Solution-Processed Transparent Conducting Electrodes for Flexible Organic Solar Cells with 16.61% Efficiency
Corresponding Author: Xi Fan
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 44
Abstract
Nonfullerene organic solar cells (OSCs) have achieved breakthrough with pushing the efficiency exceeding 17%. While this shed light on OSC commercialization, high-performance flexible OSCs should be pursued through solution manufacturing. Herein, we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid (CF3SO3H). Through a low-concentration and low-temperature CF3SO3H doping, the conducting polymer anodes exhibited a main sheet resistance of 35 Ω sq−1 (minimum value: 32 Ω sq−1), a raised work function (≈ 5.0 eV), a superior wettability, and a high electrical stability. The high work function minimized the energy level mismatch among the anodes, hole-transporting layers and electron-donors of the active layers, thereby leading to an enhanced carrier extraction. The solution-processed flexible OSCs yielded a record-high efficiency of 16.41% (maximum value: 16.61%). Besides, the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85 °C, demonstrating a high flexibility and a good thermal stability.
Highlights:
1 The PEDOT:PSS flexible electrodes with a unique CF3SO3H treatment exhibited high electrical characteristics and stability.
2 An energy level tuning effect was induced to create a suitable work function.
3 Flexible organic solar cells yielded a record-high efficiency of 16.61%, a high flexibility, and a good thermal stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.W. Tang, Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183–185 (1986). https://doi.org/10.1063/1.96937
- T.Y. Qu, L.J. Zuo, J.D. Chen, X.L. Shi, T. Zhang et al., Biomimetic electrodes for flexible organic solar cells with efficiencies over 16%. Adv. Opt. Mater. 8, 2000669 (2020). https://doi.org/10.1002/adom.202000669
- G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789 (1995). https://doi.org/10.1126/science.270.5243.1789
- J. Yao, B. Qiu, Z.G. Zhang, L. Xue, R. Wang et al., Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells. Nat. Commun. 11, 2726 (2020). https://doi.org/10.1038/s41467-020-16509-w
- X.B. Chen, G.Y. Xu, G. Zeng, H.W. Gu, H.Y. Chen et al., Realizing ultrahigh mechanical flexibility and >15% efficiency of flexible organic solar cells via a “welding” flexible transparent electrode. Adv. Mater. 32, 1908478 (2020). https://doi.org/10.1002/adma.201908478
- Y.N. Sun, M.J. Chang, L.X. Meng, X.J. Wan, H.H. Gao et al., Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nat. Electron. 2, 513–520 (2019). https://doi.org/10.1038/s41928-019-0315-1
- M. Kaltenbrunner, G. Adam, E.D. Głowacki, M. Drack, R. Schwödiauer et al., Flexible high power-per-weight perovskite solar cells with chromium oxide−metal contacts for improved stability in air. Nat. Mater. 14, 1032–1039 (2015). https://doi.org/10.1038/NMAT4388
- S.M. Zhang, F. Cicoira, Flexible self-powered biosensors. Nature 561, 466–467 (2018). https://doi.org/10.1038/d41586-018-06788-1
- G. Zhao, W. Wang, T. Bae, S. Lee, C. Mun et al., Stable ultrathin partially oxidized copper film electrode for highly efficient flexible solar cells. Nat. Commun. 6, 8830 (2015). https://doi.org/10.1038/ncomms9830
- Y.B. Cheng, A. Pascoe, F. Huang, Y. Peng, Print flexible solar cells. Nature 539, 488 (2016). https://doi.org/10.1038/539488a
- Y.W. Li, L. Meng, Y.M. Yang, G. Xu, Z. Hong et al., High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat. Commun. 7, 75–81 (2016). https://doi.org/10.1038/ncomms10214
- Y. Wang, C.X. Zhu, R. Pfattner, H.P. Yan, L.H. Jin et al., A highly stretchable, transparent, and conductive polymer. Sci. Adv. 3, e1602076 (2017). https://doi.org/10.1126/sciadv.1602076
- Y.K. Zhang, Z. Wu, P. Li, L.K. Ono, Y. Qi et al., Fully solution-processed TCO-free semitransparent perovskite solar cells for tandem and flexible applications. Adv. Energy Mater. 8, 1701569 (2018). https://doi.org/10.1002/aenm.201701569
- Z.K. Liu, J.H. Li, F. Yan, Package-free flexible organic solar cells with graphene top electrodes. Adv. Mater. 25, 4296–4301 (2013). https://doi.org/10.1002/adma.201205337
- X. Fan, B. Xu, S. Liu, C. Cui, J. Wang et al., Transfer-printed PEDOT:PSS electrodes using mild acids for high conductivity and improved stability with application to flexible organic solar cells. ACS Appl. Mater. Interfaces 8, 14029–14036 (2016). https://doi.org/10.1021/acsami.6b01389
- H. Kang, S. Jung, S. Jeong, G. Kim, K. Lee, Polymer-metal hybrid transparent electrodes for flexible electronics. Nat. Commun. 6, 6503 (2015). https://doi.org/10.1038/ncomms7503
- H. Kang, G. Kim, J. Kim, S. Kwon, H. Kim et al., Bulk-heterojunction organic solar cells: five core technologies for their commercialization. Adv. Mater. 28, 7821–7861 (2016). https://doi.org/10.1002/adma.201601197
- R. Søndergaard, M. Hӧsel, D. Angmo, T.T. Larsen-Olsen, F.C. Krebs, Roll-to-roll fabrication of polymer solar cells. Mater. Today 15, 36–49 (2012). https://doi.org/10.1016/S1369-7021(12)70019-6
- C.G. Granqvist, Transparent conductors as solar energy materials: a panoramic review. Sol. Energy Mater. Sol. Cells 91, 1529–1598 (2007). https://doi.org/10.1016/j.solmat.2007.04.031
- S.I. Na, S.S. Kim, J. Jo, D.Y. Kim, Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes. Adv. Mater. 20, 4061–4067 (2008). https://doi.org/10.1002/adma.200800338
- X. Fan, W.Y. Nie, H. Tsai, N.X. Wang, H.H. Huang et al., PEDOT:PSS for flexible and stretchable electronics: modifications, strategies and applications. Adv. Sci. 6, 1900813 (2019). https://doi.org/10.1002/advs.201900813
- X.T. Hu, X.C. Meng, L. Zhang, Y.Y. Zhang, Z.R. Cai et al., A mechanically robust conducting polymer network electrode for efficient flexible perovskite solar cells. Joule 3, 2205 (2019). https://doi.org/10.1016/j.joule.2019.06.011
- Y.H. Kim, C. Sachse, M.L. Machala, C. May, L. Müller-Meskamp et al., Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells. Adv. Funct. Mater. 21, 1076–1081 (2011). https://doi.org/10.1002/adfm.201002290
- Y.J. Xia, K. Sun, J.Y. Ouyang, Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv. Mater. 24, 2436–2440 (2012). https://doi.org/10.1002/adma.201104795
- N. Kim, S. Kee, S.H. Lee, B.H. Lee, Y.H. Kahng et al., Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization. Adv. Mater. 26, 2268–2272 (2014). https://doi.org/10.1002/adma.201304611
- K. Sun, P.C. Li, Y.J. Xia, J.L. Chang, J.Y. Ouyang, Transparent conductive oxide-free perovskite solar cells with PEDOT:PSS as transparent electrode. ACS Appl. Mater. Interfaces 7, 15314–15320 (2015). https://doi.org/10.1021/acsami.5b03171
- X. Fan, J.Z. Wang, H.B. Wang, X. Liu, H. Wang, Bendable ITO-free organic solar cells with highly conductive and flexible PEDOT:PSS electrodes on plastic substrates. ACS Appl. Mater. Interfaces 7, 16287–16295 (2015). https://doi.org/10.1021/acsami.5b02830
- I. Jeon, T. Chiba, C. Delacou, Y. Guo, A. Kaskela et al., Single-walled carbon nanotube film as electrode in indium-free planar heterojunction perovskite solar cells: investigation of electron-blocking layers and dopants. Nano Lett. 15, 6665–6671 (2015). https://doi.org/10.1021/acs.nanolett.5b02490
- Z.K. Liu, P. You, C. Xie, G.Q. Tang, F. Yan, Ultrathin and flexible perovskite solar cells with graphene transparent electrodes. Nano Energy 28, 151–157 (2016). https://doi.org/10.1016/j.nanoen.2016.08.038
- J.Y. Oh, S. Kim, H.-K. Baik, U. Jeong, Conducting polymer dough for deformable electronics. Adv. Mater. 28, 4455 (2016). https://doi.org/10.1002/adma.201502947
- J.Y. Ouyang, “Secondary doping” methods to significantly enhance the conductivity of PEDOT:PSS for its application as transparent electrode of optoelectronic devices. Displays 34, 423–436 (2013). https://doi.org/10.1016/j.displa.2013.08.007
- B.J. Worfolk, S.C. Andrews, S. Park, J. Reinspach, N. Liu et al., Ultrahigh electrical conductivity in solution-sheared polymeric transparent films. Proc. Natl. Acad. Sci. USA 112, 14138–14143 (2015). https://doi.org/10.1073/pnas.1509958112
- D.J. Lipomi, J.A. Lee, M. Vosgueritchian, B.C.-K. Tee, J.A. Bolander et al., Electronic properties of transparent conductive films of PEDOT:PSS on stretchable substrates. Chem. Mater. 24, 373–382 (2012). https://doi.org/10.1021/cm203216m
- S. Kee, N. Kim, B.S. Kim, S. Park, Y.H. Jang et al., Controlling molecular ordering in aqueous conducting polymers using ionic liquids. Adv. Mater. 28, 8625–8631 (2016). https://doi.org/10.1002/adma.201505473
- M. Dӧbbelin, R. Marcilla, M. Salsamendi, C. Pozo-Gonzalo, P.M. Carrasco et al., Influence of ionic liquids on the electrical conductivity and morphology of PEDOT:PSS films. Chem. Mater. 19, 2147–2149 (2007). https://doi.org/10.1021/cm070398z
- C. Badre, L. Marquant, A.M. Alsayed, L.A. Hough, Highly conductive poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) films using 1-ethyl-3-methylimidazolium tetracyanoborate ionic liquid. Adv. Funct. Mater. 22, 2723–2727 (2012). https://doi.org/10.1002/adfm.201200225
- W. Song, X. Fan, B. Xu, F. Yan, H. Cui et al., All solution-processed metal oxide-free flexible organic solar cells with over 10% efficiency. Adv. Mater. 30, 1800075 (2018). https://doi.org/10.1002/adma.201800075
- C. Yeon, S.J. Yun, J. Kim, J.W. Lim, PEDOT:PSS films with greatly enhanced conductivity via nitric acid treatment at room temperature and their application as Pt/TCO-free counter electrodes in dye-sensitized solar cells. Adv. Electron. Mater. 1, 1500121 (2015). https://doi.org/10.1002/aelm.201500121
- L. Bießmann, N. Saxena, N. Hohn, M.A. Hossain, J.G.C. Veinot et al., Highly conducting, transparent PEDOT:PSS polymer electrodes from post-treatment with weak and strong acids. Adv. Electron. Mater. 5, 1800654 (2019). https://doi.org/10.1002/aelm.201800654
- W. Meng, R. Ge, Z.F. Li, J.H. Tong, T.F. Liu et al., Conductivity enhancement of PEDOT:PSS films via phosphoric acid treatment for flexible all-plastic solar cells. ACS Appl. Mater. Interfaces 7, 14089–14094 (2015). https://doi.org/10.1021/acsami.5b03309
- X. Li, Y. Jiang, L. Shuai, L. Wang, L. Meng et al., Sulfonated copolymers with SO3H and COOH groups for the hydrolysis of polysaccharides. J. Mater. Chem. 22, 1283–1289 (2012). https://doi.org/10.1039/C1JM12954F
- M. Carmo, T. Roepke, C. Roth, A.M. dos Santos, J.G. Poco et al., A novel electrocatalyst support with proton conductive properties for polymer electrolyte membrane fuel cell applications. J. Power Sources 191, 330–337 (2009). https://doi.org/10.1016/j.jpowsour.2009.01.086
- C. Nguyen-Trung, D.A. Palmer, G.M. Begun, C. Peiffert, R.E. Mesmer, Aqueous uranyl complexes 1. Raman spectroscopic study of the hydrolysis of uranyl(VI) in solutions of trifluoromethanesulfonic acid and/or tetramethylammonium hydroxide at 25 °C and 0.1 MPa. J. Solut. Chem. 29, 101–129 (2000). https://doi.org/10.1023/A:1005197030188
- J.Y. Ouyang, C.-W. Chu, F.-C. Chen, Q. Xu, Y. Yang, High-conductivity poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) film and its application in polymer optoelectronic devices. Adv. Funct. Mater. 15, 203–208 (2005). https://doi.org/10.1002/adfm.200400016
- S. Garreau, G. Louarn, J.P. Buisson, G. Froyer, S. Lefrant, In situ spectroelectrochemical Raman studies of poly(3,4-ethylenedioxythiophene) (PEDT). Macromolecules 32, 6807–6812 (1999). https://doi.org/10.1021/ma9905674
- J. Yuan, Y.Q. Zhang, L.Y. Zhou, G.C. Zhang, H.L. Yip et al., Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3, 1140 (2019). https://doi.org/10.1016/j.joule.2019.01.004
- J.W. Jung, W.H. Jo, Annealing-free high efficiency and large area polymer solar cells fabricated by a roller painting process. Adv. Funct. Mater. 20, 2355 (2010). https://doi.org/10.1002/adfm.201000164
References
C.W. Tang, Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183–185 (1986). https://doi.org/10.1063/1.96937
T.Y. Qu, L.J. Zuo, J.D. Chen, X.L. Shi, T. Zhang et al., Biomimetic electrodes for flexible organic solar cells with efficiencies over 16%. Adv. Opt. Mater. 8, 2000669 (2020). https://doi.org/10.1002/adom.202000669
G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789 (1995). https://doi.org/10.1126/science.270.5243.1789
J. Yao, B. Qiu, Z.G. Zhang, L. Xue, R. Wang et al., Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells. Nat. Commun. 11, 2726 (2020). https://doi.org/10.1038/s41467-020-16509-w
X.B. Chen, G.Y. Xu, G. Zeng, H.W. Gu, H.Y. Chen et al., Realizing ultrahigh mechanical flexibility and >15% efficiency of flexible organic solar cells via a “welding” flexible transparent electrode. Adv. Mater. 32, 1908478 (2020). https://doi.org/10.1002/adma.201908478
Y.N. Sun, M.J. Chang, L.X. Meng, X.J. Wan, H.H. Gao et al., Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nat. Electron. 2, 513–520 (2019). https://doi.org/10.1038/s41928-019-0315-1
M. Kaltenbrunner, G. Adam, E.D. Głowacki, M. Drack, R. Schwödiauer et al., Flexible high power-per-weight perovskite solar cells with chromium oxide−metal contacts for improved stability in air. Nat. Mater. 14, 1032–1039 (2015). https://doi.org/10.1038/NMAT4388
S.M. Zhang, F. Cicoira, Flexible self-powered biosensors. Nature 561, 466–467 (2018). https://doi.org/10.1038/d41586-018-06788-1
G. Zhao, W. Wang, T. Bae, S. Lee, C. Mun et al., Stable ultrathin partially oxidized copper film electrode for highly efficient flexible solar cells. Nat. Commun. 6, 8830 (2015). https://doi.org/10.1038/ncomms9830
Y.B. Cheng, A. Pascoe, F. Huang, Y. Peng, Print flexible solar cells. Nature 539, 488 (2016). https://doi.org/10.1038/539488a
Y.W. Li, L. Meng, Y.M. Yang, G. Xu, Z. Hong et al., High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat. Commun. 7, 75–81 (2016). https://doi.org/10.1038/ncomms10214
Y. Wang, C.X. Zhu, R. Pfattner, H.P. Yan, L.H. Jin et al., A highly stretchable, transparent, and conductive polymer. Sci. Adv. 3, e1602076 (2017). https://doi.org/10.1126/sciadv.1602076
Y.K. Zhang, Z. Wu, P. Li, L.K. Ono, Y. Qi et al., Fully solution-processed TCO-free semitransparent perovskite solar cells for tandem and flexible applications. Adv. Energy Mater. 8, 1701569 (2018). https://doi.org/10.1002/aenm.201701569
Z.K. Liu, J.H. Li, F. Yan, Package-free flexible organic solar cells with graphene top electrodes. Adv. Mater. 25, 4296–4301 (2013). https://doi.org/10.1002/adma.201205337
X. Fan, B. Xu, S. Liu, C. Cui, J. Wang et al., Transfer-printed PEDOT:PSS electrodes using mild acids for high conductivity and improved stability with application to flexible organic solar cells. ACS Appl. Mater. Interfaces 8, 14029–14036 (2016). https://doi.org/10.1021/acsami.6b01389
H. Kang, S. Jung, S. Jeong, G. Kim, K. Lee, Polymer-metal hybrid transparent electrodes for flexible electronics. Nat. Commun. 6, 6503 (2015). https://doi.org/10.1038/ncomms7503
H. Kang, G. Kim, J. Kim, S. Kwon, H. Kim et al., Bulk-heterojunction organic solar cells: five core technologies for their commercialization. Adv. Mater. 28, 7821–7861 (2016). https://doi.org/10.1002/adma.201601197
R. Søndergaard, M. Hӧsel, D. Angmo, T.T. Larsen-Olsen, F.C. Krebs, Roll-to-roll fabrication of polymer solar cells. Mater. Today 15, 36–49 (2012). https://doi.org/10.1016/S1369-7021(12)70019-6
C.G. Granqvist, Transparent conductors as solar energy materials: a panoramic review. Sol. Energy Mater. Sol. Cells 91, 1529–1598 (2007). https://doi.org/10.1016/j.solmat.2007.04.031
S.I. Na, S.S. Kim, J. Jo, D.Y. Kim, Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes. Adv. Mater. 20, 4061–4067 (2008). https://doi.org/10.1002/adma.200800338
X. Fan, W.Y. Nie, H. Tsai, N.X. Wang, H.H. Huang et al., PEDOT:PSS for flexible and stretchable electronics: modifications, strategies and applications. Adv. Sci. 6, 1900813 (2019). https://doi.org/10.1002/advs.201900813
X.T. Hu, X.C. Meng, L. Zhang, Y.Y. Zhang, Z.R. Cai et al., A mechanically robust conducting polymer network electrode for efficient flexible perovskite solar cells. Joule 3, 2205 (2019). https://doi.org/10.1016/j.joule.2019.06.011
Y.H. Kim, C. Sachse, M.L. Machala, C. May, L. Müller-Meskamp et al., Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells. Adv. Funct. Mater. 21, 1076–1081 (2011). https://doi.org/10.1002/adfm.201002290
Y.J. Xia, K. Sun, J.Y. Ouyang, Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv. Mater. 24, 2436–2440 (2012). https://doi.org/10.1002/adma.201104795
N. Kim, S. Kee, S.H. Lee, B.H. Lee, Y.H. Kahng et al., Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization. Adv. Mater. 26, 2268–2272 (2014). https://doi.org/10.1002/adma.201304611
K. Sun, P.C. Li, Y.J. Xia, J.L. Chang, J.Y. Ouyang, Transparent conductive oxide-free perovskite solar cells with PEDOT:PSS as transparent electrode. ACS Appl. Mater. Interfaces 7, 15314–15320 (2015). https://doi.org/10.1021/acsami.5b03171
X. Fan, J.Z. Wang, H.B. Wang, X. Liu, H. Wang, Bendable ITO-free organic solar cells with highly conductive and flexible PEDOT:PSS electrodes on plastic substrates. ACS Appl. Mater. Interfaces 7, 16287–16295 (2015). https://doi.org/10.1021/acsami.5b02830
I. Jeon, T. Chiba, C. Delacou, Y. Guo, A. Kaskela et al., Single-walled carbon nanotube film as electrode in indium-free planar heterojunction perovskite solar cells: investigation of electron-blocking layers and dopants. Nano Lett. 15, 6665–6671 (2015). https://doi.org/10.1021/acs.nanolett.5b02490
Z.K. Liu, P. You, C. Xie, G.Q. Tang, F. Yan, Ultrathin and flexible perovskite solar cells with graphene transparent electrodes. Nano Energy 28, 151–157 (2016). https://doi.org/10.1016/j.nanoen.2016.08.038
J.Y. Oh, S. Kim, H.-K. Baik, U. Jeong, Conducting polymer dough for deformable electronics. Adv. Mater. 28, 4455 (2016). https://doi.org/10.1002/adma.201502947
J.Y. Ouyang, “Secondary doping” methods to significantly enhance the conductivity of PEDOT:PSS for its application as transparent electrode of optoelectronic devices. Displays 34, 423–436 (2013). https://doi.org/10.1016/j.displa.2013.08.007
B.J. Worfolk, S.C. Andrews, S. Park, J. Reinspach, N. Liu et al., Ultrahigh electrical conductivity in solution-sheared polymeric transparent films. Proc. Natl. Acad. Sci. USA 112, 14138–14143 (2015). https://doi.org/10.1073/pnas.1509958112
D.J. Lipomi, J.A. Lee, M. Vosgueritchian, B.C.-K. Tee, J.A. Bolander et al., Electronic properties of transparent conductive films of PEDOT:PSS on stretchable substrates. Chem. Mater. 24, 373–382 (2012). https://doi.org/10.1021/cm203216m
S. Kee, N. Kim, B.S. Kim, S. Park, Y.H. Jang et al., Controlling molecular ordering in aqueous conducting polymers using ionic liquids. Adv. Mater. 28, 8625–8631 (2016). https://doi.org/10.1002/adma.201505473
M. Dӧbbelin, R. Marcilla, M. Salsamendi, C. Pozo-Gonzalo, P.M. Carrasco et al., Influence of ionic liquids on the electrical conductivity and morphology of PEDOT:PSS films. Chem. Mater. 19, 2147–2149 (2007). https://doi.org/10.1021/cm070398z
C. Badre, L. Marquant, A.M. Alsayed, L.A. Hough, Highly conductive poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) films using 1-ethyl-3-methylimidazolium tetracyanoborate ionic liquid. Adv. Funct. Mater. 22, 2723–2727 (2012). https://doi.org/10.1002/adfm.201200225
W. Song, X. Fan, B. Xu, F. Yan, H. Cui et al., All solution-processed metal oxide-free flexible organic solar cells with over 10% efficiency. Adv. Mater. 30, 1800075 (2018). https://doi.org/10.1002/adma.201800075
C. Yeon, S.J. Yun, J. Kim, J.W. Lim, PEDOT:PSS films with greatly enhanced conductivity via nitric acid treatment at room temperature and their application as Pt/TCO-free counter electrodes in dye-sensitized solar cells. Adv. Electron. Mater. 1, 1500121 (2015). https://doi.org/10.1002/aelm.201500121
L. Bießmann, N. Saxena, N. Hohn, M.A. Hossain, J.G.C. Veinot et al., Highly conducting, transparent PEDOT:PSS polymer electrodes from post-treatment with weak and strong acids. Adv. Electron. Mater. 5, 1800654 (2019). https://doi.org/10.1002/aelm.201800654
W. Meng, R. Ge, Z.F. Li, J.H. Tong, T.F. Liu et al., Conductivity enhancement of PEDOT:PSS films via phosphoric acid treatment for flexible all-plastic solar cells. ACS Appl. Mater. Interfaces 7, 14089–14094 (2015). https://doi.org/10.1021/acsami.5b03309
X. Li, Y. Jiang, L. Shuai, L. Wang, L. Meng et al., Sulfonated copolymers with SO3H and COOH groups for the hydrolysis of polysaccharides. J. Mater. Chem. 22, 1283–1289 (2012). https://doi.org/10.1039/C1JM12954F
M. Carmo, T. Roepke, C. Roth, A.M. dos Santos, J.G. Poco et al., A novel electrocatalyst support with proton conductive properties for polymer electrolyte membrane fuel cell applications. J. Power Sources 191, 330–337 (2009). https://doi.org/10.1016/j.jpowsour.2009.01.086
C. Nguyen-Trung, D.A. Palmer, G.M. Begun, C. Peiffert, R.E. Mesmer, Aqueous uranyl complexes 1. Raman spectroscopic study of the hydrolysis of uranyl(VI) in solutions of trifluoromethanesulfonic acid and/or tetramethylammonium hydroxide at 25 °C and 0.1 MPa. J. Solut. Chem. 29, 101–129 (2000). https://doi.org/10.1023/A:1005197030188
J.Y. Ouyang, C.-W. Chu, F.-C. Chen, Q. Xu, Y. Yang, High-conductivity poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) film and its application in polymer optoelectronic devices. Adv. Funct. Mater. 15, 203–208 (2005). https://doi.org/10.1002/adfm.200400016
S. Garreau, G. Louarn, J.P. Buisson, G. Froyer, S. Lefrant, In situ spectroelectrochemical Raman studies of poly(3,4-ethylenedioxythiophene) (PEDT). Macromolecules 32, 6807–6812 (1999). https://doi.org/10.1021/ma9905674
J. Yuan, Y.Q. Zhang, L.Y. Zhou, G.C. Zhang, H.L. Yip et al., Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3, 1140 (2019). https://doi.org/10.1016/j.joule.2019.01.004
J.W. Jung, W.H. Jo, Annealing-free high efficiency and large area polymer solar cells fabricated by a roller painting process. Adv. Funct. Mater. 20, 2355 (2010). https://doi.org/10.1002/adfm.201000164