High Initial Reversible Capacity and Long Life of Ternary SnO2-Co-carbon Nanocomposite Anodes for Lithium-Ion Batteries
Corresponding Author: Baihua Qu
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 18
Abstract
The two major limitations in the application of SnO2 for lithium-ion battery (LIB) anodes are the large volume variations of SnO2 during repeated lithiation/delithiation processes and a large irreversible capacity loss during the first cycle, which can lead to a rapid capacity fade and unsatisfactory initial Coulombic efficiency (ICE). To overcome these limitations, we developed composites of ultrafine SnO2 nanoparticles and in situ formed Co(CoSn) nanocrystals embedded in an N-doped carbon matrix using a Co-based metal–organic framework (ZIF-67). The formed Co additives and structural advantages of the carbon-confined SnO2/Co nanocomposite effectively inhibited Sn coarsening in the lithiated SnO2 and mitigated its structural degradation while facilitating fast electronic transport and facile ionic diffusion. As a result, the electrodes demonstrated high ICE (82.2%), outstanding rate capability (~ 800 mAh g−1 at a high current density of 5 A g−1), and long-term cycling stability (~ 760 mAh g−1 after 400 cycles at a current density of 0.5 A g−1). This study will be helpful in developing high-performance Si (Sn)-based oxide, Sn/Sb-based sulfide, or selenide electrodes for LIBs. In addition, some metal organic frameworks similar to ZIF-67 can also be used as composite templates.
Highlights:
1 SnO2-Co-carbon nanocomposites were in-situ prepared from Co-based metal–organic frameworks and showed a remarkably high initial Coulombic efficiency (82.2%) and a capacity of ~ 800 mAh g−1 at a high current density of 5 A g−1.
2 Facile approach for designing highly reversible and stable electrodes for next-generation high-performance lithium-ion batteries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Global EV Outlook 2018, International Energy Agency. https://www.iea.org/gevo2018/
- J.S. Chen, X.W. Lou, SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 9(11), 1877–1893 (2013). https://doi.org/10.1002/smll.201202601
- X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, L.A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18(17), 2325–2329 (2006). https://doi.org/10.1002/adma.200600733
- Y.F. Deng, C.C. Fang, G.H. Chen, The developments of SnO2/graphene nanocomposites as anode materials for high performance lithium ion batteries: a review. J. Power Sources 304, 81–101 (2016). https://doi.org/10.1016/j.jpowsour.2015.11.017
- D.H. Liu, F. Xie, J. Lyu, T.K. Zhao, T.H. Li, B.G. Choi, Tin-based anode materials with well-designed architectures for next generation lithium-ion batteries. J. Power Sources 321, 11–35 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.105
- Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T.M. Iyasaka, Tin-based amorphous oxides: a high-capacity lithium-ion-storage material. Science 276(5317), 1395–1697 (1997). https://doi.org/10.1126/science.276.5317.1395
- J.Y. Huang, Z. Li, C.M. Wang, J.P. Sullivan, S.X. Mao, N.S. Hudak et al., In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330(6010), 1515–1519 (2010). https://doi.org/10.1126/science.1195628
- X. Hu, G. Wang, B. Wang, X. Liu, H. Wang, Co3Sn2/SnO2 heterostructures building double shell micro-cubes wrapped in three-dimensional graphene matrix as promising anode materials for lithium-ion and sodium-ion batteries. Chem. Eng. J. 355, 986–998 (2018). https://doi.org/10.1016/j.cej.2018.07.173
- X. Zhou, L.J. Wan, Y.G. Guo, Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 25(15), 2152–2157 (2013). https://doi.org/10.1002/adma.201300071
- W. Ai, Z. Huang, L. Wu, Z. Du, C. Zou, Z. He, R. Shahbazian-Yassar, W. Huang, T. Yu, High-rate, long cycle-life Li-ion battery anodes enabled by ultrasmall tin-based nanoparticles encapsulation. Energy Storage Mater. 14, 169–178 (2018). https://doi.org/10.1016/j.ensm.2018.02.008
- R. Hu, D. Chen, G. Waller, Y. Ouyang, Y. Chen et al., Dramatically enhanced reversibility of Li2O in SnO2-based electrodes: the effect of nanostructure on high initial reversible capacity. Energy Environ. Sci. 9(2), 595–603 (2016). https://doi.org/10.1039/C5EE03367E
- L. Zhang, H.B. Wu, B. Liu, X.W. Lou, Formation of porous SnO2 microboxes via selective leaching for highly reversible lithium storage. Energy Environ. Sci. 7(3), 1013–1017 (2014). https://doi.org/10.1039/c3ee43305f
- W. Dong, J. Xu, C. Wang, Y. Lu, X. Liu et al., A robust and conductive black tin oxide nanostructure makes efficient lithium-ion batteries possible. Adv. Mater. 29(24), 1700136 (2017). https://doi.org/10.1002/adma.201700136
- C. Miao, M. Liu, Y.-B. He, X. Qin, L. Tang et al., Monodispersed SnO2 nanospheres embedded in framework of graphene and porous carbon as anode for lithium ion batteries. Energy Storage Mater. 3, 98–105 (2016). https://doi.org/10.1016/j.ensm.2016.01.006
- L.P. Wang, Y. Leconte, Z. Feng, C. Wei, Y. Zhao et al., Novel preparation of N-doped SnO2 nanoparticles via laser-assisted pyrolysis: demonstration of exceptional lithium storage properties. Adv. Mater. 29(6), 1603286 (2017). https://doi.org/10.1002/adma.201603286
- J. Han, D. Kong, W. Lv, D.M. Tang, D. Han et al., Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage. Nat. Commun. 9(1), 402 (2018). https://doi.org/10.1038/s41467-017-02808-2
- J. Liang, C. Yuan, H. Li, K. Fan, Z. Wei, H. Sun, J. Ma, Growth of SnO2 nanoflowers on N-doped carbon nanofibers as anode for Li- and Na-ion batteries. Nano-MICRO Lett. 10, 21 (2018). https://doi.org/10.1007/s40820-017-0172-2
- B. Jiang, Y. He, B. Li, S. Zhao, S. Wang, Y.B. He, Z. Lin, Polymer-templated formation of polydopamine-coated SnO2 nanocrystals: anodes for cyclable lithium-ion batteries. Angew. Chem. Int. Ed. 56(7), 1869–1872 (2017). https://doi.org/10.1002/anie.201611160
- D. Zhou, W.L. Song, L.Z. Fan, Hollow core-shell SnO2/C fibers as highly stable anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 7(38), 21472–21478 (2015). https://doi.org/10.1021/acsami.5b06512
- X. Zhou, L. Yu, X.W. Lou, Formation of uniform n-doped carbon-coated SnO2 submicroboxes with enhanced lithium storage properties. Adv. Energy Mater. 6(14), 1600451 (2016). https://doi.org/10.1002/aenm.201600451
- L. Xia, S. Wang, G. Liu, L. Ding, D. Li, H. Wang, S. Qiao, Flexible SnO2/N-doped carbon nanofiber films as integrated electrodes for lithium-ion batteries with superior rate capacity and long cycle life. Small 12(7), 853–859 (2016). https://doi.org/10.1002/smll.201503315
- L. Zu, Q. Su, F. Zhu, B. Chen, H. Lu, Antipulverization electrode based on low-carbon triple-shelled superstructures for lithium-ion batteries. Adv. Mater. 29(34), 1701494 (2017). https://doi.org/10.1002/adma.201701494
- R. Huang, L.J. Wang, Q. Zhang, Z. Li, D.Y. Pan, B. Zhao, M.H. Wu et al., Irradiated graphene loaded with SnO2 quantum dots for energy storage. ACS Nano 9(11), 11351–11361 (2015). https://doi.org/10.1021/acsnano.5b05146
- R. Hu, H. Zhang, Z. Lu, J. Liu, M. Zeng, L. Yang, B. Yuan, M. Zhu, Unveiling critical size of coarsened Sn nanograins for achieving high round-trip efficiency of reversible conversion reaction in lithiated SnO2 nanocrystals. Nano Energy 45, 255–265 (2018). https://doi.org/10.1016/j.nanoen.2018.01.007
- R. Hu, Y. Ouyang, T. Liang, X. Tang, B. Yuan, J. Liu, L. Zhang, L. Yang, M. Zhu, Inhibiting grain coarsening and inducing oxygen vacancies: the roles of Mn in achieving a highly reversible conversion reaction and a long life SnO2–Mn-graphite ternary anode. Energy Environ. Sci. 10(9), 2017–2029 (2017). https://doi.org/10.1039/C7EE01635B
- R. Hu, Y. Ouyang, T. Liang, H. Wang, J. Liu, J. Chen, C. Yang, L. Yang, M. Zhu, Stabilizing the nanostructure of SnO2 anodes by transition metals: a route to achieve high initial coulombic efficiency and stable capacities for lithium storage. Adv. Mater. 29(13), 1605006 (2017). https://doi.org/10.1002/adma.201605006
- J. Huang, Y. Ma, Q. Xie, H. Zheng, J. Yang, L. Wang, D.L. Peng, 3D graphene encapsulated hollow CoSnO3 nanoboxes as a high initial coulombic efficiency and lithium storage capacity anode. Small 14(10), 1703513 (2018). https://doi.org/10.1002/smll.201703513
- Q. He, J. Liu, Z. Li, Q. Li, L. Xu, B. Zhang, J. Meng, Y. Wu, L. Mai, Solvent-free synthesis of uniform MOF shell-derived carbon confined SnO2/Co nanocubes for highly reversible lithium storage. Small 13(37), 1701504 (2017). https://doi.org/10.1002/smll.201701504
- J.W. Deng, C.L. Yan, C. Yang, S. Baunack, S. Oswald, H. Wendrock, Y.F. Mei, O.G. Schmidt, Sandwich-stacked SnO2/Cu hybrid nanosheets as multichannel anodes for lithium ion batteries. ACS Nano 7(8), 6948–6954 (2013). https://doi.org/10.1021/nn402164q
- C. Kim, J.W. Jung, K.R. Yoon, D.Y. Youn, S. Park, I.D. Kim, A high-capacity and long-cycle-life lithium-ion battery anode architecture: silver nanoparticle-decorated SnO2/NiO nanotubes. ACS Nano 10(12), 11317–11326 (2016). https://doi.org/10.1021/acsnano.6b06512
- G. Ji, Y. Ma, B. Ding, J.Y. Lee, Improving the performance of high capacity Li-ion anode materials by lithium titanate surface coating. Chem. Mater. 24(17), 3329–3334 (2012). https://doi.org/10.1021/cm301432w
- H. Zhang, Z. Chen, R. Hu, J. Liu, J. Cui, W. Zhou, C. Yang, Enabling a highly reversible conversion reaction in a lithiated nano-SnO2 film coated with Al2O3 by atomic layer deposition. J. Mater. Chem. A 6(10), 4374–4385 (2018). https://doi.org/10.1039/C8TA00290H
- Y. Guo, X. Zeng, Y. Zhang, Z. Dai, H. Fan et al., Sn nanoparticles encapsulated in 3D nanoporous carbon derived from a metal-organic framework for anode material in lithium-ion batteries. ACS Appl. Mater. Interfaces 9(20), 17172–17177 (2017). https://doi.org/10.1021/acsami.7b04561
- Q. Yu, P. Ge, Z. Liu, M. Xu, W. Yang, L. Zhou, D. Zhao, L. Mai, Ultrafine SiOx/C nanospheres and their pomegranate-like assemblies for high-performance lithium storage. J. Mater. Chem. A 6(30), 14903–14909 (2018). https://doi.org/10.1039/C8TA03987A
- Z. Liu, D. Guan, Q. Yu, L. Xu, Z. Zhuang, T. Zhu, D. Zhao, L. Zhou, L. Mai, Monodisperse and homogeneous SiOx/C microspheres: a promising high-capacity and durable anode material for lithium-ion batteries. Energy Storage Mater. 13, 112–118 (2018). https://doi.org/10.1016/j.ensm.2018.01.004
- R. Jia, J. Yue, Q. Xia, J. Xu, X. Zhu, S. Sun, T. Zhai, H. Xia, Carbon shelled porous SnO2−δ nanosheet arrays as advanced anodes for lithium-ion batteries. Energy Storage Mater. 13, 303–311 (2018). https://doi.org/10.1016/j.ensm.2018.02.009
- T. Wang, H.K. Kim, Y. Liu, W. Li, J.T. Griffiths et al., Bottom-up formation of carbon-based structures with multilevel hierarchy from MOF-guest polyhedra. J. Am. Chem. Soc. 140(19), 6130–6136 (2018). https://doi.org/10.1021/jacs.8b02411
- T. Liu, W. Wang, M. Yi, Q. Chen, C. Xu, D. Cai, H. Zhan, Metal-organic framework derived porous ternary ZnCo2O4 nanoplate arrays grown on carbon cloth as binder-free electrodes for lithium-ion batteries. Chem. Eng. J. 354, 454–462 (2018). https://doi.org/10.1016/j.cej.2018.08.037
- K. Wang, S. Pei, Z. He, L.A. Huang, S. Zhu, J. Guo, H. Shao, J. Wang, Synthesis of a novel porous silicon microsphere@carbon core-shell composite via in situ MOF coating for lithium ion battery anodes. Chem. Eng. J. 356, 272–281 (2019). https://doi.org/10.1016/j.cej.2018.09.027
- Q. Xie, P. Liu, D. Zeng, W. Xu, L. Wang, Z.-Z. Zhu, L. Mai, D.-L. Peng, Dual electrostatic assembly of graphene encapsulated nanosheet-assembled ZnO–Mn–C hollow microspheres as a lithium ion battery anode. Adv. Funct. Mater. 28, 1707433 (2018). https://doi.org/10.1002/adfm.201707433
References
Global EV Outlook 2018, International Energy Agency. https://www.iea.org/gevo2018/
J.S. Chen, X.W. Lou, SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 9(11), 1877–1893 (2013). https://doi.org/10.1002/smll.201202601
X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, L.A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18(17), 2325–2329 (2006). https://doi.org/10.1002/adma.200600733
Y.F. Deng, C.C. Fang, G.H. Chen, The developments of SnO2/graphene nanocomposites as anode materials for high performance lithium ion batteries: a review. J. Power Sources 304, 81–101 (2016). https://doi.org/10.1016/j.jpowsour.2015.11.017
D.H. Liu, F. Xie, J. Lyu, T.K. Zhao, T.H. Li, B.G. Choi, Tin-based anode materials with well-designed architectures for next generation lithium-ion batteries. J. Power Sources 321, 11–35 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.105
Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T.M. Iyasaka, Tin-based amorphous oxides: a high-capacity lithium-ion-storage material. Science 276(5317), 1395–1697 (1997). https://doi.org/10.1126/science.276.5317.1395
J.Y. Huang, Z. Li, C.M. Wang, J.P. Sullivan, S.X. Mao, N.S. Hudak et al., In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330(6010), 1515–1519 (2010). https://doi.org/10.1126/science.1195628
X. Hu, G. Wang, B. Wang, X. Liu, H. Wang, Co3Sn2/SnO2 heterostructures building double shell micro-cubes wrapped in three-dimensional graphene matrix as promising anode materials for lithium-ion and sodium-ion batteries. Chem. Eng. J. 355, 986–998 (2018). https://doi.org/10.1016/j.cej.2018.07.173
X. Zhou, L.J. Wan, Y.G. Guo, Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 25(15), 2152–2157 (2013). https://doi.org/10.1002/adma.201300071
W. Ai, Z. Huang, L. Wu, Z. Du, C. Zou, Z. He, R. Shahbazian-Yassar, W. Huang, T. Yu, High-rate, long cycle-life Li-ion battery anodes enabled by ultrasmall tin-based nanoparticles encapsulation. Energy Storage Mater. 14, 169–178 (2018). https://doi.org/10.1016/j.ensm.2018.02.008
R. Hu, D. Chen, G. Waller, Y. Ouyang, Y. Chen et al., Dramatically enhanced reversibility of Li2O in SnO2-based electrodes: the effect of nanostructure on high initial reversible capacity. Energy Environ. Sci. 9(2), 595–603 (2016). https://doi.org/10.1039/C5EE03367E
L. Zhang, H.B. Wu, B. Liu, X.W. Lou, Formation of porous SnO2 microboxes via selective leaching for highly reversible lithium storage. Energy Environ. Sci. 7(3), 1013–1017 (2014). https://doi.org/10.1039/c3ee43305f
W. Dong, J. Xu, C. Wang, Y. Lu, X. Liu et al., A robust and conductive black tin oxide nanostructure makes efficient lithium-ion batteries possible. Adv. Mater. 29(24), 1700136 (2017). https://doi.org/10.1002/adma.201700136
C. Miao, M. Liu, Y.-B. He, X. Qin, L. Tang et al., Monodispersed SnO2 nanospheres embedded in framework of graphene and porous carbon as anode for lithium ion batteries. Energy Storage Mater. 3, 98–105 (2016). https://doi.org/10.1016/j.ensm.2016.01.006
L.P. Wang, Y. Leconte, Z. Feng, C. Wei, Y. Zhao et al., Novel preparation of N-doped SnO2 nanoparticles via laser-assisted pyrolysis: demonstration of exceptional lithium storage properties. Adv. Mater. 29(6), 1603286 (2017). https://doi.org/10.1002/adma.201603286
J. Han, D. Kong, W. Lv, D.M. Tang, D. Han et al., Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage. Nat. Commun. 9(1), 402 (2018). https://doi.org/10.1038/s41467-017-02808-2
J. Liang, C. Yuan, H. Li, K. Fan, Z. Wei, H. Sun, J. Ma, Growth of SnO2 nanoflowers on N-doped carbon nanofibers as anode for Li- and Na-ion batteries. Nano-MICRO Lett. 10, 21 (2018). https://doi.org/10.1007/s40820-017-0172-2
B. Jiang, Y. He, B. Li, S. Zhao, S. Wang, Y.B. He, Z. Lin, Polymer-templated formation of polydopamine-coated SnO2 nanocrystals: anodes for cyclable lithium-ion batteries. Angew. Chem. Int. Ed. 56(7), 1869–1872 (2017). https://doi.org/10.1002/anie.201611160
D. Zhou, W.L. Song, L.Z. Fan, Hollow core-shell SnO2/C fibers as highly stable anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 7(38), 21472–21478 (2015). https://doi.org/10.1021/acsami.5b06512
X. Zhou, L. Yu, X.W. Lou, Formation of uniform n-doped carbon-coated SnO2 submicroboxes with enhanced lithium storage properties. Adv. Energy Mater. 6(14), 1600451 (2016). https://doi.org/10.1002/aenm.201600451
L. Xia, S. Wang, G. Liu, L. Ding, D. Li, H. Wang, S. Qiao, Flexible SnO2/N-doped carbon nanofiber films as integrated electrodes for lithium-ion batteries with superior rate capacity and long cycle life. Small 12(7), 853–859 (2016). https://doi.org/10.1002/smll.201503315
L. Zu, Q. Su, F. Zhu, B. Chen, H. Lu, Antipulverization electrode based on low-carbon triple-shelled superstructures for lithium-ion batteries. Adv. Mater. 29(34), 1701494 (2017). https://doi.org/10.1002/adma.201701494
R. Huang, L.J. Wang, Q. Zhang, Z. Li, D.Y. Pan, B. Zhao, M.H. Wu et al., Irradiated graphene loaded with SnO2 quantum dots for energy storage. ACS Nano 9(11), 11351–11361 (2015). https://doi.org/10.1021/acsnano.5b05146
R. Hu, H. Zhang, Z. Lu, J. Liu, M. Zeng, L. Yang, B. Yuan, M. Zhu, Unveiling critical size of coarsened Sn nanograins for achieving high round-trip efficiency of reversible conversion reaction in lithiated SnO2 nanocrystals. Nano Energy 45, 255–265 (2018). https://doi.org/10.1016/j.nanoen.2018.01.007
R. Hu, Y. Ouyang, T. Liang, X. Tang, B. Yuan, J. Liu, L. Zhang, L. Yang, M. Zhu, Inhibiting grain coarsening and inducing oxygen vacancies: the roles of Mn in achieving a highly reversible conversion reaction and a long life SnO2–Mn-graphite ternary anode. Energy Environ. Sci. 10(9), 2017–2029 (2017). https://doi.org/10.1039/C7EE01635B
R. Hu, Y. Ouyang, T. Liang, H. Wang, J. Liu, J. Chen, C. Yang, L. Yang, M. Zhu, Stabilizing the nanostructure of SnO2 anodes by transition metals: a route to achieve high initial coulombic efficiency and stable capacities for lithium storage. Adv. Mater. 29(13), 1605006 (2017). https://doi.org/10.1002/adma.201605006
J. Huang, Y. Ma, Q. Xie, H. Zheng, J. Yang, L. Wang, D.L. Peng, 3D graphene encapsulated hollow CoSnO3 nanoboxes as a high initial coulombic efficiency and lithium storage capacity anode. Small 14(10), 1703513 (2018). https://doi.org/10.1002/smll.201703513
Q. He, J. Liu, Z. Li, Q. Li, L. Xu, B. Zhang, J. Meng, Y. Wu, L. Mai, Solvent-free synthesis of uniform MOF shell-derived carbon confined SnO2/Co nanocubes for highly reversible lithium storage. Small 13(37), 1701504 (2017). https://doi.org/10.1002/smll.201701504
J.W. Deng, C.L. Yan, C. Yang, S. Baunack, S. Oswald, H. Wendrock, Y.F. Mei, O.G. Schmidt, Sandwich-stacked SnO2/Cu hybrid nanosheets as multichannel anodes for lithium ion batteries. ACS Nano 7(8), 6948–6954 (2013). https://doi.org/10.1021/nn402164q
C. Kim, J.W. Jung, K.R. Yoon, D.Y. Youn, S. Park, I.D. Kim, A high-capacity and long-cycle-life lithium-ion battery anode architecture: silver nanoparticle-decorated SnO2/NiO nanotubes. ACS Nano 10(12), 11317–11326 (2016). https://doi.org/10.1021/acsnano.6b06512
G. Ji, Y. Ma, B. Ding, J.Y. Lee, Improving the performance of high capacity Li-ion anode materials by lithium titanate surface coating. Chem. Mater. 24(17), 3329–3334 (2012). https://doi.org/10.1021/cm301432w
H. Zhang, Z. Chen, R. Hu, J. Liu, J. Cui, W. Zhou, C. Yang, Enabling a highly reversible conversion reaction in a lithiated nano-SnO2 film coated with Al2O3 by atomic layer deposition. J. Mater. Chem. A 6(10), 4374–4385 (2018). https://doi.org/10.1039/C8TA00290H
Y. Guo, X. Zeng, Y. Zhang, Z. Dai, H. Fan et al., Sn nanoparticles encapsulated in 3D nanoporous carbon derived from a metal-organic framework for anode material in lithium-ion batteries. ACS Appl. Mater. Interfaces 9(20), 17172–17177 (2017). https://doi.org/10.1021/acsami.7b04561
Q. Yu, P. Ge, Z. Liu, M. Xu, W. Yang, L. Zhou, D. Zhao, L. Mai, Ultrafine SiOx/C nanospheres and their pomegranate-like assemblies for high-performance lithium storage. J. Mater. Chem. A 6(30), 14903–14909 (2018). https://doi.org/10.1039/C8TA03987A
Z. Liu, D. Guan, Q. Yu, L. Xu, Z. Zhuang, T. Zhu, D. Zhao, L. Zhou, L. Mai, Monodisperse and homogeneous SiOx/C microspheres: a promising high-capacity and durable anode material for lithium-ion batteries. Energy Storage Mater. 13, 112–118 (2018). https://doi.org/10.1016/j.ensm.2018.01.004
R. Jia, J. Yue, Q. Xia, J. Xu, X. Zhu, S. Sun, T. Zhai, H. Xia, Carbon shelled porous SnO2−δ nanosheet arrays as advanced anodes for lithium-ion batteries. Energy Storage Mater. 13, 303–311 (2018). https://doi.org/10.1016/j.ensm.2018.02.009
T. Wang, H.K. Kim, Y. Liu, W. Li, J.T. Griffiths et al., Bottom-up formation of carbon-based structures with multilevel hierarchy from MOF-guest polyhedra. J. Am. Chem. Soc. 140(19), 6130–6136 (2018). https://doi.org/10.1021/jacs.8b02411
T. Liu, W. Wang, M. Yi, Q. Chen, C. Xu, D. Cai, H. Zhan, Metal-organic framework derived porous ternary ZnCo2O4 nanoplate arrays grown on carbon cloth as binder-free electrodes for lithium-ion batteries. Chem. Eng. J. 354, 454–462 (2018). https://doi.org/10.1016/j.cej.2018.08.037
K. Wang, S. Pei, Z. He, L.A. Huang, S. Zhu, J. Guo, H. Shao, J. Wang, Synthesis of a novel porous silicon microsphere@carbon core-shell composite via in situ MOF coating for lithium ion battery anodes. Chem. Eng. J. 356, 272–281 (2019). https://doi.org/10.1016/j.cej.2018.09.027
Q. Xie, P. Liu, D. Zeng, W. Xu, L. Wang, Z.-Z. Zhu, L. Mai, D.-L. Peng, Dual electrostatic assembly of graphene encapsulated nanosheet-assembled ZnO–Mn–C hollow microspheres as a lithium ion battery anode. Adv. Funct. Mater. 28, 1707433 (2018). https://doi.org/10.1002/adfm.201707433