In Situ Coupling Strategy for Anchoring Monodisperse Co9S8 Nanoparticles on S and N Dual-Doped Graphene as a Bifunctional Electrocatalyst for Rechargeable Zn–Air Battery
Corresponding Author: Qian Duan
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 4
Abstract
An in situ coupling strategy to prepare Co9S8/S and N dual-doped graphene composite (Co9S8/NSG) has been proposed. The key point of this strategy is the function-oriented design of organic compounds. Herein, cobalt porphyrin derivatives with sulfo groups are employed as not only the coupling agents to form and anchor Co9S8 on the graphene in situ, but also the heteroatom-doped agent to generate S and N dual-doped graphene. The tight coupling of multiple active sites endows the composite materials with fast electrochemical kinetics and excellent stability for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The obtained electrocatalyst exhibits better activity parameter (ΔE = 0.82 V) and smaller Tafel slope (47.7 mV dec−1 for ORR and 69.2 mV dec−1 for OER) than commercially available Pt/C and RuO2. Most importantly, as electrocatalyst for rechargeable Zn–air battery, Co9S8/NSG displays low charge–discharge voltage gap and outstanding long-term cycle stability over 138 h compared to Pt/C–RuO2. To further broaden its application scope, a homemade all-solid-state Zn–air battery is also prepared, which displays good charge–discharge performance and cycle performance. The function-oriented design of N4-metallomacrocycle derivatives might open new avenues to strategic construction of high-performance and long-life multifunctional electrocatalysts for wider electrochemical energy applications.
Highlights:
1 An effective in situ coupling strategy is proposed to construct Co9S8 nanoparticles/doped graphene.
2 Cobalt porphyrin derivative is employed as both coupling and heteroatom-doped agents.
3 The bifunctional oxygen electrocatalyst finds application in rechargeable all-solid-state Zn–air batteries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.G. Li, H.J. Dai, Recent advances in zinc-air batteries. Chem. Soc. Rev. 43(15), 5257–5275 (2014). https://doi.org/10.1039/C4CS00015C
- Y.G. Li, M. Gong, Y.Y. Liang, J. Feng, J.E. Kim, H.L. Wang, G.S. Hong, B. Zhang, H.J. Dai, Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat. Commun. 4(5), 1805–1812 (2013). https://doi.org/10.1038/ncomms2812
- J. Fu, Z.P. Cano, M.G. Park, A.P. Yu, M. Fowler, Z.W. Chen, Electrically rechargeable zinc-air batteries: progress, challenges, and perspectives. Adv. Mater. 29(7), 1604685 (2017). https://doi.org/10.1002/adma.201604685
- T.T. Wang, Z.K. Kou, S.C. Mu, J.P. Liu, D.P. He et al., 2D dual-metal zeolitic-imidazolate-framework-(ZIF)-derived bifunctional air electrodes with ultrahigh electrochemical properties for rechargeable zinc-air batteries. Adv. Funct. Mater. 28(5), 1705048 (2017). https://doi.org/10.1002/adfm.201705048
- F.L. Meng, H.X. Zhong, D. Bao, J.M. Yan, X.B. Zhang, In situ coupling of strung Co4N and intertwined N–C fibers towards free-standing bifunctional cathode for robust, efficient, and flexible Zn–air batteries. J. Am. Chem. Soc. 138(32), 10226–10231 (2016). https://doi.org/10.1021/jacs.6b05046
- D.U. Lee, J.Y. Choi, K. Feng, H.W. Park, Z.W. Chen, Advanced extremely durable 3D bifunctional air electrodes for rechargeable zinc-air batteries. Adv. Energy Mater. 4(6), 1301389 (2014). https://doi.org/10.1002/aenm.201301389
- H.B. Yang, J. Miao, S.F. Hung, J. Chen, H.B. Tao et al., Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2(4), 1501122 (2016). https://doi.org/10.1126/sciadv.1501122
- X.P. Han, X.Y. Wu, Y.D. Deng, J. Liu, J. Lu, C. Zhong, W.B. Hu, Ultrafine Pt nanoparticle-decorated pyrite-type CoS2 nanosheet arrays coated on carbon cloth as a bifunctional electrode for overall water splitting. Adv. Energy Mater. 8(24), 1800935 (2018). https://doi.org/10.1002/aenm.201800935
- Z. Chen, A.P. Yu, D. Higgins, H. Li, H.J. Wang, Z.W. Chen, Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application. Nano Lett. 12(4), 1946–1952 (2012). https://doi.org/10.1021/nl2044327
- X.P. Han, X.Y. Wu, C. Zhong, Y.D. Deng, N.Q. Zhao, W.B. Hu, NiCo2S4 nanocrystals anchored on nitrogen-doped carbon nanotubes as a highly efficient bifunctional electrocatalyst for rechargeable zinc-air batteries. Nano Energy 31, 541–550 (2017). https://doi.org/10.1016/j.nanoen.2016.12.008
- J. Yin, Y.X. Li, F. Lv, M. Lu, K. Sun et al., Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn–air batteries driven water splitting devices. Adv. Mater. 29(47), 1704681 (2017). https://doi.org/10.1002/adma.201704681
- Y.P. Tang, F. Jing, Z.X. Xu, F. Zhang, Y.Y. Mai, D.Q. Wu, Highly crumpled hybrids of nitrogen/sulfur dual-doped graphene and Co9S8 nanoplates as efficient bifunctional oxygen electrocatalysts. ACS Appl. Mater. Interfaces 9(14), 12340–12347 (2017). https://doi.org/10.1021/acsami.6b15461
- H.X. Zhong, K. Li, Q. Zhang, J. Wang, F.L. Meng, Z.J. Wu, J.M. Yan, X.B. Zhang, In situ anchoring of Co9S8 nanoparticles on N and S co-doped porous carbon tube as bifunctional oxygen electrocatalysts. NPG Asia Mater. 8(9), e308 (2016). https://doi.org/10.1038/am.2016.132
- S.S. Li, P.P. Cheng, J.X. Luo, D. Zhou, W.M. Xu, J.W. Li, R.C. Li, D.S. Yuan, High-performance flexible asymmetric supercapacitor based on CoAl-LDH and rGO electrodes. Nano-Micro Lett. 9(3), 31 (2017). https://doi.org/10.1007/s40820-017-0134-8
- X.L. Huang, R.Z. Wang, D. Xu, Z.L. Wang, H.G. Wang et al., Batteries: homogeneous CoO on graphene for binder-free and ultralong-life lithium ion batteries. Adv. Funct. Mater. 23(35), 4345–4353 (2013). https://doi.org/10.1002/adfm.201203777
- Z.L. Wang, X.F. Hao, Z. Jiang, X.P. Sun, D. Xu, J. Wang, H.X. Zhong, F.L. Meng, X.B. Zhang, C and N hybrid coordination derived Co–C–N complex as a highly efficient electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 137(48), 15070–15073 (2015). https://doi.org/10.1021/jacs.5b09021
- Q. Wang, P.P. Zhang, Q.Q. Zhuo, X.X. Lv, J.W. Wang, X.H. Sun, Direct synthesis of co-doped graphene on dielectric substrates using solid carbon sources. Nano-Micro Lett. 7(4), 368–373 (2015). https://doi.org/10.1007/s40820-015-0052-6
- H.G. Wang, Y.H. Wang, Y.H. Li, Y.C. Wan, Q. Duan, Exceptional electrochemical performance of nitrogen-doped porous carbon for lithium storage. Carbon 82, 116–123 (2015). https://doi.org/10.1016/j.carbon.2014.10.041
- J. Guo, X.M. Yan, Q. Liu, Q. Li, X. Xu et al., The synthesis and synergistic catalysis of iron phthalocyanine and its graphene-based axial complex for enhanced oxygen reduction. Nano Energy 46, 347–355 (2018). https://doi.org/10.1016/j.nanoen.2018.02.026
- H.G. Wang, C. Jiang, C.P. Yuan, Q. Wu, Q. Li, Q. Duan, Complexing agent engineered strategy for anchoring SnO2 nanoparticles on sulfur/nitrogen co-doped graphene for superior lithium and sodium ion storage. Chem. Eng. J. 332(15), 237–244 (2018). https://doi.org/10.1016/j.cej.2017.09.081
- D. Singh, I.I. Soykal, J. Tian, D.V. Deak, J. King, J.T. Miller, U.S. Ozkan, In situ characterization of the growth of CNx carbon nano-structures as oxygen reduction reaction catalysts. J. Catal. 304(11), 100–111 (2013). https://doi.org/10.1016/j.jcat.2013.04.008
- R.G. Cao, R. Thapa, H. Kim, X.D. Xu, M.G. Kim, Q. Li, N. Park, M.L. Liu, J. Cho, Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat. Commun. 4(3), 2076–2083 (2013). https://doi.org/10.1038/ncomms3076
- K. Ariga, Y. Lvov, T. Kunitake, Assembling alternate dye-polyion molecular films by electrostatic layer-by-layer adsorption. J. Am. Chem. Soc. 119(9), 2224–2231 (1997). https://doi.org/10.1021/ja963442c
- W.Q. Zheng, N. Shan, L.X. Yu, X.Q. Wang, Fluorescence and EPR properties of porphyrins and metalloporphyrins. Dyes Pigments 77(1), 153–157 (2008). https://doi.org/10.1016/j.dyepig.2007.04.007
- H. Xu, P. Wu, C. Liao, C.G. Lv, Z.Z. Gu, Controlling the morphology and optoelectronic properties of graphene hybrid materials by porphyrin interactions. Chem. Commun. 50(64), 8951–8954 (2014). https://doi.org/10.1039/C4CC03458A
- Z.H. Xiang, Y.H. Xue, D.P. Cao, L. Huang, J.F. Chen, L.M. Dai, Highly efficient electrocatalysts for oxygen reduction based on 2D covalent organic polymers complexed with non-precious metals. Angew. Chem. Int. Ed. 53(9), 2433–2437 (2014). https://doi.org/10.1002/anie.201308896
- J. Li, Y.J. Song, G.X. Zhang, H.Y. Liu, Y.R. Wang, S.H. Sun, X.W. Guo, Pyrolysis of self-assembled porphyrin on carbon black as core/shell structured electrocatalysts for highly efficient oxygen reduction in both alkaline and acidic medium. Adv. Funct. Mater. 27(3), 1604356 (2017). https://doi.org/10.1002/adfm.201604356
- J.Y. Long, Y. Gong, J.H. Lin, Metal-organic framework-derived Co9S8@CoS@CoO@C nanoparticles as efficient electro- and photo-catalysts for the oxygen evolution reaction. J. Mater. Chem. A 5(21), 10495–10509 (2017). https://doi.org/10.1039/C7TA01447C
- Q.L. Zhang, Y.W. Zhang, Z.H. Gao, H.L. Ma, S.J. Wang, J. Peng, J.Q. Li, M.L. Zhai, A facile synthesis of platinum nanoparticle decorated graphene by one-step γ-ray induced reduction for high rate supercapacitors. J. Mater. Chem. C 1(2), 321–328 (2012). https://doi.org/10.1039/C2TC00078D
- C.C. Hu, J. Liu, J. Wang, W.X. She, J.W. Xiao, J.B. Xi, Z.W. Bai, S. Wang, Coordination-assisted polymerization of mesoporous cobalt sulfide/heteroatom (N, S)-doped double-layered carbon tubes as an efficient bifunctional oxygen electrocatalyst. ACS Appl. Mater. Interfaces 10(39), 33124–33134 (2018). https://doi.org/10.1021/acsami.8b07343
- H. Wu, J. Geng, H.T. Ge, Z.Y. Guo, Y.G. Wang, G.F. Zheng, Egg-derived mesoporous carbon microspheres as bifunctional oxygen evolution and oxygen reduction electrocatalysts. Adv. Energy Mater. 6(20), 1600794 (2016). https://doi.org/10.1002/aenm.201600794
- T. Huang, Y. Chen, J.M. Lee, Two-dimensional cobalt/N-doped carbon hybrid structure derived from metal-organic frameworks as efficient electrocatalysts for hydrogen evolution. ACS Sustain. Chem. Eng. 5(7), 5646–5650 (2017). https://doi.org/10.1021/acssuschemeng.7b00598
- I. Kone, A. Xie, Y. Tang, Y. Chen, J. Liu, Y.M. Chen, Y.Z. Sun, X.J. Yang, P.Y. Wan, Hierarchical porous carbon doped with iron–nitrogen–sulfur for efficient oxygen reduction reaction. ACS Appl. Mater. Interfaces 9(24), 20963–20973 (2017). https://doi.org/10.1021/acsami.7b02306
- M. Du, K. Rui, Y.Q. Chang, Y. Zhang, Z.Y. Ma, W.P. Sun, Q.Y. Yan, J.X. Zhu, W. Huang, Carbon necklace incorporated electroactive reservoir constructing flexible papers for advanced lithium-ion batteries. Small 14(2), 1702770–1702778 (2018). https://doi.org/10.1002/smll.201702770
- D.X. Ji, S.J. Peng, L. Fan, L.L. Li, X.H. Qin, S. Ramakrishna, Thin MoS2 nanosheets grafted MOFs derived porous Co–N–C flakes grown on electrospun carbon nanofibers as self-supported bifunctional catalysts for overall water splitting. J. Mater. Chem. A 5(45), 23898–23908 (2017). https://doi.org/10.1039/C7TA08166A
- P.Y. Zeng, J.W. Li, M. Ye, K.F. Zhuo, Z. Fang, In situ formation of Co9S8/N-C hollow nanospheres by pyrolysis and sulfurization of ZIF-67 for high-performance lithium-ion batteries. Chem. Eur. J. 23(40), 9517–9524 (2017). https://doi.org/10.1002/chem.201700881
- Q.Q. Yang, L. Liu, L. Xiao, L. Zhang, M.J. Wang, J. Li, Z.D. Wei, Co9S8@N, S-codoped carbon core–shell structured nanowires: constructing a fluffy surface for high-density active sites. J. Mater. Chem. A 6, 14752–14760 (2018). https://doi.org/10.1039/C8TA03604G
- X.P. Han, G.W. He, Y. He, J.F. Zhang, X.R. Zheng et al., Engineering catalytic active sites on cobalt oxide surface for enhanced oxygen electrocatalysis. Adv. Energy Mater. 8(10), 1702222 (2017). https://doi.org/10.1002/aenm.201702222
- S.F. Fu, C.Z. Zhu, J.H. Song, S. Feng, D. Du, M.H. Engelhard, D.D. Xiao, D.S. Li, Y.H. Lin, Two-dimensional N, S-codoped carbon/Co9S8 catalysts derived from Co(OH)2 nanosheets for oxygen reduction reaction. ACS Appl. Mater. Interfaces 9(42), 36755–36761 (2017). https://doi.org/10.1021/acsami.7b10227
- H.J. Shen, E. Graciaespino, J.Y. Ma, K.T. Zang, J. Luo et al., Synergistic effect between the atomically dispersed active site of Fe–N–C and C–S–C for ORR in acidic medium. Angew. Chem. Int. Ed. 129(44), 13800–13804 (2017). https://doi.org/10.1002/anie.201706602
- J. Schneider, B. Dischler, A. Räuber, Electron spin resonance of sulfur and selenium radicals in alkali halides. Phys. Stat. Sol. 13(1), 141–157 (1966). https://doi.org/10.1002/pssb.19660130113
- Y.H. Hou, T.Z. Huang, Z.H. Wen, S. Mao, S.M. Cui, J.H. Chen, Metal-organic framework-derived nitrogen-doped core–shell-structured porous Fe/Fe3C@C nanoboxes supported on graphene sheets for efficient oxygen reduction reactions. Adv. Funct. Mater. 4(11), 1220–1225 (2014). https://doi.org/10.1002/aenm.201400337
- K.P. Gong, F. Du, Z.H. Xia, M. Durstock, L.M. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915), 760–764 (2009). https://doi.org/10.1126/science.1168049
- X.P. Han, X.P. Li, J. White, C. Zhong, Y.D. Deng, W.B. Hu, T.Y. Ma, Metal-air batteries: from static to flow system. Adv. Energy Mater. 8(27), 1801396 (2018). https://doi.org/10.1002/aenm.201801396
- J. Yang, H.W. Liu, W.N. Martens, R.L. Frost, Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs. J. Phys. Chem. C 114(1), 111–119 (2010). https://doi.org/10.1021/jp908548f
References
Y.G. Li, H.J. Dai, Recent advances in zinc-air batteries. Chem. Soc. Rev. 43(15), 5257–5275 (2014). https://doi.org/10.1039/C4CS00015C
Y.G. Li, M. Gong, Y.Y. Liang, J. Feng, J.E. Kim, H.L. Wang, G.S. Hong, B. Zhang, H.J. Dai, Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat. Commun. 4(5), 1805–1812 (2013). https://doi.org/10.1038/ncomms2812
J. Fu, Z.P. Cano, M.G. Park, A.P. Yu, M. Fowler, Z.W. Chen, Electrically rechargeable zinc-air batteries: progress, challenges, and perspectives. Adv. Mater. 29(7), 1604685 (2017). https://doi.org/10.1002/adma.201604685
T.T. Wang, Z.K. Kou, S.C. Mu, J.P. Liu, D.P. He et al., 2D dual-metal zeolitic-imidazolate-framework-(ZIF)-derived bifunctional air electrodes with ultrahigh electrochemical properties for rechargeable zinc-air batteries. Adv. Funct. Mater. 28(5), 1705048 (2017). https://doi.org/10.1002/adfm.201705048
F.L. Meng, H.X. Zhong, D. Bao, J.M. Yan, X.B. Zhang, In situ coupling of strung Co4N and intertwined N–C fibers towards free-standing bifunctional cathode for robust, efficient, and flexible Zn–air batteries. J. Am. Chem. Soc. 138(32), 10226–10231 (2016). https://doi.org/10.1021/jacs.6b05046
D.U. Lee, J.Y. Choi, K. Feng, H.W. Park, Z.W. Chen, Advanced extremely durable 3D bifunctional air electrodes for rechargeable zinc-air batteries. Adv. Energy Mater. 4(6), 1301389 (2014). https://doi.org/10.1002/aenm.201301389
H.B. Yang, J. Miao, S.F. Hung, J. Chen, H.B. Tao et al., Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2(4), 1501122 (2016). https://doi.org/10.1126/sciadv.1501122
X.P. Han, X.Y. Wu, Y.D. Deng, J. Liu, J. Lu, C. Zhong, W.B. Hu, Ultrafine Pt nanoparticle-decorated pyrite-type CoS2 nanosheet arrays coated on carbon cloth as a bifunctional electrode for overall water splitting. Adv. Energy Mater. 8(24), 1800935 (2018). https://doi.org/10.1002/aenm.201800935
Z. Chen, A.P. Yu, D. Higgins, H. Li, H.J. Wang, Z.W. Chen, Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application. Nano Lett. 12(4), 1946–1952 (2012). https://doi.org/10.1021/nl2044327
X.P. Han, X.Y. Wu, C. Zhong, Y.D. Deng, N.Q. Zhao, W.B. Hu, NiCo2S4 nanocrystals anchored on nitrogen-doped carbon nanotubes as a highly efficient bifunctional electrocatalyst for rechargeable zinc-air batteries. Nano Energy 31, 541–550 (2017). https://doi.org/10.1016/j.nanoen.2016.12.008
J. Yin, Y.X. Li, F. Lv, M. Lu, K. Sun et al., Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn–air batteries driven water splitting devices. Adv. Mater. 29(47), 1704681 (2017). https://doi.org/10.1002/adma.201704681
Y.P. Tang, F. Jing, Z.X. Xu, F. Zhang, Y.Y. Mai, D.Q. Wu, Highly crumpled hybrids of nitrogen/sulfur dual-doped graphene and Co9S8 nanoplates as efficient bifunctional oxygen electrocatalysts. ACS Appl. Mater. Interfaces 9(14), 12340–12347 (2017). https://doi.org/10.1021/acsami.6b15461
H.X. Zhong, K. Li, Q. Zhang, J. Wang, F.L. Meng, Z.J. Wu, J.M. Yan, X.B. Zhang, In situ anchoring of Co9S8 nanoparticles on N and S co-doped porous carbon tube as bifunctional oxygen electrocatalysts. NPG Asia Mater. 8(9), e308 (2016). https://doi.org/10.1038/am.2016.132
S.S. Li, P.P. Cheng, J.X. Luo, D. Zhou, W.M. Xu, J.W. Li, R.C. Li, D.S. Yuan, High-performance flexible asymmetric supercapacitor based on CoAl-LDH and rGO electrodes. Nano-Micro Lett. 9(3), 31 (2017). https://doi.org/10.1007/s40820-017-0134-8
X.L. Huang, R.Z. Wang, D. Xu, Z.L. Wang, H.G. Wang et al., Batteries: homogeneous CoO on graphene for binder-free and ultralong-life lithium ion batteries. Adv. Funct. Mater. 23(35), 4345–4353 (2013). https://doi.org/10.1002/adfm.201203777
Z.L. Wang, X.F. Hao, Z. Jiang, X.P. Sun, D. Xu, J. Wang, H.X. Zhong, F.L. Meng, X.B. Zhang, C and N hybrid coordination derived Co–C–N complex as a highly efficient electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 137(48), 15070–15073 (2015). https://doi.org/10.1021/jacs.5b09021
Q. Wang, P.P. Zhang, Q.Q. Zhuo, X.X. Lv, J.W. Wang, X.H. Sun, Direct synthesis of co-doped graphene on dielectric substrates using solid carbon sources. Nano-Micro Lett. 7(4), 368–373 (2015). https://doi.org/10.1007/s40820-015-0052-6
H.G. Wang, Y.H. Wang, Y.H. Li, Y.C. Wan, Q. Duan, Exceptional electrochemical performance of nitrogen-doped porous carbon for lithium storage. Carbon 82, 116–123 (2015). https://doi.org/10.1016/j.carbon.2014.10.041
J. Guo, X.M. Yan, Q. Liu, Q. Li, X. Xu et al., The synthesis and synergistic catalysis of iron phthalocyanine and its graphene-based axial complex for enhanced oxygen reduction. Nano Energy 46, 347–355 (2018). https://doi.org/10.1016/j.nanoen.2018.02.026
H.G. Wang, C. Jiang, C.P. Yuan, Q. Wu, Q. Li, Q. Duan, Complexing agent engineered strategy for anchoring SnO2 nanoparticles on sulfur/nitrogen co-doped graphene for superior lithium and sodium ion storage. Chem. Eng. J. 332(15), 237–244 (2018). https://doi.org/10.1016/j.cej.2017.09.081
D. Singh, I.I. Soykal, J. Tian, D.V. Deak, J. King, J.T. Miller, U.S. Ozkan, In situ characterization of the growth of CNx carbon nano-structures as oxygen reduction reaction catalysts. J. Catal. 304(11), 100–111 (2013). https://doi.org/10.1016/j.jcat.2013.04.008
R.G. Cao, R. Thapa, H. Kim, X.D. Xu, M.G. Kim, Q. Li, N. Park, M.L. Liu, J. Cho, Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat. Commun. 4(3), 2076–2083 (2013). https://doi.org/10.1038/ncomms3076
K. Ariga, Y. Lvov, T. Kunitake, Assembling alternate dye-polyion molecular films by electrostatic layer-by-layer adsorption. J. Am. Chem. Soc. 119(9), 2224–2231 (1997). https://doi.org/10.1021/ja963442c
W.Q. Zheng, N. Shan, L.X. Yu, X.Q. Wang, Fluorescence and EPR properties of porphyrins and metalloporphyrins. Dyes Pigments 77(1), 153–157 (2008). https://doi.org/10.1016/j.dyepig.2007.04.007
H. Xu, P. Wu, C. Liao, C.G. Lv, Z.Z. Gu, Controlling the morphology and optoelectronic properties of graphene hybrid materials by porphyrin interactions. Chem. Commun. 50(64), 8951–8954 (2014). https://doi.org/10.1039/C4CC03458A
Z.H. Xiang, Y.H. Xue, D.P. Cao, L. Huang, J.F. Chen, L.M. Dai, Highly efficient electrocatalysts for oxygen reduction based on 2D covalent organic polymers complexed with non-precious metals. Angew. Chem. Int. Ed. 53(9), 2433–2437 (2014). https://doi.org/10.1002/anie.201308896
J. Li, Y.J. Song, G.X. Zhang, H.Y. Liu, Y.R. Wang, S.H. Sun, X.W. Guo, Pyrolysis of self-assembled porphyrin on carbon black as core/shell structured electrocatalysts for highly efficient oxygen reduction in both alkaline and acidic medium. Adv. Funct. Mater. 27(3), 1604356 (2017). https://doi.org/10.1002/adfm.201604356
J.Y. Long, Y. Gong, J.H. Lin, Metal-organic framework-derived Co9S8@CoS@CoO@C nanoparticles as efficient electro- and photo-catalysts for the oxygen evolution reaction. J. Mater. Chem. A 5(21), 10495–10509 (2017). https://doi.org/10.1039/C7TA01447C
Q.L. Zhang, Y.W. Zhang, Z.H. Gao, H.L. Ma, S.J. Wang, J. Peng, J.Q. Li, M.L. Zhai, A facile synthesis of platinum nanoparticle decorated graphene by one-step γ-ray induced reduction for high rate supercapacitors. J. Mater. Chem. C 1(2), 321–328 (2012). https://doi.org/10.1039/C2TC00078D
C.C. Hu, J. Liu, J. Wang, W.X. She, J.W. Xiao, J.B. Xi, Z.W. Bai, S. Wang, Coordination-assisted polymerization of mesoporous cobalt sulfide/heteroatom (N, S)-doped double-layered carbon tubes as an efficient bifunctional oxygen electrocatalyst. ACS Appl. Mater. Interfaces 10(39), 33124–33134 (2018). https://doi.org/10.1021/acsami.8b07343
H. Wu, J. Geng, H.T. Ge, Z.Y. Guo, Y.G. Wang, G.F. Zheng, Egg-derived mesoporous carbon microspheres as bifunctional oxygen evolution and oxygen reduction electrocatalysts. Adv. Energy Mater. 6(20), 1600794 (2016). https://doi.org/10.1002/aenm.201600794
T. Huang, Y. Chen, J.M. Lee, Two-dimensional cobalt/N-doped carbon hybrid structure derived from metal-organic frameworks as efficient electrocatalysts for hydrogen evolution. ACS Sustain. Chem. Eng. 5(7), 5646–5650 (2017). https://doi.org/10.1021/acssuschemeng.7b00598
I. Kone, A. Xie, Y. Tang, Y. Chen, J. Liu, Y.M. Chen, Y.Z. Sun, X.J. Yang, P.Y. Wan, Hierarchical porous carbon doped with iron–nitrogen–sulfur for efficient oxygen reduction reaction. ACS Appl. Mater. Interfaces 9(24), 20963–20973 (2017). https://doi.org/10.1021/acsami.7b02306
M. Du, K. Rui, Y.Q. Chang, Y. Zhang, Z.Y. Ma, W.P. Sun, Q.Y. Yan, J.X. Zhu, W. Huang, Carbon necklace incorporated electroactive reservoir constructing flexible papers for advanced lithium-ion batteries. Small 14(2), 1702770–1702778 (2018). https://doi.org/10.1002/smll.201702770
D.X. Ji, S.J. Peng, L. Fan, L.L. Li, X.H. Qin, S. Ramakrishna, Thin MoS2 nanosheets grafted MOFs derived porous Co–N–C flakes grown on electrospun carbon nanofibers as self-supported bifunctional catalysts for overall water splitting. J. Mater. Chem. A 5(45), 23898–23908 (2017). https://doi.org/10.1039/C7TA08166A
P.Y. Zeng, J.W. Li, M. Ye, K.F. Zhuo, Z. Fang, In situ formation of Co9S8/N-C hollow nanospheres by pyrolysis and sulfurization of ZIF-67 for high-performance lithium-ion batteries. Chem. Eur. J. 23(40), 9517–9524 (2017). https://doi.org/10.1002/chem.201700881
Q.Q. Yang, L. Liu, L. Xiao, L. Zhang, M.J. Wang, J. Li, Z.D. Wei, Co9S8@N, S-codoped carbon core–shell structured nanowires: constructing a fluffy surface for high-density active sites. J. Mater. Chem. A 6, 14752–14760 (2018). https://doi.org/10.1039/C8TA03604G
X.P. Han, G.W. He, Y. He, J.F. Zhang, X.R. Zheng et al., Engineering catalytic active sites on cobalt oxide surface for enhanced oxygen electrocatalysis. Adv. Energy Mater. 8(10), 1702222 (2017). https://doi.org/10.1002/aenm.201702222
S.F. Fu, C.Z. Zhu, J.H. Song, S. Feng, D. Du, M.H. Engelhard, D.D. Xiao, D.S. Li, Y.H. Lin, Two-dimensional N, S-codoped carbon/Co9S8 catalysts derived from Co(OH)2 nanosheets for oxygen reduction reaction. ACS Appl. Mater. Interfaces 9(42), 36755–36761 (2017). https://doi.org/10.1021/acsami.7b10227
H.J. Shen, E. Graciaespino, J.Y. Ma, K.T. Zang, J. Luo et al., Synergistic effect between the atomically dispersed active site of Fe–N–C and C–S–C for ORR in acidic medium. Angew. Chem. Int. Ed. 129(44), 13800–13804 (2017). https://doi.org/10.1002/anie.201706602
J. Schneider, B. Dischler, A. Räuber, Electron spin resonance of sulfur and selenium radicals in alkali halides. Phys. Stat. Sol. 13(1), 141–157 (1966). https://doi.org/10.1002/pssb.19660130113
Y.H. Hou, T.Z. Huang, Z.H. Wen, S. Mao, S.M. Cui, J.H. Chen, Metal-organic framework-derived nitrogen-doped core–shell-structured porous Fe/Fe3C@C nanoboxes supported on graphene sheets for efficient oxygen reduction reactions. Adv. Funct. Mater. 4(11), 1220–1225 (2014). https://doi.org/10.1002/aenm.201400337
K.P. Gong, F. Du, Z.H. Xia, M. Durstock, L.M. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915), 760–764 (2009). https://doi.org/10.1126/science.1168049
X.P. Han, X.P. Li, J. White, C. Zhong, Y.D. Deng, W.B. Hu, T.Y. Ma, Metal-air batteries: from static to flow system. Adv. Energy Mater. 8(27), 1801396 (2018). https://doi.org/10.1002/aenm.201801396
J. Yang, H.W. Liu, W.N. Martens, R.L. Frost, Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs. J. Phys. Chem. C 114(1), 111–119 (2010). https://doi.org/10.1021/jp908548f