tata, A.F. Casini, The changing faces of glutathione, a cellular protagonist. Biochem. Pharm. 66(8), 1499–1503 (2003). https://doi.org/10.1016/S0006-2952(03)00504-5
- X. Zhong, X. Wang, L. Cheng, Y. Tang, G. Zhan et al., GSH-depleted PtCu3 nanocages for chemodynamic-enhanced sonodynamic cancer therapy. Adv. Funct. Mater. 30(4), 1907954 (2020). https://doi.org/10.1002/adfm.201907954
- Y. Cong, H. Xiao, H. Xiong, Z. Wang, J. Ding et al., Dual drug backboned shattering polymeric theranostic nanomedicine for synergistic eradication of patient-derived lung cancer. Adv. Mater. 30(11), 1706220 (2018). https://doi.org/10.1002/adma.201706220
- Y. Yu, Q. Xu, S. He, H. Xiong, Q. Zhang et al., Recent advances in delivery of photosensitive metal-based drugs. Coord. Chem. Rev. 387, 154–179 (2019). https://doi.org/10.1016/j.ccr.2019.01.020
- Q. Zhang, G. Kuang, Y. Yu, X. Ding, H. Ren et al., Hierarchical microps delivering oxaliplatin and NLG 919 nanoprodrugs for local chemo-immunotherapy. ACS Appl. Mater. Interfaces 14(43), 48527–48539 (2022). https://doi.org/10.1021/acsami.2c16564
- W. Wang, Y. Jin, X. Liu, F. Chen, X. Zheng et al., Endogenous stimuli-activatable nanomedicine for immune theranostics for cancer. Adv. Funct. Mater. 31(26), 2100386 (2021). https://doi.org/10.1002/adfm.202100386
- X. Wang, X. Li, X. Liang, J. Liang, C. Zhang et al., ROS-responsive capsules engineered from green tea polyphenol-metal networks for anticancer drug delivery. J. Mater. Chem. B 6(7), 1000–1010 (2018). https://doi.org/10.1039/C7TB02688A
- J. Li, S. Wang, X. Lin, Y. Cao, Z. Cai et al., Red blood cell-mimic nanocatalyst triggering radical storm to augment cancer immunotherapy. Nano-Micro Lett. 14(1), 57 (2022). https://doi.org/10.1007/s40820-022-00801-z
- U.S. Srinivas, B.W.Q. Tan, B.A. Vellayappan, A.D. Jeyasekharan, ROS and the DNA damage response in cancer. Redox Biol. 25, 101084 (2019). https://doi.org/10.1016/j.redox.2018.101084
- E. Panieri, M.M. Santoro, ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis. 7(6), 2253–2253 (2016). https://doi.org/10.1038/cddis.2016.105
- Y. Guo, X. He, R.M. Zhao, H.Z. Yang, Z. Huang et al., Zn-dipicolylamine-based reactive oxygen species-responsive lipids for siRNA delivery and in vivo colitis treatment. Acta Biomater. 147, 287–298 (2022). https://doi.org/10.1016/j.actbio.2022.04.033
- N. Yang, W. Xiao, X. Song, W. Wang, X. Dong, Recent advances in tumor microenvironment hydrogen peroxide-responsive materials for cancer photodynamic therapy. Nano-Micro Lett. 12(1), 15 (2020). https://doi.org/10.1007/s40820-019-0347-0
- G. Saravanakumar, J. Kim, W.J. Kim, Reactive-oxygen-species-responsive drug delivery systems: promises and challenges. Adv. Sci. 4(1), 1600124 (2017). https://doi.org/10.1002/advs.201600124
- Z. Jiang, J. Chen, L. Cui, X. Zhuang, J. Ding et al., Advances in stimuli-responsive polypeptide nanogels. Small Meth. 2(3), 1700307 (2018). https://doi.org/10.1002/smtd.201700307
- L. Chen, X. Wang, Y. Yuan, R. Hu, Q. Chen et al., Photosensitizers with aggregation-induced emission and their biomedical applications. Eng. Reg. 3(1), 59–72 (2022). https://doi.org/10.1016/j.engreg.2022.01.005
- D. Luo, K.A. Carter, E.A. Molins, N.L. Straubinger, J. Geng et al., Pharmacokinetics and pharmacodynamics of liposomal chemophototherapy with short drug-light intervals. J. Control. Release 297, 39–47 (2019). https://doi.org/10.1016/j.jconrel.2019.01.030
- Y. Liu, X. Zhao, C. Zhao, H. Zhang, Y. Zhao, Responsive porous microcarriers with controllable oxygen delivery for wound healing. Small 15(21), 1901254 (2019). https://doi.org/10.1002/smll.201901254
- W. Tao, O.C. Farokhzad, Theranostic nanomedicine in the NIR-II window: classification, fabrication, and biomedical applications. Chem. Rev. 122(6), 5405–5407 (2022). https://doi.org/10.1021/acs.chemrev.2c00089
- N.J. Farrer, L. Salassa, P.J. Sadler, Photoactivated chemotherapy (PACT): the potential of excited-state d-block metals in medicine. Dalt. Trans. 48(48), 10690–10701 (2009). https://doi.org/10.1039/B917753A
- Q. Zhang, G. Kuang, D. Zhou, Y. Qi, M. Wang et al., Photoactivated polyprodrug nanops for effective light-controlled Pt(IV) and siRNA codelivery to achieve synergistic cancer therapy. J. Mater. Chem. B 8(27), 5903–5911 (2020). https://doi.org/10.1039/d0tb01103g
- S.S. Lucky, K.C. Soo, Y. Zhang, Nanops in photodynamic therapy. Chem. Rev. 115(4), 1990–2042 (2015). https://doi.org/10.1021/cr5004198
- J. Ouyang, A. Xie, J. Zhou, R. Liu, L. Wang et al., Minimally invasive nanomedicine: nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Chem. Soc. Rev. 51(12), 4996–5041 (2022). https://doi.org/10.1039/D1CS01148K
- S. Koo, M.G. Lee, A. Sharma, M. Li, X. Zhang et al., Harnessing GULT1-targeted pro-oxidant ascorbate for synergistic phototherapeutics. Angew. Chem. Int. Ed. 61(17), 202110832 (2022). https://doi.org/10.1002/anie.202110832
- J. Li, S. Song, J. Meng, L. Tan, X. Liu et al., 2D MOF periodontitis photodynamic ion therapy. J. Am. Chem. Soc. 143(37), 15427–15439 (2021). https://doi.org/10.1021/jacs.1c07875
- L. Zou, H. Wang, B. He, L. Zeng, T. Tan et al., Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics 6(6), 762 (2016). https://doi.org/10.7150/thno.14988
- D. Wu, X. Shou, Y. Yu, X. Wang, G. Chen et al., Biologics-loaded photothermally dissolvable hyaluronic acid microneedle patch for psoriasis treatment. Adv. Funct. Mater. 32(47), 2205847 (2022). https://doi.org/10.1002/adfm.202205847
- Y. Ye, J. He, Y. Qiao, Y. Qi, H. Zhang et al., Mild temperature photothermal assisted anti-bacterial and anti-inflammatory nanosystem for synergistic treatment of post-cataract surgery endophthalmitis. Theranostics 10(19), 8541–8557 (2020). https://doi.org/10.7150/thno.46895
- Y. Zhu, P. Xu, X. Zhang, D. Wu, Emerging porous organic polymers for biomedical applications. Chem. Soc. Rev. 51(4), 1377–1414 (2022). https://doi.org/10.1039/d1cs00871d
- X. Liu, Q. Liu, X. He, G. Yang, X. Chen et al., NIR-II-enhanced single-atom-nanozyme for sustainable accelerating bacteria-infected wound healing. Appl. Surf. Sci. 612, 155866 (2023). https://doi.org/10.1016/j.apsusc.2022.155866
- Q. Shao, B. Xing, Photoactive molecules for applications in molecular imaging and cell biology. Chem. Soc. Rev. 39(8), 2835–2846 (2010). https://doi.org/10.1039/B915574K
- H.D. Bandara, S.C. Burdette, Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 41(5), 1809–1825 (2012). https://doi.org/10.1039/c1cs15179g
- R. Klajn, Spiropyran-based dynamic materials. Chem. Soc. Rev. 43(1), 148–184 (2014). https://doi.org/10.1039/c3cs60181a
- Z. Wang, G. Kuang, Z. Yu, A. Li, D. Zhou et al., Light-activatable dual prodrug polymer nanop for precise synergistic chemotherapy guided by drug-mediated computed tomography imaging. Acta Biomater. 94, 459–468 (2019). https://doi.org/10.1016/j.actbio.2019.05.047
- P. Wu, X. Wang, Z. Wang, W. Ma, J. Guo et al., Light-activatable prodrug and AIEgen copolymer nanop for dual-drug monitoring and combination therapy. ACS Appl. Mater. Interfaces 11(20), 18691–18700 (2019). https://doi.org/10.1021/acsami.9b02346
- Q. Zhang, X. Wang, G. Kuang, Y. Yu, Y. Zhao, Photopolymerized 3D printing scaffolds with Pt(IV) prodrug initiator for postsurgical tumor treatment. Research 2022, 9784510 (2022). https://doi.org/10.34133/2022/9784510
- Q. Zhang, X. Wang, G. Kuang, Y. Zhao, Pt(IV) prodrug initiated microps from microfluidics for tumor chemo-, photothermal and photodynamic combination therapy. Bioact. Mater. 24(3), 185–196 (2023). https://doi.org/10.1016/j.bioactmat.2022.12.020
- G. Kuang, H. Lu, S. He, H. Xiong, J. Yu et al., Near-infrared light-triggered polyprodrug/siRNA loaded upconversion nanops for multi-modality imaging and synergistic cancer therapy. Adv. Healthcare Mater. 10(20), 2100938 (2021). https://doi.org/10.1002/adhm.202100938
- H. Li, Q. Yao, F. Xu, Y. Li, D. Kim et al., An activatable AIEgen probe for high-fidelity monitoring of overexpressed tumor enzyme activity and its application to surgical tumor excision. Angew. Chem. Int. Ed. 132(25), 10272–10281 (2020). https://doi.org/10.1002/anie.202001675
- J. Mu, J. Lin, P. Huang, X. Chen, Development of endogenous enzyme-responsive nanomaterials for theranostics. Chem. Soc. Rev. 47(15), 5554–5573 (2018). https://doi.org/10.1039/C7CS00663B
- J. Hu, G. Zhang, S. Liu, Enzyme-responsive polymeric assemblies, nanops and hydrogels. Chem. Soc. Rev. 41(18), 5933–5949 (2012). https://doi.org/10.1039/C2CS35103J
- X. Wang, J. Hu, G. Zhang, S. Liu, Highly selective fluorogenic multianalyte biosensors constructed via enzyme-catalyzed coupling and aggregation-induced emission. J. Am. Chem. Soc. 136(28), 9890–9893 (2014). https://doi.org/10.1021/ja505278w
- N. Qiu, X. Liu, Y. Zhong, Z. Zhou, Y. Piao et al., Esterase-activated charge-reversal polymer for fibroblast-exempt cancer gene therapy. Adv. Mater. 28(48), 10613–10622 (2016). https://doi.org/10.1002/adma.201603095
- H. Li, Z. Qiu, F. Li, C. Wang, The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis. Oncol. Lett. 14(5), 5865–5870 (2017). https://doi.org/10.3892/ol.2017.6924
- Z. Luo, Y. Dai, H. Gao, Development and application of hyaluronic acid in tumor targeting drug delivery. Acta Pharm. Sin. B 9(6), 1099–1112 (2019). https://doi.org/10.1016/j.apsb.2019.06.004
- K.Y. Choi, E.J. Jeon, H.Y. Yoon, B.S. Lee, J.H. Na et al., Theranostic nanops based on PEGylated hyaluronic acid for the diagnosis, therapy and monitoring of colon cancer. Biomaterials 33(26), 6186–6193 (2012). https://doi.org/10.1016/j.biomaterials.2012.05.029
- H.T. Pham, N.L. Block, V.B. Lokeshwar, Tumor-derived hyaluronidase: a diagnostic urine marker for high-grade bladder cancer. Cancer Res. 57(4), 778–783 (1997). https://doi.org/10.1016/S0022-5347(01)62975-6
- W. Sun, Z. Gu, ATP-responsive drug delivery systems. Exp. Opin. Drug Deliv. 13(3), 311–314 (2016). https://doi.org/10.1517/17425247.2016.1140147
- J. Deng, A. Walther, ATP-responsive and ATP-fueled self-assembling systems and materials. Adv. Mater. 32(42), 2002629 (2020). https://doi.org/10.1002/adma.202002629
- J. Ouyang, Z. Tang, N. Farokhzad, N. Kong, N.Y. Kim et al., Ultrasound mediated therapy: recent progress and challenges in nanoscience. Nano Today 35, 100949 (2020). https://doi.org/10.1016/j.nantod.2020.100949
- H. Zhu, L. Zhang, S. Tong, C.M. Lee, H. Deshmukh et al., Spatial control of in vivo CRISPR-Cas9 genome editing via nanomagnets. Nat. Biomed. Eng. 3(2), 126–136 (2019). https://doi.org/10.1038/s41551-018-0318-7
- M.-Q. Zhu, L.-Q. Wang, G.J. Exarhos, A.D. Li, Thermosensitive gold nanops. J. Am. Chem. Soc. 126(9), 2656–2657 (2004). https://doi.org/10.1021/ja038544z
- T. Hu, Z. Gu, G.R. Williams, M. Strimaite, J. Zha et al., Layered double hydroxide-based nanomaterials for biomedical applications. Chem. Soc. Rev. 51(14), 6126–6176 (2022). https://doi.org/10.1039/d2cs00236a
- Y. Liang, H. Xu, Z. Li, A. Zhangji, B. Guo, Bioinspired injectable self-healing hydrogel sealant with fault-tolerant and repeated thermo-responsive adhesion for sutureless post-wound-closure and wound healing. Nano-Micro Lett. 14(1), 185 (2022). https://doi.org/10.1007/s40820-022-00928-z
- W. Zhou, X. Ma, J. Wang, X. Xu, O. Koivisto et al., Co-delivery CPT and PTX prodrug with a photo/thermo-responsive nanoplatform for triple-negative breast cancer therapy. Smart Med. 1(1), 20220036 (2022). https://doi.org/10.1002/SMMD.20220036
- H. Nakatsuji, T. Numata, N. Morone, S. Kaneko, Y. Mori et al., Thermosensitive ion channel activation in single neuronal cells by using surface-engineered plasmonic nanops. Angew. Chem. Int. Ed. 54(40), 11725–11729 (2015). https://doi.org/10.1002/ange.201505534
- B. Zhao, Y. Zhuang, Z. Liu, J. Mao, S. Qian et al., Regulated extravascular microenvironment via reversible thermosensitive hydrogel for inhibiting calcium influx and vasospasm. Bioact. Mater. 21(3), 422–435 (2023). https://doi.org/10.1016/j.bioactmat.2022.08.024
- S. Qi, P. Zhang, M. Ma, M. Yao, J. Wu et al., Cellular internalization-induced aggregation of porous silicon nanops for ultrasound imaging and protein-mediated protection of stem cells. Small 15(1), 1804332 (2019). https://doi.org/10.1002/smll.201804332
- W. Chen, C. Liu, X. Ji, J. Joseph, Z. Tang et al., Stanene-based nanosheets for β-elemene delivery and ultrasound-mediated combination cancer therapy. Angew. Chem. Int. Ed. 60(13), 7155–7164 (2021). https://doi.org/10.1002/anie.202016330
- N. Lee, D. Yoo, D. Ling, M.H. Cho, T. Hyeon et al., Iron oxide based nanops for multimodal imaging and magnetoresponsive therapy. Chem. Rev. 115(19), 10637–10689 (2015). https://doi.org/10.1021/acs.chemrev.5b00112
- J.S. Ebersole, Magnetoencephalography/magnetic source imaging in the assessment of patients with epilepsy. Epilepsia 38, S1–S5 (1997). https://doi.org/10.1111/j.1528-1157.1997.tb04533.x
- J. Yang, X. Zhang, C. Liu, Z. Wang, L. Deng et al., Biologically modified nanops as theranostic bionanomaterials. Prog. Mater. Sci. 118, 100768 (2021). https://doi.org/10.1016/j.pmatsci.2020.100768
- Y. Shen, Z. Zhou, M. Sui, J. Tang, P. Xu et al., Charge-reversal polyamidoamine dendrimer for cascade nuclear drug delivery. Nanomedicine 5(8), 1205–1217 (2010). https://doi.org/10.2217/nnm.10.86
- R. Mo, Z. Gu, Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery. Mater. Today 19(5), 274–283 (2016). https://doi.org/10.1016/j.mattod.2015.11.025
- Y. Liu, Y. Zou, C. Feng, A. Lee, J. Yin et al., Charge conversional biomimetic nanocomplexes as a multifunctional platform for boosting orthotopic glioblastoma RNAi therapy. Nano Lett. 20(3), 1637–1646 (2020). https://doi.org/10.1021/acs.nanolett.9b04683
- M. Xu, D. Zhao, Y. Chen, C. Chen, L. Zhang et al., Charge reversal polypyrrole nanocomplex-mediated gene delivery and photothermal therapy for effectively treating papillary thyroid cancer and inhibiting lymphatic metastasis. ACS Appl. Mater. Interfaces 14(12), 14072–14086 (2022). https://doi.org/10.1021/acsami.1c25179
- C.Y. Sun, S. Shen, C.F. Xu, H.J. Li, Y. Liu et al., Tumor acidity-sensitive polymeric vector for active targeted siRNA delivery. J. Am. Chem. Soc. 137(48), 15217–15224 (2015). https://doi.org/10.1021/jacs.5b09602
- Q. Liu, K. Zhao, C. Wang, Z. Zhang, C. Zheng et al., Multistage delivery nanop facilitates efficient CRISPR/dCas9 activation and tumor growth suppression in vivo. Adv. Sci. 6(1), 1801423 (2019). https://doi.org/10.1002/advs.201801423
- Y. Qi, H. Song, H. Xiao, G. Cheng, B. Yu et al., Fluorinated acid-labile branched hydroxyl-rich nanosystems for flexible and robust delivery of plasmids. Small 14(42), 1803061 (2018). https://doi.org/10.1002/smll.201803061
- H. Yu, C. Guo, B. Feng, J. Liu, X. Chen et al., Triple-layered pH-responsive micelleplexes loaded with siRNA and cisplatin prodrug for NF-Kappa B targeted treatment of metastatic breast cancer. Theranostics 6(1), 14–27 (2016). https://doi.org/10.7150/thno.13515
- Q. Chen, T. Sun, C. Jiang, Recent advancements in nanomedicine for ‘cold’ tumor immunotherapy. Nano-Micro Lett. 13(1), 92 (2021). https://doi.org/10.1007/s40820-021-00622-6
- D. Kim, Y. Wu, Q. Li, Y.-K. Oh, Nanop-mediated lipid metabolic reprogramming of T cells in tumor microenvironments for immunometabolic therapy. Nano-Micro Lett. 13(1), 31 (2021). https://doi.org/10.1007/s40820-020-00555-6
- G. Kuang, Q. Zhang, Y. Yu, X. Ding, W. Sun et al., Lyophilization-inactivated cancer cells composited Janus scaffold for tumor postoperative immuno-chemotherapy. Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2022.140619
- D. Wang, T. Wang, J. Liu, H. Yu, S. Jiao et al., Acid-activatable versatile micelleplexes for PD-L1 blockade-enhanced cancer photodynamic immunotherapy. Nano Lett. 16(9), 5503–5513 (2016). https://doi.org/10.1021/acs.nanolett.6b01994
- Y. Zou, X. Sun, Y. Wang, C. Yan, Y. Liu et al., Single siRNA nanocapsules for effective siRNA brain delivery and glioblastoma treatment. Adv. Mater. 32(24), 2000416 (2020). https://doi.org/10.1002/adma.202000416
- Y.X. Lin, Y. Wang, H.W. An, B. Qi, J. Wang et al., Peptide-based autophagic gene and cisplatin co-delivery systems enable improved chemotherapy resistance. Nano Lett. 19(5), 2968–2978 (2019). https://doi.org/10.1021/acs.nanolett.9b00083
- Q. Zhang, G. Kuang, S. He, S. Liu, H. Lu et al., Chain-shattering Pt(IV)-backboned polymeric nanoplatform for efficient CRISPR/Cas9 gene editing to enhance synergistic cancer therapy. Nano Res. 14(3), 601–610 (2020). https://doi.org/10.1007/s12274-020-3066-4
- H. Yang, R. Liu, Y. Xu, L. Qian, Z. Dai, Photosensitizer nanops boost photodynamic therapy for pancreatic cancer treatment. Nano-Micro Lett. 13(1), 35 (2021). https://doi.org/10.1007/s40820-020-00561-8
- X. Liu, J. Xiang, D. Zhu, L. Jiang, Z. Zhou et al., Fusogenic reactive oxygen species triggered charge-reversal vector for effective gene delivery. Adv. Mater. 28(9), 1743–1752 (2016). https://doi.org/10.1002/adma.201504288
- D.V. Schaffer, N.A. Fidelman, N. Dan, D.A. Lauffenburger, Vector unpacking as a potential barrier for receptor-mediated polyplex gene delivery. Biotechnol. Bioeng. 67(5), 598–606 (2000). https://doi.org/10.1002/(SICI)1097-0290(20000305)67:5%3c598::AID-BIT10%3e3.0.CO;2-G
- J. Zabner, A.J. Fasbender, T. Moninger, K.A. Poellinger, M.J. Welsh, Cellular and molecular barriers to gene transfer by a cationic lipid. J. Biolog. Chem. 270(32), 18997–19007 (1995). https://doi.org/10.1074/jbc.270.32.18997
- M. Piest, J.F. Engbersen, Effects of charge density and hydrophobicity of poly (amido amine)s for non-viral gene delivery. J. Control. Release 148(1), 83–90 (2010). https://doi.org/10.1016/j.jconrel.2010.07.109
- H. Pollard, J.-S. Remy, G. Loussouarn, S. Demolombe, J.-P. Behr et al., Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J. Biolog. Chem. 273(13), 7507–7511 (1998). https://doi.org/10.1074/jbc.273.13.7507
- D. Zhu, H. Yan, X. Liu, J. Xiang, Z. Zhou et al., Intracellularly disintegratable polysulfoniums for efficient gene delivery. Adv. Funct. Mater. 27(16), 1606826 (2017). https://doi.org/10.1002/adfm.201606826
- M. Zheng, Y. Liu, Y. Wang, D. Zhang, Y. Zou et al., ROS-responsive polymeric siRNA nanomedicine stabilized by triple interactions for the robust glioblastoma combinational RNAi therapy. Adv. Mater. 31(37), 1903277 (2019). https://doi.org/10.1002/adma.201903277
- M. Tavakkoli Yaraki, B. Liu, Y.N. Tan, Emerging strategies in enhancing singlet oxygen generation of nano-photosensitizers toward advanced phototherapy. Nano-Micro Lett. 14(1), 123 (2022). https://doi.org/10.1007/s40820-022-00856-y
- X. Zhang, L. Cheng, Y. Lu, J. Tang, Q. Lv et al., A MXene-based bionic cascaded-enzyme nanoreactor for tumor phototherapy/enzyme dynamic therapy and hypoxia-activated chemotherapy. Nano-Micro Lett. 14(1), 22 (2021). https://doi.org/10.1007/s40820-021-00761-w
- Q. Zhang, G. Kuang, S. He, H. Lu, Y. Cheng et al., Photoactivatable prodrug-backboned polymeric nanops for efficient light-controlled gene delivery and synergistic treatment of platinum-resistant ovarian cancer. Nano Lett. 20(5), 3039–3049 (2020). https://doi.org/10.1021/acs.nanolett.9b04981
- P.D. Hsu, E.S. Lander, F. Zhang, Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6), 1262–1278 (2014). https://doi.org/10.1016/j.cell.2014.05.010
- Y. Pan, J. Yang, X. Luan, X. Liu, X. Li et al., Near-infrared upconversion-activated CRISPR-Cas9 system: a remote-controlled gene editing platform. Sci. Adv. 5(4), 1eaav799 (2019). https://doi.org/10.1126/sciadv.aav7199
- J.B. van Beilen, Z. Li, Enzyme technology: an overview. Curr. Opin. Biotechnol. 13(4), 338–344 (2002). https://doi.org/10.1016/S0958-1669(02)00334-8
- M. Shahriari, M. Zahiri, K. Abnous, S.M. Taghdisi, M. Ramezani et al., Enzyme responsive drug delivery systems in cancer treatment. J. Control. Release 308, 172–189 (2019). https://doi.org/10.1016/j.jconrel.2019.07.004
- Y. Yi, M. Yu, C. Feng, H. Hao, W. Zeng et al., Transforming “cold” tumors into “hot” ones via tumor-microenvironment-responsive siRNA micelleplexes for enhanced immunotherapy. Matter 5(7), 2285–2305 (2022). https://doi.org/10.1016/j.matt.2022.04.032
- P. Wang, L. Zhang, W. Zheng, L. Cong, Z. Guo et al., Thermo-triggered release of CRISPR-Cas9 system by lipid-encapsulated gold nanops for tumor therapy. Angew. Chem. Int. Ed. 57(6), 1491–1496 (2018). https://doi.org/10.1002/anie.201708689
- Y. Pu, H. Yin, C. Dong, H. Xiang, W. Wu et al., Sono-controllable and ROS-sensitive CRISPR-Cas9 genome editing for augmented/synergistic ultrasound tumor nanotherapy. Adv. Mater. 33(45), 2104641 (2021). https://doi.org/10.1002/adma.202104641
- T. Fang, X. Cao, M. Ibnat, G. Chen, Stimuli-responsive nanoformulations for CRISPR-Cas9 genome editing. J. Nanobiotechnol. 20(1), 354 (2022). https://doi.org/10.1186/s12951-022-01570-y
- M. Naeem, S. Majeed, M.Z. Hoque, I. Ahmad, Latest developed strategies to minimize the off-target effects in CRISPR-Cas-mediated genome editing. Cells 9(7), 1608 (2020). https://doi.org/10.3390/cells9071608
- M.N. Hsu, Y.C. Hu, Local magnetic activation of CRISPR. Nat. Biomed. Eng. 3(2), 83–84 (2019). https://doi.org/10.1038/s41551-019-0354-y
- O.O. Abudayyeh, J.S. Gootenberg, S. Konermann, J. Joung, I.M. Slaymaker et al., C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353(6299), aaf5573 (2016). https://doi.org/10.1126/science.aaf5573
- Z. Zhang, Q. Wang, Q. Liu, Y. Zheng, C. Zheng et al., Dual-locking nanops disrupt the PD-1/PD-L1 pathway for efficient cancer immunotherapy. Adv. Mater. 31(51), 1905751 (2019). https://doi.org/10.1002/adma.201905751
- J. Gilleron, W. Querbes, A. Zeigerer, A. Borodovsky, G. Marsico et al., Image-based analysis of lipid nanop-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 31(7), 638–646 (2013). https://doi.org/10.1038/nbt.2612
- D.J. Glover, D.L. Leyton, G.W. Moseley, D.A. Jans, The efficiency of nuclear plasmid DNA delivery is a critical determinant of transgene expression at the single cell level. J. Gene Med. 12(1), 77–85 (2010). https://doi.org/10.1002/jgm.1406
- S. Hama, H. Akita, R. Ito, H. Mizuguchi, T. Hayakawa et al., Quantitative comparison of intracellular trafficking and nuclear transcription between adenoviral and lipoplex systems. Mol. Ther. 13(4), 786–794 (2006). https://doi.org/10.1016/j.ymthe.2005.10.007
- S. Wilhelm, A.J. Tavares, Q. Dai, S. Ohta, J. Audet et al., Analysis of nanop delivery to tumours. Nat. Rev. Mater. 1(5), 1–12 (2016). https://doi.org/10.1038/natrevmats.2016.14
- P. Zhang, Y. Xiao, X. Sun, X. Lin, S. Koo et al., Cancer nanomedicine toward clinical translation: obstacles, opportunities, and future prospects. Med (2022). https://doi.org/10.1016/j.medj.2022.12.001
References
H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram et al., Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA-Cancer J. Clin. 71(3), 209–249 (2021). https://doi.org/10.3322/caac.21660
Y. Wang, X. Ma, W. Zhou, C. Liu, H. Zhang, Reregulated mitochondrial dysfunction reverses cisplatin resistance microenvironment in colorectal cancer. Smart Med. 1(1), 20220013 (2022). https://doi.org/10.1002/SMMD.20220013
Y. Yang, P. Jin, X. Zhang, N. Ravichandran, H. Ying et al., New epigallocatechin gallate (EGCG) nanocomplexes co-assembled with 3-mercapto-1-hexanol and β-lactoglobulin for improvement of antitumor activity. J. Biomed. Nanotechnol. 13(7), 805–814 (2017). https://doi.org/10.1166/jbn.2017.2400
D. Zhang, D. Zhong, J. Ouyang, J. He, Y. Qi et al., Microalgae-based oral microcarriers for gut microbiota homeostasis and intestinal protection in cancer radiotherapy. Nat. Commun. 13(1), 1413 (2022). https://doi.org/10.1038/s41467-022-28744-4
Q. Zhang, G. Kuang, L. Zhang, Y. Zhu, Nanocarriers for platinum drug delivery. Biomed. Technol. 2, 77–89 (2023). https://doi.org/10.1016/j.bmt.2022.11.011
L. Lei, B. Ma, C. Xu, H. Liu, Emerging tumor-on-chips with electrochemical biosensors. Trac-Trend. Anal. Chem. 153, 116640 (2022). https://doi.org/10.1016/j.trac.2022.116640
X. Zhang, X. Chen, Y. Zhao, Nanozymes: versatile platforms for cancer diagnosis and therapy. Nano-Micro Lett. 14(1), 95 (2022). https://doi.org/10.1007/s40820-022-00828-2
M.E. Davis, Non-viral gene delivery systems. Curr. Opin. Biotechnol. 13(2), 128–131 (2002). https://doi.org/10.1016/S0958-1669(02)00294-X
B. Vogelstein, K.W. Kinzler, Cancer genes and the pathways they control. Nat. Med. 10(8), 789–799 (2004). https://doi.org/10.1038/nm1087
P.Y. Teo, W. Cheng, J.L. Hedrick, Y.Y. Yang, Co-delivery of drugs and plasmid DNA for cancer therapy. Adv. Drug Delivery Rev. 98, 41–63 (2016). https://doi.org/10.1016/j.addr.2015.10.014
L. Naldini, Gene therapy returns to centre stage. Nature 526(7573), 351–360 (2015). https://doi.org/10.1038/nature15818
L. Jin, X. Zeng, M. Liu, Y. Deng, N. He, Current progress in gene delivery technology based on chemical methods and nano-carriers. Theranostics 4(3), 240 (2014). https://doi.org/10.7150/thno.6914
M.H. Amer, Gene therapy for cancer: present status and future perspective. Mol. Cell. Ther. 2(1), 1–19 (2014). https://doi.org/10.1186/2052-8426-2-27
Z. Yang, D. Gao, Z. Cao, C. Zhang, D. Cheng et al., Drug and gene co-delivery systems for cancer treatment. Biomater. Sci. 3(7), 1035–1049 (2015). https://doi.org/10.1039/c4bm00369a
H.J. Kim, A. Kim, K. Miyata, K. Kataoka, Recent progress in development of siRNA delivery vehicles for cancer therapy. Adv. Drug Delivery Rev. 104, 61–77 (2016). https://doi.org/10.1016/j.addr.2016.06.011
Z. Zhou, X. Liu, D. Zhu, Y. Wang, Z. Zhang et al., Nonviral cancer gene therapy: delivery cascade and vector nanoproperty integration. Adv. Drug Delivery Rev. 115, 115–154 (2017). https://doi.org/10.1016/j.addr.2017.07.021
J.E. Zuckerman, M.E. Davis, Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat. Rev. Drug Discov. 14(12), 843–856 (2015). https://doi.org/10.1038/nrd4685
X. Huang, G. Wu, C. Liu, X. Hua, Z. Tang et al., Intercalation-driven formation of siRNA nanogels for cancer therapy. Nano Lett. 21(22), 9706–9714 (2021). https://doi.org/10.1021/acs.nanolett.1c03539
E.P. Thi, C.E. Mire, A.C.H. Lee, J.B. Geisbert, J.Z. Zhou et al., Lipid nanop siRNA treatment of Ebola-virus-Makona-infected nonhuman primates. Nature 521(7552), 362–365 (2015). https://doi.org/10.1038/nature14442
L. Alvarez-Erviti, Y. Seow, H. Yin, C. Betts, S. Lakhal et al., Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29(4), 341–345 (2011). https://doi.org/10.1038/nbt.1807
E. Uhlmann, A. Peyman, Antisense oligonucleotides: a new therapeutic principle. Chem. Rev. 90(4), 543–584 (1990). https://doi.org/10.1021/cr00102a001
A. De Mesmaeker, R. Haener, P. Martin, H.E. Moser, Antisense oligonucleotides. Acc. Chem. Res. 28(9), 366–374 (1995). https://doi.org/10.1021/ar00057a002
M.D. Jansson, A.H. Lund, MicroRNA and cancer. Mol. Oncol. 6(6), 590–610 (2012). https://doi.org/10.1016/j.molonc.2012.09.006
G.A. Calin, C.M. Croce, MicroRNA-cancer connection: the beginning of a new tale. Cancer Res. 66(15), 7390–7394 (2006). https://doi.org/10.1158/0008-5472.CAN-06-0800
Y. Xiao, Z. Tang, X. Huang, W. Chen, J. Zhou et al., Emerging mRNA technologies: delivery strategies and biomedical applications. Chem. Soc. Rev. 51(10), 3828–3845 (2022). https://doi.org/10.1039/d1cs00617g
N. Kong, R. Zhang, G. Wu, X. Sui, J. Wang et al., Intravesical delivery of KDM6A-mRNA via mucoadhesive nanops inhibits the metastasis of bladder cancer. Proc. Nat. Acad. Sci. (2022). https://doi.org/10.1073/pnas.2112696119
W. Tao, N.A. Peppas, Robotic pills for gastrointestinal-tract-targeted oral mRNA delivery. Matter 5(3), 775–777 (2022). https://doi.org/10.1016/j.matt.2022.02.008
N. Kong, W. Tao, X. Ling, J. Wang, Y. Xiao et al., Synthetic mRNA nanop-mediated restoration of p53 tumor suppressor sensitizes p53-deficient cancers to mTOR inhibition. Sci. Transl. Med. 11(523), eaaw1565 (2019). https://doi.org/10.1126/scitranslmed.aaw1565
D.O. Lopez-Cantu, X. Wang, H. Carrasco-Magallanes, S. Afewerki, X. Zhang et al., From bench to the clinic: The path to translation of nanotechnology-enabled mRNA SARS-CoV-2 vaccines. Nano-Micro Lett. 14(1), 41 (2022). https://doi.org/10.1007/s40820-021-00771-8
L. Wu, W. Zhou, L. Lin, A. Chen, J. Feng et al., Delivery of therapeutic oligonucleotides in nanoscale. Bioact. Mater. 7, 292–323 (2022). https://doi.org/10.1016/j.bioactmat.2021.05.038
D. Zhang, L. Cai, X. Wei, Y. Wang, L. Shang et al., Multiplexed CRISPR/Cas9 quantifications based on bioinspired photonic barcodes. Nano Today 40, 101268 (2021). https://doi.org/10.1016/j.nantod.2021.101268
C. Wu, Z. Chen, C. Li, Y. Hao, Y. Tang et al., CRISPR-Cas12a-empowered electrochemical biosensor for rapid and ultrasensitive detection of SARS-CoV-2 Delta variant. Nano-Micro Lett. 14(1), 159 (2022). https://doi.org/10.1007/s40820-022-00888-4
Y. Liu, C.F. Xu, S. Iqbal, X.Z. Yang, J. Wang, Responsive nanocarriers as an emerging platform for cascaded delivery of nucleic acids to cancer. Adv. Drug Delivery Rev. 115, 98–114 (2017). https://doi.org/10.1016/j.addr.2017.03.004
A.I. van den Berg, C.-O. Yun, R.M. Schiffelers, W.E. Hennink, Polymeric delivery systems for nucleic acid therapeutics: approaching the clinic. J. Control. Release 331, 121–141 (2021). https://doi.org/10.1016/j.jconrel.2021.01.014
L. Li, L. Song, X. Liu, X. Yang, X. Li et al., Artificial virus delivers CRISPR-Cas9 system for genome editing of cells in mice. ACS Nano 11(1), 95–111 (2017). https://doi.org/10.1021/acsnano.6b04261
A.J. Mellott, M.L. Forrest, M.S. Detamore, Physical non-viral gene delivery methods for tissue engineering. Ann. Biomed. Eng. 41(3), 446–468 (2013). https://doi.org/10.1007/s10439-012-0678-1
J. Yang, Q. Zhang, H. Chang, Y. Cheng, Surface-engineered dendrimers in gene delivery. Chem. Rev. 115(11), 5274–5300 (2015). https://doi.org/10.1021/cr500542t
J. Pahle, W. Walther, Vectors and strategies for nonviral cancer gene therapy. Exp. Opin. Biolog. Ther. 16(4), 443–461 (2016). https://doi.org/10.1517/14712598.2016.1134480
X. Zhang, L. Hai, Y. Gao, G. Yu, Y. Sun, Lipid nanomaterials-based RNA therapy and cancer treatment. Acta Pharm. Sin. B (2022). https://doi.org/10.1016/j.apsb.2022.10.004
X. Huang, E. Kon, X. Han, X. Zhang, N. Kong et al., Nanotechnology-based strategies against SARS-CoV-2 variants. Nat. Nanotechnol. 17(10), 1027–1037 (2022). https://doi.org/10.1038/s41565-022-01174-5
Y. Liu, W. Wu, Y. Wang, S. Han, Y. Yuan et al., Recent development of gene therapy for pancreatic cancer using non-viral nanovectors. Biomater. Sci. 9(20), 6673–6690 (2021). https://doi.org/10.1039/D1BM90082J
R. Mohammadinejad, A. Dehshahri, V.S. Madamsetty, M. Zahmatkeshan, S. Tavakol et al., In vivo gene delivery mediated by non-viral vectors for cancer therapy. J. Control. Release 325, 249–275 (2020). https://doi.org/10.1016/j.jconrel.2020.06.038
H. Yin, R.L. Kanasty, A.A. Eltoukhy, A.J. Vegas, J.R. Dorkin et al., Non-viral vectors for gene-based therapy. Nat. Rev. Gen. 15(8), 541–555 (2014). https://doi.org/10.1038/nrg3763
Q. Sun, Z. Wang, B. Liu, F. He, S. Gai et al., Recent advances on endogenous/exogenous stimuli-triggered nanoplatforms for enhanced chemodynamic therapy. Coord. Chem. Rev. 451, 214267 (2022). https://doi.org/10.1016/j.ccr.2021.214267
Y. Yang, H. Wu, B. Liu, Z. Liu, Tumor microenvironment-responsive dynamic inorganic nanoassemblies for cancer imaging and treatment. Adv. Drug Deliv. Rev. 179, 114004 (2021). https://doi.org/10.1016/j.addr.2021.114004
Y. Chen, D. Qin, J. Zou, X. Li, X.D. Guo et al., Living leukocyte-based drug delivery systems. Adv. Mater. (2022). https://doi.org/10.1002/adma.202207787
B.E. Ferdows, D.N. Patel, W. Chen, X. Huang, N. Kong et al., RNA cancer nanomedicine: Nanotechnology-mediated RNA therapy. Nanoscale 14(12), 4448–4455 (2022). https://doi.org/10.1039/d1nr06991h
X. Huang, N. Kong, X. Zhang, Y. Cao, R. Langer et al., The landscape of mRNA nanomedicine. Nat. Med. 28(11), 2273–2287 (2022). https://doi.org/10.1038/s41591-022-02061-1
Z. Tang, N. Kong, X. Zhang, Y. Liu, P. Hu et al., A materials-science perspective on tackling COVID-19. Nat. Rev. Mater. 5(11), 847–860 (2020). https://doi.org/10.1038/s41578-020-00247-y
H. Ruan, Y. Li, C. Wang, Y. Jiang, Y. Han et al., Click chemistry extracellular vesicle/peptide/chemokine nanocarriers for treating central nervous system injuries. Acta Pharm. Sin. B (2022). https://doi.org/10.1016/j.apsb.2022.06.007
X. Jing, H. Hu, Y. Sun, B. Yu, H. Cong et al., The intracellular and extracellular microenvironment of tumor site: The trigger of stimuli-responsive drug delivery systems. Small Meth. 6(3), 2101437 (2022). https://doi.org/10.1002/smtd.202101437
P.E. Saw, H. Yao, C. Lin, W. Tao, O.C. Farokhzad et al., Stimuli-responsive polymer-prodrug hybrid nanoplatform for multistage siRNA delivery and combination cancer therapy. Nano Lett. 19(9), 5967–5974 (2019). https://doi.org/10.1021/acs.nanolett.9b01660
C. He, D. Liu, W. Lin, Self-assembled nanoscale coordination polymers carrying siRNAs and cisplatin for effective treatment of resistant ovarian cancer. Biomaterials 36, 124–133 (2015). https://doi.org/10.1016/j.biomaterials.2014.09.017
Y. Wu, J. Zheng, Q. Zeng, T. Zhang, D. Xing, Light-responsive charge-reversal nanovector for high-efficiency in vivo CRISPR/Cas9 gene editing with controllable location and time. Nano Res. 13(9), 2399–2406 (2020). https://doi.org/10.1007/s12274-020-2864-z
C. Yu, B. Ding, X. Zhang, X. Deng, K. Deng et al., Targeted iron nanops with platinum-(IV) prodrugs and anti-EZH2 siRNA show great synergy in combating drug resistance in vitro and in vivo. Biomaterials 155, 112–123 (2018). https://doi.org/10.1016/j.biomaterials.2017.11.014
M. Furtado, L. Chen, Z. Chen, A. Chen, W. Cui, Development of fish collagen in tissue regeneration and drug delivery. Eng. Reg. 3(3), 217–231 (2022). https://doi.org/10.1016/j.engreg.2022.05.002
G. Chen, A.A. Abdeen, Y. Wang, P.K. Shahi, S. Robertson et al., A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing. Nat. Nanotechnol. 14(10), 974–980 (2019). https://doi.org/10.1038/s41565-019-0539-2
K. Lee, M. Conboy, H.M. Park, F. Jiang, H.J. Kim et al., Nanop delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat. Biomed. Eng. 1, 889–901 (2017). https://doi.org/10.1038/s41551-017-0137-2
H. Lu, Q. Zhang, S. He, S. Liu, Z. Xie et al., Reduction-sensitive fluorinated-Pt(IV) universal transfection nanoplatform facilitating CT45-targeted CRISPR/dCas9 activation for synergistic and individualized treatment of ovarian cancer. Small 17(41), 2102494 (2021). https://doi.org/10.1002/smll.202102494
J. Wang, X. He, S. Shen, Z. Cao, X. Yang, ROS-sensitive cross-linked polyethylenimine for red-light-activated siRNA therapy. ACS Appl. Mater. Interfaces 11(2), 1855–1863 (2019). https://doi.org/10.1021/acsami.8b18697
J. Wang, H. He, X. Xu, X. Wang, Y. Chen et al., Far-red light-mediated programmable anti-cancer gene delivery in cooperation with photodynamic therapy. Biomaterials 171, 72–82 (2018). https://doi.org/10.1016/j.biomaterials.2018.04.020
K. Han, Q. Lei, H.-Z. Jia, S.-B. Wang, W.-N. Yin et al., A tumor targeted chimeric peptide for synergistic endosomal escape and therapy by dual-stage light manipulation. Adv. Funct. Mater. 25(8), 1248–1257 (2015). https://doi.org/10.1002/adfm.201403190
X. Chen, Y. Chen, H. Xin, T. Wan, Y. Ping, Near-infrared optogenetic engineering of photothermal nanocrispr for programmable genome editing. Proc. Nat. Acad. Sci. USA 117(5), 2395–2405 (2020). https://doi.org/10.1073/pnas.1912220117
X. Wang, X. Xiao, Y. Feng, J. Li, Y. Zhang, A photoresponsive antibody-siRNA conjugate for activatable immunogene therapy of cancer. Chem. Sci. 13(18), 5345–5352 (2022). https://doi.org/10.1039/d2sc01672a
Y. Wang, S. Li, P. Zhang, H. Bai, L. Feng et al., Photothermal-responsive conjugated polymer nanops for remote control of gene expression in living cells. Adv. Mater. 30(8), 1705418 (2018). https://doi.org/10.1002/adma.201705418
Z. Yang, D. Gao, X. Guo, L. Jin, J. Zheng et al., Fighting immune cold and reprogramming immunosuppressive tumor microenvironment with red blood cell membrane-camouflaged nanobullets. ACS Nano 14(12), 17442–17457 (2020). https://doi.org/10.1021/acsnano.0c07721
Y. Wang, D. Gao, Y. Liu, X. Guo, S. Chen et al., Immunogenic-cell-killing and immunosuppression-inhibiting nanomedicine. Bioact. Mater. 6(6), 1513–1527 (2021). https://doi.org/10.1016/j.bioactmat.2020.11.016
D. Gao, T. Chen, S. Chen, X. Ren, Y. Han et al., Targeting hypoxic tumors with hybrid nanobullets for oxygen-independent synergistic photothermal and thermodynamic therapy. Nano-Micro Lett. 13(1), 99 (2021). https://doi.org/10.1007/s40820-021-00616-4
D. Gao, Y. Shi, J. Ni, S. Chen, Y. Wang et al., NIR/MRI-guided oxygen-independent carrier-free anti-tumor nano-theranostics. Small 18(36), 2106000 (2022). https://doi.org/10.1002/smll.202106000
L. Jin, X. Guo, D. Gao, Y. Liu, J. Ni et al., An NIR photothermal-responsive hybrid hydrogel for enhanced wound healing. Bioact. Mater. 16, 162–172 (2022). https://doi.org/10.1016/j.bioactmat.2022.03.006
D. Gao, X. Guo, X. Zhang, S. Chen, Y. Wang et al., Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Mater. Today Bio 5, 100035 (2020). https://doi.org/10.1016/j.mtbio.2019.100035
Z. Yang, J. Zhao, G. Yang, M. Guo, Y. Wang et al., Thermal immuno-nanomedicine in cancer. Nat. Rev. Clin. Oncol. (2023). https://doi.org/10.1038/s41571-022-00717-y
Y. Wu, D. Zhou, Q. Zhang, Z. Xie, X. Chen et al., Dual-sensitive charge-conversional polymeric prodrug for efficient codelivery of demethylcantharidin and doxorubicin. Biomacromol 17(8), 2650–2661 (2016). https://doi.org/10.1021/acs.biomac.6b00705
M. Zhou, X. Zhang, J. Xie, R. Qi, H. Lu et al., pH-sensitive poly(β-amino ester)s nanocarriers facilitate the inhibition of drug resistance in breast cancer cells. Nanomaterials 8(11), 952 (2018). https://doi.org/10.3390/nano8110952
F.J. Voskuil, P.J. Steinkamp, T. Zhao, B. van der Vegt, M. Koller et al., Exploiting metabolic acidosis in solid cancers using a tumor-agnostic pH-activatable nanoprobe for fluorescence-guided surgery. Nat. Commun. 11(1), 3257 (2020). https://doi.org/10.1038/s41467-020-16814-4
B. Chen, L. Mei, R. Fan, Y. Wang, C. Nie et al., Facile construction of targeted pH-responsive DNA-conjugated gold nanops for synergistic photothermal-chemotherapy. Chin. Chem. Lett. 32(5), 1775–1779 (2021). https://doi.org/10.1016/j.cclet.2020.12.058
Q. Zhang, S. He, G. Kuang, S. Liu, H. Lu et al., Morphology tunable and acid-sensitive dextran-doxorubicin conjugate assemblies for targeted cancer therapy. J. Mater. Chem. B 8(31), 6898–6904 (2020). https://doi.org/10.1039/d0tb00746c
S. Li, Z.T. Bennett, B.D. Sumer, J. Gao, Nano-immune-engineering approaches to advance cancer immunotherapy: Lessons from ultra-pH-sensitive nanops. Acc. Chem. Res. 53(11), 2546–2557 (2020). https://doi.org/10.1021/acs.accounts.0c00475
L. Liang, L. Wen, Y. Weng, J. Song, H. Li et al., Homologous-targeted and tumor microenvironment-activated hydroxyl radical nanogenerator for enhanced chemoimmunotherapy of non-small cell lung cancer. Chem. Eng. J. 425, 131451 (2021). https://doi.org/10.1016/j.cej.2021.131451
J.-Z. Du, X.-J. Du, C.-Q. Mao, J. Wang, Tailor-made dual pH-sensitive polymer-doxorubicin nanops for efficient anticancer drug delivery. J. Am. Chem. Soc. 133(44), 17560–17563 (2011). https://doi.org/10.1021/ja207150n
J.-Z. Du, C.-Q. Mao, Y.-Y. Yuan, X.-Z. Yang, J. Wang, Tumor extracellular acidity-activated nanops as drug delivery systems for enhanced cancer therapy. Biotechnol. Adv. 32(4), 789–803 (2014). https://doi.org/10.1016/j.biotechadv.2013.08.002
P. Mi, D. Kokuryo, H. Cabral, H. Wu, Y. Terada et al., A pH-activatable nanop with signal-amplification capabilities for non-invasive imaging of tumour malignancy. Nat. Nanotechnol. 11(8), 724–730 (2016). https://doi.org/10.1038/nnano.2016.72
G. Lian, J.R. Gnanaprakasam, Glutathione de novo synthesis but not recycling process coordinates with glutamine catabolism to control redox homeostasis and directs murine T cell differentiation. Elife 7, 36158 (2018). https://doi.org/10.7554/eLife.36158
Y. Liu, Y. Tian, Y. Tian, Y. Wang, W. Yang, Carbon-dot-based nanosensors for the detection of intracellular redox state. Adv. Mater. 27(44), 7156–7160 (2015). https://doi.org/10.1002/adma.201503662
G. Kuang, Q. Zhang, S. He, Y. Wu, Y. Huang, Reduction-responsive disulfide linkage core-cross-linked polymeric micelles for site-specific drug delivery. Polym. Chem. 11(44), 7078–7086 (2020). https://doi.org/10.1039/d0py00987c
M. Bien, S. Longen, N. Wagener, I. Chwalla, J.M. Herrmann et al., Mitochondrial disulfide bond formation is driven by intersubunit electron transfer in Erv1 and proofread by glutathione. Mol. Cell 37(4), 516–528 (2010). https://doi.org/10.1016/j.molcel.2010.01.017
P. Jangili, N. Kong, J.H. Kim, J. Zhou, H. Liu et al., DNA-damage-response-targeting mitochondria-activated multifunctional prodrug strategy for self-defensive tumor therapy. Angew. Chem. 61(16), 202117075 (2022). https://doi.org/10.1002/anie.202117075
A. Pompella, A. Visvikis, A. Paolicchi, V. De Tata, A.F. Casini, The changing faces of glutathione, a cellular protagonist. Biochem. Pharm. 66(8), 1499–1503 (2003). https://doi.org/10.1016/S0006-2952(03)00504-5
X. Zhong, X. Wang, L. Cheng, Y. Tang, G. Zhan et al., GSH-depleted PtCu3 nanocages for chemodynamic-enhanced sonodynamic cancer therapy. Adv. Funct. Mater. 30(4), 1907954 (2020). https://doi.org/10.1002/adfm.201907954
Y. Cong, H. Xiao, H. Xiong, Z. Wang, J. Ding et al., Dual drug backboned shattering polymeric theranostic nanomedicine for synergistic eradication of patient-derived lung cancer. Adv. Mater. 30(11), 1706220 (2018). https://doi.org/10.1002/adma.201706220
Y. Yu, Q. Xu, S. He, H. Xiong, Q. Zhang et al., Recent advances in delivery of photosensitive metal-based drugs. Coord. Chem. Rev. 387, 154–179 (2019). https://doi.org/10.1016/j.ccr.2019.01.020
Q. Zhang, G. Kuang, Y. Yu, X. Ding, H. Ren et al., Hierarchical microps delivering oxaliplatin and NLG 919 nanoprodrugs for local chemo-immunotherapy. ACS Appl. Mater. Interfaces 14(43), 48527–48539 (2022). https://doi.org/10.1021/acsami.2c16564
W. Wang, Y. Jin, X. Liu, F. Chen, X. Zheng et al., Endogenous stimuli-activatable nanomedicine for immune theranostics for cancer. Adv. Funct. Mater. 31(26), 2100386 (2021). https://doi.org/10.1002/adfm.202100386
X. Wang, X. Li, X. Liang, J. Liang, C. Zhang et al., ROS-responsive capsules engineered from green tea polyphenol-metal networks for anticancer drug delivery. J. Mater. Chem. B 6(7), 1000–1010 (2018). https://doi.org/10.1039/C7TB02688A
J. Li, S. Wang, X. Lin, Y. Cao, Z. Cai et al., Red blood cell-mimic nanocatalyst triggering radical storm to augment cancer immunotherapy. Nano-Micro Lett. 14(1), 57 (2022). https://doi.org/10.1007/s40820-022-00801-z
U.S. Srinivas, B.W.Q. Tan, B.A. Vellayappan, A.D. Jeyasekharan, ROS and the DNA damage response in cancer. Redox Biol. 25, 101084 (2019). https://doi.org/10.1016/j.redox.2018.101084
E. Panieri, M.M. Santoro, ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis. 7(6), 2253–2253 (2016). https://doi.org/10.1038/cddis.2016.105
Y. Guo, X. He, R.M. Zhao, H.Z. Yang, Z. Huang et al., Zn-dipicolylamine-based reactive oxygen species-responsive lipids for siRNA delivery and in vivo colitis treatment. Acta Biomater. 147, 287–298 (2022). https://doi.org/10.1016/j.actbio.2022.04.033
N. Yang, W. Xiao, X. Song, W. Wang, X. Dong, Recent advances in tumor microenvironment hydrogen peroxide-responsive materials for cancer photodynamic therapy. Nano-Micro Lett. 12(1), 15 (2020). https://doi.org/10.1007/s40820-019-0347-0
G. Saravanakumar, J. Kim, W.J. Kim, Reactive-oxygen-species-responsive drug delivery systems: promises and challenges. Adv. Sci. 4(1), 1600124 (2017). https://doi.org/10.1002/advs.201600124
Z. Jiang, J. Chen, L. Cui, X. Zhuang, J. Ding et al., Advances in stimuli-responsive polypeptide nanogels. Small Meth. 2(3), 1700307 (2018). https://doi.org/10.1002/smtd.201700307
L. Chen, X. Wang, Y. Yuan, R. Hu, Q. Chen et al., Photosensitizers with aggregation-induced emission and their biomedical applications. Eng. Reg. 3(1), 59–72 (2022). https://doi.org/10.1016/j.engreg.2022.01.005
D. Luo, K.A. Carter, E.A. Molins, N.L. Straubinger, J. Geng et al., Pharmacokinetics and pharmacodynamics of liposomal chemophototherapy with short drug-light intervals. J. Control. Release 297, 39–47 (2019). https://doi.org/10.1016/j.jconrel.2019.01.030
Y. Liu, X. Zhao, C. Zhao, H. Zhang, Y. Zhao, Responsive porous microcarriers with controllable oxygen delivery for wound healing. Small 15(21), 1901254 (2019). https://doi.org/10.1002/smll.201901254
W. Tao, O.C. Farokhzad, Theranostic nanomedicine in the NIR-II window: classification, fabrication, and biomedical applications. Chem. Rev. 122(6), 5405–5407 (2022). https://doi.org/10.1021/acs.chemrev.2c00089
N.J. Farrer, L. Salassa, P.J. Sadler, Photoactivated chemotherapy (PACT): the potential of excited-state d-block metals in medicine. Dalt. Trans. 48(48), 10690–10701 (2009). https://doi.org/10.1039/B917753A
Q. Zhang, G. Kuang, D. Zhou, Y. Qi, M. Wang et al., Photoactivated polyprodrug nanops for effective light-controlled Pt(IV) and siRNA codelivery to achieve synergistic cancer therapy. J. Mater. Chem. B 8(27), 5903–5911 (2020). https://doi.org/10.1039/d0tb01103g
S.S. Lucky, K.C. Soo, Y. Zhang, Nanops in photodynamic therapy. Chem. Rev. 115(4), 1990–2042 (2015). https://doi.org/10.1021/cr5004198
J. Ouyang, A. Xie, J. Zhou, R. Liu, L. Wang et al., Minimally invasive nanomedicine: nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Chem. Soc. Rev. 51(12), 4996–5041 (2022). https://doi.org/10.1039/D1CS01148K
S. Koo, M.G. Lee, A. Sharma, M. Li, X. Zhang et al., Harnessing GULT1-targeted pro-oxidant ascorbate for synergistic phototherapeutics. Angew. Chem. Int. Ed. 61(17), 202110832 (2022). https://doi.org/10.1002/anie.202110832
J. Li, S. Song, J. Meng, L. Tan, X. Liu et al., 2D MOF periodontitis photodynamic ion therapy. J. Am. Chem. Soc. 143(37), 15427–15439 (2021). https://doi.org/10.1021/jacs.1c07875
L. Zou, H. Wang, B. He, L. Zeng, T. Tan et al., Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics 6(6), 762 (2016). https://doi.org/10.7150/thno.14988
D. Wu, X. Shou, Y. Yu, X. Wang, G. Chen et al., Biologics-loaded photothermally dissolvable hyaluronic acid microneedle patch for psoriasis treatment. Adv. Funct. Mater. 32(47), 2205847 (2022). https://doi.org/10.1002/adfm.202205847
Y. Ye, J. He, Y. Qiao, Y. Qi, H. Zhang et al., Mild temperature photothermal assisted anti-bacterial and anti-inflammatory nanosystem for synergistic treatment of post-cataract surgery endophthalmitis. Theranostics 10(19), 8541–8557 (2020). https://doi.org/10.7150/thno.46895
Y. Zhu, P. Xu, X. Zhang, D. Wu, Emerging porous organic polymers for biomedical applications. Chem. Soc. Rev. 51(4), 1377–1414 (2022). https://doi.org/10.1039/d1cs00871d
X. Liu, Q. Liu, X. He, G. Yang, X. Chen et al., NIR-II-enhanced single-atom-nanozyme for sustainable accelerating bacteria-infected wound healing. Appl. Surf. Sci. 612, 155866 (2023). https://doi.org/10.1016/j.apsusc.2022.155866
Q. Shao, B. Xing, Photoactive molecules for applications in molecular imaging and cell biology. Chem. Soc. Rev. 39(8), 2835–2846 (2010). https://doi.org/10.1039/B915574K
H.D. Bandara, S.C. Burdette, Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 41(5), 1809–1825 (2012). https://doi.org/10.1039/c1cs15179g
R. Klajn, Spiropyran-based dynamic materials. Chem. Soc. Rev. 43(1), 148–184 (2014). https://doi.org/10.1039/c3cs60181a
Z. Wang, G. Kuang, Z. Yu, A. Li, D. Zhou et al., Light-activatable dual prodrug polymer nanop for precise synergistic chemotherapy guided by drug-mediated computed tomography imaging. Acta Biomater. 94, 459–468 (2019). https://doi.org/10.1016/j.actbio.2019.05.047
P. Wu, X. Wang, Z. Wang, W. Ma, J. Guo et al., Light-activatable prodrug and AIEgen copolymer nanop for dual-drug monitoring and combination therapy. ACS Appl. Mater. Interfaces 11(20), 18691–18700 (2019). https://doi.org/10.1021/acsami.9b02346
Q. Zhang, X. Wang, G. Kuang, Y. Yu, Y. Zhao, Photopolymerized 3D printing scaffolds with Pt(IV) prodrug initiator for postsurgical tumor treatment. Research 2022, 9784510 (2022). https://doi.org/10.34133/2022/9784510
Q. Zhang, X. Wang, G. Kuang, Y. Zhao, Pt(IV) prodrug initiated microps from microfluidics for tumor chemo-, photothermal and photodynamic combination therapy. Bioact. Mater. 24(3), 185–196 (2023). https://doi.org/10.1016/j.bioactmat.2022.12.020
G. Kuang, H. Lu, S. He, H. Xiong, J. Yu et al., Near-infrared light-triggered polyprodrug/siRNA loaded upconversion nanops for multi-modality imaging and synergistic cancer therapy. Adv. Healthcare Mater. 10(20), 2100938 (2021). https://doi.org/10.1002/adhm.202100938
H. Li, Q. Yao, F. Xu, Y. Li, D. Kim et al., An activatable AIEgen probe for high-fidelity monitoring of overexpressed tumor enzyme activity and its application to surgical tumor excision. Angew. Chem. Int. Ed. 132(25), 10272–10281 (2020). https://doi.org/10.1002/anie.202001675
J. Mu, J. Lin, P. Huang, X. Chen, Development of endogenous enzyme-responsive nanomaterials for theranostics. Chem. Soc. Rev. 47(15), 5554–5573 (2018). https://doi.org/10.1039/C7CS00663B
J. Hu, G. Zhang, S. Liu, Enzyme-responsive polymeric assemblies, nanops and hydrogels. Chem. Soc. Rev. 41(18), 5933–5949 (2012). https://doi.org/10.1039/C2CS35103J
X. Wang, J. Hu, G. Zhang, S. Liu, Highly selective fluorogenic multianalyte biosensors constructed via enzyme-catalyzed coupling and aggregation-induced emission. J. Am. Chem. Soc. 136(28), 9890–9893 (2014). https://doi.org/10.1021/ja505278w
N. Qiu, X. Liu, Y. Zhong, Z. Zhou, Y. Piao et al., Esterase-activated charge-reversal polymer for fibroblast-exempt cancer gene therapy. Adv. Mater. 28(48), 10613–10622 (2016). https://doi.org/10.1002/adma.201603095
H. Li, Z. Qiu, F. Li, C. Wang, The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis. Oncol. Lett. 14(5), 5865–5870 (2017). https://doi.org/10.3892/ol.2017.6924
Z. Luo, Y. Dai, H. Gao, Development and application of hyaluronic acid in tumor targeting drug delivery. Acta Pharm. Sin. B 9(6), 1099–1112 (2019). https://doi.org/10.1016/j.apsb.2019.06.004
K.Y. Choi, E.J. Jeon, H.Y. Yoon, B.S. Lee, J.H. Na et al., Theranostic nanops based on PEGylated hyaluronic acid for the diagnosis, therapy and monitoring of colon cancer. Biomaterials 33(26), 6186–6193 (2012). https://doi.org/10.1016/j.biomaterials.2012.05.029
H.T. Pham, N.L. Block, V.B. Lokeshwar, Tumor-derived hyaluronidase: a diagnostic urine marker for high-grade bladder cancer. Cancer Res. 57(4), 778–783 (1997). https://doi.org/10.1016/S0022-5347(01)62975-6
W. Sun, Z. Gu, ATP-responsive drug delivery systems. Exp. Opin. Drug Deliv. 13(3), 311–314 (2016). https://doi.org/10.1517/17425247.2016.1140147
J. Deng, A. Walther, ATP-responsive and ATP-fueled self-assembling systems and materials. Adv. Mater. 32(42), 2002629 (2020). https://doi.org/10.1002/adma.202002629
J. Ouyang, Z. Tang, N. Farokhzad, N. Kong, N.Y. Kim et al., Ultrasound mediated therapy: recent progress and challenges in nanoscience. Nano Today 35, 100949 (2020). https://doi.org/10.1016/j.nantod.2020.100949
H. Zhu, L. Zhang, S. Tong, C.M. Lee, H. Deshmukh et al., Spatial control of in vivo CRISPR-Cas9 genome editing via nanomagnets. Nat. Biomed. Eng. 3(2), 126–136 (2019). https://doi.org/10.1038/s41551-018-0318-7
M.-Q. Zhu, L.-Q. Wang, G.J. Exarhos, A.D. Li, Thermosensitive gold nanops. J. Am. Chem. Soc. 126(9), 2656–2657 (2004). https://doi.org/10.1021/ja038544z
T. Hu, Z. Gu, G.R. Williams, M. Strimaite, J. Zha et al., Layered double hydroxide-based nanomaterials for biomedical applications. Chem. Soc. Rev. 51(14), 6126–6176 (2022). https://doi.org/10.1039/d2cs00236a
Y. Liang, H. Xu, Z. Li, A. Zhangji, B. Guo, Bioinspired injectable self-healing hydrogel sealant with fault-tolerant and repeated thermo-responsive adhesion for sutureless post-wound-closure and wound healing. Nano-Micro Lett. 14(1), 185 (2022). https://doi.org/10.1007/s40820-022-00928-z
W. Zhou, X. Ma, J. Wang, X. Xu, O. Koivisto et al., Co-delivery CPT and PTX prodrug with a photo/thermo-responsive nanoplatform for triple-negative breast cancer therapy. Smart Med. 1(1), 20220036 (2022). https://doi.org/10.1002/SMMD.20220036
H. Nakatsuji, T. Numata, N. Morone, S. Kaneko, Y. Mori et al., Thermosensitive ion channel activation in single neuronal cells by using surface-engineered plasmonic nanops. Angew. Chem. Int. Ed. 54(40), 11725–11729 (2015). https://doi.org/10.1002/ange.201505534
B. Zhao, Y. Zhuang, Z. Liu, J. Mao, S. Qian et al., Regulated extravascular microenvironment via reversible thermosensitive hydrogel for inhibiting calcium influx and vasospasm. Bioact. Mater. 21(3), 422–435 (2023). https://doi.org/10.1016/j.bioactmat.2022.08.024
S. Qi, P. Zhang, M. Ma, M. Yao, J. Wu et al., Cellular internalization-induced aggregation of porous silicon nanops for ultrasound imaging and protein-mediated protection of stem cells. Small 15(1), 1804332 (2019). https://doi.org/10.1002/smll.201804332
W. Chen, C. Liu, X. Ji, J. Joseph, Z. Tang et al., Stanene-based nanosheets for β-elemene delivery and ultrasound-mediated combination cancer therapy. Angew. Chem. Int. Ed. 60(13), 7155–7164 (2021). https://doi.org/10.1002/anie.202016330
N. Lee, D. Yoo, D. Ling, M.H. Cho, T. Hyeon et al., Iron oxide based nanops for multimodal imaging and magnetoresponsive therapy. Chem. Rev. 115(19), 10637–10689 (2015). https://doi.org/10.1021/acs.chemrev.5b00112
J.S. Ebersole, Magnetoencephalography/magnetic source imaging in the assessment of patients with epilepsy. Epilepsia 38, S1–S5 (1997). https://doi.org/10.1111/j.1528-1157.1997.tb04533.x
J. Yang, X. Zhang, C. Liu, Z. Wang, L. Deng et al., Biologically modified nanops as theranostic bionanomaterials. Prog. Mater. Sci. 118, 100768 (2021). https://doi.org/10.1016/j.pmatsci.2020.100768
Y. Shen, Z. Zhou, M. Sui, J. Tang, P. Xu et al., Charge-reversal polyamidoamine dendrimer for cascade nuclear drug delivery. Nanomedicine 5(8), 1205–1217 (2010). https://doi.org/10.2217/nnm.10.86
R. Mo, Z. Gu, Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery. Mater. Today 19(5), 274–283 (2016). https://doi.org/10.1016/j.mattod.2015.11.025
Y. Liu, Y. Zou, C. Feng, A. Lee, J. Yin et al., Charge conversional biomimetic nanocomplexes as a multifunctional platform for boosting orthotopic glioblastoma RNAi therapy. Nano Lett. 20(3), 1637–1646 (2020). https://doi.org/10.1021/acs.nanolett.9b04683
M. Xu, D. Zhao, Y. Chen, C. Chen, L. Zhang et al., Charge reversal polypyrrole nanocomplex-mediated gene delivery and photothermal therapy for effectively treating papillary thyroid cancer and inhibiting lymphatic metastasis. ACS Appl. Mater. Interfaces 14(12), 14072–14086 (2022). https://doi.org/10.1021/acsami.1c25179
C.Y. Sun, S. Shen, C.F. Xu, H.J. Li, Y. Liu et al., Tumor acidity-sensitive polymeric vector for active targeted siRNA delivery. J. Am. Chem. Soc. 137(48), 15217–15224 (2015). https://doi.org/10.1021/jacs.5b09602
Q. Liu, K. Zhao, C. Wang, Z. Zhang, C. Zheng et al., Multistage delivery nanop facilitates efficient CRISPR/dCas9 activation and tumor growth suppression in vivo. Adv. Sci. 6(1), 1801423 (2019). https://doi.org/10.1002/advs.201801423
Y. Qi, H. Song, H. Xiao, G. Cheng, B. Yu et al., Fluorinated acid-labile branched hydroxyl-rich nanosystems for flexible and robust delivery of plasmids. Small 14(42), 1803061 (2018). https://doi.org/10.1002/smll.201803061
H. Yu, C. Guo, B. Feng, J. Liu, X. Chen et al., Triple-layered pH-responsive micelleplexes loaded with siRNA and cisplatin prodrug for NF-Kappa B targeted treatment of metastatic breast cancer. Theranostics 6(1), 14–27 (2016). https://doi.org/10.7150/thno.13515
Q. Chen, T. Sun, C. Jiang, Recent advancements in nanomedicine for ‘cold’ tumor immunotherapy. Nano-Micro Lett. 13(1), 92 (2021). https://doi.org/10.1007/s40820-021-00622-6
D. Kim, Y. Wu, Q. Li, Y.-K. Oh, Nanop-mediated lipid metabolic reprogramming of T cells in tumor microenvironments for immunometabolic therapy. Nano-Micro Lett. 13(1), 31 (2021). https://doi.org/10.1007/s40820-020-00555-6
G. Kuang, Q. Zhang, Y. Yu, X. Ding, W. Sun et al., Lyophilization-inactivated cancer cells composited Janus scaffold for tumor postoperative immuno-chemotherapy. Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2022.140619
D. Wang, T. Wang, J. Liu, H. Yu, S. Jiao et al., Acid-activatable versatile micelleplexes for PD-L1 blockade-enhanced cancer photodynamic immunotherapy. Nano Lett. 16(9), 5503–5513 (2016). https://doi.org/10.1021/acs.nanolett.6b01994
Y. Zou, X. Sun, Y. Wang, C. Yan, Y. Liu et al., Single siRNA nanocapsules for effective siRNA brain delivery and glioblastoma treatment. Adv. Mater. 32(24), 2000416 (2020). https://doi.org/10.1002/adma.202000416
Y.X. Lin, Y. Wang, H.W. An, B. Qi, J. Wang et al., Peptide-based autophagic gene and cisplatin co-delivery systems enable improved chemotherapy resistance. Nano Lett. 19(5), 2968–2978 (2019). https://doi.org/10.1021/acs.nanolett.9b00083
Q. Zhang, G. Kuang, S. He, S. Liu, H. Lu et al., Chain-shattering Pt(IV)-backboned polymeric nanoplatform for efficient CRISPR/Cas9 gene editing to enhance synergistic cancer therapy. Nano Res. 14(3), 601–610 (2020). https://doi.org/10.1007/s12274-020-3066-4
H. Yang, R. Liu, Y. Xu, L. Qian, Z. Dai, Photosensitizer nanops boost photodynamic therapy for pancreatic cancer treatment. Nano-Micro Lett. 13(1), 35 (2021). https://doi.org/10.1007/s40820-020-00561-8
X. Liu, J. Xiang, D. Zhu, L. Jiang, Z. Zhou et al., Fusogenic reactive oxygen species triggered charge-reversal vector for effective gene delivery. Adv. Mater. 28(9), 1743–1752 (2016). https://doi.org/10.1002/adma.201504288
D.V. Schaffer, N.A. Fidelman, N. Dan, D.A. Lauffenburger, Vector unpacking as a potential barrier for receptor-mediated polyplex gene delivery. Biotechnol. Bioeng. 67(5), 598–606 (2000). https://doi.org/10.1002/(SICI)1097-0290(20000305)67:5%3c598::AID-BIT10%3e3.0.CO;2-G
J. Zabner, A.J. Fasbender, T. Moninger, K.A. Poellinger, M.J. Welsh, Cellular and molecular barriers to gene transfer by a cationic lipid. J. Biolog. Chem. 270(32), 18997–19007 (1995). https://doi.org/10.1074/jbc.270.32.18997
M. Piest, J.F. Engbersen, Effects of charge density and hydrophobicity of poly (amido amine)s for non-viral gene delivery. J. Control. Release 148(1), 83–90 (2010). https://doi.org/10.1016/j.jconrel.2010.07.109
H. Pollard, J.-S. Remy, G. Loussouarn, S. Demolombe, J.-P. Behr et al., Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J. Biolog. Chem. 273(13), 7507–7511 (1998). https://doi.org/10.1074/jbc.273.13.7507
D. Zhu, H. Yan, X. Liu, J. Xiang, Z. Zhou et al., Intracellularly disintegratable polysulfoniums for efficient gene delivery. Adv. Funct. Mater. 27(16), 1606826 (2017). https://doi.org/10.1002/adfm.201606826
M. Zheng, Y. Liu, Y. Wang, D. Zhang, Y. Zou et al., ROS-responsive polymeric siRNA nanomedicine stabilized by triple interactions for the robust glioblastoma combinational RNAi therapy. Adv. Mater. 31(37), 1903277 (2019). https://doi.org/10.1002/adma.201903277
M. Tavakkoli Yaraki, B. Liu, Y.N. Tan, Emerging strategies in enhancing singlet oxygen generation of nano-photosensitizers toward advanced phototherapy. Nano-Micro Lett. 14(1), 123 (2022). https://doi.org/10.1007/s40820-022-00856-y
X. Zhang, L. Cheng, Y. Lu, J. Tang, Q. Lv et al., A MXene-based bionic cascaded-enzyme nanoreactor for tumor phototherapy/enzyme dynamic therapy and hypoxia-activated chemotherapy. Nano-Micro Lett. 14(1), 22 (2021). https://doi.org/10.1007/s40820-021-00761-w
Q. Zhang, G. Kuang, S. He, H. Lu, Y. Cheng et al., Photoactivatable prodrug-backboned polymeric nanops for efficient light-controlled gene delivery and synergistic treatment of platinum-resistant ovarian cancer. Nano Lett. 20(5), 3039–3049 (2020). https://doi.org/10.1021/acs.nanolett.9b04981
P.D. Hsu, E.S. Lander, F. Zhang, Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6), 1262–1278 (2014). https://doi.org/10.1016/j.cell.2014.05.010
Y. Pan, J. Yang, X. Luan, X. Liu, X. Li et al., Near-infrared upconversion-activated CRISPR-Cas9 system: a remote-controlled gene editing platform. Sci. Adv. 5(4), 1eaav799 (2019). https://doi.org/10.1126/sciadv.aav7199
J.B. van Beilen, Z. Li, Enzyme technology: an overview. Curr. Opin. Biotechnol. 13(4), 338–344 (2002). https://doi.org/10.1016/S0958-1669(02)00334-8
M. Shahriari, M. Zahiri, K. Abnous, S.M. Taghdisi, M. Ramezani et al., Enzyme responsive drug delivery systems in cancer treatment. J. Control. Release 308, 172–189 (2019). https://doi.org/10.1016/j.jconrel.2019.07.004
Y. Yi, M. Yu, C. Feng, H. Hao, W. Zeng et al., Transforming “cold” tumors into “hot” ones via tumor-microenvironment-responsive siRNA micelleplexes for enhanced immunotherapy. Matter 5(7), 2285–2305 (2022). https://doi.org/10.1016/j.matt.2022.04.032
P. Wang, L. Zhang, W. Zheng, L. Cong, Z. Guo et al., Thermo-triggered release of CRISPR-Cas9 system by lipid-encapsulated gold nanops for tumor therapy. Angew. Chem. Int. Ed. 57(6), 1491–1496 (2018). https://doi.org/10.1002/anie.201708689
Y. Pu, H. Yin, C. Dong, H. Xiang, W. Wu et al., Sono-controllable and ROS-sensitive CRISPR-Cas9 genome editing for augmented/synergistic ultrasound tumor nanotherapy. Adv. Mater. 33(45), 2104641 (2021). https://doi.org/10.1002/adma.202104641
T. Fang, X. Cao, M. Ibnat, G. Chen, Stimuli-responsive nanoformulations for CRISPR-Cas9 genome editing. J. Nanobiotechnol. 20(1), 354 (2022). https://doi.org/10.1186/s12951-022-01570-y
M. Naeem, S. Majeed, M.Z. Hoque, I. Ahmad, Latest developed strategies to minimize the off-target effects in CRISPR-Cas-mediated genome editing. Cells 9(7), 1608 (2020). https://doi.org/10.3390/cells9071608
M.N. Hsu, Y.C. Hu, Local magnetic activation of CRISPR. Nat. Biomed. Eng. 3(2), 83–84 (2019). https://doi.org/10.1038/s41551-019-0354-y
O.O. Abudayyeh, J.S. Gootenberg, S. Konermann, J. Joung, I.M. Slaymaker et al., C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353(6299), aaf5573 (2016). https://doi.org/10.1126/science.aaf5573
Z. Zhang, Q. Wang, Q. Liu, Y. Zheng, C. Zheng et al., Dual-locking nanops disrupt the PD-1/PD-L1 pathway for efficient cancer immunotherapy. Adv. Mater. 31(51), 1905751 (2019). https://doi.org/10.1002/adma.201905751
J. Gilleron, W. Querbes, A. Zeigerer, A. Borodovsky, G. Marsico et al., Image-based analysis of lipid nanop-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 31(7), 638–646 (2013). https://doi.org/10.1038/nbt.2612
D.J. Glover, D.L. Leyton, G.W. Moseley, D.A. Jans, The efficiency of nuclear plasmid DNA delivery is a critical determinant of transgene expression at the single cell level. J. Gene Med. 12(1), 77–85 (2010). https://doi.org/10.1002/jgm.1406
S. Hama, H. Akita, R. Ito, H. Mizuguchi, T. Hayakawa et al., Quantitative comparison of intracellular trafficking and nuclear transcription between adenoviral and lipoplex systems. Mol. Ther. 13(4), 786–794 (2006). https://doi.org/10.1016/j.ymthe.2005.10.007
S. Wilhelm, A.J. Tavares, Q. Dai, S. Ohta, J. Audet et al., Analysis of nanop delivery to tumours. Nat. Rev. Mater. 1(5), 1–12 (2016). https://doi.org/10.1038/natrevmats.2016.14
P. Zhang, Y. Xiao, X. Sun, X. Lin, S. Koo et al., Cancer nanomedicine toward clinical translation: obstacles, opportunities, and future prospects. Med (2022). https://doi.org/10.1016/j.medj.2022.12.001