Crystallization Modulation and Holistic Passivation Enables Efficient Two-Terminal Perovskite/CuIn(Ga)Se2 Tandem Solar Cells
Corresponding Author: Yong Peng
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 8
Abstract
Two-terminal (2-T) perovskite (PVK)/CuIn(Ga)Se2 (CIGS) tandem solar cells (TSCs) have been considered as an ideal tandem cell because of their best bandgap matching regarding to Shockley–Queisser (S–Q) limits. However, the nature of the irregular rough morphology of commercial CIGS prevents people from improving tandem device performances. In this paper, D-homoserine lactone hydrochloride is proven to improve coverage of PVK materials on irregular rough CIGS surfaces and also passivate bulk defects by modulating the growth of PVK crystals. In addition, the minority carriers near the PVK/C60 interface and the incompletely passivated trap states caused interface recombination. A surface reconstruction with 2-thiopheneethylammonium iodide and N,N-dimethylformamide assisted passivates the defect sites located at the surface and grain boundaries. Meanwhile, LiF is used to create this field effect, repelling hole carriers away from the PVK and C60 interface and thus reducing recombination. As a result, a 2-T PVK/CIGS tandem yielded a power conversion efficiency of 24.6% (0.16 cm2), one of the highest results for 2-T PVK/CIGS TSCs to our knowledge. This validation underscores the potential of our methodology in achieving superior performance in PVK/CIGS tandem solar cells.
Highlights:
1 Integrating perovskite solar cells onto irregular rough CuIn(Ga)Se2 (CIGS) surfaces remains a challenge; new strategy was explored to develop monolithic perovskite/CIGS tandem solar cell by manipulating the crystallization of perovskite.
2 Surface reconstruction and field-effect passivation are developed synergistically to issue complex interface relationship between perovskite and C60.
3 The champion power conversion efficiency (PCE) of 24.6% realized, providing significant commercial opportunities for all thin-film-based perovskite/CIGS tandem cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Li, W. Zhang, Perovskite tandem solar cells: from fundamentals to commercial deployment. Chem. Rev. 120, 9835–9950 (2020). https://doi.org/10.1021/acs.chemrev.9b00780
- M. Jošt, L. Kegelmann, L. Korte, S. Albrecht, Monolithic perovskite tandem solar cells: a review of the present status and advanced characterization methods toward 30% efficiency. Adv. Energy Mater. 10, 1904102 (2020). https://doi.org/10.1002/aenm.201904102
- E. Alvianto, G. Wan, Z. Shi, H. Liang, X. Wang et al., Sustainable manufacturing of perovskite-CIGS tandem solar cells through lamination with metal-free transparent conductive adhesives. ACS Energy Lett. 9, 2057–2064 (2024). https://doi.org/10.1021/acsenergylett.4c00350
- Y. Xiong, Z. Yi, W. Zhang, Y. Huang, Z. Zhang et al., Recent advances in perovskite/Cu(In, Ga)Se2 tandem solar cells. Mater. Today Electron. 7, 100086 (2024). https://doi.org/10.1016/j.mtelec.2023.100086
- T. Todorov, T. Gershon, O. Gunawan, Y.S. Lee, C. Sturdevant et al., Monolithic perovskite-CIGS tandem solar cells via in situ band gap engineering. Adv. Energy Mater. 5, 1500799 (2015). https://doi.org/10.1002/aenm.201500799
- Y.H. Jang, J.M. Lee, J.W. Seo, I. Kim, D.-K. Lee, Monolithic tandem solar cells comprising electrodeposited CuInSe2 and perovskite solar cells with a nanoparticulate ZnO buffer layer. J. Mater. Chem. A 5, 19439–19446 (2017). https://doi.org/10.1039/c7ta06163c
- M. Jošt, T. Bertram, D. Koushik, J.A. Marquez, M.A. Verheijen et al., 21.6%-efficient monolithic perovskite/Cu(In, Ga)Se2 tandem solar cells with thin conformal hole transport layers for integration on rough bottom cell surfaces. ACS Energy Lett. 4, 583–590 (2019). https://doi.org/10.1021/acsenergylett.9b00135
- L. Zeng, L. Tang, Z. Luo, J. Gong, J. Li et al., A review of perovskite/copper indium Gallium selenide tandem solar cells. Sol. RRL, 2301059 (2024). https://doi.org/10.1002/solr.202301059
- Y. Hou, E. Aydin, M. De Bastiani, C. Xiao, F.H. Isikgor et al., Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367, 1135–1140 (2020). https://doi.org/10.1126/science.aaz3691
- M. Jošt, E. Köhnen, A. Al-Ashouri, T. Bertram, Š Tomšič et al., Perovskite/CIGS tandem solar cells: from certified 24.2% toward 30% and beyond. ACS Energy Lett. 7, 1298–1307 (2022). https://doi.org/10.1021/acsenergylett.2c00274
- Q. Han, Y.-T. Hsieh, L. Meng, J.-L. Wu, P. Sun et al., High-performance perovskite/Cu(In, Ga)Se2 monolithic tandem solar cells. Science 361, 904–908 (2018). https://doi.org/10.1126/science.aat5055
- C. Duan, J. Zhong, S. Hu, Y. Dou, J. Lu et al., Oriented growth for efficient and scalable perovskite solar cells by vapor–solid reaction. Adv. Funct. Mater. 34, 2313435 (2024). https://doi.org/10.1002/adfm.202313435
- M. Li, R. Sun, J. Chang, J. Dong, Q. Tian et al., Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells. Nat. Commun. 14, 573 (2023). https://doi.org/10.1038/s41467-023-36224-6
- C. Zhang, H. Li, C. Gong, Q. Zhuang, J. Chen et al., Crystallization manipulation and holistic defect passivation toward stable and efficient inverted perovskite solar cells. Energy Environ. Sci. 16, 3825–3836 (2023). https://doi.org/10.1039/D3EE00413A
- H. Gao, K. Xiao, R. Lin, S. Zhao, W. Wang et al., Homogeneous crystallization and buried interface passivation for perovskite tandem solar modules. Science 383, 855–859 (2024). https://doi.org/10.1126/science.adj6088
- X. Jiang, B. Liu, X. Wu, S. Zhang, D. Zhang et al., Top-down induced crystallization orientation toward highly efficient p-i-n perovskite solar cells. Adv. Mater. 36, e2313524 (2024). https://doi.org/10.1002/adma.202313524
- F. Ye, S. Zhang, J. Warby, J. Wu, E. Gutierrez-Partida et al., Overcoming C60-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane. Nat. Commun. 13, 7454 (2022). https://doi.org/10.1038/s41467-022-34203-x
- X. Li, Z. Ying, J. Zheng, X. Wang, Y. Chen et al., Surface reconstruction for efficient and stable monolithic perovskite/silicon tandem solar cells with greatly suppressed residual strain. Adv. Mater. 35, e2211962 (2023). https://doi.org/10.1002/adma.202211962
- R. Chen, J. Wang, Z. Liu, F. Ren, S. Liu et al., Reduction of bulk and surface defects in inverted methylammonium- and bromide-free formamidinium perovskite solar cells. Nat. Energy 8, 839–849 (2023). https://doi.org/10.1038/s41560-023-01288-7
- H. Chen, S. Teale, B. Chen, Y. Hou, L. Grater et al., Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photon. 16, 352–358 (2022). https://doi.org/10.1038/s41566-022-00985-1
- C. Liu, Y. Yang, H. Chen, J. Xu, A. Liu et al., Bimolecularly passivated interface enables efficient and stable inverted perovskite solar cells. Science 382, 810–815 (2023). https://doi.org/10.1126/science.adk1633
- Z. Liu, H. Li, Z. Chu, R. Xia, J. Wen et al., Reducing perovskite/C60 interface losses via sequential interface engineering for efficient perovskite/silicon tandem solar cell. Adv. Mater. 36, e2308370 (2024). https://doi.org/10.1002/adma.202308370
- H. Liang, J. Feng, C.D. Rodríguez-Gallegos, M. Krause, X. Wang et al., 29.9%-efficient, commercially viable perovskite/CuInSe2 thin-film tandem solar cells. Joule 7, 2859–2872 (2023). https://doi.org/10.1016/j.joule.2023.10.007
- X. Liu, J. Zhang, L. Tang, J. Gong, W. Li et al., Over 28% efficiency perovskite/Cu(InGa)Se2 tandem solar cells: highly efficient sub-cells and their bandgap matching. Energy Environ. Sci. 16, 5029–5042 (2023). https://doi.org/10.1039/D3EE00869J
- J. Liu, M. De Bastiani, E. Aydin, G.T. Harrison, Y. Gao et al., Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx. Science 377, 302–306 (2022). https://doi.org/10.1126/science.abn8910
- J. Liu, E. Aydin, J. Yin, M. De Bastiani, F.H. Isikgor et al., 28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell. Joule 5, 3169–3186 (2021). https://doi.org/10.1016/j.joule.2021.11.003
- Z. Zhang, J. Liang, J. Wang, Y. Zheng, X. Wu et al., Resolving mixed intermediate phases in methylammonium-free Sn-Pb alloyed perovskites for high-performance solar cells. Nano-Micro Lett. 14, 165 (2022). https://doi.org/10.1007/s40820-022-00918-1
- D. Menzel, A. Al-Ashouri, A. Tejada, I. Levine, J.A. Guerra et al., Field effect passivation in perovskite solar cells by a LiF interlayer. Adv. Energy Mater. 12, 2201109 (2022). https://doi.org/10.1002/aenm.202201109
- Z. Kang, Y. Tong, K. Wang, Y. Chen, P. Yan et al., Tailoring low-dimensional phases for improved performance of 2D–3D tin perovskite solar cells. ACS Mater. Lett. 6, 1–9 (2024). https://doi.org/10.1021/acsmaterialslett.3c00929
- Y. Du, D. Zhu, Q. Cai, S. Yuan, G. Shen et al., Spacer engineering of thiophene-based two-dimensional/three-dimensional hybrid perovskites for stable and efficient solar cells. J. Phys. Chem. C 126, 3351–3358 (2022). https://doi.org/10.1021/acs.jpcc.1c10210
- S.G. Ji, I.J. Park, H. Chang, J.H. Park, G.P. Hong et al., Stable pure-iodide wide-band-gap perovskites for efficient Si tandem cells via kinetically controlled phase evolution. Joule 6, 2390–2405 (2022). https://doi.org/10.1016/j.joule.2022.08.006
References
H. Li, W. Zhang, Perovskite tandem solar cells: from fundamentals to commercial deployment. Chem. Rev. 120, 9835–9950 (2020). https://doi.org/10.1021/acs.chemrev.9b00780
M. Jošt, L. Kegelmann, L. Korte, S. Albrecht, Monolithic perovskite tandem solar cells: a review of the present status and advanced characterization methods toward 30% efficiency. Adv. Energy Mater. 10, 1904102 (2020). https://doi.org/10.1002/aenm.201904102
E. Alvianto, G. Wan, Z. Shi, H. Liang, X. Wang et al., Sustainable manufacturing of perovskite-CIGS tandem solar cells through lamination with metal-free transparent conductive adhesives. ACS Energy Lett. 9, 2057–2064 (2024). https://doi.org/10.1021/acsenergylett.4c00350
Y. Xiong, Z. Yi, W. Zhang, Y. Huang, Z. Zhang et al., Recent advances in perovskite/Cu(In, Ga)Se2 tandem solar cells. Mater. Today Electron. 7, 100086 (2024). https://doi.org/10.1016/j.mtelec.2023.100086
T. Todorov, T. Gershon, O. Gunawan, Y.S. Lee, C. Sturdevant et al., Monolithic perovskite-CIGS tandem solar cells via in situ band gap engineering. Adv. Energy Mater. 5, 1500799 (2015). https://doi.org/10.1002/aenm.201500799
Y.H. Jang, J.M. Lee, J.W. Seo, I. Kim, D.-K. Lee, Monolithic tandem solar cells comprising electrodeposited CuInSe2 and perovskite solar cells with a nanoparticulate ZnO buffer layer. J. Mater. Chem. A 5, 19439–19446 (2017). https://doi.org/10.1039/c7ta06163c
M. Jošt, T. Bertram, D. Koushik, J.A. Marquez, M.A. Verheijen et al., 21.6%-efficient monolithic perovskite/Cu(In, Ga)Se2 tandem solar cells with thin conformal hole transport layers for integration on rough bottom cell surfaces. ACS Energy Lett. 4, 583–590 (2019). https://doi.org/10.1021/acsenergylett.9b00135
L. Zeng, L. Tang, Z. Luo, J. Gong, J. Li et al., A review of perovskite/copper indium Gallium selenide tandem solar cells. Sol. RRL, 2301059 (2024). https://doi.org/10.1002/solr.202301059
Y. Hou, E. Aydin, M. De Bastiani, C. Xiao, F.H. Isikgor et al., Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367, 1135–1140 (2020). https://doi.org/10.1126/science.aaz3691
M. Jošt, E. Köhnen, A. Al-Ashouri, T. Bertram, Š Tomšič et al., Perovskite/CIGS tandem solar cells: from certified 24.2% toward 30% and beyond. ACS Energy Lett. 7, 1298–1307 (2022). https://doi.org/10.1021/acsenergylett.2c00274
Q. Han, Y.-T. Hsieh, L. Meng, J.-L. Wu, P. Sun et al., High-performance perovskite/Cu(In, Ga)Se2 monolithic tandem solar cells. Science 361, 904–908 (2018). https://doi.org/10.1126/science.aat5055
C. Duan, J. Zhong, S. Hu, Y. Dou, J. Lu et al., Oriented growth for efficient and scalable perovskite solar cells by vapor–solid reaction. Adv. Funct. Mater. 34, 2313435 (2024). https://doi.org/10.1002/adfm.202313435
M. Li, R. Sun, J. Chang, J. Dong, Q. Tian et al., Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells. Nat. Commun. 14, 573 (2023). https://doi.org/10.1038/s41467-023-36224-6
C. Zhang, H. Li, C. Gong, Q. Zhuang, J. Chen et al., Crystallization manipulation and holistic defect passivation toward stable and efficient inverted perovskite solar cells. Energy Environ. Sci. 16, 3825–3836 (2023). https://doi.org/10.1039/D3EE00413A
H. Gao, K. Xiao, R. Lin, S. Zhao, W. Wang et al., Homogeneous crystallization and buried interface passivation for perovskite tandem solar modules. Science 383, 855–859 (2024). https://doi.org/10.1126/science.adj6088
X. Jiang, B. Liu, X. Wu, S. Zhang, D. Zhang et al., Top-down induced crystallization orientation toward highly efficient p-i-n perovskite solar cells. Adv. Mater. 36, e2313524 (2024). https://doi.org/10.1002/adma.202313524
F. Ye, S. Zhang, J. Warby, J. Wu, E. Gutierrez-Partida et al., Overcoming C60-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane. Nat. Commun. 13, 7454 (2022). https://doi.org/10.1038/s41467-022-34203-x
X. Li, Z. Ying, J. Zheng, X. Wang, Y. Chen et al., Surface reconstruction for efficient and stable monolithic perovskite/silicon tandem solar cells with greatly suppressed residual strain. Adv. Mater. 35, e2211962 (2023). https://doi.org/10.1002/adma.202211962
R. Chen, J. Wang, Z. Liu, F. Ren, S. Liu et al., Reduction of bulk and surface defects in inverted methylammonium- and bromide-free formamidinium perovskite solar cells. Nat. Energy 8, 839–849 (2023). https://doi.org/10.1038/s41560-023-01288-7
H. Chen, S. Teale, B. Chen, Y. Hou, L. Grater et al., Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photon. 16, 352–358 (2022). https://doi.org/10.1038/s41566-022-00985-1
C. Liu, Y. Yang, H. Chen, J. Xu, A. Liu et al., Bimolecularly passivated interface enables efficient and stable inverted perovskite solar cells. Science 382, 810–815 (2023). https://doi.org/10.1126/science.adk1633
Z. Liu, H. Li, Z. Chu, R. Xia, J. Wen et al., Reducing perovskite/C60 interface losses via sequential interface engineering for efficient perovskite/silicon tandem solar cell. Adv. Mater. 36, e2308370 (2024). https://doi.org/10.1002/adma.202308370
H. Liang, J. Feng, C.D. Rodríguez-Gallegos, M. Krause, X. Wang et al., 29.9%-efficient, commercially viable perovskite/CuInSe2 thin-film tandem solar cells. Joule 7, 2859–2872 (2023). https://doi.org/10.1016/j.joule.2023.10.007
X. Liu, J. Zhang, L. Tang, J. Gong, W. Li et al., Over 28% efficiency perovskite/Cu(InGa)Se2 tandem solar cells: highly efficient sub-cells and their bandgap matching. Energy Environ. Sci. 16, 5029–5042 (2023). https://doi.org/10.1039/D3EE00869J
J. Liu, M. De Bastiani, E. Aydin, G.T. Harrison, Y. Gao et al., Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx. Science 377, 302–306 (2022). https://doi.org/10.1126/science.abn8910
J. Liu, E. Aydin, J. Yin, M. De Bastiani, F.H. Isikgor et al., 28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell. Joule 5, 3169–3186 (2021). https://doi.org/10.1016/j.joule.2021.11.003
Z. Zhang, J. Liang, J. Wang, Y. Zheng, X. Wu et al., Resolving mixed intermediate phases in methylammonium-free Sn-Pb alloyed perovskites for high-performance solar cells. Nano-Micro Lett. 14, 165 (2022). https://doi.org/10.1007/s40820-022-00918-1
D. Menzel, A. Al-Ashouri, A. Tejada, I. Levine, J.A. Guerra et al., Field effect passivation in perovskite solar cells by a LiF interlayer. Adv. Energy Mater. 12, 2201109 (2022). https://doi.org/10.1002/aenm.202201109
Z. Kang, Y. Tong, K. Wang, Y. Chen, P. Yan et al., Tailoring low-dimensional phases for improved performance of 2D–3D tin perovskite solar cells. ACS Mater. Lett. 6, 1–9 (2024). https://doi.org/10.1021/acsmaterialslett.3c00929
Y. Du, D. Zhu, Q. Cai, S. Yuan, G. Shen et al., Spacer engineering of thiophene-based two-dimensional/three-dimensional hybrid perovskites for stable and efficient solar cells. J. Phys. Chem. C 126, 3351–3358 (2022). https://doi.org/10.1021/acs.jpcc.1c10210
S.G. Ji, I.J. Park, H. Chang, J.H. Park, G.P. Hong et al., Stable pure-iodide wide-band-gap perovskites for efficient Si tandem cells via kinetically controlled phase evolution. Joule 6, 2390–2405 (2022). https://doi.org/10.1016/j.joule.2022.08.006