Cost Effectivities Analysis of Perovskite Solar Cells: Will it Outperform Crystalline Silicon Ones?
Corresponding Author: Liyuan Han
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 219
Abstract
The commercialization of perovskite solar cells (PSCs) has garnered worldwide attention and many efforts were devoted on the improvement of efficiency and stability. Here, we estimated the cost effectivities of PSCs based on the current industrial condition. Through the analysis of current process, the manufacturing cost and the levelized cost of electricity (LCOE) of PSCs is estimated as 0.57 $ W−1 and 18–22 US cents (kWh)−1, respectively, and we demonstrate the materials cost shares 70% of the total cost. Sensitivity analysis indicates that the improvement of efficiency, yield and decrease in materials cost significantly reduce the cost of the modules. Analysis of the module cost and LCOE indicates that the PSCs have the potential to outperform the silicon solar cells in the condition of over 25% efficiency and 25-year lifetime in future. To achieve this target, it is essential to further refine the fabrication processes of each layer in the module, develop stable inorganic transport materials, and precisely control material formation and processing at the microscale and nanoscale to enhance charge transport.
Highlights:
1 Current manufacturing cost of perovskite solar modules is calculated as 0.57 $ W−1 much higher than that of the silicon solar cells.
2 Cost Effectivities analysis indicates that materials cost shares 70% of costs, and capital cost and other cost share nearly 15%, respectively.
3 The cost of perovskite solar modules has the potential to outperform crystalline silicon under conditions of 25% efficiency, lifetime of 25 years, and cost reduction of materials and equipment, etc.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- IEA, Clean Energy Market Monitor – March 2024 (2024). https://www.iea.org/reports/clean-energy-market-monitor-march-2024#
- P. Zhu, C. Chen, J. Dai, Y. Zhang, R. Mao et al., Toward the commercialization of perovskite solar modules. Adv. Mater. 36(15), e2307357 (2024). https://doi.org/10.1002/adma.202307357
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012). https://doi.org/10.1038/srep00591
- M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012). https://doi.org/10.1126/science.1228604
- X. Luo, X. Lin, F. Gao, Y. Zhao, X. Li et al., Recent progress in perovskite solar cells: from device to commercialization. Sci. China Chem. 65(12), 2369–2416 (2022). https://doi.org/10.1007/s11426-022-1426-x
- T. Wu, Z. Qin, Y. Wang, Y. Wu, W. Chen et al., The main progress of perovskite solar cells in 2020–2021. Nano-Micro Lett. 13(1), 152 (2021). https://doi.org/10.1007/s40820-021-00672-w
- J.-Y. Jeng, Y.-F. Chiang, M.-H. Lee, S.-R. Peng, T.-F. Guo et al., CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25(27), 3727–3732 (2013). https://doi.org/10.1002/adma.201301327
- W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang et al., Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350(6263), 944–948 (2015). https://doi.org/10.1126/science.aad1015
- Z. Ni, C. Bao, Y. Liu, Q. Jiang, W.-Q. Wu et al., Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367(6484), 1352–1358 (2020). https://doi.org/10.1126/science.aba0893
- X. Zheng, Y. Hou, C. Bao, J. Yin, F. Yuan, Z. Huang, K. Song, J. Liu, J. Troughton, N. Gasparini, C. Zhou, Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5(2), 131–140 (2020). https://doi.org/10.1038/s41560-019-0538-4
- X. Li, W. Zhang, X. Guo, C. Lu, J. Wei et al., Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375(6579), 434–437 (2022). https://doi.org/10.1126/science.abl5676
- X. Luo, X. Liu, X. Lin, T. Wu, Y. Wang et al., Recent advances of inverted perovskite solar cells. ACS Energy Lett. 9(4), 1487–1506 (2024). https://doi.org/10.1021/acsenergylett.4c00140
- S. Zhang, F. Ye, X. Wang, R. Chen, H. Zhang et al., Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380(6643), 404–409 (2023). https://doi.org/10.1126/science.adg3755
- S. Yu, Z. Xiong, H. Zhou, Q. Zhang, Z. Wang et al., Homogenized NiOx nanops for improved hole transport in inverted perovskite solar cells. Science 382(6677), 1399–1404 (2023). https://doi.org/10.1126/science.adj8858
- Q. Tan, Z. Li, G. Luo, X. Zhang, B. Che et al., Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 620(7974), 545–551 (2023). https://doi.org/10.1038/s41586-023-06207-0
- W. Peng, K. Mao, F. Cai, H. Meng, Z. Zhu et al., Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science 379(6633), 683–690 (2023). https://doi.org/10.1126/science.ade3126
- S. Liu, J. Li, W. Xiao, R. Chen, Z. Sun et al., Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632(8025), 536–542 (2024). https://doi.org/10.1038/s41586-024-07723-3
- Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html
- M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop et al., Solar cell efficiency tables (version 49). Prog. Photovolt. Res. Appl. 25(1), 3–13 (2017). https://doi.org/10.1002/pip.2855
- J. Li, H. Liang, C. Xiao, X. Jia, R. Guo et al., Enhancing the efficiency and longevity of inverted perovskite solar cells with antimony-doped tin oxides. Nat. Energy 9(3), 308–315 (2024). https://doi.org/10.1038/s41560-023-01442-1
- M. Green, E. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao, Solar cell efficiency tables (version 57). Progr. Photovolt.: Res. Appl. 29(1), 3–15 (2021). https://doi.org/10.1002/pip.3831
- Single junction perovksite solar module PCE 19.04% @ 2m2 (1m×2m) (2024). https://www.gcl-perovskite.com/xw/287.html
- Z. Shen, Q. Han, X. Luo, Y. Shen, Y. Wang et al., Efficient and stable perovskite solar cells with regulated depletion region. Nat. Photon. 18(5), 450–457 (2024). https://doi.org/10.1038/s41566-024-01383-5
- Y. Bai, Z. Huang, X. Zhang, J. Lu, X. Niu et al., Initializing film homogeneity to retard phase segregation for stable perovskite solar cells. Science 378(6621), 747–754 (2022). https://doi.org/10.1126/science.abn3148
- Z. Li, X. Sun, X. Zheng, B. Li, D. Gao et al., Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells. Science 382(6668), 284–289 (2023). https://doi.org/10.1126/science.ade9637
- K. Artuk, D. Turkay, M.D. Mensi, J.A. Steele, D.A. Jacobs et al., A universal perovskite/C60 interface modification via atomic layer deposited aluminum oxide for perovskite solar cells and perovskite-silicon tandems. Adv. Mater. 36(21), e2311745 (2024). https://doi.org/10.1002/adma.202311745
- S. Ma, Y. Bai, H. Wang, H. Zai, J. Wu et al., 1000 h operational lifetime perovskite solar cells by ambient melting encapsulation. Adv. Energy Mater. 10(9), 1902472 (2020). https://doi.org/10.1002/aenm.201902472
- A. Mei, Y. Sheng, Y. Ming, Y. Hu, Y. Rong et al., Stabilizing perovskite solar cells to IEC61215: 2016 standards with over 9, 000-h operational tracking. Joule 4(12), 2646–2660 (2020). https://doi.org/10.1016/j.joule.2020.09.010
- Perovskite Modules from Microquanta Passed IEC61215 IEC61730 (2024). https://www.microquanta.com/#/pc/new/48
- M. Cai, Y. Wu, H. Chen, X. Yang, Y. Qiang et al., Cost-performance analysis of perovskite solar modules. Adv. Sci. 4(1), 1600269 (2016). https://doi.org/10.1002/advs.201600269
- Z. Li, Y. Zhao, X. Wang, Y. Sun, Z. Zhao et al., Cost analysis of perovskite tandem photovoltaics. Joule 2(8), 1559–1572 (2018). https://doi.org/10.1016/j.joule.2018.05.001
- R.H. Ahangharnejhad, A.B. Phillips, Z. Song, I. Celik, K. Ghimire et al., Impact of lifetime on the levelized cost of electricity from perovskite single junction and tandem solar cells. Sustain. Energy Fuels 6(11), 2718–2726 (2022). https://doi.org/10.1039/d2se00029f
- N.L. Chang, A.W. Yi Ho-Baillie, P.A. Basore, T.L. Young, R. Evans, R.J. Egan, A manufacturing cost estimation method with uncertainty analysis and its application to perovskite on glass photovoltaic modules. Progr. Photovolt.: Res. Appl. 25(5), 390–405 (2017). https://doi.org/10.1002/pip.2871
- P. Čulík, K. Brooks, C. Momblona, M. Adams, S. Kinge et al., Design and cost analysis of 100 MW perovskite solar panel manufacturing process in different locations. ACS Energy Lett. 7(9), 3039–3044 (2022). https://doi.org/10.1021/acsenergylett.2c01728
- P. Kajal, B. Verma, S.G.R. Vadaga, S. Powar, Costing analysis of scalable carbon-based perovskite modules using bottom up technique. Glob. Chall. 6(2), 2100070 (2021). https://doi.org/10.1002/gch2.202100070
- J.J. Cordell, M. Woodhouse, E.L. Warren, Technoeconomic analysis of perovskite/silicon tandem solar modules. Joule 9(2), 101781 (2025). https://doi.org/10.1016/j.joule.2024.10.013
- G. Li, H. Chen, Manufacturing cost analysis of single-junction perovskite solar cells. Sol. RRL 8(19), 2400540 (2024). https://doi.org/10.1002/solr.202400540
- DataBM (2024). https://www.databm.com/
- Y. Wang, R. Wang, K. Tanaka, P. Ciais, J. Penuelas et al., Accelerating the energy transition towards photovoltaic and wind in China. Nature 619(7971), 761–767 (2023). https://doi.org/10.1038/s41586-023-06180-8
- J.P. Helveston, G. He, M.R. Davidson, Quantifying the cost savings of global solar photovoltaic supply chains. Nature 612(7938), 83–87 (2022). https://doi.org/10.1038/s41586-022-05316-6
- Microquanta Commercial Moudle (2024). https://www.microquanta.com/#/v2/pc/product2
- D. Gao, B. Li, Q. Liu, C. Zhang, Z. Yu et al., Long-term stability in perovskite solar cells through atomic layer deposition of tin oxide. Science 386, 187–192 (2024). https://doi.org/10.1126/science.adg8385
- M. De Bastiani, V. Larini, R. Montecucco, G. Grancini, The levelized cost of electricity from perovskite photovoltaics. Energy Environ. Sci. 16(2), 421–429 (2022). https://doi.org/10.1039/d2ee03136a
- Solar Manufacturing Cost Analysis (2024). https://www.nrel.gov/solar/market-research-analysis/solar-manufacturing-cost.html
- X. Lin, Y. Wang, H. Su, Z. Qin, Z. Zhang et al., An in situ formed tunneling layer enriches the options of anode for efficient and stable regular perovskite solar cells. Nano-Micro Lett. 15(1), 10 (2022). https://doi.org/10.1007/s40820-022-00975-6
- N. Li, Z. Shi, C. Fei, H. Jiao, M. Li et al., Barrier reinforcement for enhanced perovskite solar cell stability under reverse bias. Nat. Energy 9(10), 1264–1274 (2024). https://doi.org/10.1038/s41560-024-01579-7
- S. Li, Y. Xiao, R. Su, W. Xu, D. Luo et al., Coherent growth of high-Miller-index facets enhances perovskite solar cells. Nature 635(8040), 874–881 (2024). https://doi.org/10.1038/s41586-024-08159-5
- B. Zhao, T. Zhang, W. Liu, F. Meng, C. Liu, N. Chen, Z. Li, Z. Liu, X. Li, Recent progress of surface passivation molecules for perovskite solar cell applications. J. Renew. Mater. 11(4), 1533–1554 (2022). https://doi.org/10.32604/jrm.2022.023192
- E. Bi, W. Tang, H. Chen, Y. Wang, J. Barbaud et al., Efficient perovskite solar cell modules with high stability enabled by iodide diffusion barriers. Joule 3(11), 2748–2760 (2019). https://doi.org/10.1016/j.joule.2019.07.030
- Y. Wang, T. Wu, J. Barbaud, W. Kong, D. Cui et al., Stabilizing heterostructures of soft perovskite semiconductors. Science 365(6454), 687–691 (2019). https://doi.org/10.1126/science.aax8018
- METI, Next-Generation Solar Cell Strategy (2024). https://www.meti.go.jp/shingikai/energy_environment/perovskite_solar_cell/20241128_report.html
References
IEA, Clean Energy Market Monitor – March 2024 (2024). https://www.iea.org/reports/clean-energy-market-monitor-march-2024#
P. Zhu, C. Chen, J. Dai, Y. Zhang, R. Mao et al., Toward the commercialization of perovskite solar modules. Adv. Mater. 36(15), e2307357 (2024). https://doi.org/10.1002/adma.202307357
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012). https://doi.org/10.1038/srep00591
M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012). https://doi.org/10.1126/science.1228604
X. Luo, X. Lin, F. Gao, Y. Zhao, X. Li et al., Recent progress in perovskite solar cells: from device to commercialization. Sci. China Chem. 65(12), 2369–2416 (2022). https://doi.org/10.1007/s11426-022-1426-x
T. Wu, Z. Qin, Y. Wang, Y. Wu, W. Chen et al., The main progress of perovskite solar cells in 2020–2021. Nano-Micro Lett. 13(1), 152 (2021). https://doi.org/10.1007/s40820-021-00672-w
J.-Y. Jeng, Y.-F. Chiang, M.-H. Lee, S.-R. Peng, T.-F. Guo et al., CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25(27), 3727–3732 (2013). https://doi.org/10.1002/adma.201301327
W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang et al., Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350(6263), 944–948 (2015). https://doi.org/10.1126/science.aad1015
Z. Ni, C. Bao, Y. Liu, Q. Jiang, W.-Q. Wu et al., Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367(6484), 1352–1358 (2020). https://doi.org/10.1126/science.aba0893
X. Zheng, Y. Hou, C. Bao, J. Yin, F. Yuan, Z. Huang, K. Song, J. Liu, J. Troughton, N. Gasparini, C. Zhou, Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5(2), 131–140 (2020). https://doi.org/10.1038/s41560-019-0538-4
X. Li, W. Zhang, X. Guo, C. Lu, J. Wei et al., Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375(6579), 434–437 (2022). https://doi.org/10.1126/science.abl5676
X. Luo, X. Liu, X. Lin, T. Wu, Y. Wang et al., Recent advances of inverted perovskite solar cells. ACS Energy Lett. 9(4), 1487–1506 (2024). https://doi.org/10.1021/acsenergylett.4c00140
S. Zhang, F. Ye, X. Wang, R. Chen, H. Zhang et al., Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380(6643), 404–409 (2023). https://doi.org/10.1126/science.adg3755
S. Yu, Z. Xiong, H. Zhou, Q. Zhang, Z. Wang et al., Homogenized NiOx nanops for improved hole transport in inverted perovskite solar cells. Science 382(6677), 1399–1404 (2023). https://doi.org/10.1126/science.adj8858
Q. Tan, Z. Li, G. Luo, X. Zhang, B. Che et al., Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 620(7974), 545–551 (2023). https://doi.org/10.1038/s41586-023-06207-0
W. Peng, K. Mao, F. Cai, H. Meng, Z. Zhu et al., Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science 379(6633), 683–690 (2023). https://doi.org/10.1126/science.ade3126
S. Liu, J. Li, W. Xiao, R. Chen, Z. Sun et al., Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632(8025), 536–542 (2024). https://doi.org/10.1038/s41586-024-07723-3
Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html
M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop et al., Solar cell efficiency tables (version 49). Prog. Photovolt. Res. Appl. 25(1), 3–13 (2017). https://doi.org/10.1002/pip.2855
J. Li, H. Liang, C. Xiao, X. Jia, R. Guo et al., Enhancing the efficiency and longevity of inverted perovskite solar cells with antimony-doped tin oxides. Nat. Energy 9(3), 308–315 (2024). https://doi.org/10.1038/s41560-023-01442-1
M. Green, E. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao, Solar cell efficiency tables (version 57). Progr. Photovolt.: Res. Appl. 29(1), 3–15 (2021). https://doi.org/10.1002/pip.3831
Single junction perovksite solar module PCE 19.04% @ 2m2 (1m×2m) (2024). https://www.gcl-perovskite.com/xw/287.html
Z. Shen, Q. Han, X. Luo, Y. Shen, Y. Wang et al., Efficient and stable perovskite solar cells with regulated depletion region. Nat. Photon. 18(5), 450–457 (2024). https://doi.org/10.1038/s41566-024-01383-5
Y. Bai, Z. Huang, X. Zhang, J. Lu, X. Niu et al., Initializing film homogeneity to retard phase segregation for stable perovskite solar cells. Science 378(6621), 747–754 (2022). https://doi.org/10.1126/science.abn3148
Z. Li, X. Sun, X. Zheng, B. Li, D. Gao et al., Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells. Science 382(6668), 284–289 (2023). https://doi.org/10.1126/science.ade9637
K. Artuk, D. Turkay, M.D. Mensi, J.A. Steele, D.A. Jacobs et al., A universal perovskite/C60 interface modification via atomic layer deposited aluminum oxide for perovskite solar cells and perovskite-silicon tandems. Adv. Mater. 36(21), e2311745 (2024). https://doi.org/10.1002/adma.202311745
S. Ma, Y. Bai, H. Wang, H. Zai, J. Wu et al., 1000 h operational lifetime perovskite solar cells by ambient melting encapsulation. Adv. Energy Mater. 10(9), 1902472 (2020). https://doi.org/10.1002/aenm.201902472
A. Mei, Y. Sheng, Y. Ming, Y. Hu, Y. Rong et al., Stabilizing perovskite solar cells to IEC61215: 2016 standards with over 9, 000-h operational tracking. Joule 4(12), 2646–2660 (2020). https://doi.org/10.1016/j.joule.2020.09.010
Perovskite Modules from Microquanta Passed IEC61215 IEC61730 (2024). https://www.microquanta.com/#/pc/new/48
M. Cai, Y. Wu, H. Chen, X. Yang, Y. Qiang et al., Cost-performance analysis of perovskite solar modules. Adv. Sci. 4(1), 1600269 (2016). https://doi.org/10.1002/advs.201600269
Z. Li, Y. Zhao, X. Wang, Y. Sun, Z. Zhao et al., Cost analysis of perovskite tandem photovoltaics. Joule 2(8), 1559–1572 (2018). https://doi.org/10.1016/j.joule.2018.05.001
R.H. Ahangharnejhad, A.B. Phillips, Z. Song, I. Celik, K. Ghimire et al., Impact of lifetime on the levelized cost of electricity from perovskite single junction and tandem solar cells. Sustain. Energy Fuels 6(11), 2718–2726 (2022). https://doi.org/10.1039/d2se00029f
N.L. Chang, A.W. Yi Ho-Baillie, P.A. Basore, T.L. Young, R. Evans, R.J. Egan, A manufacturing cost estimation method with uncertainty analysis and its application to perovskite on glass photovoltaic modules. Progr. Photovolt.: Res. Appl. 25(5), 390–405 (2017). https://doi.org/10.1002/pip.2871
P. Čulík, K. Brooks, C. Momblona, M. Adams, S. Kinge et al., Design and cost analysis of 100 MW perovskite solar panel manufacturing process in different locations. ACS Energy Lett. 7(9), 3039–3044 (2022). https://doi.org/10.1021/acsenergylett.2c01728
P. Kajal, B. Verma, S.G.R. Vadaga, S. Powar, Costing analysis of scalable carbon-based perovskite modules using bottom up technique. Glob. Chall. 6(2), 2100070 (2021). https://doi.org/10.1002/gch2.202100070
J.J. Cordell, M. Woodhouse, E.L. Warren, Technoeconomic analysis of perovskite/silicon tandem solar modules. Joule 9(2), 101781 (2025). https://doi.org/10.1016/j.joule.2024.10.013
G. Li, H. Chen, Manufacturing cost analysis of single-junction perovskite solar cells. Sol. RRL 8(19), 2400540 (2024). https://doi.org/10.1002/solr.202400540
DataBM (2024). https://www.databm.com/
Y. Wang, R. Wang, K. Tanaka, P. Ciais, J. Penuelas et al., Accelerating the energy transition towards photovoltaic and wind in China. Nature 619(7971), 761–767 (2023). https://doi.org/10.1038/s41586-023-06180-8
J.P. Helveston, G. He, M.R. Davidson, Quantifying the cost savings of global solar photovoltaic supply chains. Nature 612(7938), 83–87 (2022). https://doi.org/10.1038/s41586-022-05316-6
Microquanta Commercial Moudle (2024). https://www.microquanta.com/#/v2/pc/product2
D. Gao, B. Li, Q. Liu, C. Zhang, Z. Yu et al., Long-term stability in perovskite solar cells through atomic layer deposition of tin oxide. Science 386, 187–192 (2024). https://doi.org/10.1126/science.adg8385
M. De Bastiani, V. Larini, R. Montecucco, G. Grancini, The levelized cost of electricity from perovskite photovoltaics. Energy Environ. Sci. 16(2), 421–429 (2022). https://doi.org/10.1039/d2ee03136a
Solar Manufacturing Cost Analysis (2024). https://www.nrel.gov/solar/market-research-analysis/solar-manufacturing-cost.html
X. Lin, Y. Wang, H. Su, Z. Qin, Z. Zhang et al., An in situ formed tunneling layer enriches the options of anode for efficient and stable regular perovskite solar cells. Nano-Micro Lett. 15(1), 10 (2022). https://doi.org/10.1007/s40820-022-00975-6
N. Li, Z. Shi, C. Fei, H. Jiao, M. Li et al., Barrier reinforcement for enhanced perovskite solar cell stability under reverse bias. Nat. Energy 9(10), 1264–1274 (2024). https://doi.org/10.1038/s41560-024-01579-7
S. Li, Y. Xiao, R. Su, W. Xu, D. Luo et al., Coherent growth of high-Miller-index facets enhances perovskite solar cells. Nature 635(8040), 874–881 (2024). https://doi.org/10.1038/s41586-024-08159-5
B. Zhao, T. Zhang, W. Liu, F. Meng, C. Liu, N. Chen, Z. Li, Z. Liu, X. Li, Recent progress of surface passivation molecules for perovskite solar cell applications. J. Renew. Mater. 11(4), 1533–1554 (2022). https://doi.org/10.32604/jrm.2022.023192
E. Bi, W. Tang, H. Chen, Y. Wang, J. Barbaud et al., Efficient perovskite solar cell modules with high stability enabled by iodide diffusion barriers. Joule 3(11), 2748–2760 (2019). https://doi.org/10.1016/j.joule.2019.07.030
Y. Wang, T. Wu, J. Barbaud, W. Kong, D. Cui et al., Stabilizing heterostructures of soft perovskite semiconductors. Science 365(6454), 687–691 (2019). https://doi.org/10.1126/science.aax8018
METI, Next-Generation Solar Cell Strategy (2024). https://www.meti.go.jp/shingikai/energy_environment/perovskite_solar_cell/20241128_report.html