Fast Growth of Highly Ordered TiO2 Nanotube Arrays on Si Substrate under High-Field Anodization
Corresponding Author: Maojun Zheng
Nano-Micro Letters,
Vol. 9 No. 2 (2017), Article Number: 13
Abstract
Highly ordered TiO2 nanotube arrays (NTAs) on Si substrate possess broad applications due to its high surface-to-volume ratio and novel functionalities, however, there are still some challenges on facile synthesis. Here, we report a simple and cost-effective high-field (90–180 V) anodization method to grow highly ordered TiO2 NTAs on Si substrate, and investigate the effect of anodization time, voltage, and fluoride content on the formation of TiO2 NTAs. The current density–time curves, recorded during anodization processes, can be used to determine the optimum anodization time. It is found that the growth rate of TiO2 NTAs is improved significantly under high field, which is nearly 8 times faster than that under low fields (40–60 V). The length and growth rate of the nanotubes are further increased with the increase of fluoride content in the electrolyte.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V. Zwilling, E.D. Ceretti, A.B. Forveille, D. David, M.Y. Perrin, M. Aucouturier, Structure and physicochemistry of anodic oxide films on titanium and TA6 V alloy. Surf. Interface Anal. 27(7), 629–637 (1999). doi:10.1002/(SICI)1096-9918(199907)27
- E.A. Ferreira, R.C. Rocha-Filho, S.R. Biaggio, N. Bocchi, Corrosion resistance of the Ti–50Zr at.% alloy after anodization in different acidic electrolytes. Corros. Sci. 52(12), 4058–4063 (2010). doi:10.1016/j.corsci.2010.08.021
- S. Ningshen, U. Kamachi Mudali, P. Mukherjee, A. Sarkar, P. Barat, N. Padhy, B. Raj, Influence of oxygen ion irradiation on the corrosion aspects of Ti-5 %Ta-2 %Nb alloy and oxide coated Titanium. Corros. Sci. 50(8), 2124–2134 (2008). doi:10.1016/j.corsci.2008.03.019
- P.M. Perillo, D.F. Rodríguez, The gas sensing properties at room temperature of TiO2 nanotubes by anodization. Sens. Actuators, B 171–172, 639–643 (2012). doi:10.1016/j.snb.2012.05.047
- S. Li, J. Qiu, M. Ling, F. Peng, B. Wood, S. Zhang, Photoelectrochemical characterization of hydrogenated TiO2 nanotubes as photoanodes for sensing applications. ACS Appl. Mater. Interfaces 5(21), 11129–11135 (2013). doi:10.1021/am403325a
- V. Galstyan, E. Comini, G. Faglia, G. Sberveglieri, TiO2 nanotubes: recent advances in synthesis and gas sensing properties. Sensors 13(11), 14813–14838 (2013). doi:10.3390/s131114813
- M.M. Byranvand, A.N. Kharat, M.H. Bazargan, Titania nanostructures for dye-sensitized solar cells. Nano Micro Lett. 4(4), 253–266 (2012). doi:10.1007/BF03353723
- M. Boehme, W. Ensinger, Mixed phase anatase/rutile titanium dioxide nanotubes for enhanced photocatalytic degradation of methylene-blue. Nano Micro Lett. 3(4), 236–241 (2011). doi:10.1007/BF03353678
- Y.B. Liu, H.B. Zhou, J.H. Li, H.C. Chen, D. Li, B.X. Zhou, W.M. Cai, Enhanced photoelectrochemical properties of Cu2O-loaded short TiO2 nanotube array electrode prepared by sonoelectrochemical deposition. Nano Micro Lett. 2(4), 277–284 (2010). doi:10.1007/BF03353855
- L. Zheng, S. Han, H. Liu, P. Yu, X. Fang, Hierarchical MoS2 nanosheet@TiO2 nanotube array composites with enhanced photocatalytic and photocurrent performances. Small 12(11), 1527–1536 (2016). doi:10.1002/smll.201503441
- N. Gao, X. Fang, Synthesis and development of graphene-inorganic semiconductor nanocomposites. Chem. Rev. 115(16), 8294–8343 (2015). doi:10.1021/cr400607y
- Y. Chen, J. Ni, H. Wu, R. Zhang, C. Zhao, W. Chen, F. Zhang, S. Zhang, X. Zhang, Study of cell behaviors on anodized TiO2 nanotube arrays with coexisting multi-size diameters. Nano Micro Lett. 8(1), 61–69 (2015). doi:10.1007/s40820-015-0062-4
- Y. Lai, J. Huang, Z. Cui, M. Ge, K.Q. Zhang, Z. Chen, L. Chi, Recent advances in TiO2-based nanostructured surfaces with controllable wettability and adhesion. Small 12(16), 2203–2224 (2016). doi:10.1002/smll.201501837
- Y. Tang, Y. Zhang, J. Deng, J. Wei, H. Le Tam, B.K. Chandran, Z. Dong, Z. Chen, X. Chen, Mechanical force-driven growth of elongated bending TiO2-based nanotubular materials for ultrafast rechargeable lithium ion batteries. Adv. Mater. 26(35), 6111–6118 (2014). doi:10.1002/adma.201402000
- L. Qin, Q. Chen, R. Lan, R. Jiang, X. Quan, B. Xu, F. Zhang, Y. Jia, Effect of anodization parameters on morphology and photocatalysis properties of TiO2 nanotube arrays. J. Mater. Sci. Technol. 31(10), 1059–1064 (2015). doi:10.1016/j.jmst.2015.07.012
- Y. Alivov, M. Pandikunta, S. Nikishin, Z.Y. Fan, The anodization voltage influence on the properties of TiO2 nanotubes grown by electrochemical oxidation. Nanotechnology 20(22), 225602–225608 (2009). doi:10.1088/0957-4484/20/22/225602
- D. Regonini, F.J. Clemens, Anodized TiO2 nanotubes: effect of anodizing time on film length, morphology and photoelectrochemical properties. Mater. Lett. 142, 97–101 (2015). doi:10.1016/j.matlet.2014.11.145
- S.P. Albu, P. Roy, S. Virtanen, P. Schmuki, Self-organized TiO2 nanotube arrays: critical effects on morphology and growth. Israel J. Chem. 50(4), 453–467 (2010). doi:10.1002/ijch.201000059
- R. Beranek, H. Hildebrand, P. Schmuki, Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochem. Solid State Lett. 6(3), B12–B14 (2003). doi:10.1149/1.1545192
- H. Tsuchiya, J.M. Macak, A. Ghicov, L. Taveira, P. Schmuki, Self-organized porous TiO2 and ZrO2 produced by anodization. Corros. Sci. 47(12), 3324–3335 (2005). doi:10.1016/j.corsci.2005.015.04
- H. Tsuchiya, J.M. Macak, A. Ghicov, A.S. Räder, L. Taveira, P. Schmuki, Characterization of electronic properties of TiO2 nanotube films. Corros. Sci. 49(1), 203–210 (2007). doi:10.1016/j.corsci.2006.05.009
- A. Hazra, K. Dutta, B. Bhowmik, P.P. Chattopadhyay, P. Bhattacharyya, Room temperature alcohol sensing by oxygen vacancy controlled TiO2 nnanotube array. Appl. Phys. Lett. 105(8), 081604–081608 (2014). doi:10.1063/1.4894008
- A. Hazra, B. Bhowmik, K. Dutta, P.P. Chattopadhyay, P. Bhattacharyya, Stoichiometry, length, and wall thickness optimization of TiO2 nanotube array for efficient alcohol sensing. ACS Appl. Mater. Interfaces 7(18), 9336–9348 (2015). doi:10.1021/acsami.5b01785
- P. Acevedo-Pe-a, L. Lartundo-Rojas, I. González, Effect of water and fluoride content on morphology and barrier layer properties of TiO2 nanotubes grown in ethylene glycol-based electrolytes. J. Solid State Electrochem. 17(11), 2939–2947 (2013). doi:10.1007/s10008-013-2212-2
- F. Schmidt-Stein, S. Thiemann, S. Berger, R. Hahn, P. Schmuki, mechanical properties of anatase and semi-metallic TiO2 nanotubes. Acta Mater. 58(19), 6317–6323 (2010). doi:10.1016/j.actamat.2010.07.053
- J. Moon, H.-P. Hedman, M. Kemell, A. Tuominen, R. Punkkinen, Hydrogen sensor of pd-decorated tubular TiO2 layer prepared by anodization with patterned electrodes on SiO2/Si substrate. Sens. Actuators, B 222, 190–197 (2016). doi:10.1016/j.snb.2015.08.054
- D.H. Kim, Y.S. Shim, H.G. Moon, H.J. Chang, D. Su et al., Highly ordered TiO2 nanotubes on patterned substrates: synthesis-in-place for ultrasensitive chemiresistors. J. Phys. Chem. C 117(34), 17824–17831 (2013). doi:10.1021/jp405150b
- J. Moon, H.-P. Hedman, M. Kemell, A. Suominen, E. Mäkilä, H. Kim, A. Tuominen, R. Punkkinen, A study of monitoring hydrogen using mesoporous TiO2 synthesized by anodization. Sens. Actuators, B 189, 246–250 (2013). doi:10.1016/j.snb.2013.05.070
- O.K. Varghese, M. Paulose, C.A. Grimes, Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nat. Nanotechnol. 4(9), 592–597 (2009). doi:10.1038/nnano.2009.226
- S.L. Lim, Y. Liu, J. Li, E.T. Kang, C.K. Ong, Transparent titania nanotubes of micrometer length prepared by anodization of titanium thin film deposited on ITO. Appl. Surf. Sci. 257(15), 6612–6617 (2011). doi:10.1016/j.apsusc.2011.02.087
- H.A. Hamedani, S.W. Lee, A. Al-Sammarraie, Z.R. Hesabi, A. Bhatti, F.M. Alamgir, H. Garmestani, M.A. Khaleel, Synthesis and growth mechanism of thin-film TiO2 nanotube aarrays on focused-ion-beam micropatterned 3D isolated regions of titanium on silicon. ACS Appl. Mater. Interfaces 5(18), 9026–9033 (2013). doi:10.1021/am402203m
- K.N. Chappanda, Y.R. Smith, M. Misra, S.K. Mohanty, Site-specific and patterned growth of TiO2 nanotube arrays from e-beam evaporated thin titanium film on Si wafer. Nanotechnology 23(38), 385601 (2012). doi:10.1088/0957-4484/23/38/385601
- K.N. Chappanda, Y.R. Smith, S.K. Mohanty, L.W. Rieth, P. Tathireddy, M. Misra, Growth and characterization of TiO2 nanotubes from sputtered Ti film on Si substrate. Nanoscale Res. Lett. 7, 388–395 (2012). doi:10.1186/1556-276X-7-388
- S. Farsinezhad, A.N. Dalrymple, K. Shankar, Toward single-step anodic fabrication of monodisperse TiO2 nanotube arrays on non-native substrates. Phys. Status Solidi A 211(5), 1113–1121 (2014). doi:10.1002/pssa.201330649
- S. Ono, M. Saito, H. Asoh, Self-ordering of anodic porous alumina induced by local current concentration: burning. Electrochem. Solid State Lett. 7(7), B21–B24 (2004). doi:10.1149/1.1738553
- Y. Li, M. Zheng, L. Ma, W. Shen, Fabrication of highly ordered nanoporous alumina films by stable high-field anodization. Nanotechnology 17(20), 5101–5105 (2006). doi:10.1088/0957-4484/17/20/010
- X. Yuan, M. Zheng, L. Ma, W. Shen, High-speed growth of TiO2 nanotube arrays with gradient pore diameter and ultrathin tube wall under high-field anodization. Nanotechnology 21(40), 405302–405311 (2010). doi:10.1088/0957-4484/21/40/405302
- S.P. Albu, A. Ghicov, S. Aldabergenova, P. Drechsel, D. LeClere, G.E. Thompson, J.M. Macak, P. Schmuki, Formation of double-walled TiO2 nanotubes and robust anatase membranes. Adv. Mater. 20(21), 4135–4139 (2008). doi:10.1002/adma.200801189
- A. Valota, D.J. LeClere, P. Skeldon, M. Curioni, T. Hashimoto, S. Berger, J. Kunze, P. Schmuki, G.E. Thompson, Influence of water content on nanotubular anodic titania formed in fluoride/glycerol electrolytes. Electrochim. Acta 54(18), 4321–4327 (2009). doi:10.1016/j.electacta.2009.02.098
- D. Yu, X. Zhu, Z. Xu, X. Zhong, Q. Gui, Y. Song, S. Zhang, X. Chen, D. Li, Facile method to enhance the adhesion of TiO2 nanotube arrays to Ti substrate. ACS Appl. Mater. Interfaces 6(11), 8001–8005 (2014). doi:10.1021/am5015716
- R.P. Antony, T. Mathews, S. Dash, A.K. Tyagi, B. Raj, X-ray photoelectron spectroscopic studies of anodically synthesized self-aligned TiO2 nanotube arrays and the effect of electrochemical parameters on tube morphology. Mater. Chem. Phys. 132(2–3), 957–966 (2012). doi:10.1016/j.matchemphys.2011.12.041
- J. Wang, Z.Q. Lin, Anodic formation of ordered TiO2 nanotube arrays: effects of electrolyte temperature and anodization potential. J. Phys. Chem. C 113(10), 4026–4030 (2009). doi:10.1021/jp811201x
- H. Yin, H. Liu, W.Z. Shen, The large diameter and fast growth of self-organized TiO2 nanotube arrays achieved via electrochemical anodization. Nanotechnology 21(3), 035601–035608 (2010). doi:10.1088/0957-4484/21/3/035601
- S.P. Albu, P. Schmuki, Influence of anodization parameters on the expansion factor of TiO2 nanotubes. Electrochim. Acta 91, 90–95 (2013). doi:10.1016/j.electacta.2012.12.094
- C.C. Chen, S.J. Hsieh, Evaluation of fluorine ion concentration in TiO2 NT anodization process. J. Electrochem. Soc. 157(6), K125–K130 (2010). doi:10.1149/1.3374640
- R. Kojima, Y. Kimura, M. Bitoh, M. Abe, M. Niwano, Investigation of influence of electrolyte composition on formation of anodic titanium oxide nanotube films. J. Electrochem. Soc. 159(11), D629–D636 (2012). doi:10.1149/2.003211jes
- Y. Sorachon, K. Woraphong, P. Nutdanai, Effect of anodization parameters on morphologies of TiO2 nanotube arrays and their surface properties. J. Chem. Chem. Eng. 6, 686–691 (2012)
- K. Zhu, N.R. Neale, A. Miedaner, A.J. Frank, Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 7(1), 69–74 (2007). doi:10.1021/nl062000o
- J. Wang, Z. Lin, Freestanding TiO2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization. Chem. Mater. 20(4), 1257–1261 (2008). doi:10.1021/cm7028917
- V.V. Yakovlev, G. Scarel, C.R. Aita, S. Mochizuki, Short-range order in ultrathin film titanium dioxide studied by raman spectroscopy. Appl. Phys. Lett. 76(9), 1107–1110 (2000). doi:10.1063/1.125953
- B.D. Fraters, E. Cavaliere, G. Mul, L. Gavioli, Synthesis of photocatalytic TiO2 nano-coatings by supersonic cluster beam deposition. J. Alloys. Compd. 615(1), S467–S471 (2014). doi:10.1016/j.jallcom.2013.12.037
References
V. Zwilling, E.D. Ceretti, A.B. Forveille, D. David, M.Y. Perrin, M. Aucouturier, Structure and physicochemistry of anodic oxide films on titanium and TA6 V alloy. Surf. Interface Anal. 27(7), 629–637 (1999). doi:10.1002/(SICI)1096-9918(199907)27
E.A. Ferreira, R.C. Rocha-Filho, S.R. Biaggio, N. Bocchi, Corrosion resistance of the Ti–50Zr at.% alloy after anodization in different acidic electrolytes. Corros. Sci. 52(12), 4058–4063 (2010). doi:10.1016/j.corsci.2010.08.021
S. Ningshen, U. Kamachi Mudali, P. Mukherjee, A. Sarkar, P. Barat, N. Padhy, B. Raj, Influence of oxygen ion irradiation on the corrosion aspects of Ti-5 %Ta-2 %Nb alloy and oxide coated Titanium. Corros. Sci. 50(8), 2124–2134 (2008). doi:10.1016/j.corsci.2008.03.019
P.M. Perillo, D.F. Rodríguez, The gas sensing properties at room temperature of TiO2 nanotubes by anodization. Sens. Actuators, B 171–172, 639–643 (2012). doi:10.1016/j.snb.2012.05.047
S. Li, J. Qiu, M. Ling, F. Peng, B. Wood, S. Zhang, Photoelectrochemical characterization of hydrogenated TiO2 nanotubes as photoanodes for sensing applications. ACS Appl. Mater. Interfaces 5(21), 11129–11135 (2013). doi:10.1021/am403325a
V. Galstyan, E. Comini, G. Faglia, G. Sberveglieri, TiO2 nanotubes: recent advances in synthesis and gas sensing properties. Sensors 13(11), 14813–14838 (2013). doi:10.3390/s131114813
M.M. Byranvand, A.N. Kharat, M.H. Bazargan, Titania nanostructures for dye-sensitized solar cells. Nano Micro Lett. 4(4), 253–266 (2012). doi:10.1007/BF03353723
M. Boehme, W. Ensinger, Mixed phase anatase/rutile titanium dioxide nanotubes for enhanced photocatalytic degradation of methylene-blue. Nano Micro Lett. 3(4), 236–241 (2011). doi:10.1007/BF03353678
Y.B. Liu, H.B. Zhou, J.H. Li, H.C. Chen, D. Li, B.X. Zhou, W.M. Cai, Enhanced photoelectrochemical properties of Cu2O-loaded short TiO2 nanotube array electrode prepared by sonoelectrochemical deposition. Nano Micro Lett. 2(4), 277–284 (2010). doi:10.1007/BF03353855
L. Zheng, S. Han, H. Liu, P. Yu, X. Fang, Hierarchical MoS2 nanosheet@TiO2 nanotube array composites with enhanced photocatalytic and photocurrent performances. Small 12(11), 1527–1536 (2016). doi:10.1002/smll.201503441
N. Gao, X. Fang, Synthesis and development of graphene-inorganic semiconductor nanocomposites. Chem. Rev. 115(16), 8294–8343 (2015). doi:10.1021/cr400607y
Y. Chen, J. Ni, H. Wu, R. Zhang, C. Zhao, W. Chen, F. Zhang, S. Zhang, X. Zhang, Study of cell behaviors on anodized TiO2 nanotube arrays with coexisting multi-size diameters. Nano Micro Lett. 8(1), 61–69 (2015). doi:10.1007/s40820-015-0062-4
Y. Lai, J. Huang, Z. Cui, M. Ge, K.Q. Zhang, Z. Chen, L. Chi, Recent advances in TiO2-based nanostructured surfaces with controllable wettability and adhesion. Small 12(16), 2203–2224 (2016). doi:10.1002/smll.201501837
Y. Tang, Y. Zhang, J. Deng, J. Wei, H. Le Tam, B.K. Chandran, Z. Dong, Z. Chen, X. Chen, Mechanical force-driven growth of elongated bending TiO2-based nanotubular materials for ultrafast rechargeable lithium ion batteries. Adv. Mater. 26(35), 6111–6118 (2014). doi:10.1002/adma.201402000
L. Qin, Q. Chen, R. Lan, R. Jiang, X. Quan, B. Xu, F. Zhang, Y. Jia, Effect of anodization parameters on morphology and photocatalysis properties of TiO2 nanotube arrays. J. Mater. Sci. Technol. 31(10), 1059–1064 (2015). doi:10.1016/j.jmst.2015.07.012
Y. Alivov, M. Pandikunta, S. Nikishin, Z.Y. Fan, The anodization voltage influence on the properties of TiO2 nanotubes grown by electrochemical oxidation. Nanotechnology 20(22), 225602–225608 (2009). doi:10.1088/0957-4484/20/22/225602
D. Regonini, F.J. Clemens, Anodized TiO2 nanotubes: effect of anodizing time on film length, morphology and photoelectrochemical properties. Mater. Lett. 142, 97–101 (2015). doi:10.1016/j.matlet.2014.11.145
S.P. Albu, P. Roy, S. Virtanen, P. Schmuki, Self-organized TiO2 nanotube arrays: critical effects on morphology and growth. Israel J. Chem. 50(4), 453–467 (2010). doi:10.1002/ijch.201000059
R. Beranek, H. Hildebrand, P. Schmuki, Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochem. Solid State Lett. 6(3), B12–B14 (2003). doi:10.1149/1.1545192
H. Tsuchiya, J.M. Macak, A. Ghicov, L. Taveira, P. Schmuki, Self-organized porous TiO2 and ZrO2 produced by anodization. Corros. Sci. 47(12), 3324–3335 (2005). doi:10.1016/j.corsci.2005.015.04
H. Tsuchiya, J.M. Macak, A. Ghicov, A.S. Räder, L. Taveira, P. Schmuki, Characterization of electronic properties of TiO2 nanotube films. Corros. Sci. 49(1), 203–210 (2007). doi:10.1016/j.corsci.2006.05.009
A. Hazra, K. Dutta, B. Bhowmik, P.P. Chattopadhyay, P. Bhattacharyya, Room temperature alcohol sensing by oxygen vacancy controlled TiO2 nnanotube array. Appl. Phys. Lett. 105(8), 081604–081608 (2014). doi:10.1063/1.4894008
A. Hazra, B. Bhowmik, K. Dutta, P.P. Chattopadhyay, P. Bhattacharyya, Stoichiometry, length, and wall thickness optimization of TiO2 nanotube array for efficient alcohol sensing. ACS Appl. Mater. Interfaces 7(18), 9336–9348 (2015). doi:10.1021/acsami.5b01785
P. Acevedo-Pe-a, L. Lartundo-Rojas, I. González, Effect of water and fluoride content on morphology and barrier layer properties of TiO2 nanotubes grown in ethylene glycol-based electrolytes. J. Solid State Electrochem. 17(11), 2939–2947 (2013). doi:10.1007/s10008-013-2212-2
F. Schmidt-Stein, S. Thiemann, S. Berger, R. Hahn, P. Schmuki, mechanical properties of anatase and semi-metallic TiO2 nanotubes. Acta Mater. 58(19), 6317–6323 (2010). doi:10.1016/j.actamat.2010.07.053
J. Moon, H.-P. Hedman, M. Kemell, A. Tuominen, R. Punkkinen, Hydrogen sensor of pd-decorated tubular TiO2 layer prepared by anodization with patterned electrodes on SiO2/Si substrate. Sens. Actuators, B 222, 190–197 (2016). doi:10.1016/j.snb.2015.08.054
D.H. Kim, Y.S. Shim, H.G. Moon, H.J. Chang, D. Su et al., Highly ordered TiO2 nanotubes on patterned substrates: synthesis-in-place for ultrasensitive chemiresistors. J. Phys. Chem. C 117(34), 17824–17831 (2013). doi:10.1021/jp405150b
J. Moon, H.-P. Hedman, M. Kemell, A. Suominen, E. Mäkilä, H. Kim, A. Tuominen, R. Punkkinen, A study of monitoring hydrogen using mesoporous TiO2 synthesized by anodization. Sens. Actuators, B 189, 246–250 (2013). doi:10.1016/j.snb.2013.05.070
O.K. Varghese, M. Paulose, C.A. Grimes, Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nat. Nanotechnol. 4(9), 592–597 (2009). doi:10.1038/nnano.2009.226
S.L. Lim, Y. Liu, J. Li, E.T. Kang, C.K. Ong, Transparent titania nanotubes of micrometer length prepared by anodization of titanium thin film deposited on ITO. Appl. Surf. Sci. 257(15), 6612–6617 (2011). doi:10.1016/j.apsusc.2011.02.087
H.A. Hamedani, S.W. Lee, A. Al-Sammarraie, Z.R. Hesabi, A. Bhatti, F.M. Alamgir, H. Garmestani, M.A. Khaleel, Synthesis and growth mechanism of thin-film TiO2 nanotube aarrays on focused-ion-beam micropatterned 3D isolated regions of titanium on silicon. ACS Appl. Mater. Interfaces 5(18), 9026–9033 (2013). doi:10.1021/am402203m
K.N. Chappanda, Y.R. Smith, M. Misra, S.K. Mohanty, Site-specific and patterned growth of TiO2 nanotube arrays from e-beam evaporated thin titanium film on Si wafer. Nanotechnology 23(38), 385601 (2012). doi:10.1088/0957-4484/23/38/385601
K.N. Chappanda, Y.R. Smith, S.K. Mohanty, L.W. Rieth, P. Tathireddy, M. Misra, Growth and characterization of TiO2 nanotubes from sputtered Ti film on Si substrate. Nanoscale Res. Lett. 7, 388–395 (2012). doi:10.1186/1556-276X-7-388
S. Farsinezhad, A.N. Dalrymple, K. Shankar, Toward single-step anodic fabrication of monodisperse TiO2 nanotube arrays on non-native substrates. Phys. Status Solidi A 211(5), 1113–1121 (2014). doi:10.1002/pssa.201330649
S. Ono, M. Saito, H. Asoh, Self-ordering of anodic porous alumina induced by local current concentration: burning. Electrochem. Solid State Lett. 7(7), B21–B24 (2004). doi:10.1149/1.1738553
Y. Li, M. Zheng, L. Ma, W. Shen, Fabrication of highly ordered nanoporous alumina films by stable high-field anodization. Nanotechnology 17(20), 5101–5105 (2006). doi:10.1088/0957-4484/17/20/010
X. Yuan, M. Zheng, L. Ma, W. Shen, High-speed growth of TiO2 nanotube arrays with gradient pore diameter and ultrathin tube wall under high-field anodization. Nanotechnology 21(40), 405302–405311 (2010). doi:10.1088/0957-4484/21/40/405302
S.P. Albu, A. Ghicov, S. Aldabergenova, P. Drechsel, D. LeClere, G.E. Thompson, J.M. Macak, P. Schmuki, Formation of double-walled TiO2 nanotubes and robust anatase membranes. Adv. Mater. 20(21), 4135–4139 (2008). doi:10.1002/adma.200801189
A. Valota, D.J. LeClere, P. Skeldon, M. Curioni, T. Hashimoto, S. Berger, J. Kunze, P. Schmuki, G.E. Thompson, Influence of water content on nanotubular anodic titania formed in fluoride/glycerol electrolytes. Electrochim. Acta 54(18), 4321–4327 (2009). doi:10.1016/j.electacta.2009.02.098
D. Yu, X. Zhu, Z. Xu, X. Zhong, Q. Gui, Y. Song, S. Zhang, X. Chen, D. Li, Facile method to enhance the adhesion of TiO2 nanotube arrays to Ti substrate. ACS Appl. Mater. Interfaces 6(11), 8001–8005 (2014). doi:10.1021/am5015716
R.P. Antony, T. Mathews, S. Dash, A.K. Tyagi, B. Raj, X-ray photoelectron spectroscopic studies of anodically synthesized self-aligned TiO2 nanotube arrays and the effect of electrochemical parameters on tube morphology. Mater. Chem. Phys. 132(2–3), 957–966 (2012). doi:10.1016/j.matchemphys.2011.12.041
J. Wang, Z.Q. Lin, Anodic formation of ordered TiO2 nanotube arrays: effects of electrolyte temperature and anodization potential. J. Phys. Chem. C 113(10), 4026–4030 (2009). doi:10.1021/jp811201x
H. Yin, H. Liu, W.Z. Shen, The large diameter and fast growth of self-organized TiO2 nanotube arrays achieved via electrochemical anodization. Nanotechnology 21(3), 035601–035608 (2010). doi:10.1088/0957-4484/21/3/035601
S.P. Albu, P. Schmuki, Influence of anodization parameters on the expansion factor of TiO2 nanotubes. Electrochim. Acta 91, 90–95 (2013). doi:10.1016/j.electacta.2012.12.094
C.C. Chen, S.J. Hsieh, Evaluation of fluorine ion concentration in TiO2 NT anodization process. J. Electrochem. Soc. 157(6), K125–K130 (2010). doi:10.1149/1.3374640
R. Kojima, Y. Kimura, M. Bitoh, M. Abe, M. Niwano, Investigation of influence of electrolyte composition on formation of anodic titanium oxide nanotube films. J. Electrochem. Soc. 159(11), D629–D636 (2012). doi:10.1149/2.003211jes
Y. Sorachon, K. Woraphong, P. Nutdanai, Effect of anodization parameters on morphologies of TiO2 nanotube arrays and their surface properties. J. Chem. Chem. Eng. 6, 686–691 (2012)
K. Zhu, N.R. Neale, A. Miedaner, A.J. Frank, Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 7(1), 69–74 (2007). doi:10.1021/nl062000o
J. Wang, Z. Lin, Freestanding TiO2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization. Chem. Mater. 20(4), 1257–1261 (2008). doi:10.1021/cm7028917
V.V. Yakovlev, G. Scarel, C.R. Aita, S. Mochizuki, Short-range order in ultrathin film titanium dioxide studied by raman spectroscopy. Appl. Phys. Lett. 76(9), 1107–1110 (2000). doi:10.1063/1.125953
B.D. Fraters, E. Cavaliere, G. Mul, L. Gavioli, Synthesis of photocatalytic TiO2 nano-coatings by supersonic cluster beam deposition. J. Alloys. Compd. 615(1), S467–S471 (2014). doi:10.1016/j.jallcom.2013.12.037