Naturally Crosslinked Biocompatible Carbonaceous Liquid Metal Aqueous Ink Printing Wearable Electronics for Multi-Sensing and Energy Harvesting
Corresponding Author: Bingang Xu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 149
Abstract
Achieving flexible electronics with comfort and durability comparable to traditional textiles is one of the ultimate pursuits of smart wearables. Ink printing is desirable for e-textile development using a simple and inexpensive process. However, fabricating high-performance atop textiles with good dispersity, stability, biocompatibility, and wearability for high-resolution, large-scale manufacturing, and practical applications has remained challenging. Here, water-based multi-walled carbon nanotubes (MWCNTs)-decorated liquid metal (LM) inks are proposed with carbonaceous gallium–indium micro-nanostructure. With the assistance of biopolymers, the sodium alginate-encapsulated LM droplets contain high carboxyl groups which non-covalently crosslink with silk sericin-mediated MWCNTs. E-textile can be prepared subsequently via printing technique and natural waterproof triboelectric coating, enabling good flexibility, hydrophilicity, breathability, wearability, biocompatibility, conductivity, stability, and excellent versatility, without any artificial chemicals. The obtained e-textile can be used in various applications with designable patterns and circuits. Multi-sensing applications of recognizing complex human motions, breathing, phonation, and pressure distribution are demonstrated with repeatable and reliable signals. Self-powered and energy-harvesting capabilities are also presented by driving electronic devices and lighting LEDs. As proof of concept, this work provides new opportunities in a scalable and sustainable way to develop novel wearable electronics and smart clothing for future commercial applications.
Highlights:
1 Naturally crosslinked carbonaceous liquid metal aqueous printable ink mediated by biopolymers.
2 E-textile with conductivity, stability, wearability, and aesthetic characteristics.
3 Multi-applications in health monitoring, pressure sensing, and energy harvesting.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Tan, Z. Dong, Y. Li, H. Zhao, X. Huang et al., A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat. Commun. 11, 3530 (2020). https://doi.org/10.1038/s41467-020-17301-6
- F. Ershad, A. Thukral, J. Yue, P. Comeaux, Y. Lu et al., Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and point-of-care treatment. Nat. Commun. 11, 3823 (2020). https://doi.org/10.1038/s41467-020-17619-1
- Y. Qiao, J. Luo, T. Cui, H. Liu, H. Tang et al., Soft electronics for health monitoring assisted by machine learning. Nano-Micro Lett. 15, 66 (2023). https://doi.org/10.1007/s40820-023-01029-1
- Y.-T. Kwon, Y.-S. Kim, S. Kwon, M. Mahmood, H.-R. Lim et al., All-printed nanomembrane wireless bioelectronics using a biocompatible solderable graphene for multimodal human-machine interfaces. Nat. Commun. 11, 3450 (2020). https://doi.org/10.1038/s41467-020-17288-0
- S. Shen, J. Yi, Z. Sun, Z. Guo, T. He et al., Human machine interface with wearable electronics using biodegradable triboelectric films for calligraphy practice and correction. Nano-Micro Lett. 14, 225 (2022). https://doi.org/10.1007/s40820-022-00965-8
- R. Xu, M. She, J. Liu, S. Zhao, J. Zhao et al., Skin-friendly and wearable iontronic touch panel for virtual-real handwriting interaction. ACS Nano 17, 8293–8302 (2023). https://doi.org/10.1021/acsnano.2c12612
- S. Liu, K. Ma, B. Yang, H. Li, X. Tao, Textile electronics for VR/AR applications. Adv. Funct. Mater. 31, 2007254 (2021). https://doi.org/10.1002/adfm.202007254
- H. Wang, Y. Zhang, X. Liang, Y. Zhang, Smart fibers and textiles for personal health management. ACS Nano 15, 12497–12508 (2021). https://doi.org/10.1021/acsnano.1c06230
- X. Shi, Y. Zuo, P. Zhai, J. Shen, Y. Yang et al., Large-area display textiles integrated with functional systems. Nature 591, 240–245 (2021). https://doi.org/10.1038/s41586-021-03295-8
- J. Xiong, J. Chen, P.S. Lee, Functional fibers and fabrics for soft robotics, wearables, and human-robot interface. Adv. Mater. 33, e2002640 (2021). https://doi.org/10.1002/adma.202002640
- T.L. Andrew, The future of smart textiles: user interfaces and health monitors. Matter 2, 794–795 (2020). https://doi.org/10.1016/j.matt.2020.03.011
- C. Cheng, J. Zhang, S. Li, Y. Xia, C. Nie et al., A water-processable and bioactive multivalent graphene nanoink for highly flexible bioelectronic films and nanofibers. Adv. Mater. 30, 1705452 (2018). https://doi.org/10.1002/adma.201705452
- F. Molina-Lopez, T.Z. Gao, U. Kraft, C. Zhu, T. Öhlund et al., Inkjet-printed stretchable and low voltage synaptic transistor array. Nat. Commun. 10, 2676 (2019). https://doi.org/10.1038/s41467-019-10569-3
- K. Chen, W. Gao, S. Emaminejad, D. Kiriya, H. Ota et al., Printed carbon nanotube electronics and sensor systems. Adv. Mater. 28, 4397–4414 (2016). https://doi.org/10.1002/adma.201504958
- X. Qi, H. Zhao, L. Wang, F. Sun, X. Ye et al., Underwater sensing and warming E-textiles with reversible liquid metal electronics. Chem. Eng. J. 437, 135382 (2022). https://doi.org/10.1016/j.cej.2022.135382
- Z. Liu, T. Zhu, J. Wang, Z. Zheng, Y. Li et al., Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics. Nano-Micro Lett. 14, 61 (2022). https://doi.org/10.1007/s40820-022-00806-8
- R. Xu, M. She, J. Liu, S. Zhao, H. Liu et al., Breathable kirigami-shaped ionotronic e-textile with touch/strain sensing for friendly epidermal electronics. Adv. Fiber Mater. 4, 1525–1534 (2022). https://doi.org/10.1007/s42765-022-00186-z
- S. Park, S. Ahn, J. Sun, D. Bhatia, D. Choi et al., Highly bendable and rotational textile structure with prestrained conductive sewing pattern for human joint monitoring. Adv. Funct. Mater. 29, 1808369 (2019). https://doi.org/10.1002/adfm.201808369
- W. Wang, A. Yu, X. Liu, Y. Liu, Z. Yang et al., Large-scale fabrication of robust textile triboelectric nanogenerators. Nano Energy 71, 104605 (2020). https://doi.org/10.1016/j.nanoen.2020.104605
- S. Hu, J. Han, Z. Shi, K. Chen, N. Xu et al., Biodegradable, super-strong, and conductive cellulose macrofibers for fabric-based triboelectric nanogenerator. Nano-Micro Lett. 14, 115 (2022). https://doi.org/10.1007/s40820-022-00858-w
- X. Meng, C. Cai, B. Luo, T. Liu, Y. Shao et al., Rational design of cellulosic triboelectric materials for self-powered wearable electronics. Nano-Micro Lett. 15, 124 (2023). https://doi.org/10.1007/s40820-023-01094-6
- M. Li, Z. Li, X. Ye, X. Zhang, L. Qu et al., Tendril-inspired 900% ultrastretching fiber-based Zn-ion batteries for wearable energy textiles. ACS Appl. Mater. Interfaces 13, 17110–17117 (2021). https://doi.org/10.1021/acsami.1c02329
- M. Li, Z. Li, X. Ye, W. He, L. Qu et al., A smart self-powered rope for water/fire rescue. Adv. Funct. Mater. 33, 2210111 (2023). https://doi.org/10.1002/adfm.202210111
- S.F. Kamarudin, M. Mustapha, J.-K. Kim, Green strategies to printed sensors for healthcare applications. Polym. Rev. 61, 116–156 (2021). https://doi.org/10.1080/15583724.2020.1729180
- D.S. Saidina, N. Eawwiboonthanakit, M. Mariatti, S. Fontana, C. Hérold, Recent development of graphene-based ink and other conductive material-based inks for flexible electronics. J. Electron. Mater. 48, 3428–3450 (2019). https://doi.org/10.1007/s11664-019-07183-w
- J.R. Camargo, L.O. Orzari, D.A.G. Araújo, P.R. de Oliveira, C. Kalinke et al., Development of conductive inks for electrochemical sensors and biosensors. Microchem. J. 164, 105998 (2021). https://doi.org/10.1016/j.microc.2021.105998
- S. Chen, H.-Z. Wang, R.-Q. Zhao, W. Rao, J. Liu, Liquid metal composites. Matter 2, 1446–1480 (2020). https://doi.org/10.1016/j.matt.2020.03.016
- Y. Lin, J. Genzer, M.D. Dickey, Attributes, fabrication, and applications of Gallium-based liquid metal ps. Adv. Sci. 7, 2000192 (2020). https://doi.org/10.1002/advs.202000192
- L. Teng, S. Ye, S. Handschuh-Wang, X. Zhou, T. Gan et al., Liquid metal-based transient circuits for flexible and recyclable electronics. Adv. Funct. Mater. 29, 1808739 (2019). https://doi.org/10.1002/adfm.201808739
- Y.-H. Wu, Z.-F. Deng, Z.-F. Peng, R.-M. Zheng, S.-Q. Liu et al., A novel strategy for preparing stretchable and reliable biphasic liquid metal. Adv. Funct. Mater. 29, 1903840 (2019). https://doi.org/10.1002/adfm.201903840
- B. Ma, C. Xu, J. Chi, J. Chen, C. Zhao et al., A versatile approach for direct patterning of liquid metal using magnetic field. Adv. Funct. Mater. 29, 1901370 (2019). https://doi.org/10.1002/adfm.201901370
- L. Zheng, M. Zhu, B. Wu, Z. Li, S. Sun et al., Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing. Sci. Adv. 7, ebag4041 (2021). https://doi.org/10.1126/sciadv.abg4041
- Y. Lin, Y. Liu, J. Genzer, M.D. Dickey, Shape-transformable liquid metal nanops in aqueous solution. Chem. Sci. 8, 3832–3837 (2017). https://doi.org/10.1039/C7SC00057J
- Y. Liu, W. Zhang, H. Wang, Synthesis and application of core–shell liquid metal ps: a perspective of surface engineering. Mater. Horiz. 8, 56–77 (2021). https://doi.org/10.1039/D0MH01117G
- Y. Xin, H. Peng, J. Xu, J. Zhang, Ultrauniform embedded liquid metal in sulfur polymers for recyclable, conductive, and self-healable materials. Adv. Funct. Mater. 29, 1808989 (2019). https://doi.org/10.1002/adfm.201808989
- X. Li, M. Li, L. Zong, X. Wu, J. You et al., Liquid metal droplets wrapped with polysaccharide microgel as biocompatible aqueous ink for flexible conductive devices. Adv. Funct. Mater. 28, 1804197 (2018). https://doi.org/10.1002/adfm.201804197
- S.-Q. Yi, H. Sun, Y.-F. Jin, K.-K. Zou, J. Li et al., CNT-assisted design of stable liquid metal droplets for flexible multifunctional composites. Compos. Part B Eng. 239, 109961 (2022). https://doi.org/10.1016/j.compositesb.2022.109961
- C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin et al., Advanced carbon for flexible and wearable electronics. Adv. Mater. 31, e1801072 (2019). https://doi.org/10.1002/adma.201801072
- K. Chiou, S. Byun, J. Kim, J. Huang, Additive-free carbon nanotube dispersions, pastes, gels, and doughs in cresols. Proc. Natl. Acad. Sci. U. S. A. 115, 5703–5708 (2018). https://doi.org/10.1073/pnas.1800298115
- W. Yu, C. Liu, S. Fan, Advances of CNT-based systems in thermal management. Nano Res. 14, 2471–2490 (2021). https://doi.org/10.1007/s12274-020-3255-1
- S. Hussain, Z. Ji, A.J. Taylor, L.M. DeGraff, M. George et al., Multiwalled carbon nanotube functionalization with high molecular weight hyaluronan significantly reduces pulmonary injury. ACS Nano 10, 7675–7688 (2016). https://doi.org/10.1021/acsnano.6b03013
- C. Li, S. Bolisetty, K. Chaitanya, J. Adamcik, R. Mezzenga, Tunable carbon nanotube/protein core-shell nanops with NIR- and enzymatic-responsive cytotoxicity. Adv. Mater. 25, 1010–1015 (2013). https://doi.org/10.1002/adma.201203382
- X. Liang, H. Li, J. Dou, Q. Wang, W. He et al., Stable and biocompatible carbon nanotube ink mediated by silk protein for printed electronics. Adv. Mater. 32, e2000165 (2020). https://doi.org/10.1002/adma.202000165
- R.I. Kunz, R.M. Brancalhão, L.F. Ribeiro, M.R. Natali, Silkworm sericin: properties and biomedical applications. BioMed Res. Int. 2016, 8175701 (2016). https://doi.org/10.1155/2016/8175701
- Y. Hu, H. Zhuo, Y. Zhang, H. Lai, J. Yi et al., Graphene oxide encapsulating liquid metal to toughen hydrogel. Adv. Funct. Mater. 31, 2106761 (2021). https://doi.org/10.1002/adfm.202106761
- L. Lamboni, M. Gauthier, G. Yang, Q. Wang, Silk sericin: a versatile material for tissue engineering and drug delivery. Biotechnol. Adv. 33, 1855–1867 (2015). https://doi.org/10.1016/j.biotechadv.2015.10.014
- V. Mouriño, P. Newby, F. Pishbin, J.P. Cattalini, S. Lucangioli et al., Physicochemical, biological and drug-release properties of gallium crosslinked alginate/nanoparticulate bioactive glass composite films. Soft Matter 7, 6705–6712 (2011). https://doi.org/10.1039/C1SM05331K
- V. Jost, M. Reinelt, Effect of Ca2+ induced crosslinking on the mechanical and barrier properties of t alginate films. J. Appl. Polym. Sci. 135, 45754 (2018). https://doi.org/10.1002/app.45754
- I.D. Tevis, L.B. Newcomb, M. Thuo, Synthesis of liquid core-shell ps and solid patchy multicomponent ps by shearing liquids into complex ps (SLICE). Langmuir 30, 14308–14313 (2014). https://doi.org/10.1021/la5035118
- H. Wang, B. Yuan, S. Liang, R. Guo, W. Rao et al., PLUS-M: a porous liquid-metal enabled ubiquitous soft material. Mater. Horiz. 5, 222–229 (2018). https://doi.org/10.1039/C7MH00989E
- U. Consotium, UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 51, D523–D531 (2023). https://doi.org/10.1093/nar/gkac1052
- T.-T. Cao, Y.-Q. Zhang, The potential of silk sericin protein as a serum substitute or an additive in cell culture and cryopreservation. Amino Acids 49, 1029–1039 (2017). https://doi.org/10.1007/s00726-017-2396-3
- F. Tian, D. Cui, H. Schwarz, G.G. Estrada, H. Kobayashi, Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol. In Vitro 20, 1202–1212 (2006). https://doi.org/10.1016/j.tiv.2006.03.008
- X. Li, M. Li, J. Xu, J. You, Z. Yang et al., Evaporation-induced sintering of liquid metal droplets with biological nanofibrils for flexible conductivity and responsive actuation. Nat. Commun. 10, 3514 (2019). https://doi.org/10.1038/s41467-019-11466-5
- S. Zachariah, Y.-L. Liu, Nanocomposites of polybenzoxazine-functionalized multiwalled carbon nanotubes and polybenzoxazine for anticorrosion application. Compos. Sci. Technol. 194, 108169 (2020). https://doi.org/10.1016/j.compscitech.2020.108169
- S. Adil, W.S. Kim, T.H. Kim, S. Lee, S.W. Hong et al., Defective, oxygen-functionalized multi-walled carbon nanotubes as an efficient peroxymonosulfate activator for degradation of organic pollutants. J. Hazard. Mater. 396, 122757 (2020). https://doi.org/10.1016/j.jhazmat.2020.122757
- M. Amjadi, M. Sitti, Self-sensing paper actuators based on graphite-carbon nanotube hybrid films. Adv. Sci. 5, 1800239 (2018). https://doi.org/10.1002/advs.201800239
- X. Qi, Y. Liu, L. Yu, Z. Yu, L. Chen et al., Versatile liquid metal/alginate composite fibers with enhanced flame retardancy and triboelectric performance for smart wearable textiles. Adv. Sci. 10, e2303406 (2023). https://doi.org/10.1002/advs.202303406
- A. Mohammadi, M. Barikani, A.H. Doctorsafaei, A.P. Isfahani, E. Shams et al., Aqueous dispersion of polyurethane nanocomposites based on calix[4]arenes modified graphene oxide nanosheets: preparation, characterization, and anti-corrosion properties. Chem. Eng. J. 349, 466–480 (2018). https://doi.org/10.1016/j.cej.2018.05.111
- V. Slabov, S. Kopyl, M.P. Soares Dos Santos, A.L. Kholkin, Natural and eco-friendly materials for triboelectric energy harvesting. Nano-Micro Lett. 12, 42 (2020). https://doi.org/10.1007/s40820-020-0373-y
- S. Niu, S. Wang, L. Lin, Y. Liu, Y.S. Zhou et al., Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6, 3576 (2013). https://doi.org/10.1039/c3ee42571a
- Z.L. Wang, On the first principle theory of nanogenerators from Maxwell’s equations. Nano Energy 68, 104272 (2020). https://doi.org/10.1016/j.nanoen.2019.104272
References
C. Tan, Z. Dong, Y. Li, H. Zhao, X. Huang et al., A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat. Commun. 11, 3530 (2020). https://doi.org/10.1038/s41467-020-17301-6
F. Ershad, A. Thukral, J. Yue, P. Comeaux, Y. Lu et al., Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and point-of-care treatment. Nat. Commun. 11, 3823 (2020). https://doi.org/10.1038/s41467-020-17619-1
Y. Qiao, J. Luo, T. Cui, H. Liu, H. Tang et al., Soft electronics for health monitoring assisted by machine learning. Nano-Micro Lett. 15, 66 (2023). https://doi.org/10.1007/s40820-023-01029-1
Y.-T. Kwon, Y.-S. Kim, S. Kwon, M. Mahmood, H.-R. Lim et al., All-printed nanomembrane wireless bioelectronics using a biocompatible solderable graphene for multimodal human-machine interfaces. Nat. Commun. 11, 3450 (2020). https://doi.org/10.1038/s41467-020-17288-0
S. Shen, J. Yi, Z. Sun, Z. Guo, T. He et al., Human machine interface with wearable electronics using biodegradable triboelectric films for calligraphy practice and correction. Nano-Micro Lett. 14, 225 (2022). https://doi.org/10.1007/s40820-022-00965-8
R. Xu, M. She, J. Liu, S. Zhao, J. Zhao et al., Skin-friendly and wearable iontronic touch panel for virtual-real handwriting interaction. ACS Nano 17, 8293–8302 (2023). https://doi.org/10.1021/acsnano.2c12612
S. Liu, K. Ma, B. Yang, H. Li, X. Tao, Textile electronics for VR/AR applications. Adv. Funct. Mater. 31, 2007254 (2021). https://doi.org/10.1002/adfm.202007254
H. Wang, Y. Zhang, X. Liang, Y. Zhang, Smart fibers and textiles for personal health management. ACS Nano 15, 12497–12508 (2021). https://doi.org/10.1021/acsnano.1c06230
X. Shi, Y. Zuo, P. Zhai, J. Shen, Y. Yang et al., Large-area display textiles integrated with functional systems. Nature 591, 240–245 (2021). https://doi.org/10.1038/s41586-021-03295-8
J. Xiong, J. Chen, P.S. Lee, Functional fibers and fabrics for soft robotics, wearables, and human-robot interface. Adv. Mater. 33, e2002640 (2021). https://doi.org/10.1002/adma.202002640
T.L. Andrew, The future of smart textiles: user interfaces and health monitors. Matter 2, 794–795 (2020). https://doi.org/10.1016/j.matt.2020.03.011
C. Cheng, J. Zhang, S. Li, Y. Xia, C. Nie et al., A water-processable and bioactive multivalent graphene nanoink for highly flexible bioelectronic films and nanofibers. Adv. Mater. 30, 1705452 (2018). https://doi.org/10.1002/adma.201705452
F. Molina-Lopez, T.Z. Gao, U. Kraft, C. Zhu, T. Öhlund et al., Inkjet-printed stretchable and low voltage synaptic transistor array. Nat. Commun. 10, 2676 (2019). https://doi.org/10.1038/s41467-019-10569-3
K. Chen, W. Gao, S. Emaminejad, D. Kiriya, H. Ota et al., Printed carbon nanotube electronics and sensor systems. Adv. Mater. 28, 4397–4414 (2016). https://doi.org/10.1002/adma.201504958
X. Qi, H. Zhao, L. Wang, F. Sun, X. Ye et al., Underwater sensing and warming E-textiles with reversible liquid metal electronics. Chem. Eng. J. 437, 135382 (2022). https://doi.org/10.1016/j.cej.2022.135382
Z. Liu, T. Zhu, J. Wang, Z. Zheng, Y. Li et al., Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics. Nano-Micro Lett. 14, 61 (2022). https://doi.org/10.1007/s40820-022-00806-8
R. Xu, M. She, J. Liu, S. Zhao, H. Liu et al., Breathable kirigami-shaped ionotronic e-textile with touch/strain sensing for friendly epidermal electronics. Adv. Fiber Mater. 4, 1525–1534 (2022). https://doi.org/10.1007/s42765-022-00186-z
S. Park, S. Ahn, J. Sun, D. Bhatia, D. Choi et al., Highly bendable and rotational textile structure with prestrained conductive sewing pattern for human joint monitoring. Adv. Funct. Mater. 29, 1808369 (2019). https://doi.org/10.1002/adfm.201808369
W. Wang, A. Yu, X. Liu, Y. Liu, Z. Yang et al., Large-scale fabrication of robust textile triboelectric nanogenerators. Nano Energy 71, 104605 (2020). https://doi.org/10.1016/j.nanoen.2020.104605
S. Hu, J. Han, Z. Shi, K. Chen, N. Xu et al., Biodegradable, super-strong, and conductive cellulose macrofibers for fabric-based triboelectric nanogenerator. Nano-Micro Lett. 14, 115 (2022). https://doi.org/10.1007/s40820-022-00858-w
X. Meng, C. Cai, B. Luo, T. Liu, Y. Shao et al., Rational design of cellulosic triboelectric materials for self-powered wearable electronics. Nano-Micro Lett. 15, 124 (2023). https://doi.org/10.1007/s40820-023-01094-6
M. Li, Z. Li, X. Ye, X. Zhang, L. Qu et al., Tendril-inspired 900% ultrastretching fiber-based Zn-ion batteries for wearable energy textiles. ACS Appl. Mater. Interfaces 13, 17110–17117 (2021). https://doi.org/10.1021/acsami.1c02329
M. Li, Z. Li, X. Ye, W. He, L. Qu et al., A smart self-powered rope for water/fire rescue. Adv. Funct. Mater. 33, 2210111 (2023). https://doi.org/10.1002/adfm.202210111
S.F. Kamarudin, M. Mustapha, J.-K. Kim, Green strategies to printed sensors for healthcare applications. Polym. Rev. 61, 116–156 (2021). https://doi.org/10.1080/15583724.2020.1729180
D.S. Saidina, N. Eawwiboonthanakit, M. Mariatti, S. Fontana, C. Hérold, Recent development of graphene-based ink and other conductive material-based inks for flexible electronics. J. Electron. Mater. 48, 3428–3450 (2019). https://doi.org/10.1007/s11664-019-07183-w
J.R. Camargo, L.O. Orzari, D.A.G. Araújo, P.R. de Oliveira, C. Kalinke et al., Development of conductive inks for electrochemical sensors and biosensors. Microchem. J. 164, 105998 (2021). https://doi.org/10.1016/j.microc.2021.105998
S. Chen, H.-Z. Wang, R.-Q. Zhao, W. Rao, J. Liu, Liquid metal composites. Matter 2, 1446–1480 (2020). https://doi.org/10.1016/j.matt.2020.03.016
Y. Lin, J. Genzer, M.D. Dickey, Attributes, fabrication, and applications of Gallium-based liquid metal ps. Adv. Sci. 7, 2000192 (2020). https://doi.org/10.1002/advs.202000192
L. Teng, S. Ye, S. Handschuh-Wang, X. Zhou, T. Gan et al., Liquid metal-based transient circuits for flexible and recyclable electronics. Adv. Funct. Mater. 29, 1808739 (2019). https://doi.org/10.1002/adfm.201808739
Y.-H. Wu, Z.-F. Deng, Z.-F. Peng, R.-M. Zheng, S.-Q. Liu et al., A novel strategy for preparing stretchable and reliable biphasic liquid metal. Adv. Funct. Mater. 29, 1903840 (2019). https://doi.org/10.1002/adfm.201903840
B. Ma, C. Xu, J. Chi, J. Chen, C. Zhao et al., A versatile approach for direct patterning of liquid metal using magnetic field. Adv. Funct. Mater. 29, 1901370 (2019). https://doi.org/10.1002/adfm.201901370
L. Zheng, M. Zhu, B. Wu, Z. Li, S. Sun et al., Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing. Sci. Adv. 7, ebag4041 (2021). https://doi.org/10.1126/sciadv.abg4041
Y. Lin, Y. Liu, J. Genzer, M.D. Dickey, Shape-transformable liquid metal nanops in aqueous solution. Chem. Sci. 8, 3832–3837 (2017). https://doi.org/10.1039/C7SC00057J
Y. Liu, W. Zhang, H. Wang, Synthesis and application of core–shell liquid metal ps: a perspective of surface engineering. Mater. Horiz. 8, 56–77 (2021). https://doi.org/10.1039/D0MH01117G
Y. Xin, H. Peng, J. Xu, J. Zhang, Ultrauniform embedded liquid metal in sulfur polymers for recyclable, conductive, and self-healable materials. Adv. Funct. Mater. 29, 1808989 (2019). https://doi.org/10.1002/adfm.201808989
X. Li, M. Li, L. Zong, X. Wu, J. You et al., Liquid metal droplets wrapped with polysaccharide microgel as biocompatible aqueous ink for flexible conductive devices. Adv. Funct. Mater. 28, 1804197 (2018). https://doi.org/10.1002/adfm.201804197
S.-Q. Yi, H. Sun, Y.-F. Jin, K.-K. Zou, J. Li et al., CNT-assisted design of stable liquid metal droplets for flexible multifunctional composites. Compos. Part B Eng. 239, 109961 (2022). https://doi.org/10.1016/j.compositesb.2022.109961
C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin et al., Advanced carbon for flexible and wearable electronics. Adv. Mater. 31, e1801072 (2019). https://doi.org/10.1002/adma.201801072
K. Chiou, S. Byun, J. Kim, J. Huang, Additive-free carbon nanotube dispersions, pastes, gels, and doughs in cresols. Proc. Natl. Acad. Sci. U. S. A. 115, 5703–5708 (2018). https://doi.org/10.1073/pnas.1800298115
W. Yu, C. Liu, S. Fan, Advances of CNT-based systems in thermal management. Nano Res. 14, 2471–2490 (2021). https://doi.org/10.1007/s12274-020-3255-1
S. Hussain, Z. Ji, A.J. Taylor, L.M. DeGraff, M. George et al., Multiwalled carbon nanotube functionalization with high molecular weight hyaluronan significantly reduces pulmonary injury. ACS Nano 10, 7675–7688 (2016). https://doi.org/10.1021/acsnano.6b03013
C. Li, S. Bolisetty, K. Chaitanya, J. Adamcik, R. Mezzenga, Tunable carbon nanotube/protein core-shell nanops with NIR- and enzymatic-responsive cytotoxicity. Adv. Mater. 25, 1010–1015 (2013). https://doi.org/10.1002/adma.201203382
X. Liang, H. Li, J. Dou, Q. Wang, W. He et al., Stable and biocompatible carbon nanotube ink mediated by silk protein for printed electronics. Adv. Mater. 32, e2000165 (2020). https://doi.org/10.1002/adma.202000165
R.I. Kunz, R.M. Brancalhão, L.F. Ribeiro, M.R. Natali, Silkworm sericin: properties and biomedical applications. BioMed Res. Int. 2016, 8175701 (2016). https://doi.org/10.1155/2016/8175701
Y. Hu, H. Zhuo, Y. Zhang, H. Lai, J. Yi et al., Graphene oxide encapsulating liquid metal to toughen hydrogel. Adv. Funct. Mater. 31, 2106761 (2021). https://doi.org/10.1002/adfm.202106761
L. Lamboni, M. Gauthier, G. Yang, Q. Wang, Silk sericin: a versatile material for tissue engineering and drug delivery. Biotechnol. Adv. 33, 1855–1867 (2015). https://doi.org/10.1016/j.biotechadv.2015.10.014
V. Mouriño, P. Newby, F. Pishbin, J.P. Cattalini, S. Lucangioli et al., Physicochemical, biological and drug-release properties of gallium crosslinked alginate/nanoparticulate bioactive glass composite films. Soft Matter 7, 6705–6712 (2011). https://doi.org/10.1039/C1SM05331K
V. Jost, M. Reinelt, Effect of Ca2+ induced crosslinking on the mechanical and barrier properties of t alginate films. J. Appl. Polym. Sci. 135, 45754 (2018). https://doi.org/10.1002/app.45754
I.D. Tevis, L.B. Newcomb, M. Thuo, Synthesis of liquid core-shell ps and solid patchy multicomponent ps by shearing liquids into complex ps (SLICE). Langmuir 30, 14308–14313 (2014). https://doi.org/10.1021/la5035118
H. Wang, B. Yuan, S. Liang, R. Guo, W. Rao et al., PLUS-M: a porous liquid-metal enabled ubiquitous soft material. Mater. Horiz. 5, 222–229 (2018). https://doi.org/10.1039/C7MH00989E
U. Consotium, UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 51, D523–D531 (2023). https://doi.org/10.1093/nar/gkac1052
T.-T. Cao, Y.-Q. Zhang, The potential of silk sericin protein as a serum substitute or an additive in cell culture and cryopreservation. Amino Acids 49, 1029–1039 (2017). https://doi.org/10.1007/s00726-017-2396-3
F. Tian, D. Cui, H. Schwarz, G.G. Estrada, H. Kobayashi, Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol. In Vitro 20, 1202–1212 (2006). https://doi.org/10.1016/j.tiv.2006.03.008
X. Li, M. Li, J. Xu, J. You, Z. Yang et al., Evaporation-induced sintering of liquid metal droplets with biological nanofibrils for flexible conductivity and responsive actuation. Nat. Commun. 10, 3514 (2019). https://doi.org/10.1038/s41467-019-11466-5
S. Zachariah, Y.-L. Liu, Nanocomposites of polybenzoxazine-functionalized multiwalled carbon nanotubes and polybenzoxazine for anticorrosion application. Compos. Sci. Technol. 194, 108169 (2020). https://doi.org/10.1016/j.compscitech.2020.108169
S. Adil, W.S. Kim, T.H. Kim, S. Lee, S.W. Hong et al., Defective, oxygen-functionalized multi-walled carbon nanotubes as an efficient peroxymonosulfate activator for degradation of organic pollutants. J. Hazard. Mater. 396, 122757 (2020). https://doi.org/10.1016/j.jhazmat.2020.122757
M. Amjadi, M. Sitti, Self-sensing paper actuators based on graphite-carbon nanotube hybrid films. Adv. Sci. 5, 1800239 (2018). https://doi.org/10.1002/advs.201800239
X. Qi, Y. Liu, L. Yu, Z. Yu, L. Chen et al., Versatile liquid metal/alginate composite fibers with enhanced flame retardancy and triboelectric performance for smart wearable textiles. Adv. Sci. 10, e2303406 (2023). https://doi.org/10.1002/advs.202303406
A. Mohammadi, M. Barikani, A.H. Doctorsafaei, A.P. Isfahani, E. Shams et al., Aqueous dispersion of polyurethane nanocomposites based on calix[4]arenes modified graphene oxide nanosheets: preparation, characterization, and anti-corrosion properties. Chem. Eng. J. 349, 466–480 (2018). https://doi.org/10.1016/j.cej.2018.05.111
V. Slabov, S. Kopyl, M.P. Soares Dos Santos, A.L. Kholkin, Natural and eco-friendly materials for triboelectric energy harvesting. Nano-Micro Lett. 12, 42 (2020). https://doi.org/10.1007/s40820-020-0373-y
S. Niu, S. Wang, L. Lin, Y. Liu, Y.S. Zhou et al., Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6, 3576 (2013). https://doi.org/10.1039/c3ee42571a
Z.L. Wang, On the first principle theory of nanogenerators from Maxwell’s equations. Nano Energy 68, 104272 (2020). https://doi.org/10.1016/j.nanoen.2019.104272