Toward Flexible and Wearable Embroidered Supercapacitors from Cobalt Phosphides-Decorated Conductive Fibers
Corresponding Author: Bingang Xu
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 89
Abstract
Wearable supercapacitors (SCs) are gaining prominence as portable energy storage devices. To develop high-performance wearable SCs, the significant relationship among material, structure, and performance inspired us with a delicate design of the highly wearable embroidered supercapacitors made from the conductive fibers composited. By rendering the conductive interdigitally patterned embroidery as both the current collector and skeleton for the SCs, the novel pseudocapacitive material cobalt phosphides were then successfully electrodeposited, forming the first flexible and wearable in-plane embroidery SCs. The electrochemical measurements manifested that the highest specific capacitance was nearly 156.6 mF cm−2 (65.72 F g−1) at the current density of 0.6 mA cm−2 (0.25 A g−1), with a high energy density of 0.013 mWh cm−2 (5.55 Wh kg−1) at a power density of 0.24 mW cm−2 (100 W kg−1). As a demonstration, a monogrammed pattern was ingeniously designed and embroidered on the laboratory gown as the wearable in-plane SCs, which showed both decent electrochemical performance and excellent flexibility.
Highlights:
1 The conductive silver-plated nylon yarns fully fit the demand for wearable supercapacitor skeleton, owing to the advantages of high conductivity and flexibility.
2 The computerized programming embroidering technique was firstly applied for realizing standardized batch processing of the flexible supercapacitor skeleton in various patterns.
3 Cobalt phosphides were properly electrodeposited on the conductive embroidery as the pseudocapacitive materials, providing remarkable electrochemical performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Guo, X. Tao, B. Xu, J. Feng, S. Wang, Structural characteristics of low torque and ring spun yarns. Text. Res. J. 81(8), 778–790 (2011). https://doi.org/10.1177/0040517510387213
- Z. Liang, B. Xu, Z. Chi, D. Feng, Intelligent characterization and evaluation of yarn surface appearance using saliency map analysis, wavelet transform and fuzzy ARTMAP neural network. Expert Syst. Appl. 39(4), 4201–4212 (2012). https://doi.org/10.1016/j.eswa.2011.09.114
- H. Liu, X. Tao, K. Choi, B. Xu, Analysis of the relaxation modulus of spun yarns. Text. Res. J. 80(5), 403–410 (2010). https://doi.org/10.1177/0040517509342315
- J. Li, B. Xu, Novel highly sensitive and wearable pressure sensors from conductive three-dimensional fabric structures. Smart Mater. Struct. (2015). https://doi.org/10.1088/0964-1726/24/12/125022
- Q.Z. Zhang, D. Zhang, Z.C. Miao, X.L. Zhang, S.L. Chou, Research progress in MnO2-carbon based supercapacitor electrode materials. Small 14(24), 1702883 (2018). https://doi.org/10.1002/smll.201702883
- L. Huang, D. Santiago, P. Loyselle, L. Dai, Graphene-based nanomaterials for flexible and wearable supercapacitors. Small 14(43), 1800879 (2018). https://doi.org/10.1002/smll.201800879
- Y. Chen, B. Xu, J. Xu, J. Wen, T. Hua, C.-W. Kan, Graphene-base in-planar supercapacitors by a novel laser-scribing, in situ reduction and transfer-printed method on flexible substrates. J. Power Sources 420, 82–87 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.096
- Y. Chen, B. Xu, J. Gong, J. Wen, T. Hua, C.W. Kan, J. Deng, Design of high-performance wearable energy and sensor electronics from fiber materials. ACS Appl. Mater. Interfaces 11, 2120–2129 (2018). https://doi.org/10.1021/acsami.8b16167
- L. Bao, T. Li, S. Chen, C. Peng, L. Li et al., 3D graphene frameworks/Co3O4 composites electrode for high-performance supercapacitor and enzymeless glucose detection. Small 13(5), 1602077 (2017). https://doi.org/10.1002/smll.201602077
- H. Wang, Q. Gao, L. Jiang, Facile approach to prepare nickel cobaltite nanowire materials for supercapacitors. Small 7(17), 2454–2459 (2011). https://doi.org/10.1002/smll.201100534
- X. Wang, X. Wu, B. Xu, T. Hua, Coralloid and hierarchical Co3O4 nanostructures used as supercapacitors with good cycling stability. J. Solid State Electrochem. 20(5), 1303–1309 (2016). https://doi.org/10.1007/s10008-016-3125-7
- B. Zhao, L. Zhang, Q. Zhang, D. Chen, Y. Cheng et al., Rational design of nickel hydroxide-based nanocrystals on graphene for ultrafast energy storage. Adv. Energy Mater. 8(9), 1702247 (2018). https://doi.org/10.1002/aenm.201702247
- X. Li, H. Wu, C. Guan, A.M. Elshahawy, Y. Dong, S.J. Pennycook, J. Wang, (Ni,Co)Se2/NiCo-LDH core/shell structural electrode with the cactus-like (Ni,Co)Se2 core for asymmetric supercapacitors. Small 15(3), 1803895 (2019). https://doi.org/10.1002/smll.201803895
- X.-Y. Yu, L. Yu, X.W.D. Lou, Metal sulfide hollow nanostructures for electrochemical energy storage. Adv. Energy Mater. 6(3), 1501333 (2016). https://doi.org/10.1002/aenm.201501333
- J. Liu, Y. Yang, B. Ni, H. Li, X. Wang, Fullerene-like nickel oxysulfide hollow nanospheres as bifunctional electrocatalysts for water splitting. Small 13(6), 1602637 (2017). https://doi.org/10.1002/smll.201602637
- Y. Chen, B. Xu, J. Wen, J. Gong, T. Hua, C.W. Kan, J. Deng, Design of novel wearable, stretchable, and waterproof cable-type supercapacitors based on high-performance nickel cobalt sulfide-coated etching-annealed yarn electrodes. Small 14(21), 1704373 (2018). https://doi.org/10.1002/smll.201704373
- J. Li, Z. Xia, X. Zhou, Y. Qin, Y. Ma, Y. Qu, Quaternary pyrite-structured nickel/cobalt phosphosulfide nanowires on carbon cloth as efficient and robust electrodes for water electrolysis. Nano Res. 10(3), 814–825 (2017). https://doi.org/10.1007/s12274-016-1335-z
- A.J. Clough, J.M. Skelton, C.A. Downes, A.A. de la Rosa, J.W. Yoo et al., Metallic conductivity in a two-dimensional cobalt dithiolene metal-organic framework. J. Am. Chem. Soc. 139(31), 10863–10867 (2017). https://doi.org/10.1021/jacs.7b05742
- J. Yu, Q. Li, Y. Li, C.-Y. Xu, L. Zhen, V.P. Dravid, J. Wu, Ternary metal phosphide with triple-layered structure as a low-cost and efficient electrocatalyst for bifunctional water splitting. Adv. Funct. Mater. 26(42), 7644–7651 (2016). https://doi.org/10.1002/adfm.201603727
- W. Zhao, X. Ma, G. Wang, X. Long, Y. Li, W. Zhang, P. Zhang, Carbon-coated CoP3 nanocomposites as anode materials for high-performance sodium-ion batteries. Appl. Surf. Sci. 445, 167–174 (2018). https://doi.org/10.1016/j.apsusc.2018.03.126
- W. Xu, T. Wang, H. Wang, S. Zhu, Y. Liang, Z. Cui, X. Yang, A. Inoue, Free-standing amorphous nanoporous nickel cobalt phosphide prepared by electrochemically delloying process as a high performance energy storage electrode material. Energy Storage Mater. 17, 300–308 (2018). https://doi.org/10.1016/j.ensm.2018.07.005
- G. Zhu, L. Yang, W. Wang, M. Ma, J. Zhang, H. Wen, D. Zheng, Y. Yao, Hierarchical three-dimensional manganese doped cobalt phosphide nanowire decorated nanosheet cluster arrays for high-performance electrochemical pseudocapacitor electrodes. Chem. Commun. 54(66), 9234–9237 (2018). https://doi.org/10.1039/c8cc02475h
- X. Li, A.M. Elshahawy, C. Guan, J. Wang, Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small 13(39), 1701530 (2017). https://doi.org/10.1002/smll.201701530
- X. Chen, M. Cheng, D. Chen, R. Wang, Shape-controlled synthesis of Co2P nanostructures and their application in supercapacitors. ACS Appl. Mater. Interfaces 8(6), 3892–3900 (2016). https://doi.org/10.1021/acsami.5b10785
- Z. Zheng, M. Retana, X. Hu, R. Luna, Y.H. Ikuhara, W. Zhou, Three-dimensional cobalt phosphide nanowire arrays as negative electrode material for flexible solid-state asymmetric supercapacitors. ACS Appl. Mater. Interfaces 9(20), 16986–16994 (2017). https://doi.org/10.1021/acsami.7b01109
- H.B. Tang, B.G. Xu, X.M. Tao, A new analytical solution of the twist wave propagation equation with its application in a modified ring spinning system. Text. Res. J. 80(7), 636–641 (2010). https://doi.org/10.1177/0040517509343817
- X. Bingang, Q. Liangsheng, A new practical modal method for rotor balancing. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 215(2), 179–189 (2001). https://doi.org/10.1243/0954406011520607
- B.G. Xu, X.M. Tao, Integrated approach to dynamic analysis of yarn twist distribution in rotor spinning: part I: steady state. Text. Res. J. 73(1), 79–89 (2003). https://doi.org/10.1177/004051750307300116
- J. Gong, B. Xu, X. Guan, Y. Chen, S. Li, J. Feng, Towards truly wearable energy harvesters with full structural integrity of fiber materials. Nano Energy 58, 365–374 (2019). https://doi.org/10.1016/j.nanoen.2019.01.056
- X. Li, H. Hu, T. Hua, B. Xu, S. Jiang, Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors. Nano Res. 11(11), 5799–5811 (2018). https://doi.org/10.1007/s12274-018-2043-7
- Z. Chen, S. Ye, S.D. Evans, Y. Ge, Z. Zhu, Y. Tu, X. Yang, Confined assembly of hollow carbon spheres in carbonaceous nanotube: a spheres-in-tube carbon nanostructure with hierarchical porosity for high-performance supercapacitor. Small 14(19), 1704015 (2018). https://doi.org/10.1002/smll.201704015
- L. Shen, L. Yu, H.B. Wu, X.Y. Yu, X. Zhang, X.W. Lou, Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat. Commun. 6, 6694 (2015). https://doi.org/10.1038/ncomms7694
- E. Duraisamy, P. Gurunathan, H.T. Das, K. Ramesha, P. Elumalai, [Co(salen)] derived Co/Co3O4 nanoparticle@carbon matrix as high-performance electrode for energy storage applications. J. Power Sources 344, 103–110 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.100
- J. Gao, C. Shao, S. Shao, F. Wan, C. Gao, Y. Zhao, L. Jiang, L. Qu, Laser-assisted large-scale fabrication of all-solid-state asymmetrical micro-supercapacitor array. Small 14(37), 1801809 (2018). https://doi.org/10.1002/smll.201801809
- Z. Wang, S. Qin, S. Seyedin, J. Zhang, J. Wang et al., High-performance biscrolled MXene/carbon nanotube Yarn supercapacitors. Small 14(37), 1802225 (2018). https://doi.org/10.1002/smll.201802225
- B. Li, F. Dai, Q. Xiao, L. Yang, J. Shen, C. Zhang, M. Cai, Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ. Sci. 9(1), 102–106 (2016). https://doi.org/10.1039/c5ee03149d
- X. Zhang, Q. Fu, H. Huang, L. Wei, X. Guo, Silver-quantum-dot-modified MoO3 and MnO2 paper-like freestanding films for flexible solid-state asymmetric supercapacitors. Small 15(13), 1805235 (2019). https://doi.org/10.1002/smll.201805235
- W. Yang, L. He, X. Tian, M. Yan, H. Yuan et al., Carbon-MEMS-based alternating stacked MoS2 @rGO-CNT micro-supercapacitor with high capacitance and energy density. Small 13(26), 1700639 (2017). https://doi.org/10.1002/smll.201700639
- J. Gong, B. Xu, X. Tao, Breath figure micromolding approach for regulating the microstructures of polymeric films for triboelectric nanogenerators. ACS Appl. Mater. Interfaces 9(5), 4988–4997 (2017). https://doi.org/10.1021/acsami.6b14729
- C. Wang, X. Wu, Y. Ma, G. Mu, Y. Li et al., Metallic few-layered VSe2 nanosheets: high two-dimensional conductivity for flexible in-plane solid-state supercapacitors. J. Mater. Chem. A 6(18), 8299–8306 (2018). https://doi.org/10.1039/c8ta00089a
- H. Miankushki, A. Sedghi, S. Baghshahi, Facile fabrication of graphene/Mn3O4/Cu(OH)2 on Cu foil as an electrode for supercapacitor applications. Russ. J. Electrochem. 55(5), 429–437 (2019). https://doi.org/10.1134/S1023193519050094
- Y. Liu, L. Xu, Y. Li, T.T. Ye, Textile based embroidery-friendly RFID antenna design techniques, in IEEE International Conference on RFID (RFID), pp. 1–6 (2019). https://doi.org/10.1109/RFID.2019.8719270
- J. Wen, B. Xu, J. Zhou, J. Xu, Y. Chen, 3D patternable supercapacitors from hierarchically architected porous fiber composites for wearable and waterproof energy storage. Small 15(25), 1901313 (2019). https://doi.org/10.1002/smll.201901313
- D. Zhao, W. Chang, C. Lu, C. Yang, K. Jiang et al., Charge transfer salt and graphene heterostructure-based micro-supercapacitors with alternating current line-filtering performance. Small 1901494 (2019). https://doi.org/10.1002/smll.201901494
- Z. Liu, S. Liu, R. Dong, S. Yang, H. Lu, A. Narita, X. Feng, K. Mullen, High power in-plane micro-supercapacitors based on mesoporous polyaniline patterned graphene. Small 13(14), 1603388 (2017). https://doi.org/10.1002/smll.201603388
- N. Liu, Y. Gao, Recent progress in micro-supercapacitors with in-plane interdigital electrode architecture. Small 13(45), 1701989 (2017). https://doi.org/10.1002/smll.201701989
- M.G. Insinga, R.L. Oliveri, C. Sunseri, R. Inguanta, Template electrodeposition and characterization of nanostructured Pb as a negative electrode for lead-acid battery. J. Power Sources 413, 107–116 (2019). https://doi.org/10.1016/j.jpowsour.2018.12.033
- K.-L. Liu, C.-H. Chao, H.-C. Lee, C.-S. Tsao, J. Fang, N.-L. Wu, C.-Y. Chao, A novel non-porous separator based on single-ion conducting triblock copolymer for stable lithium electrodeposition. J. Power Sources 419, 58–64 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.048
- J. Wen, B. Xu, J. Zhou, Y. Chen, Novel high-performance asymmetric supercapacitors based on nickel-cobalt composite and PPy for flexible and wearable energy storage. J. Power Sources 402, 91–98 (2018). https://doi.org/10.1016/j.jpowsour.2018.09.030
- J. Wen, B. Xu, J. Zhou, J. Xu, Y. Chen, 3D patternable supercapacitors from hierarchically architected porous fiber composites for wearable and waterproof energy storage. Small (2019). https://doi.org/10.1002/smll.201901313
- J. Wang, W. Cui, Q. Liu, Z. Xing, A.M. Asiri, X. Sun, Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 28(2), 215–230 (2016). https://doi.org/10.1002/adma.201502696
- P. Babar, A. Lokhande, H.H. Shin, B. Pawar, M.G. Gang, S. Pawar, J.H. Kim, Cobalt iron hydroxide as a precious metal-free bifunctional electrocatalyst for efficient overall water splitting. Small 14(7), 1702568 (2018). https://doi.org/10.1002/smll.201702568
- L. Ma, X. Shen, H. Zhou, G. Zhu, Z. Ji, K. Chen, CoP nanoparticles deposited on reduced graphene oxide sheets as an active electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 3(10), 5337–5343 (2015). https://doi.org/10.1039/C4TA06458E
- Q. Lan, Y. Lin, Y. Li, D. Liu, MOF-derived, CeOx-modified CoP/carbon composites for oxygen evolution and hydrogen evolution reactions. J. Mater. Sci. 53(17), 12123–12131 (2018). https://doi.org/10.1007/s10853-018-2519-6
- G. Wang, H. Wang, X. Lu, Y. Ling, M. Yu, T. Zhai, Y. Tong, Y. Li, Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv. Mater. 26(17), 2676–2682 (2014). https://doi.org/10.1002/adma.201304756
- G. Sun, X. Zhang, R. Lin, J. Yang, H. Zhang, P. Chen, Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors. Angew. Chem. Int. Ed. 54(15), 4651–4656 (2015). https://doi.org/10.1002/anie.201411533
- Y. Huang, Z. Tang, Z. Liu, J. Wei, H. Hu, C. Zhi, Toward enhancing wearability and fashion of wearable supercapacitor with modified polyurethane artificial leather electrolyte. Nano-Micro Lett. 10(3), 38 (2018). https://doi.org/10.1007/s40820-018-0191-7
- J. Zai, Y. Liu, X. Li, Z.-F. Ma, R. Qi, X. Qian, 3D hierarchical Co–Al layered double hydroxides with long-term stabilities and high rate performances in supercapacitors. Nano-Micro Lett. 9(2), 21 (2017). https://doi.org/10.1007/s40820-016-0121-5
- D. Li, Y. Gong, M. Wang, C. Pan, Preparation of sandwich-like NiCo2O4/rGO/NiO heterostructure on nickel foam for high-performance supercapacitor electrodes. Nano-Micro Lett. 9(2), 16 (2017). https://doi.org/10.1007/s40820-016-0117-1
- C. Chen, D. Yan, X. Luo, W. Gao, G. Huang, Z. Han, Y. Zeng, Z. Zhu, Construction of core–shell NiMoO4@Ni–Co–S nanorods as advanced electrodes for high-performance asymmetric supercapacitors. ACS Appl. Mater. Interfaces. 10(5), 4662–4671 (2018). https://doi.org/10.1021/acsami.7b16271
- K. Li, Y. Luo, Z. Yu, M. Deng, D. Li, Q. Meng, Low temperature fabrication of efficient porous carbon counter electrode for dye-sensitized solar cells. Electrochem. Commun. 11(7), 1346–1349 (2009). https://doi.org/10.1016/j.elecom.2009.04.025
- J. Lin, C. Zhang, Z. Yan, Y. Zhu, Z. Peng, R.H. Hauge, D. Natelson, J.M. Tour, 3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 13(1), 72–78 (2012). https://doi.org/10.1021/nl3034976
- C. Meng, J. Maeng, S.W. John, P.P. Irazoqui, Ultrasmall integrated 3D micro-supercapacitors solve energy storage for miniature devices. Adv. Energy Mater. 4(7), 1301269 (2014). https://doi.org/10.1002/aenm.201301269
- M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013). https://doi.org/10.1038/ncomms2446
- Y. Shao, J. Li, Y. Li, H. Wang, Q. Zhang, R.B. Kaner, Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films. Mater. Horizons 4(6), 1145–1150 (2017). https://doi.org/10.1039/C7MH00441A
- L. Zhang, D. DeArmond, N.T. Alvarez, R. Malik, N. Oslin et al., Flexible micro-supercapacitor based on graphene with 3D structure. Small 13(10), 160311 (2017). https://doi.org/10.1002/smll.20160311
- J. Yun, Y. Lim, H. Lee, G. Lee, H. Park et al., A patterned graphene/ZnO UV sensor driven by integrated asymmetric micro-supercapacitors on a liquid metal patterned foldable paper. Adv. Funct. Mater. 27(30), 1700135 (2017). https://doi.org/10.1002/adfm.201700135
- S. Xu, W. Liu, B. Hu, X. Wang, Circuit-integratable high-frequency micro supercapacitors with filter/oscillator demonstrations. Nano Energy 58, 803–810 (2019). https://doi.org/10.1016/j.nanoen.2019.01.079
References
Y. Guo, X. Tao, B. Xu, J. Feng, S. Wang, Structural characteristics of low torque and ring spun yarns. Text. Res. J. 81(8), 778–790 (2011). https://doi.org/10.1177/0040517510387213
Z. Liang, B. Xu, Z. Chi, D. Feng, Intelligent characterization and evaluation of yarn surface appearance using saliency map analysis, wavelet transform and fuzzy ARTMAP neural network. Expert Syst. Appl. 39(4), 4201–4212 (2012). https://doi.org/10.1016/j.eswa.2011.09.114
H. Liu, X. Tao, K. Choi, B. Xu, Analysis of the relaxation modulus of spun yarns. Text. Res. J. 80(5), 403–410 (2010). https://doi.org/10.1177/0040517509342315
J. Li, B. Xu, Novel highly sensitive and wearable pressure sensors from conductive three-dimensional fabric structures. Smart Mater. Struct. (2015). https://doi.org/10.1088/0964-1726/24/12/125022
Q.Z. Zhang, D. Zhang, Z.C. Miao, X.L. Zhang, S.L. Chou, Research progress in MnO2-carbon based supercapacitor electrode materials. Small 14(24), 1702883 (2018). https://doi.org/10.1002/smll.201702883
L. Huang, D. Santiago, P. Loyselle, L. Dai, Graphene-based nanomaterials for flexible and wearable supercapacitors. Small 14(43), 1800879 (2018). https://doi.org/10.1002/smll.201800879
Y. Chen, B. Xu, J. Xu, J. Wen, T. Hua, C.-W. Kan, Graphene-base in-planar supercapacitors by a novel laser-scribing, in situ reduction and transfer-printed method on flexible substrates. J. Power Sources 420, 82–87 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.096
Y. Chen, B. Xu, J. Gong, J. Wen, T. Hua, C.W. Kan, J. Deng, Design of high-performance wearable energy and sensor electronics from fiber materials. ACS Appl. Mater. Interfaces 11, 2120–2129 (2018). https://doi.org/10.1021/acsami.8b16167
L. Bao, T. Li, S. Chen, C. Peng, L. Li et al., 3D graphene frameworks/Co3O4 composites electrode for high-performance supercapacitor and enzymeless glucose detection. Small 13(5), 1602077 (2017). https://doi.org/10.1002/smll.201602077
H. Wang, Q. Gao, L. Jiang, Facile approach to prepare nickel cobaltite nanowire materials for supercapacitors. Small 7(17), 2454–2459 (2011). https://doi.org/10.1002/smll.201100534
X. Wang, X. Wu, B. Xu, T. Hua, Coralloid and hierarchical Co3O4 nanostructures used as supercapacitors with good cycling stability. J. Solid State Electrochem. 20(5), 1303–1309 (2016). https://doi.org/10.1007/s10008-016-3125-7
B. Zhao, L. Zhang, Q. Zhang, D. Chen, Y. Cheng et al., Rational design of nickel hydroxide-based nanocrystals on graphene for ultrafast energy storage. Adv. Energy Mater. 8(9), 1702247 (2018). https://doi.org/10.1002/aenm.201702247
X. Li, H. Wu, C. Guan, A.M. Elshahawy, Y. Dong, S.J. Pennycook, J. Wang, (Ni,Co)Se2/NiCo-LDH core/shell structural electrode with the cactus-like (Ni,Co)Se2 core for asymmetric supercapacitors. Small 15(3), 1803895 (2019). https://doi.org/10.1002/smll.201803895
X.-Y. Yu, L. Yu, X.W.D. Lou, Metal sulfide hollow nanostructures for electrochemical energy storage. Adv. Energy Mater. 6(3), 1501333 (2016). https://doi.org/10.1002/aenm.201501333
J. Liu, Y. Yang, B. Ni, H. Li, X. Wang, Fullerene-like nickel oxysulfide hollow nanospheres as bifunctional electrocatalysts for water splitting. Small 13(6), 1602637 (2017). https://doi.org/10.1002/smll.201602637
Y. Chen, B. Xu, J. Wen, J. Gong, T. Hua, C.W. Kan, J. Deng, Design of novel wearable, stretchable, and waterproof cable-type supercapacitors based on high-performance nickel cobalt sulfide-coated etching-annealed yarn electrodes. Small 14(21), 1704373 (2018). https://doi.org/10.1002/smll.201704373
J. Li, Z. Xia, X. Zhou, Y. Qin, Y. Ma, Y. Qu, Quaternary pyrite-structured nickel/cobalt phosphosulfide nanowires on carbon cloth as efficient and robust electrodes for water electrolysis. Nano Res. 10(3), 814–825 (2017). https://doi.org/10.1007/s12274-016-1335-z
A.J. Clough, J.M. Skelton, C.A. Downes, A.A. de la Rosa, J.W. Yoo et al., Metallic conductivity in a two-dimensional cobalt dithiolene metal-organic framework. J. Am. Chem. Soc. 139(31), 10863–10867 (2017). https://doi.org/10.1021/jacs.7b05742
J. Yu, Q. Li, Y. Li, C.-Y. Xu, L. Zhen, V.P. Dravid, J. Wu, Ternary metal phosphide with triple-layered structure as a low-cost and efficient electrocatalyst for bifunctional water splitting. Adv. Funct. Mater. 26(42), 7644–7651 (2016). https://doi.org/10.1002/adfm.201603727
W. Zhao, X. Ma, G. Wang, X. Long, Y. Li, W. Zhang, P. Zhang, Carbon-coated CoP3 nanocomposites as anode materials for high-performance sodium-ion batteries. Appl. Surf. Sci. 445, 167–174 (2018). https://doi.org/10.1016/j.apsusc.2018.03.126
W. Xu, T. Wang, H. Wang, S. Zhu, Y. Liang, Z. Cui, X. Yang, A. Inoue, Free-standing amorphous nanoporous nickel cobalt phosphide prepared by electrochemically delloying process as a high performance energy storage electrode material. Energy Storage Mater. 17, 300–308 (2018). https://doi.org/10.1016/j.ensm.2018.07.005
G. Zhu, L. Yang, W. Wang, M. Ma, J. Zhang, H. Wen, D. Zheng, Y. Yao, Hierarchical three-dimensional manganese doped cobalt phosphide nanowire decorated nanosheet cluster arrays for high-performance electrochemical pseudocapacitor electrodes. Chem. Commun. 54(66), 9234–9237 (2018). https://doi.org/10.1039/c8cc02475h
X. Li, A.M. Elshahawy, C. Guan, J. Wang, Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small 13(39), 1701530 (2017). https://doi.org/10.1002/smll.201701530
X. Chen, M. Cheng, D. Chen, R. Wang, Shape-controlled synthesis of Co2P nanostructures and their application in supercapacitors. ACS Appl. Mater. Interfaces 8(6), 3892–3900 (2016). https://doi.org/10.1021/acsami.5b10785
Z. Zheng, M. Retana, X. Hu, R. Luna, Y.H. Ikuhara, W. Zhou, Three-dimensional cobalt phosphide nanowire arrays as negative electrode material for flexible solid-state asymmetric supercapacitors. ACS Appl. Mater. Interfaces 9(20), 16986–16994 (2017). https://doi.org/10.1021/acsami.7b01109
H.B. Tang, B.G. Xu, X.M. Tao, A new analytical solution of the twist wave propagation equation with its application in a modified ring spinning system. Text. Res. J. 80(7), 636–641 (2010). https://doi.org/10.1177/0040517509343817
X. Bingang, Q. Liangsheng, A new practical modal method for rotor balancing. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 215(2), 179–189 (2001). https://doi.org/10.1243/0954406011520607
B.G. Xu, X.M. Tao, Integrated approach to dynamic analysis of yarn twist distribution in rotor spinning: part I: steady state. Text. Res. J. 73(1), 79–89 (2003). https://doi.org/10.1177/004051750307300116
J. Gong, B. Xu, X. Guan, Y. Chen, S. Li, J. Feng, Towards truly wearable energy harvesters with full structural integrity of fiber materials. Nano Energy 58, 365–374 (2019). https://doi.org/10.1016/j.nanoen.2019.01.056
X. Li, H. Hu, T. Hua, B. Xu, S. Jiang, Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors. Nano Res. 11(11), 5799–5811 (2018). https://doi.org/10.1007/s12274-018-2043-7
Z. Chen, S. Ye, S.D. Evans, Y. Ge, Z. Zhu, Y. Tu, X. Yang, Confined assembly of hollow carbon spheres in carbonaceous nanotube: a spheres-in-tube carbon nanostructure with hierarchical porosity for high-performance supercapacitor. Small 14(19), 1704015 (2018). https://doi.org/10.1002/smll.201704015
L. Shen, L. Yu, H.B. Wu, X.Y. Yu, X. Zhang, X.W. Lou, Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat. Commun. 6, 6694 (2015). https://doi.org/10.1038/ncomms7694
E. Duraisamy, P. Gurunathan, H.T. Das, K. Ramesha, P. Elumalai, [Co(salen)] derived Co/Co3O4 nanoparticle@carbon matrix as high-performance electrode for energy storage applications. J. Power Sources 344, 103–110 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.100
J. Gao, C. Shao, S. Shao, F. Wan, C. Gao, Y. Zhao, L. Jiang, L. Qu, Laser-assisted large-scale fabrication of all-solid-state asymmetrical micro-supercapacitor array. Small 14(37), 1801809 (2018). https://doi.org/10.1002/smll.201801809
Z. Wang, S. Qin, S. Seyedin, J. Zhang, J. Wang et al., High-performance biscrolled MXene/carbon nanotube Yarn supercapacitors. Small 14(37), 1802225 (2018). https://doi.org/10.1002/smll.201802225
B. Li, F. Dai, Q. Xiao, L. Yang, J. Shen, C. Zhang, M. Cai, Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ. Sci. 9(1), 102–106 (2016). https://doi.org/10.1039/c5ee03149d
X. Zhang, Q. Fu, H. Huang, L. Wei, X. Guo, Silver-quantum-dot-modified MoO3 and MnO2 paper-like freestanding films for flexible solid-state asymmetric supercapacitors. Small 15(13), 1805235 (2019). https://doi.org/10.1002/smll.201805235
W. Yang, L. He, X. Tian, M. Yan, H. Yuan et al., Carbon-MEMS-based alternating stacked MoS2 @rGO-CNT micro-supercapacitor with high capacitance and energy density. Small 13(26), 1700639 (2017). https://doi.org/10.1002/smll.201700639
J. Gong, B. Xu, X. Tao, Breath figure micromolding approach for regulating the microstructures of polymeric films for triboelectric nanogenerators. ACS Appl. Mater. Interfaces 9(5), 4988–4997 (2017). https://doi.org/10.1021/acsami.6b14729
C. Wang, X. Wu, Y. Ma, G. Mu, Y. Li et al., Metallic few-layered VSe2 nanosheets: high two-dimensional conductivity for flexible in-plane solid-state supercapacitors. J. Mater. Chem. A 6(18), 8299–8306 (2018). https://doi.org/10.1039/c8ta00089a
H. Miankushki, A. Sedghi, S. Baghshahi, Facile fabrication of graphene/Mn3O4/Cu(OH)2 on Cu foil as an electrode for supercapacitor applications. Russ. J. Electrochem. 55(5), 429–437 (2019). https://doi.org/10.1134/S1023193519050094
Y. Liu, L. Xu, Y. Li, T.T. Ye, Textile based embroidery-friendly RFID antenna design techniques, in IEEE International Conference on RFID (RFID), pp. 1–6 (2019). https://doi.org/10.1109/RFID.2019.8719270
J. Wen, B. Xu, J. Zhou, J. Xu, Y. Chen, 3D patternable supercapacitors from hierarchically architected porous fiber composites for wearable and waterproof energy storage. Small 15(25), 1901313 (2019). https://doi.org/10.1002/smll.201901313
D. Zhao, W. Chang, C. Lu, C. Yang, K. Jiang et al., Charge transfer salt and graphene heterostructure-based micro-supercapacitors with alternating current line-filtering performance. Small 1901494 (2019). https://doi.org/10.1002/smll.201901494
Z. Liu, S. Liu, R. Dong, S. Yang, H. Lu, A. Narita, X. Feng, K. Mullen, High power in-plane micro-supercapacitors based on mesoporous polyaniline patterned graphene. Small 13(14), 1603388 (2017). https://doi.org/10.1002/smll.201603388
N. Liu, Y. Gao, Recent progress in micro-supercapacitors with in-plane interdigital electrode architecture. Small 13(45), 1701989 (2017). https://doi.org/10.1002/smll.201701989
M.G. Insinga, R.L. Oliveri, C. Sunseri, R. Inguanta, Template electrodeposition and characterization of nanostructured Pb as a negative electrode for lead-acid battery. J. Power Sources 413, 107–116 (2019). https://doi.org/10.1016/j.jpowsour.2018.12.033
K.-L. Liu, C.-H. Chao, H.-C. Lee, C.-S. Tsao, J. Fang, N.-L. Wu, C.-Y. Chao, A novel non-porous separator based on single-ion conducting triblock copolymer for stable lithium electrodeposition. J. Power Sources 419, 58–64 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.048
J. Wen, B. Xu, J. Zhou, Y. Chen, Novel high-performance asymmetric supercapacitors based on nickel-cobalt composite and PPy for flexible and wearable energy storage. J. Power Sources 402, 91–98 (2018). https://doi.org/10.1016/j.jpowsour.2018.09.030
J. Wen, B. Xu, J. Zhou, J. Xu, Y. Chen, 3D patternable supercapacitors from hierarchically architected porous fiber composites for wearable and waterproof energy storage. Small (2019). https://doi.org/10.1002/smll.201901313
J. Wang, W. Cui, Q. Liu, Z. Xing, A.M. Asiri, X. Sun, Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 28(2), 215–230 (2016). https://doi.org/10.1002/adma.201502696
P. Babar, A. Lokhande, H.H. Shin, B. Pawar, M.G. Gang, S. Pawar, J.H. Kim, Cobalt iron hydroxide as a precious metal-free bifunctional electrocatalyst for efficient overall water splitting. Small 14(7), 1702568 (2018). https://doi.org/10.1002/smll.201702568
L. Ma, X. Shen, H. Zhou, G. Zhu, Z. Ji, K. Chen, CoP nanoparticles deposited on reduced graphene oxide sheets as an active electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 3(10), 5337–5343 (2015). https://doi.org/10.1039/C4TA06458E
Q. Lan, Y. Lin, Y. Li, D. Liu, MOF-derived, CeOx-modified CoP/carbon composites for oxygen evolution and hydrogen evolution reactions. J. Mater. Sci. 53(17), 12123–12131 (2018). https://doi.org/10.1007/s10853-018-2519-6
G. Wang, H. Wang, X. Lu, Y. Ling, M. Yu, T. Zhai, Y. Tong, Y. Li, Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv. Mater. 26(17), 2676–2682 (2014). https://doi.org/10.1002/adma.201304756
G. Sun, X. Zhang, R. Lin, J. Yang, H. Zhang, P. Chen, Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors. Angew. Chem. Int. Ed. 54(15), 4651–4656 (2015). https://doi.org/10.1002/anie.201411533
Y. Huang, Z. Tang, Z. Liu, J. Wei, H. Hu, C. Zhi, Toward enhancing wearability and fashion of wearable supercapacitor with modified polyurethane artificial leather electrolyte. Nano-Micro Lett. 10(3), 38 (2018). https://doi.org/10.1007/s40820-018-0191-7
J. Zai, Y. Liu, X. Li, Z.-F. Ma, R. Qi, X. Qian, 3D hierarchical Co–Al layered double hydroxides with long-term stabilities and high rate performances in supercapacitors. Nano-Micro Lett. 9(2), 21 (2017). https://doi.org/10.1007/s40820-016-0121-5
D. Li, Y. Gong, M. Wang, C. Pan, Preparation of sandwich-like NiCo2O4/rGO/NiO heterostructure on nickel foam for high-performance supercapacitor electrodes. Nano-Micro Lett. 9(2), 16 (2017). https://doi.org/10.1007/s40820-016-0117-1
C. Chen, D. Yan, X. Luo, W. Gao, G. Huang, Z. Han, Y. Zeng, Z. Zhu, Construction of core–shell NiMoO4@Ni–Co–S nanorods as advanced electrodes for high-performance asymmetric supercapacitors. ACS Appl. Mater. Interfaces. 10(5), 4662–4671 (2018). https://doi.org/10.1021/acsami.7b16271
K. Li, Y. Luo, Z. Yu, M. Deng, D. Li, Q. Meng, Low temperature fabrication of efficient porous carbon counter electrode for dye-sensitized solar cells. Electrochem. Commun. 11(7), 1346–1349 (2009). https://doi.org/10.1016/j.elecom.2009.04.025
J. Lin, C. Zhang, Z. Yan, Y. Zhu, Z. Peng, R.H. Hauge, D. Natelson, J.M. Tour, 3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 13(1), 72–78 (2012). https://doi.org/10.1021/nl3034976
C. Meng, J. Maeng, S.W. John, P.P. Irazoqui, Ultrasmall integrated 3D micro-supercapacitors solve energy storage for miniature devices. Adv. Energy Mater. 4(7), 1301269 (2014). https://doi.org/10.1002/aenm.201301269
M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013). https://doi.org/10.1038/ncomms2446
Y. Shao, J. Li, Y. Li, H. Wang, Q. Zhang, R.B. Kaner, Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films. Mater. Horizons 4(6), 1145–1150 (2017). https://doi.org/10.1039/C7MH00441A
L. Zhang, D. DeArmond, N.T. Alvarez, R. Malik, N. Oslin et al., Flexible micro-supercapacitor based on graphene with 3D structure. Small 13(10), 160311 (2017). https://doi.org/10.1002/smll.20160311
J. Yun, Y. Lim, H. Lee, G. Lee, H. Park et al., A patterned graphene/ZnO UV sensor driven by integrated asymmetric micro-supercapacitors on a liquid metal patterned foldable paper. Adv. Funct. Mater. 27(30), 1700135 (2017). https://doi.org/10.1002/adfm.201700135
S. Xu, W. Liu, B. Hu, X. Wang, Circuit-integratable high-frequency micro supercapacitors with filter/oscillator demonstrations. Nano Energy 58, 803–810 (2019). https://doi.org/10.1016/j.nanoen.2019.01.079