Two-Dimensional Materials for Highly Efficient and Stable Perovskite Solar Cells
Corresponding Author: Liyuan Han
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 201
Abstract
Perovskite solar cells (PSCs) offer low costs and high power conversion efficiency. However, the lack of long-term stability, primarily stemming from the interfacial defects and the susceptible metal electrodes, hinders their practical application. In the past few years, two-dimensional (2D) materials (e.g., graphene and its derivatives, transitional metal dichalcogenides, MXenes, and black phosphorus) have been identified as a promising solution to solving these problems because of their dangling bond-free surfaces, layer-dependent electronic band structures, tunable functional groups, and inherent compactness. Here, recent progress of 2D material toward efficient and stable PSCs is summarized, including its role as both interface materials and electrodes. We discuss their beneficial effects on perovskite growth, energy level alignment, defect passivation, as well as blocking external stimulus. In particular, the unique properties of 2D materials to form van der Waals heterojunction at the bottom interface are emphasized. Finally, perspectives on the further development of PSCs using 2D materials are provided, such as designing high-quality van der Waals heterojunction, enhancing the uniformity and coverage of 2D nanosheets, and developing new 2D materials-based electrodes.
Highlights:
1 Recent progress on the applications of 2D materials in perovskite solar cells is discussed from the views of bottom interfaces, top interfaces, and electrodes.
2 The roles of van der Waals heterojunction in enhancing the performance of perovskite solar cells are highlighted.
3 The future directions and challenges in development of 2D materials-based perovskite solar cells are provided.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013). https://doi.org/10.1038/nature12340
- H. Chen, F. Ye, W. Tang, J. He, M. Yin et al., A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature 550, 92–95 (2017). https://doi.org/10.1038/nature23877
- M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013). https://doi.org/10.1038/nature12509
- J. Park, J. Kim, H.-S. Yun, M.J. Paik, E. Noh et al., Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023). https://doi.org/10.1038/s41586-023-05825-y
- S. Zhang, F. Ye, X. Wang, R. Chen, H. Zhang et al., Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380, 404–409 (2023). https://doi.org/10.1126/science.adg3755
- H. Tang, Z. Shen, Y. Shen, G. Yan, Y. Wang et al., Reinforcing self-assembly of hole transport molecules for stable inverted perovskite solar cells. Science 383, 1236–1240 (2024). https://doi.org/10.1126/science.adj9602
- R. Azmi, D.S. Utomo, B. Vishal, S. Zhumagali, P. Dally et al., Double-side 2D/3D heterojunctions for inverted perovskite solar cells. Nature 628, 93–98 (2024). https://doi.org/10.1038/s41586-024-07189-3
- R. Lin, J. Xu, M. Wei, Y. Wang, Z. Qin et al., All-perovskite tandem solar cells with improved grain surface passivation. Nature 603, 73–78 (2022). https://doi.org/10.1038/s41586-021-04372-8
- P. Shi, Y. Ding, B. Ding, Q. Xing, T. Kodalle et al., Oriented nucleation in formamidinium perovskite for photovoltaics. Nature 620, 323–327 (2023). https://doi.org/10.1038/s41586-023-06208-z
- R. Chen, S. Liu, X. Xu, F. Ren, J. Zhou et al., Robust hole transport material with interface anchors enhances the efficiency and stability of inverted formamidinium–cesium perovskite solar cells with a certified efficiency of 22.3%. Energy Environ. Sci. 15, 2567–2580 (2022). https://doi.org/10.1039/D2EE00433J
- C. Fei, N. Li, M. Wang, X. Wang, H. Gu et al., Lead-chelating hole-transport layers for efficient and stable perovskite minimodules. Science 380, 823–829 (2023). https://doi.org/10.1126/science.ade9463
- Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
- Q. Jiang, J. Tong, Y. Xian, R.A. Kerner, S.P. Dunfield et al., Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611, 278–283 (2022). https://doi.org/10.1038/s41586-022-05268-x
- Z. Li, B. Li, X. Wu, S.A. Sheppard, S. Zhang et al., Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376, 416–420 (2022). https://doi.org/10.1126/science.abm8566
- M.A. Green, E.D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe et al., Solar cell efficiency tables (version 62). Prog. Photovolt. Res. Appl. 31, 651–663 (2023). https://doi.org/10.1002/pip.3726
- T. Wu, Z. Qin, Y. Wang, Y. Wu, W. Chen et al., The main progress of perovskite solar cells in 2020–2021. Nano-Micro Lett. 13, 152 (2021). https://doi.org/10.1007/s40820-021-00672-w
- . https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.pdf
- W. Peng, K. Mao, F. Cai, H. Meng, Z. Zhu et al., Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science 379, 683–690 (2023). https://doi.org/10.1126/science.ade3126
- J.Y. Kim, J.-W. Lee, H.S. Jung, H. Shin, N.-G. Park, High-efficiency perovskite solar cells. Chem. Rev. 120, 7867–7918 (2020). https://doi.org/10.1021/acs.chemrev.0c00107
- H. Zhang, L. Pfeifer, S.M. Zakeeruddin, J. Chu, M. Grätzel, Tailoring passivators for highly efficient and stable perovskite solar cells. Nat. Rev. Chem. 7, 632–652 (2023). https://doi.org/10.1038/s41570-023-00510-0
- J. O’Sullivan, M. Wright, X. Niu, P. Miller, P.R. Wilshaw et al., Towards a graphene transparent conducting electrode for perovskite/silicon tandem solar cells. Prog. Photovolt. Res. Appl. 31, 1478–1492 (2023). https://doi.org/10.1002/pip.3739
- P.K. Nayak, S. Mahesh, H.J. Snaith, D. Cahen, Photovoltaic solar cell technologies: analysing the state of the art. Nat. Rev. Mater. 4, 269–285 (2019). https://doi.org/10.1038/s41578-019-0097-0
- X. Lin, D. Cui, X. Luo, C. Zhang, Q. Han et al., Efficiency progress of inverted perovskite solar cells. Energy Environ. Sci. 13, 3823–3847 (2020). https://doi.org/10.1039/d0ee02017f
- Y. Li, H. Xie, E.L. Lim, A. Hagfeldt, D. Bi, Recent progress of critical interface engineering for highly efficient and stable perovskite solar cells. Adv. Energy Mater. 12, 2102730 (2022). https://doi.org/10.1002/aenm.202102730
- J. Xia, M. Sohail, M.K. Nazeeruddin, Efficient and stable perovskite solar cells by tailoring of interfaces. Adv. Mater. 35, 2211324 (2023). https://doi.org/10.1002/adma.202211324
- P. Yan, D. Yang, H. Wang, S. Yang, Z. Ge, Recent advances in dopant-free organic hole-transporting materials for efficient, stable and low-cost perovskite solar cells. Energy Environ. Sci. 15, 3630–3669 (2022). https://doi.org/10.1039/d2ee01256a
- Z. Saki, M.M. Byranvand, N. Taghavinia, M. Kedia, M. Saliba, Solution-processed perovskite thin-films: the journey from lab- to large-scale solar cells. Energy Environ. Sci. 14, 5690–5722 (2021). https://doi.org/10.1039/d1ee02018h
- Y. Yao, C. Cheng, C. Zhang, H. Hu, K. Wang et al., Organic hole-transport layers for efficient, stable, and scalable inverted perovskite solar cells. Adv. Mater. 34, e2203794 (2022). https://doi.org/10.1002/adma.202203794
- G. Wu, R. Liang, M. Ge, G. Sun, Y. Zhang et al., Surface passivation using 2D perovskites toward efficient and stable perovskite solar cells. Adv. Mater. 34, e2105635 (2022). https://doi.org/10.1002/adma.202105635
- F.H. Isikgor, S. Zhumagali, L.V.T. Merino, M. De Bastiani, I. McCulloch et al., Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nat. Rev. Mater. 8, 89–108 (2023). https://doi.org/10.1038/s41578-022-00503-3
- H. Zhu, S. Teale, M.N. Lintangpradipto, S. Mahesh, B. Chen et al., Long-term operating stability in perovskite photovoltaics. Nat. Rev. Mater. 8, 569–586 (2023). https://doi.org/10.1038/s41578-023-00582-w
- S. You, H. Zeng, Y. Liu, B. Han, M. Li et al., Radical polymeric p-doping and grain modulation for stable, efficient perovskite solar modules. Science 379, 288–294 (2023). https://doi.org/10.1126/science.add8786
- C. Li, X. Wang, E. Bi, F. Jiang, S.M. Park et al., Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science 379, 690–694 (2023). https://doi.org/10.1126/science.ade3970
- G. Nazir, S.Y. Lee, J.H. Lee, A. Rehman, J.K. Lee et al., Stabilization of perovskite solar cells: recent developments and future perspectives. Adv. Mater. 34, e2204380 (2022). https://doi.org/10.1002/adma.202204380
- X. Lin, H. Su, S. He, Y. Song, Y. Wang et al., In situ growth of graphene on both sides of a Cu–Ni alloy electrode for perovskite solar cells with improved stability. Nat. Energy 7, 520–527 (2022). https://doi.org/10.1038/s41560-022-01038-1
- Y. Xu, Z. Lin, W. Wei, Y. Hao, S. Liu et al., Recent progress of electrode materials for flexible perovskite solar cells. Nano-Micro Lett. 14, 117 (2022). https://doi.org/10.1007/s40820-022-00859-9
- H. Su, T. Wu, D. Cui, X. Lin, X. Luo et al., The application of graphene derivatives in perovskite solar cells. Small Meth. 4, 2000507 (2020). https://doi.org/10.1002/smtd.202000507
- P. Miró, M. Audiffred, T. Heine, An atlas of two-dimensional materials. Chem. Soc. Rev. 43, 6537–6554 (2014). https://doi.org/10.1039/c4cs00102h
- M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013). https://doi.org/10.1021/cr300263a
- C. Liu, H. Chen, S. Wang, Q. Liu, Y.-G. Jiang et al., Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 15, 545–557 (2020). https://doi.org/10.1038/s41565-020-0724-3
- A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372, 1581 (2021). https://doi.org/10.1126/science.abf1581
- J. Zhu, G. Xiao, X. Zuo, Two-dimensional black phosphorus: an emerging anode material for lithium-ion batteries. Nano-Micro Lett. 12, 120 (2020). https://doi.org/10.1007/s40820-020-00453-x
- R. Yang, Y. Fan, Y. Zhang, L. Mei, R. Zhu et al., 2D transition metal dichalcogenides for photocatalysis. Angew. Chem. Int. Ed. 62, 2218016 (2023). https://doi.org/10.1002/anie.202218016
- J. Cao, P. You, G. Tang, F. Yan, Two-dimensional materials for boosting the performance of perovskite solar cells: Fundamentals, materials and devices. Mater. Sci. Eng. R. Rep. 153, 100727 (2023). https://doi.org/10.1016/j.mser.2023.100727
- J.T. Wang, J.M. Ball, E.M. Barea, A. Abate, J.A. Alexander-Webber et al., Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 14, 724–730 (2014). https://doi.org/10.1021/nl403997a
- O. Ergen, S. Gilbert, T. Pham, S. Turner, M. Tan et al., Graded bandgap perovskite solar cells. Nat. Mater. 16, 522–525 (2017). https://doi.org/10.1038/nmat4795
- N. Arora, M.I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber et al., Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science 358, 768–771 (2017). https://doi.org/10.1126/science.aam5655
- A. Agresti, A. Pazniak, S. Pescetelli, A. Di Vito, D. Rossi et al., Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells. Nat. Mater. 18, 1228–1234 (2019). https://doi.org/10.1038/s41563-019-0478-1
- Y. Wang, T. Wu, J. Barbaud, W. Kong, D. Cui et al., Stabilizing heterostructures of soft perovskite semiconductors. Science 365, 687–691 (2019). https://doi.org/10.1126/science.aax8018
- Q. Zhou, J. Duan, X. Yang, Y. Duan, Q. Tang, Interfacial strain release from the WS2/CsPbBr3 van der waals heterostructure for 1.7 V voltage all-inorganic perovskite solar cells. Angew. Chem. Int. Ed. 59, 21997–22001 (2020). https://doi.org/10.1002/anie.202010252
- C. Zhang, S. Liang, W. Liu, F.T. Eickemeyer, X. Cai et al., Ti1–graphene single-atom material for improved energy level alignment in perovskite solar cells. Nat. Energy 6, 1154–1163 (2021). https://doi.org/10.1038/s41560-021-00944-0
- S. Pescetelli, A. Agresti, G. Viskadouros, S. Razza, K. Rogdakis et al., Integration of two-dimensional materials-based perovskite solar panels into a stand-alone solar farm. Nat. Energy 7, 597–607 (2022). https://doi.org/10.1038/s41560-022-01035-4
- K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro, Neto 2D materials and van der Waals heterostructures. Science 353, eaac9439 (2016). https://doi.org/10.1126/science.aac9439
- Y. Liu, Y. Huang, X. Duan, Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019). https://doi.org/10.1038/s41586-019-1013-x
- S. Bellani, A. Bartolotta, A. Agresti, G. Calogero, G. Grancini et al., Solution-processed two-dimensional materials for next-generation photovoltaics. Chem. Soc. Rev. 50, 11870–11965 (2021). https://doi.org/10.1039/d1cs00106j
- B. Wang, J. Iocozzia, M. Zhang, M. Ye, S. Yan et al., The charge carrier dynamics, efficiency and stability of two-dimensional material-based perovskite solar cells. Chem. Soc. Rev. 48, 4854–4891 (2019). https://doi.org/10.1039/c9cs00254e
- T. Wang, F. Zheng, G. Tang, J. Cao, P. You et al., 2D WSe2 flakes for synergistic modulation of grain growth and charge transfer in tin-based perovskite solar cells. Adv. Sci. 8, e2004315 (2021). https://doi.org/10.1002/advs.202004315
- T. Mahmoudi, Y. Wang, Y.-B. Hahn, Graphene and its derivatives for solar cells application. Nano Energy 47, 51–65 (2018). https://doi.org/10.1016/j.nanoen.2018.02.047
- X. Meng, J. Zhou, J. Hou, X. Tao, S.H. Cheung et al., Versatility of carbon enables all carbon based perovskite solar cells to achieve high efficiency and high stability. Adv. Mater. 30, e1706975 (2018). https://doi.org/10.1002/adma.201706975
- U.K. Aryal, M. Ahmadpour, V. Turkovic, H.-G. Rubahn, A. Di Carlo et al., 2D materials for organic and perovskite photovoltaics. Nano Energy 94, 106833 (2022). https://doi.org/10.1016/j.nanoen.2021.106833
- Z. Qin, Y. Chen, K. Zhu, Y. Zhao, Two-dimensional materials for perovskite solar cells with enhanced efficiency and stability. ACS Mater. Lett. 3, 1402–1416 (2021). https://doi.org/10.1021/acsmaterialslett.1c00327
- S. Chen, G. Shi, Two-dimensional materials for halide perovskite-based optoelectronic devices. Adv. Mater. 29, 1605448 (2017). https://doi.org/10.1002/adma.201605448
- A.K. Geim, I.V. Grigorieva, Van der waals heterostructures. Nature 499, 419–425 (2013). https://doi.org/10.1038/nature12385
- D. Akinwande, C. Huyghebaert, C.-H. Wang, M.I. Serna, S. Goossens et al., Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019). https://doi.org/10.1038/s41586-019-1573-9
- C. Li, Q. Cao, F. Wang, Y. Xiao, Y. Li et al., Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chem. Soc. Rev. 47, 4981–5037 (2018). https://doi.org/10.1039/c8cs00067k
- F. Zhang, J. He, Y. Xiang, K. Zheng, B. Xue et al., Semimetal-semiconductor transitions for monolayer antimonene nanosheets and their application in perovskite solar cells. Adv. Mater. 30, e1803244 (2018). https://doi.org/10.1002/adma.201803244
- N. Yang, F. Pei, J. Dou, Y. Zhao, Z. Huang et al., Improving heat transfer enables durable perovskite solar cells. Adv. Energy Mater. 12, 2200869 (2022). https://doi.org/10.1002/aenm.202200869
- L. Rao, X. Meng, S. Xiao, Z. Xing, Q. Fu et al., Wearable tin-based perovskite solar cells achieved by a crystallographic size effect. Angew. Chem. Int. Ed. 60, 14693–14700 (2021). https://doi.org/10.1002/anie.202104201
- S. Wu, Z. Li, M.-Q. Li, Y. Diao, F. Lin et al., 2D metal–organic framework for stable perovskite solar cells with minimized lead leakage. Nat. Nanotechnol. 15, 934–940 (2020). https://doi.org/10.1038/s41565-020-0765-7
- D. Zhao, D. Gao, X. Wu, B. Li, S. Zhang et al., Efficient and stable 3D/2D perovskite solar cells through vertical heterostructures with (BA)4AgBiBr8 nanosheets. Adv. Mater. 34, 2204661 (2022). https://doi.org/10.1002/adma.202204661
- P. Hess, Fracture of perfect and defective graphene at the nanometer scale: is graphene the strongest material? J. Appl. Phys. 120, 124303 (2016). https://doi.org/10.1063/1.4962542
- C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). https://doi.org/10.1126/science.1157996
- Z. Niazi, A. Hagfeldt, E.K. Goharshadi, Recent progress on the use of graphene-based nanomaterials in perovskite solar cells. J. Mater. Chem. A 11, 6659–6687 (2023). https://doi.org/10.1039/d2ta09985c
- H. Kim, H.H. Kim, J.I. Jang, S.K. Lee, G.-W. Lee et al., Doping graphene with an atomically thin two dimensional molecular layer. Adv. Mater. 26, 8141–8146 (2014). https://doi.org/10.1002/adma.201403196
- S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias et al., Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008). https://doi.org/10.1103/PhysRevLett.100.016602
- J. Wu, H. Lin, D.J. Moss, K.P. Loh, B. Jia, Graphene oxide for photonics, electronics and optoelectronics. Nat. Rev. Chem. 7, 162–183 (2023). https://doi.org/10.1038/s41570-022-00458-7
- Z. Zhou, X. Li, M. Cai, F. Xie, Y. Wu et al., Stable inverted planar perovskite solar cells with low-temperature-processed hole-transport bilayer. Adv. Energy Mater. 7, 1700763 (2017). https://doi.org/10.1002/aenm.201700763
- S.-Y. Lee, S.-J. Park, Comprehensive review on synthesis and adsorption behaviors of graphene-based materials. Carbon Lett. 13, 73–87 (2012). https://doi.org/10.5714/cl.2012.13.2.073
- M. Jin, H.-K. Jeong, W.J. Yu, D.J. Bae, B.R. Kang et al., Graphene oxide thin film field effect transistors without reduction. J. Phys. D Appl. Phys. 42, 135109 (2009). https://doi.org/10.1088/0022-3727/42/13/135109
- D. López-Díaz, J.A. Delgado-Notario, V. Clericò, E. Diez, M.D. Merchán et al., Towards understanding the Raman spectrum of graphene oxide: the effect of the chemical composition. Coatings 10, 524 (2020). https://doi.org/10.3390/coatings10060524
- Y. Shen, S. Yang, P. Zhou, Q. Sun, P. Wang et al., Evolution of the band-gap and optical properties of graphene oxide with controllable reduction level. Carbon 62, 157–164 (2013). https://doi.org/10.1016/j.carbon.2013.06.007
- K. Khan, A.K. Tareen, M. Aslam, R. Wang, Y. Zhang et al., Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C 8, 387–440 (2020). https://doi.org/10.1039/c9tc04187g
- Q. Fu, J. Han, X. Wang, P. Xu, T. Yao et al., Electrocatalysts: 2D transition metal dichalcogenides: design, modulation, and challenges in electrocatalysis. Adv. Mater. 33, 2170045 (2021). https://doi.org/10.1002/ADMA.202170045
- T. Liao, Z. Chen, Y. Kuang, Z. Ren, W. Yu et al., Small-size Ti3C2Tx MXene nanosheets coated with metal-polyphenol nanodots for enhanced cancer photothermal therapy and anti-inflammation. Acta Biomater. 159, 312–323 (2023). https://doi.org/10.1016/j.actbio.2023.01.049
- J. Dai, X.C. Zeng, Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells. J. Phys. Chem. Lett. 5, 1289–1293 (2014). https://doi.org/10.1021/jz500409m
- R. Roldán, A. Castellanos-Gomez, E. Cappelluti, F. Guinea, Strain engineering in semiconducting two-dimensional crystals. J. Phys. Condens. Matter 27, 313201 (2015). https://doi.org/10.1088/0953-8984/27/31/313201
- S. Zhang, W. Zhou, Y. Ma, J. Ji, B. Cai et al., Antimonene oxides: emerging tunable direct bandgap semiconductor and novel topological insulator. Nano Lett. 17, 3434–3440 (2017). https://doi.org/10.1021/acs.nanolett.7b00297
- W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande et al., Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20, 116–130 (2017). https://doi.org/10.1016/j.mattod.2016.10.002
- P. You, G. Tang, F. Yan, Two-dimensional materials in perovskite solar cells. Mater. Today Energy 11, 128–158 (2019). https://doi.org/10.1016/j.mtener.2018.11.006
- S. Aftab, M.Z. Iqbal, S. Hussain, H.H. Hegazy, M.A. Saeed, Transition metal dichalcogenides solar cells and integration with perovskites. Nano Energy 108, 108249 (2023). https://doi.org/10.1016/j.nanoen.2023.108249
- C. Martella, C. Mennucci, A. Lamperti, E. Cappelluti, F.B. de Mongeot et al., Designer shape anisotropy on transition-metal-dichalcogenide nanosheets. Adv. Mater. 30, 1705615 (2018). https://doi.org/10.1002/adma.201705615
- M.A. Saeed, A. Shahzad, K. Rasool, F. Mateen, J.-M. Oh et al., 2D MXene: a potential candidate for photovoltaic cells? A critical review. Adv. Sci. 9, 2104743 (2022). https://doi.org/10.1002/advs.202104743
- S. Palei, G. Murali, C.-H. Kim, I. In, S.-Y. Lee et al., A review on interface engineering of MXenes for perovskite solar cells. Nano-Micro Lett. 15, 123 (2023). https://doi.org/10.1007/s40820-023-01083-9
- S. Qamar, K. Fatima, N. Ullah, Z. Akhter, A. Waseem et al., Recent progress in use of MXene in perovskite solar cells: for interfacial modification, work-function tuning and additive engineering. Nanoscale 14, 13018–13039 (2022). https://doi.org/10.1039/d2nr02799b
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- L. Yang, P. Li, J. Ma, X. Zhang, X.-F. Wang et al., MXenes for perovskite solar cells: progress and prospects. J. Energy Chem. 81, 443–461 (2023). https://doi.org/10.1016/j.jechem.2023.02.041
- L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). https://doi.org/10.1038/nnano.2014.35
- S. Zhang, S. Guo, Z. Chen, Y. Wang, H. Gao et al., Recent progress in 2D group-VA semiconductors: from theory to experiment. Chem. Soc. Rev. 47, 982–1021 (2018). https://doi.org/10.1039/c7cs00125h
- Z. Wu, Y. Lyu, Y. Zhang, R. Ding, B. Zheng et al., Large-scale growth of few-layer two-dimensional black phosphorus. Nat. Mater. 20, 1203–1209 (2021). https://doi.org/10.1038/s41563-021-01001-7
- S. Zhang, Z. Yan, Y. Li, Z. Chen, H. Zeng, Atomically thin arsenene and antimonene: semimetal–semiconductor and indirect–direct band-gap transitions. Angew. Chem. Int. Ed. 54, 3112–3115 (2015). https://doi.org/10.1002/anie.201411246
- J. Qiao, X. Kong, Z.-X. Hu, F. Yang, W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014). https://doi.org/10.1038/ncomms5475
- L.F. Kourkoutis, J.H. Song, H.Y. Hwang, D.A. Muller, Microscopic origins for stabilizing room-temperature ferromagnetism in ultrathin manganite layers. Proc. Natl. Acad. Sci. U.S.A. 107, 11682–11685 (2010). https://doi.org/10.1073/pnas.1005693107
- C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang et al., Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010). https://doi.org/10.1038/nnano.2010.172
- C. Wang, Q. He, U. Halim, Y. Liu, E. Zhu et al., Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018). https://doi.org/10.1038/nature25774
- Y. Liu, J. Guo, E. Zhu, L. Liao, S.-J. Lee et al., Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 557, 696–700 (2018). https://doi.org/10.1038/s41586-018-0129-8
- Y. Liu, N.O. Weiss, X. Duan, H.-C. Cheng, Y. Huang et al., Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016). https://doi.org/10.1038/natrevmats.2016.42
- L. Liao, J. Bai, Y. Qu, Y.-C. Lin, Y. Li et al., High- κ oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors. Proc. Natl. Acad. Sci. U.S.A. 107, 6711–6715 (2010). https://doi.org/10.1073/pnas.0914117107
- D. Jariwala, T.J. Marks, M.C. Hersam, Mixed-dimensional van der waals heterostructures. Nat. Mater. 16, 170–181 (2017). https://doi.org/10.1038/nmat4703
- Z. Wen, C. Liang, S. Li, G. Wang, B. He et al., High-quality van der waals epitaxial CsPbBr3 film grownon monolayer graphene covered TiO2 for high-performance solar cells. Energy Environ. Mater. 21, 12680 (2023). https://doi.org/10.1002/eem2.12680
- G. Tang, P. You, Q. Tai, A. Yang, J. Cao et al., Solution-phase epitaxial growth of perovskite films on 2D material flakes for high-performance solar cells. Adv. Mater. 31, e1807689 (2019). https://doi.org/10.1002/adma.201807689
- X. Yao, B. He, J. Zhu, J. Ti, L. Cui et al., Tailoring type-II all-in-one buried interface for 1635V-voltage, all-inorganic CsPbBr3 perovskite solar cells. Nano Energy 96, 107138 (2022). https://doi.org/10.1016/j.nanoen.2022.107138
- Y. Han, T. Zuo, K. He, L. Yang, S. Zhan et al., 2D-Antimonene-assisted hetero-epitaxial growth of perovskite films for efficient solar cells. Mater. Today 61, 54–64 (2022). https://doi.org/10.1016/j.mattod.2022.10.020
- K.K. Paul, J.-H. Kim, Y.H. Lee, Hot carrier photovoltaics in van der Waals heterostructures. Nat. Rev. Phys. 3, 178–192 (2021). https://doi.org/10.1038/s42254-020-00272-4
- D.L. McGott, C.P. Muzzillo, C.L. Perkins, J.J. Berry, K. Zhu et al., 3D/2D passivation as a secret to success for polycrystalline thin-film solar cells. Joule 5, 1057–1073 (2021). https://doi.org/10.1016/j.joule.2021.03.015
- M. Zhu, C. Li, B. Li, J. Zhang, Y. Sun et al., Interaction engineering in organic–inorganic hybrid perovskite solar cells. Mater. Horiz. 7, 2208–2236 (2020). https://doi.org/10.1039/d0mh00745e
- T. Mahmoudi, Y. Wang, Y.-B. Hahn, Stability enhancement in perovskite solar cells with perovskite/silver–graphene composites in the active layer. ACS Energy Lett. 4, 235–241 (2019). https://doi.org/10.1021/acsenergylett.8b02201
- J. Cao, G. Tang, P. You, T. Wang, F. Zheng et al., Enhanced performance of planar perovskite solar cells induced by van der waals epitaxial growth of mixed perovskite films on WS2 flakes. Adv. Funct. Mater. 30, 2002358 (2020). https://doi.org/10.1002/adfm.202002358
- F. Berry, R. Mermet-Lyaudoz, J.M. Cuevas Davila, D.A. Djemmah, H.S. Nguyen et al., Light management in perovskite photovoltaic solar cells: a perspective. Adv. Energy Mater. 12, 2200505 (2022). https://doi.org/10.1002/aenm.202200505
- C. Chen, S. Zheng, H. Song, Photon management to reduce energy loss in perovskite solar cells. Chem. Soc. Rev. 50, 7250–7329 (2021). https://doi.org/10.1039/d0cs01488e
- G. Yin, H. Zhao, J. Feng, J. Sun, J. Yan et al., Low-temperature and facile solution-processed two-dimensional TiS2 as an effective electron transport layer for UV-stable planar perovskite solar cells. J. Mater. Chem. A 6, 9132–9138 (2018). https://doi.org/10.1039/c8ta01143e
- Z.-W. Gao, Y. Wang, H. Liu, J. Sun, J. Kim et al., Tailoring the interface in FAPbI3 planar perovskite solar cells by imidazole-graphene-quantum-dots. Adv. Funct. Mater. 31, 2101438 (2021). https://doi.org/10.1002/adfm.202101438
- Q. Cai, W. Sheng, J. Yang, Y. Zhong, S. Xiao et al., Synergistic passivation and down-conversion by imidazole-modified graphene quantum dots for high performance and UV-resistant perovskite solar cells. Adv. Funct. Mater. 33, 2304503 (2023). https://doi.org/10.1002/adfm.202304503
- T. Guo, H. Wang, W. Han, J. Zhang, C. Wang et al., Designed p-type graphene quantum dots to heal interface charge transfer in Sn-Pb perovskite solar cells. Nano Energy 98, 107298 (2022). https://doi.org/10.1016/j.nanoen.2022.107298
- C. Wu, W. Fang, Q. Cheng, J. Wan, R. Wen et al., MXene-regulated perovskite vertical growth for high-performance solar cells. Angew. Chem. Int. Ed. 61, 2210970 (2022). https://doi.org/10.1002/anie.202210970
- R. Zhang, Z. Huang, W. Chen, B. Lyu, H. Zhang et al., A self-assembled vertical-gradient and well-dispersed MXene structure for flexible large-area perovskite modules. Adv. Funct. Mater. 33, 2210063 (2023). https://doi.org/10.1002/adfm.202210063
- J. He, G. Hu, Y. Jiang, S. Zeng, G. Niu et al., Dual-interface engineering in perovskite solar cells with 2D carbides. Angew. Chem. Int. Ed. 62, e202311865 (2023). https://doi.org/10.1002/anie.202311865
- J. Zhang, C. Huang, Y. Sun, H. Yu, Amino-functionalized niobium-carbide MXene serving as electron transport layer and perovskite additive for the preparation of high-performance and stable methylammonium-free perovskite solar cells. Adv. Funct. Mater. 32, 2113367 (2022). https://doi.org/10.1002/adfm.202113367
- M. Zhang, M. Ye, W. Wang, C. Ma, S. Wang et al., Synergistic cascade carrier extraction via dual interfacial positioning of ambipolar black phosphorene for high-efficiency perovskite solar cells. Adv. Mater. 32, e2000999 (2020). https://doi.org/10.1002/adma.202000999
- T.J. MacDonald, A.J. Clancy, W. Xu, Z. Jiang, C.-T. Lin et al., Phosphorene nanoribbon-augmented optoelectronics for enhanced hole extraction. J. Am. Chem. Soc. 143, 21549–21559 (2021). https://doi.org/10.1021/jacs.1c08905
- S.Y. Park, K. Zhu, Advances in SnO2 for efficient and stable n-i-p perovskite solar cells. Adv. Mater. 34, e2110438 (2022). https://doi.org/10.1002/adma.202110438
- J. Um, S.E. Kim, Homo-junction pn diode using p-type SnO and n-type SnO2 thin films. ECS Solid State Lett. 3, P94–P98 (2014). https://doi.org/10.1149/2.0051408ssl
- J.A. Hong, E.D. Jung, J.C. Yu, D.W. Kim, Y.S. Nam et al., Improved efficiency of perovskite solar cells using a nitrogen-doped graphene-oxide-treated tin oxide layer. ACS Appl. Mater. Interfaces 12, 2417–2423 (2020). https://doi.org/10.1021/acsami.9b17705
- J. Xie, K. Huang, X. Yu, Z. Yang, K. Xiao et al., Enhanced electronic properties of SnO2 via electron transfer from graphene quantum dots for efficient perovskite solar cells. ACS Nano 11, 9176–9182 (2017). https://doi.org/10.1021/acsnano.7b04070
- Z. Zhu, J. Ma, Z. Wang, C. Mu, Z. Fan et al., Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. J. Am. Chem. Soc. 136, 3760–3763 (2014). https://doi.org/10.1021/ja4132246
- M.-L. Tsai, S.-H. Su, J.-K. Chang, D.-S. Tsai, C.-H. Chen et al., Monolayer MoS2 heterojunction solar cells. ACS Nano 8, 8317–8322 (2014). https://doi.org/10.1021/nn502776h
- G. Kakavelakis, I. Paradisanos, B. Paci, A. Generosi, M. Papachatzakis et al., Extending the continuous operating lifetime of perovskite solar cells with a molybdenum disulfide hole extraction interlayer. Adv. Energy Mater. 8, 1702287 (2018). https://doi.org/10.1002/aenm.201702287
- D.-J. Xue, Y. Hou, S.-C. Liu, M. Wei, B. Chen et al., Regulating strain in perovskite thin films through charge-transport layers. Nat. Commun. 11, 1514 (2020). https://doi.org/10.1038/s41467-020-15338-1
- C. Zhu, X. Niu, Y. Fu, N. Li, C. Hu et al., Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat. Commun. 10, 815 (2019). https://doi.org/10.1038/s41467-019-08507-4
- J. Zhao, Y. Deng, H. Wei, X. Zheng, Z. Yu et al., Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci. Adv. 3, 5616 (2017). https://doi.org/10.1126/sciadv.aao5616
- J. Zhang, G. Hodes, Z. Jin, S.F. Liu, All-inorganic CsPbX3 perovskite solar cells: progress and prospects. Angew. Chem. Int. Ed. 58, 15596–15618 (2019). https://doi.org/10.1002/anie.201901081
- Y. Rui, T. Li, B. Li, Y. Wang, P. Müller-Buschbaum, Two-dimensional SnS2 nanosheets as electron transport and interfacial layers enable efficient perovskite solar cells. J. Mater. Chem. C 10, 12392–12401 (2022). https://doi.org/10.1039/d2tc02452g
- E. Zhao, L. Gao, S. Yang, L. Wang, J. Cao et al., In situ fabrication of 2D SnS2 nanosheets as a new electron transport layer for perovskite solar cells. Nano Res. 11, 5913–5923 (2018). https://doi.org/10.1007/s12274-018-2103-z
- X. Zhao, S. Liu, H. Zhang, S.-Y. Chang, W. Huang et al., 20% efficient perovskite solar cells with 2D electron transporting layer. Adv. Funct. Mater. 29, 1805168 (2019). https://doi.org/10.1002/adfm.201805168
- Y. Yang, H. Lu, S. Feng, L. Yang, H. Dong et al., Modulation of perovskite crystallization processes towards highly efficient and stable perovskite solar cells with MXene quantum dot-modified SnO2. Energy Environ. Sci. 14, 3447–3454 (2021). https://doi.org/10.1039/D1EE00056J
- M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970
- L. Yang, C. Dall’Agnese, Y. Dall’Agnese, Y. Gang Chen, Y.S. Gao, A.K. Jena, X.-F. Wang, Y. Gogotsi, T. Miyasaka, Surface-modified metallic Ti3C2Tx MXene as electron transport layer for planar heterojunction perovskite solar cells, in MXenes: from discovery to applications of two-dimensional metal carbides and nitrides. ed. by Y. Gogotsi (Jenny Stanford Publishing, New York, 2023), pp.993–1011. https://doi.org/10.1201/9781003306511-50
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- V. Kamysbayev, A.S. Filatov, H. Hu, X. Rui, F. Lagunas et al., Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369, 979–983 (2020). https://doi.org/10.1126/science.aba8311
- J. Zhang, C. Huang, H. Yu, Modulate the work function of Nb2CTx MXene as the hole transport layer for perovskite solar cells. Appl. Phys. Lett. 119, 033506 (2021). https://doi.org/10.1063/5.0057978
- M. Zhu, Y. Osakada, S. Kim, M. Fujitsuka, T. Majima, Black phosphorus: a promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution. Appl. Catal. B Environ. 217, 285–292 (2017). https://doi.org/10.1016/j.apcatb.2017.06.002x
- H. Liu, Y. Du, Y. Deng, P.D. Ye, Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44, 2732–2743 (2015). https://doi.org/10.1039/C4CS00257A
- R.W. Keyes, The electrical properties of black phosphorus. Phys. Rev. 92, 580–584 (1953). https://doi.org/10.1103/physrev.92.580
- Y. Hou, C.O.R. Quiroz, S. Scheiner, W. Chen, T. Stubhan et al., Low-temperature and hysteresis-free electron-transporting layers for efficient, regular, and planar structure perovskite solar cells. Adv. Energy Mater. 5, 1501056 (2015). https://doi.org/10.1002/aenm.201501056
- N. Fu, C. Huang, P. Lin, M. Zhu, T. Li et al., Black phosphorus quantum dots as dual-functional electron-selective materials for efficient plastic perovskite solar cells. J. Mater. Chem. A 6, 8886–8894 (2018). https://doi.org/10.1039/c8ta01408f
- Y. Zhang, L. Xu, Y. Wu, Q. Zhou, Z. Shi et al., Double-layer synergistic optimization by functional black phosphorus quantum dots for high-efficiency and stable planar perovskite solar cells. Nano Energy 90, 106610 (2021). https://doi.org/10.1016/j.nanoen.2021.106610
- X. Wang, J. He, B. Zhou, Y. Zhang, J. Wu et al., Bandgap-tunable preparation of smooth and large two-dimensional antimonene. Angew. Chem. Int. Ed. 130, 8804–8809 (2018). https://doi.org/10.1002/ange.201804886
- N.H. Hemasiri, M. Ashraf, S. Kazim, R. Graf, R. Berger et al., Interface tweaking of perovskite solar cells with carbon nitride-based 2D materials. Nano Energy 109, 108326 (2023). https://doi.org/10.1016/j.nanoen.2023.108326
- J. Dou, C. Zhu, H. Wang, Y. Han, S. Ma et al., Synergistic effects of Eu-MOF on perovskite solar cells with improved stability. Adv. Mater. 33, e2102947 (2021). https://doi.org/10.1002/adma.202102947
- J. Lee, W.-C. Tian, W.-L. Wang, D.-X. Yao, Two-dimensional pnictogen honeycomb lattice: structure, on-site spin-orbit coupling and spin polarization. Sci. Rep. 5, 11512 (2015). https://doi.org/10.1038/srep11512
- S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li et al., Semiconducting Group 15 monolayers: a broad range of band gaps and high carrier mobilities. Angew. Chem. Int. Ed. 128, 1698–1701 (2016). https://doi.org/10.1002/ange.201507568
- S. Sidhik, Y. Wang, M. De Siena, R. Asadpour, A.J. Torma et al., Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells. Science 377, 1425–1430 (2022). https://doi.org/10.1126/science.abq7652
- G. Li, Y. Hu, M. Li, Y. Tang, Z. Zhang et al., Managing excess lead iodide with functionalized oxo-graphene nanosheets for stable perovskite solar cells. Angew. Chem. Int. Ed. 135, 2307395 (2023). https://doi.org/10.1002/ange.202307395
- S. Zhang, R. Guo, H. Zeng, Y. Zhao, X. Liu et al., Improved performance and stability of perovskite solar modules by interface modulating with graphene oxide crosslinked CsPbBr3 quantum dots. Energy Environ. Sci. 15, 244–253 (2022). https://doi.org/10.1039/d1ee01778k
- N.H. Hemasiri, S. Kazim, S. Ahmad, Reduced trap density and mitigating the interfacial losses by placing 2D dichalcogenide material at perovskite/HTM interface in a dopant free perovskite solar cells. Nano Energy 77, 105292 (2020). https://doi.org/10.1016/j.nanoen.2020.105292
- H. Sui, B. He, J. Ti, S. Sun, W. Jiao et al., Sulfur vacancy defects healing of WS2 quantum dots boosted hole extraction for all-inorganic perovskite solar cells. Chem. Eng. J. 455, 140728 (2023). https://doi.org/10.1016/j.cej.2022.140728
- M. Jin, C. Chen, F. Li, Z. Shen, H. Shen et al., Enhanced electrical properties in 2D perovskites via the bridging effect of SnS1–xO2x for perovskite solar cells with efficiency exceeding 24%. Nano Energy 109, 108287 (2023). https://doi.org/10.1016/j.nanoen.2023.108287
- T. Liu, Y. Liu, M. Chen, X. Guo, S. Tang et al., Fluorinated black phosphorene nanosheets with robust ambient stability for efficient and stable perovskite solar cells. Adv. Funct. Mater. 32, 2106779 (2022). https://doi.org/10.1002/adfm.202106779
- S. Liu, J. Lyu, D. Zhou, X. Zhuang, Z. Shi et al., Dual modification engineering via lanthanide-based halide quantum dots and black phosphorus enabled efficient perovskite solar cells with high open-voltage of 1235 V. Adv. Funct. Mater. 32, 2112647 (2022). https://doi.org/10.1002/adfm.202112647
- J.H. Heo, F. Zhang, J.K. Park, H. Joon Lee, D.S. Lee et al., Surface engineering with oxidized Ti3C2Tx MXene enables efficient and stable p-i-n-structured CsPbI3 perovskite solar cells. Joule 6, 1672–1688 (2022). https://doi.org/10.1016/j.joule.2022.05.013
- Y. Zhang, L. Xu, J. Sun, Y. Wu, Z. Kan et al., 24.11% high performance perovskite solar cells by dual interfacial carrier mobility enhancement and charge-carrier transport balance. Adv. Energy Mater. 12, 2201269 (2022). https://doi.org/10.1002/aenm.202201269
- C. Chen, J. Chen, H. Han, L. Chao, J. Hu et al., Perovskite solar cells based on screen-printed thin films. Nature 612, 266–271 (2022). https://doi.org/10.1038/s41586-022-05346-0
- G. Tong, J. Zhang, T. Bu, L.K. Ono, C. Zhang et al., Holistic strategies lead to enhanced efficiency and stability of hybrid chemical vapor deposition based perovskite solar cells and modules. Adv. Energy Mater. 13, 2300153 (2023). https://doi.org/10.1002/aenm.202300153
- Z. Liu, L. Qiu, L.K. Ono, S. He, Z. Hu et al., A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability. Nat. Energy 5, 596–604 (2020). https://doi.org/10.1038/s41560-020-0653-2
- Q. Lou, G. Lou, H. Guo, T. Sun, C. Wang et al., Enhanced efficiency and stability of n-i-p perovskite solar cells by incorporation of fluorinated graphene in the spiro-OMeTAD hole transport layer. Adv. Energy Mater. 12, 2201344 (2022). https://doi.org/10.1002/aenm.202201344
- S.S. Bhosale, E. Jokar, A. Fathi, C.-M. Tsai, C.-Y. Wang et al., Functionalization of graphene oxide films with Au and MoOx nanops as efficient p-contact electrodes for inverted planar perovskite solar cells. Adv. Funct. Mater. 28, 1803200 (2018). https://doi.org/10.1002/adfm.201803200
- J. Du, J. Duan, X. Yang, Y. Duan, Q. Zhou et al., P-type charge transfer doping of graphene oxide with (NiCo)1−yFeyOx for air-stable, all-inorganic CsPbIBr2 perovskite solar cells. Angew. Chem. Int. Ed. 60, 10608–10613 (2021). https://doi.org/10.1002/anie.202016703
- S.Y. Lee, U.J. Kim, J. Chung, H. Nam, H.Y. Jeong et al., Large work function modulation of monolayer MoS2 by ambient gases. ACS Nano 10, 6100–6107 (2016). https://doi.org/10.1021/acsnano.6b01742
- T. Zhang, F. Wang, H. Kim, I. Choi, C. Wang, E. Cho et al., Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells. Science 377, 495–501 (2022). https://doi.org/10.1126/science.abo2757
- J. Lee, T. Son, K. Min, S. Park, Y. Kim et al., Rationally designed hole transporting layer system for efficient and stable perovskite solar cells. EcoMat 5, e12414 (2023). https://doi.org/10.1002/eom2.12414
- X. Fan, N.E. Stott, J. Zeng, Y. Li, J. Ouyang et al., PEDOT: PSS materials for optoelectronics, thermoelectrics, and flexible and stretchable electronics. J. Mater. Chem. A 11, 18561–18591 (2023). https://doi.org/10.1039/d3ta03213b
- Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
- L. Najafi, B. Taheri, B. Martín-García, S. Bellani, D. Di Girolamo et al., MoS2 quantum dot/graphene hybrids for advanced interface engineering of a CH3NH3PbI3 perovskite solar cell with an efficiency of over 20%. ACS Nano 12, 10736–10754 (2018). https://doi.org/10.1021/acsnano.8b05514
- A. Agresti, S. Pescetelli, A.L. Palma, B. Martín-García, L. Najafi et al., Two-dimensional material interface engineering for efficient perovskite large-area modules. ACS Energy Lett. 4, 1862–1871 (2019). https://doi.org/10.1021/acsenergylett.9b01151
- M. Karimipour, S. Khazraei, B.J. Kim, G. Boschloo, E.M.J. Johansson, Efficient and bending durable flexible perovskite solar cells via interface modification using a combination of thin MoS2 nanosheets and molecules binding to the perovskite. Nano Energy 95, 107044 (2022). https://doi.org/10.1016/j.nanoen.2022.107044
- A. Di Vito, A. Pecchia, M. Auf der Maur, A. Di Carlo, Nonlinear work function tuning of lead-halide perovskites by MXenes with mixed terminations. Adv. Funct. Mater. 30, 1909028 (2020). https://doi.org/10.1002/adfm.201909028
- D. Saranin, S. Pescetelli, A. Pazniak, D. Rossi, A. Liedl et al., Transition metal carbides (MXenes) for efficient NiO-based inverted perovskite solar cells. Nano Energy 82, 105771 (2021). https://doi.org/10.1016/j.nanoen.2021.105771
- Q. Zhou, J. Duan, J. Du, Q. Guo, Q. Zhang et al., Tailored lattice “tape” to confine tensile interface for 11.08%-efficiency all-inorganic CsPbBr3 perovskite solar cell with an ultrahigh voltage of 1.702 V. Adv. Sci. 8, e2101418 (2021). https://doi.org/10.1002/advs.202101418
- D. Xu, T. Li, Y. Han, X. He, S. Yang et al., Fluorine functionalized MXene QDs for near-record-efficiency CsPbI3 solar cell with high open-circuit voltage. Adv. Funct. Mater. 32, 2203704 (2022). https://doi.org/10.1002/adfm.202203704
- P. Cai, L. Ding, Z. Chen, D. Wang, H. Peng et al., Tetrabutylammonium bromide functionalized Ti3C2Tx MXene as versatile cathode buffer layer for efficient and stable inverted perovskite solar cells. Adv. Funct. Mater. 33, 2300113 (2023). https://doi.org/10.1002/adfm.202300113
- P. Guo, C. Liu, X. Li, Z. Chen, H. Zhu et al., Laser manufactured nano-MXenes with tailored halogen terminations enable interfacial ionic stabilization of high performance perovskite solar cells. Adv. Energy Mater. 12, 2202395 (2022). https://doi.org/10.1002/aenm.202202395
- M. Karimipour, A. Paingott Parambil, K. Tabah Tanko, T. Zhang, F. Gao et al., Functionalized MXene/halide perovskite heterojunctions for perovskite solar cells stable under real outdoor conditions. Adv. Energy Mater. 13, 2301959 (2023). https://doi.org/10.1002/aenm.202301959
- B. Li, Y. Zhang, L. Fu, L. Zhang, Z. Liu et al., Two-dimensional black phosphorous induced exciton dissociation efficiency enhancement for high-performance all-inorganic CsPbI3 perovskite photovoltaics. J. Mater. Chem. A 7, 22539–22549 (2019). https://doi.org/10.1039/c9ta06016b
- P. You, G. Tang, J. Cao, D. Shen, T.-W. Ng et al., 2D materials for conducting holes from grain boundaries in perovskite solar cells. Light Sci. Appl. 10, 68 (2021). https://doi.org/10.1038/s41377-021-00515-8
- J. He, F. Zhang, Y. Xiang, J. Lian, X. Wang et al., Preparation of low dimensional antimonene oxides and their application in cu: Niox based planar p-i-n perovskite solar cells. J. Power. Sources 435, 226819 (2019). https://doi.org/10.1016/j.jpowsour.2019.226819
- Z. Wang, Q. Lin, F.P. Chmiel, N. Sakai, L.M. Herz et al., Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2, 17135 (2017). https://doi.org/10.1038/nenergy.2017.135
- X. Liu, D. Luo, Z.-H. Lu, J.S. Yun, M. Saliba et al., Stabilization of photoactive phases for perovskite photovoltaics. Nat. Rev. Chem. 7, 462–479 (2023). https://doi.org/10.1038/s41570-023-00492-z
- C. Ma, F.T. Eickemeyer, S.-H. Lee, D.-H. Kang, S.J. Kwon et al., Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells. Science 379, 173–178 (2023). https://doi.org/10.1126/science.adf3349
- F. Zhang, S.Y. Park, C. Yao, H. Lu, S.P. Dunfield et al., Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science 375, 71–76 (2022). https://doi.org/10.1126/science.abj2637
- G. Grancini, M.K. Nazeeruddin, Dimensional tailoring of hybrid perovskites for photovoltaics. Nat. Rev. Mater. 4, 4–22 (2019). https://doi.org/10.1038/s41578-018-0065-0
- P. Chen, D. He, X. Huang, C. Zhang, L. Wang, Bilayer 2D–3D perovskite heterostructures for efficient and stable solar cells. ACS Nano 18, 67–88 (2024). https://doi.org/10.1021/acsnano.3c09176
- M. Shao, T. Bie, L. Yang, Y. Gao, X. Jin et al., Over 21% efficiency stable 2D perovskite solar cells. Adv. Mater. 34, e2107211 (2022). https://doi.org/10.1002/adma.202107211
- Y. Zhang, N.-G. Park, Quasi-two-dimensional perovskite solar cells with efficiency exceeding 22%. ACS Energy Lett. 7, 757–765 (2022). https://doi.org/10.1021/acsenergylett.1c02645
- R. Azmi, E. Ugur, A. Seitkhan, F. Aljamaan, A.S. Subbiah et al., Damp heat–stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376, 73–77 (2022). https://doi.org/10.1126/science.abm5784
- H. Chen, S. Teale, B. Chen, Y. Hou, L. Grater et al., Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photon. 16, 352–358 (2022). https://doi.org/10.1038/s41566-022-00985-1
- G. Yang, Z. Ren, K. Liu, M. Qin, W. Deng et al., Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation. Nat. Photon. 15, 681–689 (2021). https://doi.org/10.1038/s41566-021-00829-4
- B.-B. Yu, Z. Chen, Y. Zhu, Y. Wang, B. Han et al., Heterogeneous 2D/3D tin-halides perovskite solar cells with certified conversion efficiency breaking 14. Adv. Mater. 33, e2102055 (2021). https://doi.org/10.1002/adma.202102055
- Y.-W. Jang, S. Lee, K.M. Yeom, K. Jeong, K. Choi et al., Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy 6, 63–71 (2021). https://doi.org/10.1038/s41560-020-00749-7
- Z. Liu, P. You, C. Xie, G. Tang, F. Yan, Ultrathin and flexible perovskite solar cells with graphene transparent electrodes. Nano Energy 28, 151–157 (2016). https://doi.org/10.1016/j.nanoen.2016.08.038
- Y. Wu, G. Xu, J. Xi, Y. Shen, X. Wu et al., In situ crosslinking-assisted perovskite grain growth for mechanically robust flexible perovskite solar cells with 23.4% efficiency. Joule 7, 398–415 (2023). https://doi.org/10.1016/j.joule.2022.12.013
- Z. Chen, Q. Cheng, H. Chen, Y. Wu, J. Ding et al., Perovskite grain-boundary manipulation using room-temperature dynamic self-healing “ligaments” for developing highly stable flexible perovskite solar cells with 23.8% efficiency. Adv. Mater. 35, 2300513 (2023). https://doi.org/10.1002/adma.202300513
- Q. Luo, H. Ma, Q. Hou, Y. Li, J. Ren et al., All-carbon-electrode-based endurable flexible perovskite solar cells. Adv. Funct. Mater. 28, 1706777 (2018). https://doi.org/10.1002/adfm.201706777
- B.J. Kim, D.H. Kim, Y.-Y. Lee, H.-W. Shin, G.S. Han et al., Highly efficient and bending durable perovskite solar cells: toward a wearable power source. Energy Environ. Sci. 8, 916–921 (2015). https://doi.org/10.1039/c4ee02441a
- J.H. Heo, D.S. Lee, F. Zhang, C. Xiao, S.J. Heo et al., Super flexible transparent conducting oxide-free organic–inorganic hybrid perovskite solar cells with 19.01% efficiency (active area = 1 cm2). Sol. RRL 5, 2100733 (2021). https://doi.org/10.1002/solr.202100733
- V.-D. Tran, S.V.N. Pammi, B.-J. Park, Y. Han, C. Jeon et al., Transfer-free graphene electrodes for super-flexible and semi-transparent perovskite solar cells fabricated under ambient air. Nano Energy 65, 104018 (2019). https://doi.org/10.1016/j.nanoen.2019.104018
- J.H. Heo, D.H. Shin, M.H. Jang, M.L. Lee, M.G. Kang et al., Highly flexible, high-performance perovskite solar cells with adhesion promoted AuCl3-doped graphene electrodes. J. Mater. Chem. A 5, 21146–21152 (2017). https://doi.org/10.1039/c7ta06465a
- J.H. Heo, D.H. Shin, D.H. Song, D.H. Kim, S.J. Lee et al., Super-flexible bis(trifluoromethanesulfonyl)-amide doped graphene transparent conductive electrodes for photo-stable perovskite solar cells. J. Mater. Chem. A 6, 8251–8258 (2018). https://doi.org/10.1039/c8ta02672f
- B.-J. Park, J.-S. Choi, H.-S. Kim, H.-Y. Kim, J.-R. Jeong et al., Realization of large-area wrinkle-free monolayer graphene films transferred to functional substrates. Sci. Rep. 5, 9610 (2015). https://doi.org/10.1038/srep09610
- X. Xu, H. Wang, J. Wang, M. Muhammad, Z. Wang et al., Surface functionalization of a graphene cathode to facilitate ALD growth of an electron transport layer and realize high-performance flexible perovskite solar cells. ACS Appl. Energy Mater. 3, 4208–4216 (2020). https://doi.org/10.1021/acsaem.9b02191
- C. Zhang, S. Wang, H. Zhang, Y. Feng, W. Tian et al., Efficient stable graphene-based perovskite solar cells with high flexibility in device assembling via modular architecture design. Energy Environ. Sci. 12, 3585–3594 (2019). https://doi.org/10.1039/c9ee02391g
- M. Tian, C.Y. Woo, J.W. Choi, J.-Y. Seo, J.-M. Kim et al., Printable free-standing hybrid graphene/dry-spun carbon nanotube films as multifunctional electrodes for highly stable perovskite solar cells. ACS Appl. Mater. Interfaces 12, 54806–54814 (2020). https://doi.org/10.1021/acsami.0c17141
- G. Jeong, D. Koo, J.-H. Woo, Y. Choi, E. Son et al., Highly efficient self-encapsulated flexible semitransparent perovskite solar cells via bifacial cation exchange. ACS Appl. Mater. Interfaces 14, 33297–33305 (2022). https://doi.org/10.1021/acsami.2c08023
- M.M. Tavakoli, M. Nasilowski, J. Zhao, M.G. Bawendi, J. Kong, Efficient semitransparent CsPbI3 quantum dots photovoltaics using a graphene electrode. Small Meth. 3, 1900449 (2019). https://doi.org/10.1002/smtd.201900449
- Y. Zhu, S. Jia, J. Zheng, Y. Lin, Y. Wu et al., Facile synthesis of nitrogen-doped graphene frameworks for enhanced performance of hole transport material-free perovskite solar cells. J. Mater. Chem. C 6, 3097–3103 (2018). https://doi.org/10.1039/C8TC00086G
- M. Guo, C. Wei, C. Liu, K. Zhang, H. Su et al., Composite electrode based on single-atom Ni doped graphene for planar carbon-based perovskite solar cells. Mater. Des. 209, 109972 (2021). https://doi.org/10.1016/J.MATDES.2021.109972
- M. Ma, X. Zhang, X. Chen, H. Xiong, L. Xu et al., In situ imaging of the atomic phase transition dynamics in metal halide perovskites. Nat. Commun. 14, 7142 (2023). https://doi.org/10.1038/s41467-023-42999-5
- Y. Wang, Y. Wang, Recent progress in mxene layers materials for supercapacitors: High-performance electrodes. SmartMat 4(1), e1130 (2022). https://doi.org/10.1002/smm2.1130
- S.A. Hashemi, S. Ramakrishna, A.G. Aberle, Recent progress in flexible–wearable solar cells for self-powered electronic devices. Energy Environ. Sci. 13, 685–743 (2020). https://doi.org/10.1039/c9ee03046h
- K. Montazeri, M. Currie, L. Verger, P. Dianat, M.W. Barsoum et al., Beyond gold: spin-coated Ti3C2-based MXene photodetectors. Adv. Mater. 31, 1903271 (2019). https://doi.org/10.1002/adma.201903271
References
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). https://doi.org/10.1021/ja809598r
J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013). https://doi.org/10.1038/nature12340
H. Chen, F. Ye, W. Tang, J. He, M. Yin et al., A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature 550, 92–95 (2017). https://doi.org/10.1038/nature23877
M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013). https://doi.org/10.1038/nature12509
J. Park, J. Kim, H.-S. Yun, M.J. Paik, E. Noh et al., Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023). https://doi.org/10.1038/s41586-023-05825-y
S. Zhang, F. Ye, X. Wang, R. Chen, H. Zhang et al., Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380, 404–409 (2023). https://doi.org/10.1126/science.adg3755
H. Tang, Z. Shen, Y. Shen, G. Yan, Y. Wang et al., Reinforcing self-assembly of hole transport molecules for stable inverted perovskite solar cells. Science 383, 1236–1240 (2024). https://doi.org/10.1126/science.adj9602
R. Azmi, D.S. Utomo, B. Vishal, S. Zhumagali, P. Dally et al., Double-side 2D/3D heterojunctions for inverted perovskite solar cells. Nature 628, 93–98 (2024). https://doi.org/10.1038/s41586-024-07189-3
R. Lin, J. Xu, M. Wei, Y. Wang, Z. Qin et al., All-perovskite tandem solar cells with improved grain surface passivation. Nature 603, 73–78 (2022). https://doi.org/10.1038/s41586-021-04372-8
P. Shi, Y. Ding, B. Ding, Q. Xing, T. Kodalle et al., Oriented nucleation in formamidinium perovskite for photovoltaics. Nature 620, 323–327 (2023). https://doi.org/10.1038/s41586-023-06208-z
R. Chen, S. Liu, X. Xu, F. Ren, J. Zhou et al., Robust hole transport material with interface anchors enhances the efficiency and stability of inverted formamidinium–cesium perovskite solar cells with a certified efficiency of 22.3%. Energy Environ. Sci. 15, 2567–2580 (2022). https://doi.org/10.1039/D2EE00433J
C. Fei, N. Li, M. Wang, X. Wang, H. Gu et al., Lead-chelating hole-transport layers for efficient and stable perovskite minimodules. Science 380, 823–829 (2023). https://doi.org/10.1126/science.ade9463
Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
Q. Jiang, J. Tong, Y. Xian, R.A. Kerner, S.P. Dunfield et al., Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611, 278–283 (2022). https://doi.org/10.1038/s41586-022-05268-x
Z. Li, B. Li, X. Wu, S.A. Sheppard, S. Zhang et al., Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376, 416–420 (2022). https://doi.org/10.1126/science.abm8566
M.A. Green, E.D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe et al., Solar cell efficiency tables (version 62). Prog. Photovolt. Res. Appl. 31, 651–663 (2023). https://doi.org/10.1002/pip.3726
T. Wu, Z. Qin, Y. Wang, Y. Wu, W. Chen et al., The main progress of perovskite solar cells in 2020–2021. Nano-Micro Lett. 13, 152 (2021). https://doi.org/10.1007/s40820-021-00672-w
. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.pdf
W. Peng, K. Mao, F. Cai, H. Meng, Z. Zhu et al., Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science 379, 683–690 (2023). https://doi.org/10.1126/science.ade3126
J.Y. Kim, J.-W. Lee, H.S. Jung, H. Shin, N.-G. Park, High-efficiency perovskite solar cells. Chem. Rev. 120, 7867–7918 (2020). https://doi.org/10.1021/acs.chemrev.0c00107
H. Zhang, L. Pfeifer, S.M. Zakeeruddin, J. Chu, M. Grätzel, Tailoring passivators for highly efficient and stable perovskite solar cells. Nat. Rev. Chem. 7, 632–652 (2023). https://doi.org/10.1038/s41570-023-00510-0
J. O’Sullivan, M. Wright, X. Niu, P. Miller, P.R. Wilshaw et al., Towards a graphene transparent conducting electrode for perovskite/silicon tandem solar cells. Prog. Photovolt. Res. Appl. 31, 1478–1492 (2023). https://doi.org/10.1002/pip.3739
P.K. Nayak, S. Mahesh, H.J. Snaith, D. Cahen, Photovoltaic solar cell technologies: analysing the state of the art. Nat. Rev. Mater. 4, 269–285 (2019). https://doi.org/10.1038/s41578-019-0097-0
X. Lin, D. Cui, X. Luo, C. Zhang, Q. Han et al., Efficiency progress of inverted perovskite solar cells. Energy Environ. Sci. 13, 3823–3847 (2020). https://doi.org/10.1039/d0ee02017f
Y. Li, H. Xie, E.L. Lim, A. Hagfeldt, D. Bi, Recent progress of critical interface engineering for highly efficient and stable perovskite solar cells. Adv. Energy Mater. 12, 2102730 (2022). https://doi.org/10.1002/aenm.202102730
J. Xia, M. Sohail, M.K. Nazeeruddin, Efficient and stable perovskite solar cells by tailoring of interfaces. Adv. Mater. 35, 2211324 (2023). https://doi.org/10.1002/adma.202211324
P. Yan, D. Yang, H. Wang, S. Yang, Z. Ge, Recent advances in dopant-free organic hole-transporting materials for efficient, stable and low-cost perovskite solar cells. Energy Environ. Sci. 15, 3630–3669 (2022). https://doi.org/10.1039/d2ee01256a
Z. Saki, M.M. Byranvand, N. Taghavinia, M. Kedia, M. Saliba, Solution-processed perovskite thin-films: the journey from lab- to large-scale solar cells. Energy Environ. Sci. 14, 5690–5722 (2021). https://doi.org/10.1039/d1ee02018h
Y. Yao, C. Cheng, C. Zhang, H. Hu, K. Wang et al., Organic hole-transport layers for efficient, stable, and scalable inverted perovskite solar cells. Adv. Mater. 34, e2203794 (2022). https://doi.org/10.1002/adma.202203794
G. Wu, R. Liang, M. Ge, G. Sun, Y. Zhang et al., Surface passivation using 2D perovskites toward efficient and stable perovskite solar cells. Adv. Mater. 34, e2105635 (2022). https://doi.org/10.1002/adma.202105635
F.H. Isikgor, S. Zhumagali, L.V.T. Merino, M. De Bastiani, I. McCulloch et al., Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nat. Rev. Mater. 8, 89–108 (2023). https://doi.org/10.1038/s41578-022-00503-3
H. Zhu, S. Teale, M.N. Lintangpradipto, S. Mahesh, B. Chen et al., Long-term operating stability in perovskite photovoltaics. Nat. Rev. Mater. 8, 569–586 (2023). https://doi.org/10.1038/s41578-023-00582-w
S. You, H. Zeng, Y. Liu, B. Han, M. Li et al., Radical polymeric p-doping and grain modulation for stable, efficient perovskite solar modules. Science 379, 288–294 (2023). https://doi.org/10.1126/science.add8786
C. Li, X. Wang, E. Bi, F. Jiang, S.M. Park et al., Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science 379, 690–694 (2023). https://doi.org/10.1126/science.ade3970
G. Nazir, S.Y. Lee, J.H. Lee, A. Rehman, J.K. Lee et al., Stabilization of perovskite solar cells: recent developments and future perspectives. Adv. Mater. 34, e2204380 (2022). https://doi.org/10.1002/adma.202204380
X. Lin, H. Su, S. He, Y. Song, Y. Wang et al., In situ growth of graphene on both sides of a Cu–Ni alloy electrode for perovskite solar cells with improved stability. Nat. Energy 7, 520–527 (2022). https://doi.org/10.1038/s41560-022-01038-1
Y. Xu, Z. Lin, W. Wei, Y. Hao, S. Liu et al., Recent progress of electrode materials for flexible perovskite solar cells. Nano-Micro Lett. 14, 117 (2022). https://doi.org/10.1007/s40820-022-00859-9
H. Su, T. Wu, D. Cui, X. Lin, X. Luo et al., The application of graphene derivatives in perovskite solar cells. Small Meth. 4, 2000507 (2020). https://doi.org/10.1002/smtd.202000507
P. Miró, M. Audiffred, T. Heine, An atlas of two-dimensional materials. Chem. Soc. Rev. 43, 6537–6554 (2014). https://doi.org/10.1039/c4cs00102h
M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013). https://doi.org/10.1021/cr300263a
C. Liu, H. Chen, S. Wang, Q. Liu, Y.-G. Jiang et al., Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 15, 545–557 (2020). https://doi.org/10.1038/s41565-020-0724-3
A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372, 1581 (2021). https://doi.org/10.1126/science.abf1581
J. Zhu, G. Xiao, X. Zuo, Two-dimensional black phosphorus: an emerging anode material for lithium-ion batteries. Nano-Micro Lett. 12, 120 (2020). https://doi.org/10.1007/s40820-020-00453-x
R. Yang, Y. Fan, Y. Zhang, L. Mei, R. Zhu et al., 2D transition metal dichalcogenides for photocatalysis. Angew. Chem. Int. Ed. 62, 2218016 (2023). https://doi.org/10.1002/anie.202218016
J. Cao, P. You, G. Tang, F. Yan, Two-dimensional materials for boosting the performance of perovskite solar cells: Fundamentals, materials and devices. Mater. Sci. Eng. R. Rep. 153, 100727 (2023). https://doi.org/10.1016/j.mser.2023.100727
J.T. Wang, J.M. Ball, E.M. Barea, A. Abate, J.A. Alexander-Webber et al., Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 14, 724–730 (2014). https://doi.org/10.1021/nl403997a
O. Ergen, S. Gilbert, T. Pham, S. Turner, M. Tan et al., Graded bandgap perovskite solar cells. Nat. Mater. 16, 522–525 (2017). https://doi.org/10.1038/nmat4795
N. Arora, M.I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber et al., Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science 358, 768–771 (2017). https://doi.org/10.1126/science.aam5655
A. Agresti, A. Pazniak, S. Pescetelli, A. Di Vito, D. Rossi et al., Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells. Nat. Mater. 18, 1228–1234 (2019). https://doi.org/10.1038/s41563-019-0478-1
Y. Wang, T. Wu, J. Barbaud, W. Kong, D. Cui et al., Stabilizing heterostructures of soft perovskite semiconductors. Science 365, 687–691 (2019). https://doi.org/10.1126/science.aax8018
Q. Zhou, J. Duan, X. Yang, Y. Duan, Q. Tang, Interfacial strain release from the WS2/CsPbBr3 van der waals heterostructure for 1.7 V voltage all-inorganic perovskite solar cells. Angew. Chem. Int. Ed. 59, 21997–22001 (2020). https://doi.org/10.1002/anie.202010252
C. Zhang, S. Liang, W. Liu, F.T. Eickemeyer, X. Cai et al., Ti1–graphene single-atom material for improved energy level alignment in perovskite solar cells. Nat. Energy 6, 1154–1163 (2021). https://doi.org/10.1038/s41560-021-00944-0
S. Pescetelli, A. Agresti, G. Viskadouros, S. Razza, K. Rogdakis et al., Integration of two-dimensional materials-based perovskite solar panels into a stand-alone solar farm. Nat. Energy 7, 597–607 (2022). https://doi.org/10.1038/s41560-022-01035-4
K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro, Neto 2D materials and van der Waals heterostructures. Science 353, eaac9439 (2016). https://doi.org/10.1126/science.aac9439
Y. Liu, Y. Huang, X. Duan, Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019). https://doi.org/10.1038/s41586-019-1013-x
S. Bellani, A. Bartolotta, A. Agresti, G. Calogero, G. Grancini et al., Solution-processed two-dimensional materials for next-generation photovoltaics. Chem. Soc. Rev. 50, 11870–11965 (2021). https://doi.org/10.1039/d1cs00106j
B. Wang, J. Iocozzia, M. Zhang, M. Ye, S. Yan et al., The charge carrier dynamics, efficiency and stability of two-dimensional material-based perovskite solar cells. Chem. Soc. Rev. 48, 4854–4891 (2019). https://doi.org/10.1039/c9cs00254e
T. Wang, F. Zheng, G. Tang, J. Cao, P. You et al., 2D WSe2 flakes for synergistic modulation of grain growth and charge transfer in tin-based perovskite solar cells. Adv. Sci. 8, e2004315 (2021). https://doi.org/10.1002/advs.202004315
T. Mahmoudi, Y. Wang, Y.-B. Hahn, Graphene and its derivatives for solar cells application. Nano Energy 47, 51–65 (2018). https://doi.org/10.1016/j.nanoen.2018.02.047
X. Meng, J. Zhou, J. Hou, X. Tao, S.H. Cheung et al., Versatility of carbon enables all carbon based perovskite solar cells to achieve high efficiency and high stability. Adv. Mater. 30, e1706975 (2018). https://doi.org/10.1002/adma.201706975
U.K. Aryal, M. Ahmadpour, V. Turkovic, H.-G. Rubahn, A. Di Carlo et al., 2D materials for organic and perovskite photovoltaics. Nano Energy 94, 106833 (2022). https://doi.org/10.1016/j.nanoen.2021.106833
Z. Qin, Y. Chen, K. Zhu, Y. Zhao, Two-dimensional materials for perovskite solar cells with enhanced efficiency and stability. ACS Mater. Lett. 3, 1402–1416 (2021). https://doi.org/10.1021/acsmaterialslett.1c00327
S. Chen, G. Shi, Two-dimensional materials for halide perovskite-based optoelectronic devices. Adv. Mater. 29, 1605448 (2017). https://doi.org/10.1002/adma.201605448
A.K. Geim, I.V. Grigorieva, Van der waals heterostructures. Nature 499, 419–425 (2013). https://doi.org/10.1038/nature12385
D. Akinwande, C. Huyghebaert, C.-H. Wang, M.I. Serna, S. Goossens et al., Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019). https://doi.org/10.1038/s41586-019-1573-9
C. Li, Q. Cao, F. Wang, Y. Xiao, Y. Li et al., Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chem. Soc. Rev. 47, 4981–5037 (2018). https://doi.org/10.1039/c8cs00067k
F. Zhang, J. He, Y. Xiang, K. Zheng, B. Xue et al., Semimetal-semiconductor transitions for monolayer antimonene nanosheets and their application in perovskite solar cells. Adv. Mater. 30, e1803244 (2018). https://doi.org/10.1002/adma.201803244
N. Yang, F. Pei, J. Dou, Y. Zhao, Z. Huang et al., Improving heat transfer enables durable perovskite solar cells. Adv. Energy Mater. 12, 2200869 (2022). https://doi.org/10.1002/aenm.202200869
L. Rao, X. Meng, S. Xiao, Z. Xing, Q. Fu et al., Wearable tin-based perovskite solar cells achieved by a crystallographic size effect. Angew. Chem. Int. Ed. 60, 14693–14700 (2021). https://doi.org/10.1002/anie.202104201
S. Wu, Z. Li, M.-Q. Li, Y. Diao, F. Lin et al., 2D metal–organic framework for stable perovskite solar cells with minimized lead leakage. Nat. Nanotechnol. 15, 934–940 (2020). https://doi.org/10.1038/s41565-020-0765-7
D. Zhao, D. Gao, X. Wu, B. Li, S. Zhang et al., Efficient and stable 3D/2D perovskite solar cells through vertical heterostructures with (BA)4AgBiBr8 nanosheets. Adv. Mater. 34, 2204661 (2022). https://doi.org/10.1002/adma.202204661
P. Hess, Fracture of perfect and defective graphene at the nanometer scale: is graphene the strongest material? J. Appl. Phys. 120, 124303 (2016). https://doi.org/10.1063/1.4962542
C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). https://doi.org/10.1126/science.1157996
Z. Niazi, A. Hagfeldt, E.K. Goharshadi, Recent progress on the use of graphene-based nanomaterials in perovskite solar cells. J. Mater. Chem. A 11, 6659–6687 (2023). https://doi.org/10.1039/d2ta09985c
H. Kim, H.H. Kim, J.I. Jang, S.K. Lee, G.-W. Lee et al., Doping graphene with an atomically thin two dimensional molecular layer. Adv. Mater. 26, 8141–8146 (2014). https://doi.org/10.1002/adma.201403196
S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias et al., Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008). https://doi.org/10.1103/PhysRevLett.100.016602
J. Wu, H. Lin, D.J. Moss, K.P. Loh, B. Jia, Graphene oxide for photonics, electronics and optoelectronics. Nat. Rev. Chem. 7, 162–183 (2023). https://doi.org/10.1038/s41570-022-00458-7
Z. Zhou, X. Li, M. Cai, F. Xie, Y. Wu et al., Stable inverted planar perovskite solar cells with low-temperature-processed hole-transport bilayer. Adv. Energy Mater. 7, 1700763 (2017). https://doi.org/10.1002/aenm.201700763
S.-Y. Lee, S.-J. Park, Comprehensive review on synthesis and adsorption behaviors of graphene-based materials. Carbon Lett. 13, 73–87 (2012). https://doi.org/10.5714/cl.2012.13.2.073
M. Jin, H.-K. Jeong, W.J. Yu, D.J. Bae, B.R. Kang et al., Graphene oxide thin film field effect transistors without reduction. J. Phys. D Appl. Phys. 42, 135109 (2009). https://doi.org/10.1088/0022-3727/42/13/135109
D. López-Díaz, J.A. Delgado-Notario, V. Clericò, E. Diez, M.D. Merchán et al., Towards understanding the Raman spectrum of graphene oxide: the effect of the chemical composition. Coatings 10, 524 (2020). https://doi.org/10.3390/coatings10060524
Y. Shen, S. Yang, P. Zhou, Q. Sun, P. Wang et al., Evolution of the band-gap and optical properties of graphene oxide with controllable reduction level. Carbon 62, 157–164 (2013). https://doi.org/10.1016/j.carbon.2013.06.007
K. Khan, A.K. Tareen, M. Aslam, R. Wang, Y. Zhang et al., Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C 8, 387–440 (2020). https://doi.org/10.1039/c9tc04187g
Q. Fu, J. Han, X. Wang, P. Xu, T. Yao et al., Electrocatalysts: 2D transition metal dichalcogenides: design, modulation, and challenges in electrocatalysis. Adv. Mater. 33, 2170045 (2021). https://doi.org/10.1002/ADMA.202170045
T. Liao, Z. Chen, Y. Kuang, Z. Ren, W. Yu et al., Small-size Ti3C2Tx MXene nanosheets coated with metal-polyphenol nanodots for enhanced cancer photothermal therapy and anti-inflammation. Acta Biomater. 159, 312–323 (2023). https://doi.org/10.1016/j.actbio.2023.01.049
J. Dai, X.C. Zeng, Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells. J. Phys. Chem. Lett. 5, 1289–1293 (2014). https://doi.org/10.1021/jz500409m
R. Roldán, A. Castellanos-Gomez, E. Cappelluti, F. Guinea, Strain engineering in semiconducting two-dimensional crystals. J. Phys. Condens. Matter 27, 313201 (2015). https://doi.org/10.1088/0953-8984/27/31/313201
S. Zhang, W. Zhou, Y. Ma, J. Ji, B. Cai et al., Antimonene oxides: emerging tunable direct bandgap semiconductor and novel topological insulator. Nano Lett. 17, 3434–3440 (2017). https://doi.org/10.1021/acs.nanolett.7b00297
W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande et al., Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20, 116–130 (2017). https://doi.org/10.1016/j.mattod.2016.10.002
P. You, G. Tang, F. Yan, Two-dimensional materials in perovskite solar cells. Mater. Today Energy 11, 128–158 (2019). https://doi.org/10.1016/j.mtener.2018.11.006
S. Aftab, M.Z. Iqbal, S. Hussain, H.H. Hegazy, M.A. Saeed, Transition metal dichalcogenides solar cells and integration with perovskites. Nano Energy 108, 108249 (2023). https://doi.org/10.1016/j.nanoen.2023.108249
C. Martella, C. Mennucci, A. Lamperti, E. Cappelluti, F.B. de Mongeot et al., Designer shape anisotropy on transition-metal-dichalcogenide nanosheets. Adv. Mater. 30, 1705615 (2018). https://doi.org/10.1002/adma.201705615
M.A. Saeed, A. Shahzad, K. Rasool, F. Mateen, J.-M. Oh et al., 2D MXene: a potential candidate for photovoltaic cells? A critical review. Adv. Sci. 9, 2104743 (2022). https://doi.org/10.1002/advs.202104743
S. Palei, G. Murali, C.-H. Kim, I. In, S.-Y. Lee et al., A review on interface engineering of MXenes for perovskite solar cells. Nano-Micro Lett. 15, 123 (2023). https://doi.org/10.1007/s40820-023-01083-9
S. Qamar, K. Fatima, N. Ullah, Z. Akhter, A. Waseem et al., Recent progress in use of MXene in perovskite solar cells: for interfacial modification, work-function tuning and additive engineering. Nanoscale 14, 13018–13039 (2022). https://doi.org/10.1039/d2nr02799b
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
L. Yang, P. Li, J. Ma, X. Zhang, X.-F. Wang et al., MXenes for perovskite solar cells: progress and prospects. J. Energy Chem. 81, 443–461 (2023). https://doi.org/10.1016/j.jechem.2023.02.041
L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). https://doi.org/10.1038/nnano.2014.35
S. Zhang, S. Guo, Z. Chen, Y. Wang, H. Gao et al., Recent progress in 2D group-VA semiconductors: from theory to experiment. Chem. Soc. Rev. 47, 982–1021 (2018). https://doi.org/10.1039/c7cs00125h
Z. Wu, Y. Lyu, Y. Zhang, R. Ding, B. Zheng et al., Large-scale growth of few-layer two-dimensional black phosphorus. Nat. Mater. 20, 1203–1209 (2021). https://doi.org/10.1038/s41563-021-01001-7
S. Zhang, Z. Yan, Y. Li, Z. Chen, H. Zeng, Atomically thin arsenene and antimonene: semimetal–semiconductor and indirect–direct band-gap transitions. Angew. Chem. Int. Ed. 54, 3112–3115 (2015). https://doi.org/10.1002/anie.201411246
J. Qiao, X. Kong, Z.-X. Hu, F. Yang, W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014). https://doi.org/10.1038/ncomms5475
L.F. Kourkoutis, J.H. Song, H.Y. Hwang, D.A. Muller, Microscopic origins for stabilizing room-temperature ferromagnetism in ultrathin manganite layers. Proc. Natl. Acad. Sci. U.S.A. 107, 11682–11685 (2010). https://doi.org/10.1073/pnas.1005693107
C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang et al., Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010). https://doi.org/10.1038/nnano.2010.172
C. Wang, Q. He, U. Halim, Y. Liu, E. Zhu et al., Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018). https://doi.org/10.1038/nature25774
Y. Liu, J. Guo, E. Zhu, L. Liao, S.-J. Lee et al., Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 557, 696–700 (2018). https://doi.org/10.1038/s41586-018-0129-8
Y. Liu, N.O. Weiss, X. Duan, H.-C. Cheng, Y. Huang et al., Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016). https://doi.org/10.1038/natrevmats.2016.42
L. Liao, J. Bai, Y. Qu, Y.-C. Lin, Y. Li et al., High- κ oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors. Proc. Natl. Acad. Sci. U.S.A. 107, 6711–6715 (2010). https://doi.org/10.1073/pnas.0914117107
D. Jariwala, T.J. Marks, M.C. Hersam, Mixed-dimensional van der waals heterostructures. Nat. Mater. 16, 170–181 (2017). https://doi.org/10.1038/nmat4703
Z. Wen, C. Liang, S. Li, G. Wang, B. He et al., High-quality van der waals epitaxial CsPbBr3 film grownon monolayer graphene covered TiO2 for high-performance solar cells. Energy Environ. Mater. 21, 12680 (2023). https://doi.org/10.1002/eem2.12680
G. Tang, P. You, Q. Tai, A. Yang, J. Cao et al., Solution-phase epitaxial growth of perovskite films on 2D material flakes for high-performance solar cells. Adv. Mater. 31, e1807689 (2019). https://doi.org/10.1002/adma.201807689
X. Yao, B. He, J. Zhu, J. Ti, L. Cui et al., Tailoring type-II all-in-one buried interface for 1635V-voltage, all-inorganic CsPbBr3 perovskite solar cells. Nano Energy 96, 107138 (2022). https://doi.org/10.1016/j.nanoen.2022.107138
Y. Han, T. Zuo, K. He, L. Yang, S. Zhan et al., 2D-Antimonene-assisted hetero-epitaxial growth of perovskite films for efficient solar cells. Mater. Today 61, 54–64 (2022). https://doi.org/10.1016/j.mattod.2022.10.020
K.K. Paul, J.-H. Kim, Y.H. Lee, Hot carrier photovoltaics in van der Waals heterostructures. Nat. Rev. Phys. 3, 178–192 (2021). https://doi.org/10.1038/s42254-020-00272-4
D.L. McGott, C.P. Muzzillo, C.L. Perkins, J.J. Berry, K. Zhu et al., 3D/2D passivation as a secret to success for polycrystalline thin-film solar cells. Joule 5, 1057–1073 (2021). https://doi.org/10.1016/j.joule.2021.03.015
M. Zhu, C. Li, B. Li, J. Zhang, Y. Sun et al., Interaction engineering in organic–inorganic hybrid perovskite solar cells. Mater. Horiz. 7, 2208–2236 (2020). https://doi.org/10.1039/d0mh00745e
T. Mahmoudi, Y. Wang, Y.-B. Hahn, Stability enhancement in perovskite solar cells with perovskite/silver–graphene composites in the active layer. ACS Energy Lett. 4, 235–241 (2019). https://doi.org/10.1021/acsenergylett.8b02201
J. Cao, G. Tang, P. You, T. Wang, F. Zheng et al., Enhanced performance of planar perovskite solar cells induced by van der waals epitaxial growth of mixed perovskite films on WS2 flakes. Adv. Funct. Mater. 30, 2002358 (2020). https://doi.org/10.1002/adfm.202002358
F. Berry, R. Mermet-Lyaudoz, J.M. Cuevas Davila, D.A. Djemmah, H.S. Nguyen et al., Light management in perovskite photovoltaic solar cells: a perspective. Adv. Energy Mater. 12, 2200505 (2022). https://doi.org/10.1002/aenm.202200505
C. Chen, S. Zheng, H. Song, Photon management to reduce energy loss in perovskite solar cells. Chem. Soc. Rev. 50, 7250–7329 (2021). https://doi.org/10.1039/d0cs01488e
G. Yin, H. Zhao, J. Feng, J. Sun, J. Yan et al., Low-temperature and facile solution-processed two-dimensional TiS2 as an effective electron transport layer for UV-stable planar perovskite solar cells. J. Mater. Chem. A 6, 9132–9138 (2018). https://doi.org/10.1039/c8ta01143e
Z.-W. Gao, Y. Wang, H. Liu, J. Sun, J. Kim et al., Tailoring the interface in FAPbI3 planar perovskite solar cells by imidazole-graphene-quantum-dots. Adv. Funct. Mater. 31, 2101438 (2021). https://doi.org/10.1002/adfm.202101438
Q. Cai, W. Sheng, J. Yang, Y. Zhong, S. Xiao et al., Synergistic passivation and down-conversion by imidazole-modified graphene quantum dots for high performance and UV-resistant perovskite solar cells. Adv. Funct. Mater. 33, 2304503 (2023). https://doi.org/10.1002/adfm.202304503
T. Guo, H. Wang, W. Han, J. Zhang, C. Wang et al., Designed p-type graphene quantum dots to heal interface charge transfer in Sn-Pb perovskite solar cells. Nano Energy 98, 107298 (2022). https://doi.org/10.1016/j.nanoen.2022.107298
C. Wu, W. Fang, Q. Cheng, J. Wan, R. Wen et al., MXene-regulated perovskite vertical growth for high-performance solar cells. Angew. Chem. Int. Ed. 61, 2210970 (2022). https://doi.org/10.1002/anie.202210970
R. Zhang, Z. Huang, W. Chen, B. Lyu, H. Zhang et al., A self-assembled vertical-gradient and well-dispersed MXene structure for flexible large-area perovskite modules. Adv. Funct. Mater. 33, 2210063 (2023). https://doi.org/10.1002/adfm.202210063
J. He, G. Hu, Y. Jiang, S. Zeng, G. Niu et al., Dual-interface engineering in perovskite solar cells with 2D carbides. Angew. Chem. Int. Ed. 62, e202311865 (2023). https://doi.org/10.1002/anie.202311865
J. Zhang, C. Huang, Y. Sun, H. Yu, Amino-functionalized niobium-carbide MXene serving as electron transport layer and perovskite additive for the preparation of high-performance and stable methylammonium-free perovskite solar cells. Adv. Funct. Mater. 32, 2113367 (2022). https://doi.org/10.1002/adfm.202113367
M. Zhang, M. Ye, W. Wang, C. Ma, S. Wang et al., Synergistic cascade carrier extraction via dual interfacial positioning of ambipolar black phosphorene for high-efficiency perovskite solar cells. Adv. Mater. 32, e2000999 (2020). https://doi.org/10.1002/adma.202000999
T.J. MacDonald, A.J. Clancy, W. Xu, Z. Jiang, C.-T. Lin et al., Phosphorene nanoribbon-augmented optoelectronics for enhanced hole extraction. J. Am. Chem. Soc. 143, 21549–21559 (2021). https://doi.org/10.1021/jacs.1c08905
S.Y. Park, K. Zhu, Advances in SnO2 for efficient and stable n-i-p perovskite solar cells. Adv. Mater. 34, e2110438 (2022). https://doi.org/10.1002/adma.202110438
J. Um, S.E. Kim, Homo-junction pn diode using p-type SnO and n-type SnO2 thin films. ECS Solid State Lett. 3, P94–P98 (2014). https://doi.org/10.1149/2.0051408ssl
J.A. Hong, E.D. Jung, J.C. Yu, D.W. Kim, Y.S. Nam et al., Improved efficiency of perovskite solar cells using a nitrogen-doped graphene-oxide-treated tin oxide layer. ACS Appl. Mater. Interfaces 12, 2417–2423 (2020). https://doi.org/10.1021/acsami.9b17705
J. Xie, K. Huang, X. Yu, Z. Yang, K. Xiao et al., Enhanced electronic properties of SnO2 via electron transfer from graphene quantum dots for efficient perovskite solar cells. ACS Nano 11, 9176–9182 (2017). https://doi.org/10.1021/acsnano.7b04070
Z. Zhu, J. Ma, Z. Wang, C. Mu, Z. Fan et al., Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. J. Am. Chem. Soc. 136, 3760–3763 (2014). https://doi.org/10.1021/ja4132246
M.-L. Tsai, S.-H. Su, J.-K. Chang, D.-S. Tsai, C.-H. Chen et al., Monolayer MoS2 heterojunction solar cells. ACS Nano 8, 8317–8322 (2014). https://doi.org/10.1021/nn502776h
G. Kakavelakis, I. Paradisanos, B. Paci, A. Generosi, M. Papachatzakis et al., Extending the continuous operating lifetime of perovskite solar cells with a molybdenum disulfide hole extraction interlayer. Adv. Energy Mater. 8, 1702287 (2018). https://doi.org/10.1002/aenm.201702287
D.-J. Xue, Y. Hou, S.-C. Liu, M. Wei, B. Chen et al., Regulating strain in perovskite thin films through charge-transport layers. Nat. Commun. 11, 1514 (2020). https://doi.org/10.1038/s41467-020-15338-1
C. Zhu, X. Niu, Y. Fu, N. Li, C. Hu et al., Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat. Commun. 10, 815 (2019). https://doi.org/10.1038/s41467-019-08507-4
J. Zhao, Y. Deng, H. Wei, X. Zheng, Z. Yu et al., Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci. Adv. 3, 5616 (2017). https://doi.org/10.1126/sciadv.aao5616
J. Zhang, G. Hodes, Z. Jin, S.F. Liu, All-inorganic CsPbX3 perovskite solar cells: progress and prospects. Angew. Chem. Int. Ed. 58, 15596–15618 (2019). https://doi.org/10.1002/anie.201901081
Y. Rui, T. Li, B. Li, Y. Wang, P. Müller-Buschbaum, Two-dimensional SnS2 nanosheets as electron transport and interfacial layers enable efficient perovskite solar cells. J. Mater. Chem. C 10, 12392–12401 (2022). https://doi.org/10.1039/d2tc02452g
E. Zhao, L. Gao, S. Yang, L. Wang, J. Cao et al., In situ fabrication of 2D SnS2 nanosheets as a new electron transport layer for perovskite solar cells. Nano Res. 11, 5913–5923 (2018). https://doi.org/10.1007/s12274-018-2103-z
X. Zhao, S. Liu, H. Zhang, S.-Y. Chang, W. Huang et al., 20% efficient perovskite solar cells with 2D electron transporting layer. Adv. Funct. Mater. 29, 1805168 (2019). https://doi.org/10.1002/adfm.201805168
Y. Yang, H. Lu, S. Feng, L. Yang, H. Dong et al., Modulation of perovskite crystallization processes towards highly efficient and stable perovskite solar cells with MXene quantum dot-modified SnO2. Energy Environ. Sci. 14, 3447–3454 (2021). https://doi.org/10.1039/D1EE00056J
M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970
L. Yang, C. Dall’Agnese, Y. Dall’Agnese, Y. Gang Chen, Y.S. Gao, A.K. Jena, X.-F. Wang, Y. Gogotsi, T. Miyasaka, Surface-modified metallic Ti3C2Tx MXene as electron transport layer for planar heterojunction perovskite solar cells, in MXenes: from discovery to applications of two-dimensional metal carbides and nitrides. ed. by Y. Gogotsi (Jenny Stanford Publishing, New York, 2023), pp.993–1011. https://doi.org/10.1201/9781003306511-50
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
V. Kamysbayev, A.S. Filatov, H. Hu, X. Rui, F. Lagunas et al., Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369, 979–983 (2020). https://doi.org/10.1126/science.aba8311
J. Zhang, C. Huang, H. Yu, Modulate the work function of Nb2CTx MXene as the hole transport layer for perovskite solar cells. Appl. Phys. Lett. 119, 033506 (2021). https://doi.org/10.1063/5.0057978
M. Zhu, Y. Osakada, S. Kim, M. Fujitsuka, T. Majima, Black phosphorus: a promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution. Appl. Catal. B Environ. 217, 285–292 (2017). https://doi.org/10.1016/j.apcatb.2017.06.002x
H. Liu, Y. Du, Y. Deng, P.D. Ye, Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44, 2732–2743 (2015). https://doi.org/10.1039/C4CS00257A
R.W. Keyes, The electrical properties of black phosphorus. Phys. Rev. 92, 580–584 (1953). https://doi.org/10.1103/physrev.92.580
Y. Hou, C.O.R. Quiroz, S. Scheiner, W. Chen, T. Stubhan et al., Low-temperature and hysteresis-free electron-transporting layers for efficient, regular, and planar structure perovskite solar cells. Adv. Energy Mater. 5, 1501056 (2015). https://doi.org/10.1002/aenm.201501056
N. Fu, C. Huang, P. Lin, M. Zhu, T. Li et al., Black phosphorus quantum dots as dual-functional electron-selective materials for efficient plastic perovskite solar cells. J. Mater. Chem. A 6, 8886–8894 (2018). https://doi.org/10.1039/c8ta01408f
Y. Zhang, L. Xu, Y. Wu, Q. Zhou, Z. Shi et al., Double-layer synergistic optimization by functional black phosphorus quantum dots for high-efficiency and stable planar perovskite solar cells. Nano Energy 90, 106610 (2021). https://doi.org/10.1016/j.nanoen.2021.106610
X. Wang, J. He, B. Zhou, Y. Zhang, J. Wu et al., Bandgap-tunable preparation of smooth and large two-dimensional antimonene. Angew. Chem. Int. Ed. 130, 8804–8809 (2018). https://doi.org/10.1002/ange.201804886
N.H. Hemasiri, M. Ashraf, S. Kazim, R. Graf, R. Berger et al., Interface tweaking of perovskite solar cells with carbon nitride-based 2D materials. Nano Energy 109, 108326 (2023). https://doi.org/10.1016/j.nanoen.2023.108326
J. Dou, C. Zhu, H. Wang, Y. Han, S. Ma et al., Synergistic effects of Eu-MOF on perovskite solar cells with improved stability. Adv. Mater. 33, e2102947 (2021). https://doi.org/10.1002/adma.202102947
J. Lee, W.-C. Tian, W.-L. Wang, D.-X. Yao, Two-dimensional pnictogen honeycomb lattice: structure, on-site spin-orbit coupling and spin polarization. Sci. Rep. 5, 11512 (2015). https://doi.org/10.1038/srep11512
S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li et al., Semiconducting Group 15 monolayers: a broad range of band gaps and high carrier mobilities. Angew. Chem. Int. Ed. 128, 1698–1701 (2016). https://doi.org/10.1002/ange.201507568
S. Sidhik, Y. Wang, M. De Siena, R. Asadpour, A.J. Torma et al., Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells. Science 377, 1425–1430 (2022). https://doi.org/10.1126/science.abq7652
G. Li, Y. Hu, M. Li, Y. Tang, Z. Zhang et al., Managing excess lead iodide with functionalized oxo-graphene nanosheets for stable perovskite solar cells. Angew. Chem. Int. Ed. 135, 2307395 (2023). https://doi.org/10.1002/ange.202307395
S. Zhang, R. Guo, H. Zeng, Y. Zhao, X. Liu et al., Improved performance and stability of perovskite solar modules by interface modulating with graphene oxide crosslinked CsPbBr3 quantum dots. Energy Environ. Sci. 15, 244–253 (2022). https://doi.org/10.1039/d1ee01778k
N.H. Hemasiri, S. Kazim, S. Ahmad, Reduced trap density and mitigating the interfacial losses by placing 2D dichalcogenide material at perovskite/HTM interface in a dopant free perovskite solar cells. Nano Energy 77, 105292 (2020). https://doi.org/10.1016/j.nanoen.2020.105292
H. Sui, B. He, J. Ti, S. Sun, W. Jiao et al., Sulfur vacancy defects healing of WS2 quantum dots boosted hole extraction for all-inorganic perovskite solar cells. Chem. Eng. J. 455, 140728 (2023). https://doi.org/10.1016/j.cej.2022.140728
M. Jin, C. Chen, F. Li, Z. Shen, H. Shen et al., Enhanced electrical properties in 2D perovskites via the bridging effect of SnS1–xO2x for perovskite solar cells with efficiency exceeding 24%. Nano Energy 109, 108287 (2023). https://doi.org/10.1016/j.nanoen.2023.108287
T. Liu, Y. Liu, M. Chen, X. Guo, S. Tang et al., Fluorinated black phosphorene nanosheets with robust ambient stability for efficient and stable perovskite solar cells. Adv. Funct. Mater. 32, 2106779 (2022). https://doi.org/10.1002/adfm.202106779
S. Liu, J. Lyu, D. Zhou, X. Zhuang, Z. Shi et al., Dual modification engineering via lanthanide-based halide quantum dots and black phosphorus enabled efficient perovskite solar cells with high open-voltage of 1235 V. Adv. Funct. Mater. 32, 2112647 (2022). https://doi.org/10.1002/adfm.202112647
J.H. Heo, F. Zhang, J.K. Park, H. Joon Lee, D.S. Lee et al., Surface engineering with oxidized Ti3C2Tx MXene enables efficient and stable p-i-n-structured CsPbI3 perovskite solar cells. Joule 6, 1672–1688 (2022). https://doi.org/10.1016/j.joule.2022.05.013
Y. Zhang, L. Xu, J. Sun, Y. Wu, Z. Kan et al., 24.11% high performance perovskite solar cells by dual interfacial carrier mobility enhancement and charge-carrier transport balance. Adv. Energy Mater. 12, 2201269 (2022). https://doi.org/10.1002/aenm.202201269
C. Chen, J. Chen, H. Han, L. Chao, J. Hu et al., Perovskite solar cells based on screen-printed thin films. Nature 612, 266–271 (2022). https://doi.org/10.1038/s41586-022-05346-0
G. Tong, J. Zhang, T. Bu, L.K. Ono, C. Zhang et al., Holistic strategies lead to enhanced efficiency and stability of hybrid chemical vapor deposition based perovskite solar cells and modules. Adv. Energy Mater. 13, 2300153 (2023). https://doi.org/10.1002/aenm.202300153
Z. Liu, L. Qiu, L.K. Ono, S. He, Z. Hu et al., A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability. Nat. Energy 5, 596–604 (2020). https://doi.org/10.1038/s41560-020-0653-2
Q. Lou, G. Lou, H. Guo, T. Sun, C. Wang et al., Enhanced efficiency and stability of n-i-p perovskite solar cells by incorporation of fluorinated graphene in the spiro-OMeTAD hole transport layer. Adv. Energy Mater. 12, 2201344 (2022). https://doi.org/10.1002/aenm.202201344
S.S. Bhosale, E. Jokar, A. Fathi, C.-M. Tsai, C.-Y. Wang et al., Functionalization of graphene oxide films with Au and MoOx nanops as efficient p-contact electrodes for inverted planar perovskite solar cells. Adv. Funct. Mater. 28, 1803200 (2018). https://doi.org/10.1002/adfm.201803200
J. Du, J. Duan, X. Yang, Y. Duan, Q. Zhou et al., P-type charge transfer doping of graphene oxide with (NiCo)1−yFeyOx for air-stable, all-inorganic CsPbIBr2 perovskite solar cells. Angew. Chem. Int. Ed. 60, 10608–10613 (2021). https://doi.org/10.1002/anie.202016703
S.Y. Lee, U.J. Kim, J. Chung, H. Nam, H.Y. Jeong et al., Large work function modulation of monolayer MoS2 by ambient gases. ACS Nano 10, 6100–6107 (2016). https://doi.org/10.1021/acsnano.6b01742
T. Zhang, F. Wang, H. Kim, I. Choi, C. Wang, E. Cho et al., Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells. Science 377, 495–501 (2022). https://doi.org/10.1126/science.abo2757
J. Lee, T. Son, K. Min, S. Park, Y. Kim et al., Rationally designed hole transporting layer system for efficient and stable perovskite solar cells. EcoMat 5, e12414 (2023). https://doi.org/10.1002/eom2.12414
X. Fan, N.E. Stott, J. Zeng, Y. Li, J. Ouyang et al., PEDOT: PSS materials for optoelectronics, thermoelectrics, and flexible and stretchable electronics. J. Mater. Chem. A 11, 18561–18591 (2023). https://doi.org/10.1039/d3ta03213b
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
L. Najafi, B. Taheri, B. Martín-García, S. Bellani, D. Di Girolamo et al., MoS2 quantum dot/graphene hybrids for advanced interface engineering of a CH3NH3PbI3 perovskite solar cell with an efficiency of over 20%. ACS Nano 12, 10736–10754 (2018). https://doi.org/10.1021/acsnano.8b05514
A. Agresti, S. Pescetelli, A.L. Palma, B. Martín-García, L. Najafi et al., Two-dimensional material interface engineering for efficient perovskite large-area modules. ACS Energy Lett. 4, 1862–1871 (2019). https://doi.org/10.1021/acsenergylett.9b01151
M. Karimipour, S. Khazraei, B.J. Kim, G. Boschloo, E.M.J. Johansson, Efficient and bending durable flexible perovskite solar cells via interface modification using a combination of thin MoS2 nanosheets and molecules binding to the perovskite. Nano Energy 95, 107044 (2022). https://doi.org/10.1016/j.nanoen.2022.107044
A. Di Vito, A. Pecchia, M. Auf der Maur, A. Di Carlo, Nonlinear work function tuning of lead-halide perovskites by MXenes with mixed terminations. Adv. Funct. Mater. 30, 1909028 (2020). https://doi.org/10.1002/adfm.201909028
D. Saranin, S. Pescetelli, A. Pazniak, D. Rossi, A. Liedl et al., Transition metal carbides (MXenes) for efficient NiO-based inverted perovskite solar cells. Nano Energy 82, 105771 (2021). https://doi.org/10.1016/j.nanoen.2021.105771
Q. Zhou, J. Duan, J. Du, Q. Guo, Q. Zhang et al., Tailored lattice “tape” to confine tensile interface for 11.08%-efficiency all-inorganic CsPbBr3 perovskite solar cell with an ultrahigh voltage of 1.702 V. Adv. Sci. 8, e2101418 (2021). https://doi.org/10.1002/advs.202101418
D. Xu, T. Li, Y. Han, X. He, S. Yang et al., Fluorine functionalized MXene QDs for near-record-efficiency CsPbI3 solar cell with high open-circuit voltage. Adv. Funct. Mater. 32, 2203704 (2022). https://doi.org/10.1002/adfm.202203704
P. Cai, L. Ding, Z. Chen, D. Wang, H. Peng et al., Tetrabutylammonium bromide functionalized Ti3C2Tx MXene as versatile cathode buffer layer for efficient and stable inverted perovskite solar cells. Adv. Funct. Mater. 33, 2300113 (2023). https://doi.org/10.1002/adfm.202300113
P. Guo, C. Liu, X. Li, Z. Chen, H. Zhu et al., Laser manufactured nano-MXenes with tailored halogen terminations enable interfacial ionic stabilization of high performance perovskite solar cells. Adv. Energy Mater. 12, 2202395 (2022). https://doi.org/10.1002/aenm.202202395
M. Karimipour, A. Paingott Parambil, K. Tabah Tanko, T. Zhang, F. Gao et al., Functionalized MXene/halide perovskite heterojunctions for perovskite solar cells stable under real outdoor conditions. Adv. Energy Mater. 13, 2301959 (2023). https://doi.org/10.1002/aenm.202301959
B. Li, Y. Zhang, L. Fu, L. Zhang, Z. Liu et al., Two-dimensional black phosphorous induced exciton dissociation efficiency enhancement for high-performance all-inorganic CsPbI3 perovskite photovoltaics. J. Mater. Chem. A 7, 22539–22549 (2019). https://doi.org/10.1039/c9ta06016b
P. You, G. Tang, J. Cao, D. Shen, T.-W. Ng et al., 2D materials for conducting holes from grain boundaries in perovskite solar cells. Light Sci. Appl. 10, 68 (2021). https://doi.org/10.1038/s41377-021-00515-8
J. He, F. Zhang, Y. Xiang, J. Lian, X. Wang et al., Preparation of low dimensional antimonene oxides and their application in cu: Niox based planar p-i-n perovskite solar cells. J. Power. Sources 435, 226819 (2019). https://doi.org/10.1016/j.jpowsour.2019.226819
Z. Wang, Q. Lin, F.P. Chmiel, N. Sakai, L.M. Herz et al., Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2, 17135 (2017). https://doi.org/10.1038/nenergy.2017.135
X. Liu, D. Luo, Z.-H. Lu, J.S. Yun, M. Saliba et al., Stabilization of photoactive phases for perovskite photovoltaics. Nat. Rev. Chem. 7, 462–479 (2023). https://doi.org/10.1038/s41570-023-00492-z
C. Ma, F.T. Eickemeyer, S.-H. Lee, D.-H. Kang, S.J. Kwon et al., Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells. Science 379, 173–178 (2023). https://doi.org/10.1126/science.adf3349
F. Zhang, S.Y. Park, C. Yao, H. Lu, S.P. Dunfield et al., Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science 375, 71–76 (2022). https://doi.org/10.1126/science.abj2637
G. Grancini, M.K. Nazeeruddin, Dimensional tailoring of hybrid perovskites for photovoltaics. Nat. Rev. Mater. 4, 4–22 (2019). https://doi.org/10.1038/s41578-018-0065-0
P. Chen, D. He, X. Huang, C. Zhang, L. Wang, Bilayer 2D–3D perovskite heterostructures for efficient and stable solar cells. ACS Nano 18, 67–88 (2024). https://doi.org/10.1021/acsnano.3c09176
M. Shao, T. Bie, L. Yang, Y. Gao, X. Jin et al., Over 21% efficiency stable 2D perovskite solar cells. Adv. Mater. 34, e2107211 (2022). https://doi.org/10.1002/adma.202107211
Y. Zhang, N.-G. Park, Quasi-two-dimensional perovskite solar cells with efficiency exceeding 22%. ACS Energy Lett. 7, 757–765 (2022). https://doi.org/10.1021/acsenergylett.1c02645
R. Azmi, E. Ugur, A. Seitkhan, F. Aljamaan, A.S. Subbiah et al., Damp heat–stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376, 73–77 (2022). https://doi.org/10.1126/science.abm5784
H. Chen, S. Teale, B. Chen, Y. Hou, L. Grater et al., Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photon. 16, 352–358 (2022). https://doi.org/10.1038/s41566-022-00985-1
G. Yang, Z. Ren, K. Liu, M. Qin, W. Deng et al., Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation. Nat. Photon. 15, 681–689 (2021). https://doi.org/10.1038/s41566-021-00829-4
B.-B. Yu, Z. Chen, Y. Zhu, Y. Wang, B. Han et al., Heterogeneous 2D/3D tin-halides perovskite solar cells with certified conversion efficiency breaking 14. Adv. Mater. 33, e2102055 (2021). https://doi.org/10.1002/adma.202102055
Y.-W. Jang, S. Lee, K.M. Yeom, K. Jeong, K. Choi et al., Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy 6, 63–71 (2021). https://doi.org/10.1038/s41560-020-00749-7
Z. Liu, P. You, C. Xie, G. Tang, F. Yan, Ultrathin and flexible perovskite solar cells with graphene transparent electrodes. Nano Energy 28, 151–157 (2016). https://doi.org/10.1016/j.nanoen.2016.08.038
Y. Wu, G. Xu, J. Xi, Y. Shen, X. Wu et al., In situ crosslinking-assisted perovskite grain growth for mechanically robust flexible perovskite solar cells with 23.4% efficiency. Joule 7, 398–415 (2023). https://doi.org/10.1016/j.joule.2022.12.013
Z. Chen, Q. Cheng, H. Chen, Y. Wu, J. Ding et al., Perovskite grain-boundary manipulation using room-temperature dynamic self-healing “ligaments” for developing highly stable flexible perovskite solar cells with 23.8% efficiency. Adv. Mater. 35, 2300513 (2023). https://doi.org/10.1002/adma.202300513
Q. Luo, H. Ma, Q. Hou, Y. Li, J. Ren et al., All-carbon-electrode-based endurable flexible perovskite solar cells. Adv. Funct. Mater. 28, 1706777 (2018). https://doi.org/10.1002/adfm.201706777
B.J. Kim, D.H. Kim, Y.-Y. Lee, H.-W. Shin, G.S. Han et al., Highly efficient and bending durable perovskite solar cells: toward a wearable power source. Energy Environ. Sci. 8, 916–921 (2015). https://doi.org/10.1039/c4ee02441a
J.H. Heo, D.S. Lee, F. Zhang, C. Xiao, S.J. Heo et al., Super flexible transparent conducting oxide-free organic–inorganic hybrid perovskite solar cells with 19.01% efficiency (active area = 1 cm2). Sol. RRL 5, 2100733 (2021). https://doi.org/10.1002/solr.202100733
V.-D. Tran, S.V.N. Pammi, B.-J. Park, Y. Han, C. Jeon et al., Transfer-free graphene electrodes for super-flexible and semi-transparent perovskite solar cells fabricated under ambient air. Nano Energy 65, 104018 (2019). https://doi.org/10.1016/j.nanoen.2019.104018
J.H. Heo, D.H. Shin, M.H. Jang, M.L. Lee, M.G. Kang et al., Highly flexible, high-performance perovskite solar cells with adhesion promoted AuCl3-doped graphene electrodes. J. Mater. Chem. A 5, 21146–21152 (2017). https://doi.org/10.1039/c7ta06465a
J.H. Heo, D.H. Shin, D.H. Song, D.H. Kim, S.J. Lee et al., Super-flexible bis(trifluoromethanesulfonyl)-amide doped graphene transparent conductive electrodes for photo-stable perovskite solar cells. J. Mater. Chem. A 6, 8251–8258 (2018). https://doi.org/10.1039/c8ta02672f
B.-J. Park, J.-S. Choi, H.-S. Kim, H.-Y. Kim, J.-R. Jeong et al., Realization of large-area wrinkle-free monolayer graphene films transferred to functional substrates. Sci. Rep. 5, 9610 (2015). https://doi.org/10.1038/srep09610
X. Xu, H. Wang, J. Wang, M. Muhammad, Z. Wang et al., Surface functionalization of a graphene cathode to facilitate ALD growth of an electron transport layer and realize high-performance flexible perovskite solar cells. ACS Appl. Energy Mater. 3, 4208–4216 (2020). https://doi.org/10.1021/acsaem.9b02191
C. Zhang, S. Wang, H. Zhang, Y. Feng, W. Tian et al., Efficient stable graphene-based perovskite solar cells with high flexibility in device assembling via modular architecture design. Energy Environ. Sci. 12, 3585–3594 (2019). https://doi.org/10.1039/c9ee02391g
M. Tian, C.Y. Woo, J.W. Choi, J.-Y. Seo, J.-M. Kim et al., Printable free-standing hybrid graphene/dry-spun carbon nanotube films as multifunctional electrodes for highly stable perovskite solar cells. ACS Appl. Mater. Interfaces 12, 54806–54814 (2020). https://doi.org/10.1021/acsami.0c17141
G. Jeong, D. Koo, J.-H. Woo, Y. Choi, E. Son et al., Highly efficient self-encapsulated flexible semitransparent perovskite solar cells via bifacial cation exchange. ACS Appl. Mater. Interfaces 14, 33297–33305 (2022). https://doi.org/10.1021/acsami.2c08023
M.M. Tavakoli, M. Nasilowski, J. Zhao, M.G. Bawendi, J. Kong, Efficient semitransparent CsPbI3 quantum dots photovoltaics using a graphene electrode. Small Meth. 3, 1900449 (2019). https://doi.org/10.1002/smtd.201900449
Y. Zhu, S. Jia, J. Zheng, Y. Lin, Y. Wu et al., Facile synthesis of nitrogen-doped graphene frameworks for enhanced performance of hole transport material-free perovskite solar cells. J. Mater. Chem. C 6, 3097–3103 (2018). https://doi.org/10.1039/C8TC00086G
M. Guo, C. Wei, C. Liu, K. Zhang, H. Su et al., Composite electrode based on single-atom Ni doped graphene for planar carbon-based perovskite solar cells. Mater. Des. 209, 109972 (2021). https://doi.org/10.1016/J.MATDES.2021.109972
M. Ma, X. Zhang, X. Chen, H. Xiong, L. Xu et al., In situ imaging of the atomic phase transition dynamics in metal halide perovskites. Nat. Commun. 14, 7142 (2023). https://doi.org/10.1038/s41467-023-42999-5
Y. Wang, Y. Wang, Recent progress in mxene layers materials for supercapacitors: High-performance electrodes. SmartMat 4(1), e1130 (2022). https://doi.org/10.1002/smm2.1130
S.A. Hashemi, S. Ramakrishna, A.G. Aberle, Recent progress in flexible–wearable solar cells for self-powered electronic devices. Energy Environ. Sci. 13, 685–743 (2020). https://doi.org/10.1039/c9ee03046h
K. Montazeri, M. Currie, L. Verger, P. Dianat, M.W. Barsoum et al., Beyond gold: spin-coated Ti3C2-based MXene photodetectors. Adv. Mater. 31, 1903271 (2019). https://doi.org/10.1002/adma.201903271