Dicyandiamide-Driven Tailoring of the n-Value Distribution and Interface Dynamics for High-Performance ACI 2D Perovskite Solar Cells
Corresponding Author: Yiqiang Zhang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 305
Abstract
Organic–inorganic hybrid perovskite solar cells achieve remarkable efficiencies (> 26%) yet face stability challenges. Quasi-2D alternating-cation-interlayer perovskites offer enhanced stability through hydrophobic spacer cations but suffer from vertical phase segregation and buried interface defects. Herein, we introduce dicyanodiamide (DCD) to simultaneously address these dual limitations in GA(MA)nPbnI3n+1 perovskites. The guanidine group in DCD passivates undercoordinated Pb2+ and MA+ vacancies at the perovskite/TiO2 interface, while cyano groups eliminate oxygen vacancies in TiO2 via Ti4+–CN coordination, reducing interfacial trap density by 73% with respect to the control sample. In addition, DCD regulates crystallization kinetics, suppressing low-n-phase aggregation and promoting vertical alignment of high-n phases, which benefit for carrier transport. This dual-functional modification enhances charge transport and stabilizes energy-level alignment. The optimized devices achieve a record power conversion efficiency of 21.54% (vs. 19.05% control) and retain 94% initial efficiency after 1200 h, outperforming unmodified counterparts (84% retention). Combining defect passivation with phase homogenization, this work establishes a molecular bridge strategy to decouple stability-efficiency trade-offs in low-dimensional perovskites, providing a universal framework for interface engineering in high-performance optoelectronics.
Highlights:
1 Guanidine derivatives of dicyanodiamide (DCD) is introduced into the buried interface of quasi-2D alternating-cation-interlayer perovskites (GA(MA)nPbnI3n+1), which simultaneously realize the defect passivation of buried interface and the regulation of phase distribution.
2 This interface engineering not only reduces interfacial defects but also enhances the interfacial charge transfer, and the DCD-regulated perovskite solar cells exhibit a significant increase in efficiency from 19.05% to 21.54%.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Duan, J. Li, G. Divitini, D. Cortecchia, F. Yuan et al., 2D hybrid perovskites: from static and dynamic structures to potential applications. Adv. Mater. 36(30), 2403455 (2024). https://doi.org/10.1002/adma.202403455
- R. Wang, M. Mujahid, Y. Duan, Z.-K. Wang, J. Xue et al., A review of perovskites solar cell stability. Adv. Funct. Mater. 29(47), 1808843 (2019). https://doi.org/10.1002/adfm.201808843
- https://www.nrel.gov/pv/cell-efficiency.html
- X. Zhao, T. Liu, Y.-L. Loo, Advancing 2D perovskites for efficient and stable solar cells: challenges and opportunities. Adv. Mater. 34(3), 2105849 (2022). https://doi.org/10.1002/adma.202105849
- Y. Liu, S. Yuan, H. Zheng, M. Wu, S. Zhang et al., Structurally dimensional engineering in perovskite photovoltaics. Adv. Energy Mater. 13(23), 2300188 (2023). https://doi.org/10.1002/aenm.202300188
- X. Chen, W. Feng, Y. Fang, Q. Li, Y.-H. Huang et al., Improved conductivity of 2D perovskite capping layer for realizing high-performance 3D/2D heterostructured hole transport layer-free perovskite photovoltaics. ACS Nano 19(4), 4299–4308 (2025). https://doi.org/10.1021/acsnano.4c11785
- C.C. Stoumpos, D.H. Cao, D.J. Clark, J. Young, J.M. Rondinelli et al., Ruddlesden–popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28(8), 2852–2867 (2016). https://doi.org/10.1021/acs.chemmater.6b00847
- K. Meng, B. Chen, M. Xiao, Y. Zhai, Z. Qiao et al., Humidity-insensitive, large-area-applicable, hot-air-assisted ambient fabrication of 2D perovskite solar cells. Adv. Mater. 35(11), e2209712 (2023). https://doi.org/10.1002/adma.202209712
- M.E. Kamminga, H.-H. Fang, M.R. Filip, F. Giustino, J. Baas et al., Confinement effects in low-dimensional lead iodide perovskite hybrids. Chem. Mater. 28(13), 4554–4562 (2016). https://doi.org/10.1021/acs.chemmater.6b00809
- F. Wang, D. Duan, K. Zhou, Y.Z.B. Xue, X. Liang et al., Ionic liquid engineering enabled in-plane orientated 1D perovskite nanorods for efficient mixed-dimensional perovskite photovoltaics. InfoMat 5(8), e12459 (2023). https://doi.org/10.1002/inf2.12459
- R. Cao, K. Sun, C. Liu, Y. Mao, W. Guo et al., Structurally flexible 2D spacer for suppressing the electron-phonon coupling induced non-radiative decay in perovskite solar cells. Nano-Micro Lett. 16(1), 178 (2024). https://doi.org/10.1007/s40820-024-01401-9
- X. Shen, X. Lin, Y. Peng, Y. Zhang, F. Long et al., Two-dimensional materials for highly efficient and stable perovskite solar cells. Nano-Micro Lett. 16(1), 201 (2024). https://doi.org/10.1007/s40820-024-01417-1
- H. Lee, T. Moon, Y. Lee, J. Kim, Structural mechanisms of quasi-2D perovskites for next-generation photovoltaics. Nano-Micro Lett. 17(1), 139 (2025). https://doi.org/10.1007/s40820-024-01609-9
- X. Li, J.M. Hoffman, M.G. Kanatzidis, The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 121(4), 2230–2291 (2021). https://doi.org/10.1021/acs.chemrev.0c01006
- Q. Cao, P. Li, W. Chen, S. Zang, L. Han et al., Two-dimensional perovskites: Impacts of species, components, and properties of organic spacers on solar cells. Nano Today 43, 101394 (2022). https://doi.org/10.1016/j.nantod.2022.101394
- C.M.M. Soe, C.C. Stoumpos, M. Kepenekian, B. Traoré, H. Tsai et al., New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)(CH3NH3)nPbnI3n+1: structure, properties, and photovoltaic performance. J. Am. Chem. Soc. 139(45), 16297–16309 (2017). https://doi.org/10.1021/jacs.7b09096
- K. Xu, Z. Xing, D. Li, C. Du, Y. Gao et al., Boosting efficiency to 22.73%: unraveling the role of solvent environment in low-dimensional perovskites through competitive bonding interactions. Adv. Funct. Mater. 35(7), 2415429 (2025). https://doi.org/10.1002/adfm.202415429
- Y. Zhang, N.-G. Park, Quasi-two-dimensional perovskite solar cells with efficiency exceeding 22%. ACS Energy Lett. 7(2), 757–765 (2022). https://doi.org/10.1021/acsenergylett.1c02645
- T.L. Leung, I. Ahmad, A.A. Syed, A.M.C. Ng, J. Popović et al., Stability of 2D and quasi-2D perovskite materials and devices. Commun. Mater. 3, 63 (2022). https://doi.org/10.1038/s43246-022-00285-9
- Y. Wang, D. Li, Z. Xing, J. Li, X. Hu et al., Quantum well growth management to smooth the energy transfer pathway for quasi-2D perovskite solar cells. Adv. Funct. Mater. 34(36), 2401203 (2024). https://doi.org/10.1002/adfm.202401203
- X. Dong, M. Chen, R. Wang, Q. Ling, Z. Hu et al., Quantum confinement breaking: orbital coupling in 2D ruddlesden–popper perovskites enables efficient solar cells. Adv. Energy Mater. 13(29), 2301006 (2023). https://doi.org/10.1002/aenm.202301006
- Z. Li, H. Gu, X. Liu, H. Wang, N. Zhang et al., Uniform phase permutation of efficient ruddlesden–popper perovskite solar cells via binary spacers and single crystal coordination. Adv. Mater. 36(48), 2410408 (2024). https://doi.org/10.1002/adma.202410408
- H. Peng, D. Li, Z. Li, Z. Xing, X. Hu et al., Ionic liquid assisted imprint for efficient and stable quasi-2D perovskite solar cells with controlled phase distribution. Nano-Micro Lett. 15(1), 91 (2023). https://doi.org/10.1007/s40820-023-01076-8
- J. Zhang, J. Qin, M. Wang, Y. Bai, H. Zou et al., Uniform permutation of quasi-2D perovskites by vacuum poling for efficient, high-fill-factor solar cells. Joule 3(12), 3061–3071 (2019). https://doi.org/10.1016/j.joule.2019.09.020
- R. Cao, Y. Chen, N. Shen, H. Li, S. Chen et al., Enhancing spectral response of thermally stable printed Dion–Jacobson 2D FAPbI3 photovoltaics via manipulating charge transfer. ACS Energy Lett. 9(8), 3737–3745 (2024). https://doi.org/10.1021/acsenergylett.4c01370
- Z. Zhang, L. Qiao, K. Meng, R. Long, G. Chen et al., Rationalization of passivation strategies toward high-performance perovskite solar cells. Chem. Soc. Rev. 52(1), 163–195 (2023). https://doi.org/10.1039/d2cs00217e
- N. Yan, Z. Fang, Z. Dai, J. Feng, S. Liu, Buried interface-the key issues for high performance inverted perovskite solar cells. Adv. Funct. Mater. 34(22), 2314039 (2024). https://doi.org/10.1002/adfm.202314039
- H. Liu, Z. Lu, W. Zhang, H. Zhou, Y. Xia et al., Synergistic optimization of buried interface by multifunctional organic-inorganic complexes for highly efficient planar perovskite solar cells. Nano-Micro Lett. 15(1), 156 (2023). https://doi.org/10.1007/s40820-023-01130-5
- X. Lu, K. Sun, Y. Wang, C. Liu, Y. Meng et al., Dynamic reversible oxidation-reduction of iodide ions for operationally stable perovskite solar cells under ISOS-L-3 protocol. Adv. Mater. 36(25), 2400852 (2024). https://doi.org/10.1002/adma.202400852
- Z. Liu, T. Liu, M. Li, T. He, G. Guo et al., Eliminating halogen vacancies enables efficient MACL-assisted formamidine perovskite solar cells. Adv. Sci. 11(7), e2306280 (2024). https://doi.org/10.1002/advs.202306280
- M. Chen, K. Tian, H. Liu, Y. Liu, Y. Tang et al., Interfacial bidirectional binding for improving photovoltaic performance of perovskite solar cells. Chem. Eng. J. 480, 148081 (2024). https://doi.org/10.1016/j.cej.2023.148081
- L.K. Ono, S.F. Liu, Y. Qi, Reducing detrimental defects for high-performance metal halide perovskite solar cells. Angew. Chem. Int. Ed. 59(17), 6676–6698 (2020). https://doi.org/10.1002/anie.201905521
- X. Wang, H. Huang, M. Wang, Z. Lan, P. Cui et al., Oriented molecular bridge constructs homogeneous buried interface for perovskite solar cells with efficiency over 25.3%. Adv. Mater. 36(16), 2310710 (2024). https://doi.org/10.1002/adma.202310710
- H. Huang, P. Cui, Y. Chen, L. Yan, X. Yue et al., 24.8%-efficient planar perovskite solar cells via ligand-engineered TiO2 deposition. Joule 6(9), 2186–2202 (2022). https://doi.org/10.1016/j.joule.2022.07.004
- C. Chen, X. Wang, Z. Li, X. Du, Z. Shao et al., Polyacrylonitrile-coordinated perovskite solar cell with open-circuit voltage exceeding 1.23 V. Angew. Chem. Int. Ed. 61(8), e202113932 (2022). https://doi.org/10.1002/anie.202113932
- G. Liu, Y. Zhong, W. Feng, M. Yang, G. Yang et al., Multidentate chelation heals structural imperfections for minimized recombination loss in lead-free perovskite solar cells. Angew. Chem. Int. Ed. 61(40), e202209464 (2022). https://doi.org/10.1002/anie.202209464
- L. Duan, S. Liu, X. Wang, Z. Zhang, J. Luo, Interfacial crosslinking for efficient and stable planar TiO2 perovskite solar cells. Adv. Sci. 11(33), 2402796 (2024). https://doi.org/10.1002/advs.202402796
- Y. Zhang, X. Liu, P. Li, Y. Duan, X. Hu et al., Dopamine-crosslinked TiO2/perovskite layer for efficient and photostable perovskite solar cells under full spectral continuous illumination. Nano Energy 56, 733–740 (2019). https://doi.org/10.1016/j.nanoen.2018.11.068
- Q. Xiao, Y. Zhao, Z. Huang, Y. Liu, P. Chen et al., Benzoyl sulfonyl molecules for bilateral passivation and crystalline regulation at buried interfaces toward high-performance perovskite solar cells. Adv. Funct. Mater. 34(22), 2314472 (2024). https://doi.org/10.1002/adfm.202314472
- L. Wang, B. Chang, H. Li, Y. Wu, L. Zhang et al., Electron acceptor molecule doping induced π–π interaction to promote charge transport kinetics for efficient and stable 2D/3D perovskite solar cells. Angew. Chem. Int. Ed. 62(26), e202304256 (2023). https://doi.org/10.1002/anie.202304256
- Z. Xu, D. Lu, X. Dong, M. Chen, Q. Fu et al., Highly efficient and stable Dion−Jacobson perovskite solar cells enabled by extended π-conjugation of organic spacer. Adv. Mater. 33(51), 2105083 (2021). https://doi.org/10.1002/adma.202105083
- Y. Huang, Z. Yuan, J. Yang, S. Yin, A. Liang et al., Highly efficient perovskite solar cells by building 2D/3D perovskite heterojuction in situ for interfacial passivation and energy level adjustment. Sci. China Chem. 66(2), 449–458 (2023). https://doi.org/10.1007/s11426-022-1436-7
- Z. He, S. Zhang, Q. Wei, D. Huang, L. Wang et al., Making a benign buried bottom interface for high-performance perovskite photovoltaics with a chelating molecule. Nano Energy 130, 110166 (2024). https://doi.org/10.1016/j.nanoen.2024.110166
- F. Li, X. Deng, Z. Shi, S. Wu, Z. Zeng et al., Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability. Nat. Photon. 17(6), 478–484 (2023). https://doi.org/10.1038/s41566-023-01180-6
- R. Yuan, B. Cai, Y. Lv, X. Gao, J. Gu et al., Boosted charge extraction of NbOx-enveloped SnO2 nanocrystals enables 24% efficient planar perovskite solar cells. Energy Environ. Sci. 14(9), 5074–5083 (2021). https://doi.org/10.1039/D1EE01519B
- P. Jia, G. Chen, G. Li, J. Liang, H. Guan et al., Intermediate phase suppression with long chain diammonium alkane for high performance wide-bandgap and tandem perovskite solar cells. Adv. Mater. 36(25), 2400105 (2024). https://doi.org/10.1002/adma.202400105
- Y. Zhang, M. Chen, T. He, H. Chen, Z. Zhang et al., Highly efficient and stable FA-based quasi-2D ruddlesden–popper perovskite solar cells by the incorporation of β-fluorophenylethanamine cations. Adv. Mater. 35(17), 2210836 (2023). https://doi.org/10.1002/adma.202210836
- H. Guo, W. Xiang, Y. Fang, J. Li, Y. Lin, Molecular bridge on buried interface for efficient and stable perovskite solar cells. Angew. Chem. Int. Ed. 62(34), e202304568 (2023). https://doi.org/10.1002/anie.202304568
- M. Chen, X. Dong, Y. Xin, Y. Gao, Q. Fu et al., Crystal growth regulation of ruddlesden–popper perovskites via self-assembly of semiconductor spacers for efficient solar cells. Angew. Chem. Int. Ed. 63(3), e202315943 (2024). https://doi.org/10.1002/anie.202315943
References
J. Duan, J. Li, G. Divitini, D. Cortecchia, F. Yuan et al., 2D hybrid perovskites: from static and dynamic structures to potential applications. Adv. Mater. 36(30), 2403455 (2024). https://doi.org/10.1002/adma.202403455
R. Wang, M. Mujahid, Y. Duan, Z.-K. Wang, J. Xue et al., A review of perovskites solar cell stability. Adv. Funct. Mater. 29(47), 1808843 (2019). https://doi.org/10.1002/adfm.201808843
https://www.nrel.gov/pv/cell-efficiency.html
X. Zhao, T. Liu, Y.-L. Loo, Advancing 2D perovskites for efficient and stable solar cells: challenges and opportunities. Adv. Mater. 34(3), 2105849 (2022). https://doi.org/10.1002/adma.202105849
Y. Liu, S. Yuan, H. Zheng, M. Wu, S. Zhang et al., Structurally dimensional engineering in perovskite photovoltaics. Adv. Energy Mater. 13(23), 2300188 (2023). https://doi.org/10.1002/aenm.202300188
X. Chen, W. Feng, Y. Fang, Q. Li, Y.-H. Huang et al., Improved conductivity of 2D perovskite capping layer for realizing high-performance 3D/2D heterostructured hole transport layer-free perovskite photovoltaics. ACS Nano 19(4), 4299–4308 (2025). https://doi.org/10.1021/acsnano.4c11785
C.C. Stoumpos, D.H. Cao, D.J. Clark, J. Young, J.M. Rondinelli et al., Ruddlesden–popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28(8), 2852–2867 (2016). https://doi.org/10.1021/acs.chemmater.6b00847
K. Meng, B. Chen, M. Xiao, Y. Zhai, Z. Qiao et al., Humidity-insensitive, large-area-applicable, hot-air-assisted ambient fabrication of 2D perovskite solar cells. Adv. Mater. 35(11), e2209712 (2023). https://doi.org/10.1002/adma.202209712
M.E. Kamminga, H.-H. Fang, M.R. Filip, F. Giustino, J. Baas et al., Confinement effects in low-dimensional lead iodide perovskite hybrids. Chem. Mater. 28(13), 4554–4562 (2016). https://doi.org/10.1021/acs.chemmater.6b00809
F. Wang, D. Duan, K. Zhou, Y.Z.B. Xue, X. Liang et al., Ionic liquid engineering enabled in-plane orientated 1D perovskite nanorods for efficient mixed-dimensional perovskite photovoltaics. InfoMat 5(8), e12459 (2023). https://doi.org/10.1002/inf2.12459
R. Cao, K. Sun, C. Liu, Y. Mao, W. Guo et al., Structurally flexible 2D spacer for suppressing the electron-phonon coupling induced non-radiative decay in perovskite solar cells. Nano-Micro Lett. 16(1), 178 (2024). https://doi.org/10.1007/s40820-024-01401-9
X. Shen, X. Lin, Y. Peng, Y. Zhang, F. Long et al., Two-dimensional materials for highly efficient and stable perovskite solar cells. Nano-Micro Lett. 16(1), 201 (2024). https://doi.org/10.1007/s40820-024-01417-1
H. Lee, T. Moon, Y. Lee, J. Kim, Structural mechanisms of quasi-2D perovskites for next-generation photovoltaics. Nano-Micro Lett. 17(1), 139 (2025). https://doi.org/10.1007/s40820-024-01609-9
X. Li, J.M. Hoffman, M.G. Kanatzidis, The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 121(4), 2230–2291 (2021). https://doi.org/10.1021/acs.chemrev.0c01006
Q. Cao, P. Li, W. Chen, S. Zang, L. Han et al., Two-dimensional perovskites: Impacts of species, components, and properties of organic spacers on solar cells. Nano Today 43, 101394 (2022). https://doi.org/10.1016/j.nantod.2022.101394
C.M.M. Soe, C.C. Stoumpos, M. Kepenekian, B. Traoré, H. Tsai et al., New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)(CH3NH3)nPbnI3n+1: structure, properties, and photovoltaic performance. J. Am. Chem. Soc. 139(45), 16297–16309 (2017). https://doi.org/10.1021/jacs.7b09096
K. Xu, Z. Xing, D. Li, C. Du, Y. Gao et al., Boosting efficiency to 22.73%: unraveling the role of solvent environment in low-dimensional perovskites through competitive bonding interactions. Adv. Funct. Mater. 35(7), 2415429 (2025). https://doi.org/10.1002/adfm.202415429
Y. Zhang, N.-G. Park, Quasi-two-dimensional perovskite solar cells with efficiency exceeding 22%. ACS Energy Lett. 7(2), 757–765 (2022). https://doi.org/10.1021/acsenergylett.1c02645
T.L. Leung, I. Ahmad, A.A. Syed, A.M.C. Ng, J. Popović et al., Stability of 2D and quasi-2D perovskite materials and devices. Commun. Mater. 3, 63 (2022). https://doi.org/10.1038/s43246-022-00285-9
Y. Wang, D. Li, Z. Xing, J. Li, X. Hu et al., Quantum well growth management to smooth the energy transfer pathway for quasi-2D perovskite solar cells. Adv. Funct. Mater. 34(36), 2401203 (2024). https://doi.org/10.1002/adfm.202401203
X. Dong, M. Chen, R. Wang, Q. Ling, Z. Hu et al., Quantum confinement breaking: orbital coupling in 2D ruddlesden–popper perovskites enables efficient solar cells. Adv. Energy Mater. 13(29), 2301006 (2023). https://doi.org/10.1002/aenm.202301006
Z. Li, H. Gu, X. Liu, H. Wang, N. Zhang et al., Uniform phase permutation of efficient ruddlesden–popper perovskite solar cells via binary spacers and single crystal coordination. Adv. Mater. 36(48), 2410408 (2024). https://doi.org/10.1002/adma.202410408
H. Peng, D. Li, Z. Li, Z. Xing, X. Hu et al., Ionic liquid assisted imprint for efficient and stable quasi-2D perovskite solar cells with controlled phase distribution. Nano-Micro Lett. 15(1), 91 (2023). https://doi.org/10.1007/s40820-023-01076-8
J. Zhang, J. Qin, M. Wang, Y. Bai, H. Zou et al., Uniform permutation of quasi-2D perovskites by vacuum poling for efficient, high-fill-factor solar cells. Joule 3(12), 3061–3071 (2019). https://doi.org/10.1016/j.joule.2019.09.020
R. Cao, Y. Chen, N. Shen, H. Li, S. Chen et al., Enhancing spectral response of thermally stable printed Dion–Jacobson 2D FAPbI3 photovoltaics via manipulating charge transfer. ACS Energy Lett. 9(8), 3737–3745 (2024). https://doi.org/10.1021/acsenergylett.4c01370
Z. Zhang, L. Qiao, K. Meng, R. Long, G. Chen et al., Rationalization of passivation strategies toward high-performance perovskite solar cells. Chem. Soc. Rev. 52(1), 163–195 (2023). https://doi.org/10.1039/d2cs00217e
N. Yan, Z. Fang, Z. Dai, J. Feng, S. Liu, Buried interface-the key issues for high performance inverted perovskite solar cells. Adv. Funct. Mater. 34(22), 2314039 (2024). https://doi.org/10.1002/adfm.202314039
H. Liu, Z. Lu, W. Zhang, H. Zhou, Y. Xia et al., Synergistic optimization of buried interface by multifunctional organic-inorganic complexes for highly efficient planar perovskite solar cells. Nano-Micro Lett. 15(1), 156 (2023). https://doi.org/10.1007/s40820-023-01130-5
X. Lu, K. Sun, Y. Wang, C. Liu, Y. Meng et al., Dynamic reversible oxidation-reduction of iodide ions for operationally stable perovskite solar cells under ISOS-L-3 protocol. Adv. Mater. 36(25), 2400852 (2024). https://doi.org/10.1002/adma.202400852
Z. Liu, T. Liu, M. Li, T. He, G. Guo et al., Eliminating halogen vacancies enables efficient MACL-assisted formamidine perovskite solar cells. Adv. Sci. 11(7), e2306280 (2024). https://doi.org/10.1002/advs.202306280
M. Chen, K. Tian, H. Liu, Y. Liu, Y. Tang et al., Interfacial bidirectional binding for improving photovoltaic performance of perovskite solar cells. Chem. Eng. J. 480, 148081 (2024). https://doi.org/10.1016/j.cej.2023.148081
L.K. Ono, S.F. Liu, Y. Qi, Reducing detrimental defects for high-performance metal halide perovskite solar cells. Angew. Chem. Int. Ed. 59(17), 6676–6698 (2020). https://doi.org/10.1002/anie.201905521
X. Wang, H. Huang, M. Wang, Z. Lan, P. Cui et al., Oriented molecular bridge constructs homogeneous buried interface for perovskite solar cells with efficiency over 25.3%. Adv. Mater. 36(16), 2310710 (2024). https://doi.org/10.1002/adma.202310710
H. Huang, P. Cui, Y. Chen, L. Yan, X. Yue et al., 24.8%-efficient planar perovskite solar cells via ligand-engineered TiO2 deposition. Joule 6(9), 2186–2202 (2022). https://doi.org/10.1016/j.joule.2022.07.004
C. Chen, X. Wang, Z. Li, X. Du, Z. Shao et al., Polyacrylonitrile-coordinated perovskite solar cell with open-circuit voltage exceeding 1.23 V. Angew. Chem. Int. Ed. 61(8), e202113932 (2022). https://doi.org/10.1002/anie.202113932
G. Liu, Y. Zhong, W. Feng, M. Yang, G. Yang et al., Multidentate chelation heals structural imperfections for minimized recombination loss in lead-free perovskite solar cells. Angew. Chem. Int. Ed. 61(40), e202209464 (2022). https://doi.org/10.1002/anie.202209464
L. Duan, S. Liu, X. Wang, Z. Zhang, J. Luo, Interfacial crosslinking for efficient and stable planar TiO2 perovskite solar cells. Adv. Sci. 11(33), 2402796 (2024). https://doi.org/10.1002/advs.202402796
Y. Zhang, X. Liu, P. Li, Y. Duan, X. Hu et al., Dopamine-crosslinked TiO2/perovskite layer for efficient and photostable perovskite solar cells under full spectral continuous illumination. Nano Energy 56, 733–740 (2019). https://doi.org/10.1016/j.nanoen.2018.11.068
Q. Xiao, Y. Zhao, Z. Huang, Y. Liu, P. Chen et al., Benzoyl sulfonyl molecules for bilateral passivation and crystalline regulation at buried interfaces toward high-performance perovskite solar cells. Adv. Funct. Mater. 34(22), 2314472 (2024). https://doi.org/10.1002/adfm.202314472
L. Wang, B. Chang, H. Li, Y. Wu, L. Zhang et al., Electron acceptor molecule doping induced π–π interaction to promote charge transport kinetics for efficient and stable 2D/3D perovskite solar cells. Angew. Chem. Int. Ed. 62(26), e202304256 (2023). https://doi.org/10.1002/anie.202304256
Z. Xu, D. Lu, X. Dong, M. Chen, Q. Fu et al., Highly efficient and stable Dion−Jacobson perovskite solar cells enabled by extended π-conjugation of organic spacer. Adv. Mater. 33(51), 2105083 (2021). https://doi.org/10.1002/adma.202105083
Y. Huang, Z. Yuan, J. Yang, S. Yin, A. Liang et al., Highly efficient perovskite solar cells by building 2D/3D perovskite heterojuction in situ for interfacial passivation and energy level adjustment. Sci. China Chem. 66(2), 449–458 (2023). https://doi.org/10.1007/s11426-022-1436-7
Z. He, S. Zhang, Q. Wei, D. Huang, L. Wang et al., Making a benign buried bottom interface for high-performance perovskite photovoltaics with a chelating molecule. Nano Energy 130, 110166 (2024). https://doi.org/10.1016/j.nanoen.2024.110166
F. Li, X. Deng, Z. Shi, S. Wu, Z. Zeng et al., Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability. Nat. Photon. 17(6), 478–484 (2023). https://doi.org/10.1038/s41566-023-01180-6
R. Yuan, B. Cai, Y. Lv, X. Gao, J. Gu et al., Boosted charge extraction of NbOx-enveloped SnO2 nanocrystals enables 24% efficient planar perovskite solar cells. Energy Environ. Sci. 14(9), 5074–5083 (2021). https://doi.org/10.1039/D1EE01519B
P. Jia, G. Chen, G. Li, J. Liang, H. Guan et al., Intermediate phase suppression with long chain diammonium alkane for high performance wide-bandgap and tandem perovskite solar cells. Adv. Mater. 36(25), 2400105 (2024). https://doi.org/10.1002/adma.202400105
Y. Zhang, M. Chen, T. He, H. Chen, Z. Zhang et al., Highly efficient and stable FA-based quasi-2D ruddlesden–popper perovskite solar cells by the incorporation of β-fluorophenylethanamine cations. Adv. Mater. 35(17), 2210836 (2023). https://doi.org/10.1002/adma.202210836
H. Guo, W. Xiang, Y. Fang, J. Li, Y. Lin, Molecular bridge on buried interface for efficient and stable perovskite solar cells. Angew. Chem. Int. Ed. 62(34), e202304568 (2023). https://doi.org/10.1002/anie.202304568
M. Chen, X. Dong, Y. Xin, Y. Gao, Q. Fu et al., Crystal growth regulation of ruddlesden–popper perovskites via self-assembly of semiconductor spacers for efficient solar cells. Angew. Chem. Int. Ed. 63(3), e202315943 (2024). https://doi.org/10.1002/anie.202315943