Recent Progress, Challenges, and Prospects in Two-Dimensional Photo-Catalyst Materials and Environmental Remediation
Corresponding Author: Zhongyi Guo
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 167
Abstract
The successful photo-catalyst library gives significant information on feature that affects photo-catalytic performance and proposes new materials. Competency is considerably significant to form multi-functional photo-catalysts with flexible characteristics. Since recently, two-dimensional materials (2DMs) gained much attention from researchers, due to their unique thickness-dependent uses, mainly for photo-catalytic, outstanding chemical and physical properties. Photo-catalytic water splitting and hydrogen (H2) evolution by plentiful compounds as electron (e−) donors is estimated to participate in constructing clean method for solar H2-formation. Heterogeneous photo-catalysis received much research attention caused by their applications to tackle numerous energy and environmental issues. This broad review explains progress regarding 2DMs, significance in structure, and catalytic results. We will discuss in detail current progresses of approaches for adjusting 2DMs-based photo-catalysts to assess their photo-activity including doping, hetero-structure scheme, and functional formation assembly. Suggested plans, e.g., doping and sensitization of semiconducting 2DMs, increasing electrical conductance, improving catalytic active sites, strengthening interface coupling in semiconductors (SCs) 2DMs, forming nano-structures, building multi-junction nano-composites, increasing photo-stability of SCs, and using combined results of adapted approaches, are summed up. Hence, to further improve 2DMs photo-catalyst properties, hetero-structure design-based 2DMs’ photo-catalyst basic mechanism is also reviewed.
Highlights:
1 Current progress in preparations, structures, and physicochemical properties of two-dimensional photo-catalyst materials and environmental remediation.
2 Propose approaches of diverse of two-dimensional photo-catalyst materials-based nanoplatforms, optimization strategies to enhance activity, and their diverse applications.
3 Current challenges and potential advancement of the emerging of two-dimensional photo-catalyst materials.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Huang, Z. Li, J. Lin, G. Han, P. Huang, Two-dimensional transition metal carbides and nitrides (mxenes) for biomedical applications. Chem. Soc. Rev. 47, 5109–5124 (2018). https://doi.org/10.1039/C7CS00838D
- K. Khan, A.K. Tareen, M. Aslam, K.H. Thebo, U. Khan et al., A comprehensive review on synthesis of pristine and doped inorganic room temperature stable mayenite electride, [Ca24Al28O64]4+(e−)4 and its applications as a catalyst. Prog. Solid State Chem. 54, 1–19 (2018). https://doi.org/10.1016/j.progsolidstchem.2018.12.001
- K. Khan, A.K. Tareen, M. Aslam, A. Mahmood, Q. Khan et al., Going green with batteries and supercapacitor: two dimensional materials and their nanocomposites based energy storage applications. Prog. Solid State Chem. 34, 100254 (2019). https://doi.org/10.1016/j.progsolidstchem.2019.100254
- K. Khan, A.K. Tareen, M. Aslam, Y. Zhang, R. Wang, Z. Ouyang, Z. Gou, H. Zhang, Recent advances in two-dimensional materials and their nanocomposites in sustainable energy conversion applications. Nanoscale 11, 21622–21678 (2019). https://doi.org/10.1039/c9nr05919a
- I. Dincer, Renewable energy and sustainable development: a crucial review. Renew. Sust. Energy Rev. 4, 157–175 (2000). https://doi.org/10.1016/S1364-0321(99)00011-8
- X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44, 5148–5180 (2015). https://doi.org/10.1039/C4CS00448E
- X. Chia, A.Y.S. Eng, A. Ambrosi, S.M. Tan, M. Pumera, Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chem. Rev. 115, 11941–11966 (2015). https://doi.org/10.1021/acs.chemrev.5b00287
- H. Yin, Z. Tang, Ultrathin two-dimensional layered metal hydroxides: an emerging platform for advanced catalysis, energy conversion and storage. Chem. Soc. Rev. 45, 4873–4891 (2016). https://doi.org/10.1039/c6cs00343e
- Y. Shi, H. Li, L.J. Li, Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 44, 2744–2756 (2015). https://doi.org/10.1039/C4CS00256C
- Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015). https://doi.org/10.1039/c4cs00470a
- J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2d mxenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72–133 (2019). https://doi.org/10.1039/C8CS00324F
- H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff, Y. Jiao, Y. Zheng, S.Z. Qiao, Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118, 6337–6408 (2018). https://doi.org/10.1021/acs.chemrev.7b00689
- Z. Zhang, E.S. Penev, B.I. Yakobson, Two-dimensional boron: structures, properties and applications. Chem. Soc. Rev. 46, 6746–6763 (2017)
- Q. Meng, R.W. Xiu, J. Taeho, W. Miae, P.G. Young et al., Omnipotent phosphorene: a next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications. Chem. Soc. Rev. 47, 5588–5601 (2018). https://doi.org/10.1039/c8cs00342d
- L. Dai, D.W. Chang, J.B. Baek, W. Lu, Carbon nanomaterials: carbon nanomaterials for advanced energy conversion and storage. Small 8, 1122 (2012). https://doi.org/10.1002/smll.201101594
- K. Khan, L. Jia, Z. Wenwei, X. Wei, Y. Ye, S. Weijie, Low temperature synthesis of nano porous 12Cao·7Al2O3 powder by hydrothermal method. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 31, 1201–1205 (2016). https://doi.org/10.1007/s11595-016-1512-7
- K. Khan, A.K. Tareen, S. Elshahat, A.K. Yadav, U. Khan et al., Facile synthesis of cationic doped [Ca24Al28O64]4+.(4e−) composite via rapid citrate sol–gel method. Dalton Trans. 47, 3819–3830 (2018). https://doi.org/10.1039/c7dt04543c
- K. Khan, A.K. Tareen, J. Li, U. Khan, A. Nairan et al., Facile synthesis of tin-doped mayenite electride composite as a non-noble metal durable electrocatalyst for oxygen reduction reaction (ORR). Dalton Trans. 47, 13498–13506 (2018). https://doi.org/10.1039/c8dt02548g
- K. Khan, A.K. Tareen, M. Aslam, R. Wang, Y. Zhang et al., Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C 9, 1–9 (2019). https://doi.org/10.1039/c9tc04187g
- K. Khan, A.K. Tareen, M. Aslam, S.A. Khan, Q. Khan et al., Fe-doped mayenite electride composite with 2d reduced graphene oxide: as a non-platinum based, highly durable electrocatalyst for oxygen reduction reaction. Sci. Rep. 9, 19809 (2019). https://doi.org/10.1038/s41598-019-55207-6
- K. Khan, A.K. Tareen, M. Aslam, Q. Khan, S.A. Khan et al., Novel two-dimensional carbon–chromium nitride-based composite as an electrocatalyst for oxygen reduction reaction. Front. Chem. 7, 738 (2019). https://doi.org/10.3389/fchem.2019.00738
- K. Khan, A.K. Tareen, M. Aslam, R. Wang, Y. Zhang et al., Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C 8, 387–440 (2020). https://doi.org/10.1039/c9tc04187g
- K. Khan, A.K. Tareen, S. Elshahat, N. Muhammad, J. Li et al., Facile metal-free reduction-based synthesis of pristine and cation-doped conductive mayenite. RSC Adv. 8, 24276–24285 (2018). https://doi.org/10.1039/c8ra02790krsc.li/rsc-advances
- K. Khan, A.K. Tareen, U. Khan, A. Nairan, S. Elshahat et al., Single step synthesis of highly conductive room-temperature stable cation-substituted mayenite electride target and thin film. Sci. Rep. (2018). https://doi.org/10.1038/s41598-019-41512-7
- A.K. Tareen, G.S. Priyanga, K. Khan, E. Pervaiz, T. Thomas, M. Yang, Nickel-based transition metal nitride electrocatalysts for the oxygen evolution reaction. Chemsuschem 12, 3941–3954 (2019). https://doi.org/10.1002/cssc.201900553
- W. Zou, K. Khan, X. Zhao, C. Zhu, J. Huang et al., Direct fabrication of C12A7 electride target and room temperature deposition of thin films with low work function. Mater. Res. Express 4, 1–20 (2017). https://doi.org/10.1088/2053-1591/aa63c7
- K. Khan, A.K. Tareen, M. Aslam, M.F. Khan, Z. Shi et al., Synthesis, properties and novel electrocatalytic applications of the 2-D borophene xenes. Prog. Solid State Chem. 58, 100283 (2020). https://doi.org/10.1016/j.progsolidstchem.2020.100283
- W. Fan, Q. Zhang, Y. Wang, Semiconductor-based nanocomposites for photocatalytic H2 production and Co2 conversion. Phys. Chem. Chem. Phys. 15, 2632–2649 (2013). https://doi.org/10.1039/c2cp43524a
- B. Luo, G. Liu, L. Wang, Recent advances in 2D materials for photocatalysis. Nanoscale 8, 6904–6920 (2016). https://doi.org/10.1039/c6nr00546b
- W.J. Zhang, W.W. Li, X.G. Chen, Z.G. Hu, W. Liu et al., Phonon mode and phase transition behaviors of (1 − x)PbSc1/2Ta1/2O3−xPbHfO3 relaxor ferroelectric ceramics determined by temperature-dependent raman spectra. Appl. Phys. Lett. 99, 074103 (2011). https://doi.org/10.1063/1.3614431
- R.D. Bonito, M.L. Elliott, E.A.D. Jardinm, Detection of an arbuscular mycorrhizal fungus in roots of different plant species with the PCR. Appl. Environ. Microb. 61, 2809–2810 (1995)
- J. Di, J. Xiong, H. Li, Z. Liu, Ultrathin 2d photocatalysts: electronic-structure tailoring, hybridization, and applications. Adv. Mater. 30, 1–30 (2017). https://doi.org/10.1002/adma.201704548
- J. Ran, J. Zhang, J. Yu, M. Jaroniec, S.Z. Qiao, Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 46, 7787–7812 (2015). https://doi.org/10.1039/C3CS60425J
- Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987–10043 (2014). https://doi.org/10.1021/cr500008u
- L.T.C. Equally, J. Zhang, L.Z. Li, N.A. Kumar, X.S. Zhao, Functionalization of chemically derived graphene for improving its electrocapacitive energy storage properties. Energy Environ. Sci. 9, 1891–1930 (2016). https://doi.org/10.1039/C6EE00158K
- W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116, 7159–7329 (2016). https://doi.org/10.1021/acs.chemrev.6b00075
- A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). https://doi.org/10.1038/238037a0
- H.M. Tosine, J. Lawrence, J.H. Carey, Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions. B-Environ. Contam. Toxicol. 16, 697–701 (1976). https://doi.org/10.1007/BF01685575
- X. Zhou, N. Liu, J. Schmidt, A. Kahnt, A. Osvet et al., Noble-metal-free photocatalytic hydrogen evolution activity: the impact of ball milling anatase nanopowders with TiH2. Adv. Mater. 29, 1604747 (2017). https://doi.org/10.1002/adma.201604747
- W.B. Choi, D.S. Chung, J.H. Kang, H.Y. Kim, Y.W. Jin et al., Fully sealed, high-brightness carbon-nanotube field-emission display. Appl. Phys. Lett. 75, 3129 (1999). https://doi.org/10.1063/1.125253
- T. Hisatomi, K. Maeda, K. Takanabe, J. Kubota, K. Domen, Aspects of the water splitting mechanism on (Ga1 − xZnx)(n1 − xOx) photocatalyst modified with Rh2–YCrYo3 cocatalyst. J. Phys. Chem. C 113, 21458–21466 (2009). https://doi.org/10.1021/jp9079662
- T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520–7535 (2014). https://doi.org/10.1039/C3CS60378D
- Q. Bao, H. Zhang, B. Wang, Z. Ni, C.H.Y.X. Lim et al., Broadband graphene polarizer. Nat. Photonics 5, 411–415 (2011). https://doi.org/10.1038/nphoton.2011.102
- W. Tao, N. Kong, X.Y. Ji, Y.P. Zhang, A. Sharma et al., Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chem. Soc. Rev. 48, 2891–2912 (2019). https://doi.org/10.1039/C8CS00823J
- C. Tan, X. Cao, X.J. Wu, Q. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896
- Y. Sun, S. Gao, F. Lei, Y. Xie, Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem. Soc. Rev. 44, 623–636 (2014). https://doi.org/10.1039/C4CS00236A
- Z. Du, S. Yang, S. Li, J. Lou, S. Zhang et al., Conversion of non-van der waals solids to 2d transition-metal chalcogenides. Nature 577, 492–496 (2020). https://doi.org/10.1038/s41586-019-1904-x
- T. Su, Q. Shao, Z. Qin, Z. Guo, Z. Wu, Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal. 8, 2253–2276 (2018). https://doi.org/10.1021/acscatal.7b03437
- J. Low, S. Cao, J. Yu, S. Wageh, Two-dimensional layered composite photocatalysts. Chem. Commun. 50, 10768–10777 (2014). https://doi.org/10.1039/C4CC02553A
- S. Kouser, A. Thannikoth, U. Gupta, U.V. Waghmare, C.N.R. Rao, 2D-gas as a photocatalyst for water splitting to produce H2O2. Small 11, 4723–4730 (2015). https://doi.org/10.1002/smll.201501077
- Z. Chao, L. Wang, L. Gang, Q.L. Gao, H.M. Cheng, Template-free synthesis of Ta3N5 nanorod arrays for efficient photoelectrochemical water splitting. Chem. Commun. 49, 3019–3021 (2013). https://doi.org/10.1039/C3CC40760H
- N. Singh, G. Jabbour, U. Schwingenschlgl, Optical and photocatalytic properties of two-dimensional MoS2. Eur. Phys. J. B 85, 392–471 (2012). https://doi.org/10.1140/epjb/e2012-30449-7
- Q. Li, X. Li, S. Wageh, A.A. Al-Ghamdi, J. Yu, CdS/graphene nanocomposite photocatalysts. Adv. Energy Mater. 5, 1500010 (2015). https://doi.org/10.1002/aenm.201500010
- Y. Li, Y.L. Li, B. Sa, R. Ahuja, Review of two-dimensional materials for photocatalytic water splitting from a theoretical perspective. Catal. Sci. Technol. 7, 545–559 (2017). https://doi.org/10.1039/C6CY02178F
- G.F. Chen, T.Y. Ma, Z.Q. Liu, N. Li, S.Z. Qiao, Efficient and stable bifunctional electrocatalysts Ni/Nix My (M = P, S) for overall water splitting. Adv. Funct. Mater. 26, 3314–3323 (2016). https://doi.org/10.1002/adfm.201505626
- M. Monai, M. Melchionna, P. Fornasiero, Chapter One - From metal to metal-free catalysts: Routes to sustainable chemistry. Adv. Catal. 63, 1–73 (2018). https://doi.org/10.1016/bs.acat.2018.10.001
- T. Tian, Y. Li, D. Xie, Y. Shen, J. Ren et al., Clinical features and risk factors for post-partum depression in a large cohort of chinese women with recurrent major depressive disorder. J. Affect. Disord. 136, 983–987 (2012). https://doi.org/10.1016/j.jad.2011.06.047
- X. Li, M.W. Lin, J. Lin, B. Huang, A.A. Puretzky et al., Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der waals epitaxy. Sci. Adv. 2, 1501882 (2016). https://doi.org/10.1126/sciadv.1501882
- Q. Liang, L. Ye, Z.H. Huang, Q. Xu, Y. Bai, F. Kang, Q.H. Yang, A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors. Nanoscale 6, 13831–13837 (2014). https://doi.org/10.1039/c4nr04541f
- R. Kobayashi, S. Tanigawa, T. Takashima, B. Ohtani, H. Irie, Silver-inserted heterojunction photocatalysts for z-scheme overall pure-water splitting under visible-light irradiation. J. Phys. Chem. C 118, 22450–22456 (2014). https://doi.org/10.1021/jp5069973
- B. Lin, H. Li, H. An, W. Hao, J. Wei et al., Preparation of 2d/2d g-C3N4 nanosheet@ZNiN2S4 nanoleaf heterojunctions with well-designed high-speed charge transfer nanochannels towards high-efficiency photocatalytic hydrogen evolution. Appl. Catal. B Environ. 220, 542–552 (2018). https://doi.org/10.1016/j.apcatb.2017.08.071
- H. Xiao, C. Tan, Z.Y.A. Zhang, 25th anniversary article: hybrid nanostructures based on two-dimensional nanomaterials. Adv. Mater. 26, 2185–2204 (2014). https://doi.org/10.1002/adma.201304964
- Y.J. Wang, Y.M. Tao, F.Y. Li, Y.H. Wang, X.J. Xu et al., Pharmacological characterization of ATPM [(–)-3-aminothiazolo[5,4-b]-N-cyclopropylmethylmorphinan hydrochloride], a novel mixed κ-agonist and μ-agonist/-antagonist that attenuates morphine antinociceptive tolerance and heroin self-administration behavior. J. Pharmacol. Exp. Ther. 329, 306–313 (2009). https://doi.org/10.1124/jpet.108.142802
- J. Yang, D. Wang, H. Han, C. Li, Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 46, 1900–1909 (2013). https://doi.org/10.1021/ar300227e
- M. Melchionna, P. Fornasiero, Updates on the roadmap for photocatalysis. ACS Catal. 10, 5493–5501 (2020). https://doi.org/10.1021/acscatal.0c01204
- B. Ohtani, Preparing articles on photocatalysis-beyond the illusions, misconceptions, and speculation. Chem. Lett. 37, 216–229 (2008). https://doi.org/10.1246/cl.2008.216
- J. Zhang, Y. Huang, L. Jin, F. Rosei, F. Vetrone, J.P. Claverie, Efficient upconverting multiferroic core@shell photocatalysts: visible-to-near-infrared photon harvesting. ACS Appl. Mater. Interfaces. 9, 8142–8150 (2017). https://doi.org/10.1021/acsami.7b00158
- L. Wang, X. Xu, Q. Cheng, S.X. Dou, Y. Du, Near-infrared-driven photocatalysts: design, construction, and applications. Small (2019). https://doi.org/10.1002/smll.201904107
- M. Freitag, N. Möller, A. Rühling, C.A. Strassert, B.J. Ravoo, F. Glorius, Photocatalysis in the dark: near-infrared light driven photoredox catalysis by an upconversion nanoparticle/photocatalyst system. ChemPhotoChem 3, 24–27 (2019). https://doi.org/10.1002/cptc.201800212
- H. Chen, W. Liu, B. Hu, Z. Qin, H. Liu, A full-spectrum photocatalyst with strong near-infrared photoactivity derived from synergy of nano-heterostructured Er3+-doped multi-phase oxides. Nanoscale 9, 18940–18950 (2017). https://doi.org/10.1039/C7NR08090E
- S.E. Braslavsky, A.M. Braun, A.E. Cassano, A.V. Emeline, M.I. Litter et al., Glossary of terms used in photocatalysis and radiation catalysis. Pure Appl. Chem. 83, 931–1014 (2011). https://doi.org/10.1351/PAC-REC-09-09-36
- M.J. Munoz-Batista, U. Caudillo-Flores, F. Ung-Medina, M. del Carmen Chávez-Parga, J.A. Cortés, A. Kubacka, M. Fernández-García, Gas phase 2-propanol degradation using titania photocatalysts: study of the quantum efficiency. Appl. Catal. B Environ. 201, 400–410 (2017). https://doi.org/10.1016/j.apcatb.2016.08.014
- M. Shelef, R.W. McCabe, Twenty-five years after introduction of automotive catalysts: what next? Catal. Today 62, 35–50 (2000). https://doi.org/10.1016/S0920-5861(00)00407-7
- S. Sui, X. Wang, X. Zhou, Y. Su, S. Riffat, C.-J. Liu, A comprehensive review of pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells. J. Mater. Chem. A 5, 1808–1825 (2017). https://doi.org/10.1039/C6TA08580F
- J. Kou, C. Lu, J. Wang, Y. Chen, Z. Xu, R.S. Varma, Selectivity enhancement in heterogeneous photocatalytic transformations. Chem. Rev. 117, 1445–1514 (2017). https://doi.org/10.1021/acs.chemrev.6b00396
- G.J. Ruiz-Mercado, R.L. Smith, M.A. Gonzalez, Sustainability indicators for chemical processes: i. Taxonomy. Ind. Eng. Chem. Res. 51, 2309–2328 (2012). https://doi.org/10.1021/ie102116e
- S.M. Fortier, N.T. Nassar, G.W. Lederer, J. Brainard, J. Gambogi, E.A. McCullough, Draft critical mineral list-summary of methodology and background information US geological survey technical input document in response to secretarial order no. 3359. 2018-1021 (2018). https://doi.org/10.3133/ofr20181021
- A.L. Gulley, N.T. Nassar, S. Xun, China, the united states, and competition for resources that enable emerging technologies. Proc. Natl. Acad. Sci. U.S.A. 115, 4111–4115 (2018). https://doi.org/10.1073/pnas.1717152115
- T. Paik, M. Cargnello, T.R. Gordon, S. Zhang, H. Yun et al., Photocatalytic hydrogen evolution from substoichiometric colloidal WO3−x nanowires. ACS Energy Lett. 3, 1904–1910 (2018). https://doi.org/10.1021/acsenergylett.8b00925
- G. Carraro, C. Maccato, A. Gasparotto, T. Montini, S. Turner et al., Enhanced hydrogen production by photoreforming of renewable oxygenates through nanostructured Fe2O3 polymorphs. Adv. Funct. Mater. 24, 372–378 (2014). https://doi.org/10.1002/adfm.201302043
- S. Qamar, F. Lei, L. Liang, S. Gao, K. Liu et al., Ultrathin TiO2 flakes optimizing solar light driven CO2 reduction. Nano Energy 26, 692–698 (2016). https://doi.org/10.1016/j.nanoen.2016.06.029
- S. Gao, Y. Sun, F. Lei, J. Liu, L. Liang et al., Freestanding atomically-thin cuprous oxide sheets for improved visible-light photoelectrochemical water splitting. Nano Energy 8, 205–213 (2014). https://doi.org/10.1016/j.nanoen.2014.05.017
- F. Lei, Y. Sun, K. Liu, S. Gao, L. Liang, B. Pan, Y. Xie, Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc. 136, 6826–6829 (2014). https://doi.org/10.1021/ja501866r
- J. Wang, C.J. Liu, Preparation of 2D WO3 nanomaterials with enhanced catalytic activities: current status and perspective. Chembioeng. Rev. 2, 335–350 (2015). https://doi.org/10.1002/cben.201500014
- L. Wang, T. Sasaki, Titanium oxide nanosheets: graphene analogues with versatile functionalities. Chem. Rev. 114, 9455–9486 (2014). https://doi.org/10.1021/cr400627u
- N. Sakai, Y. Ebina, K. Takada, T. Sasaki, Photocurrent generation from semiconducting manganese oxide nanosheets in response to visible light. J. Phys. Chem. B 109, 9651–9655 (2005). https://doi.org/10.1021/jp0500485
- R. Ma, T. Sasaki, Nanosheets of oxides and hydroxides: ultimate 2d charge-bearing functional crystallites. Adv. Mater. 22, 5082–5104 (2011). https://doi.org/10.1002/adma.201001722
- K. Akatsuka, G. Takanashi, Y. Ebina, M.A. Haga, T. Sasaki, Electronic band structure of exfoliated titanium- and/or niobium-based oxide nanosheets probed by electrochemical and photoelectrochemical measurements. J. Phys. Chem. C 116, 12426–12433 (2012). https://doi.org/10.1021/jp302417a
- S. Ida, C. Ogata, M. Eguchi, W.J. Youngblood, T.E. Mallouk, Y. Matsumoto, Photoluminescence of perovskite nanosheets prepared by exfoliation of layered oxides, K2Ln2Ti3O10, KLnNb2o7, and RbLnTa2O7 (ln: lanthanide ion). J. Am. Chem. Soc. 39, 7052–7059 (2008). https://doi.org/10.1021/ja7114772
- K. Maeda, M. Eguchi, T. Oshima, Perovskite oxide nanosheets with tunable band-edge potentials and high photocatalytic hydrogen-evolution activity. Angew. Chem. Int. Ed. 46, 13164 (2015). https://doi.org/10.1002/anie.201408441
- H. Yu, Q. Sun, X. Jia, X. Wang, J. Yu, Facile synthesis of porous Bi2WO6 nanosheets with high photocatalytic performance. Dalton Trans. 44, 14532–14539 (2015). https://doi.org/10.1039/C5DT01859E
- E.L. Tae, K.E. Lee, J.S. Jeong, K.B. Yoon, Synthesis of diamond-shape titanate molecular sheets with different sizes and realization of quantum confinement effect during dimensionality reduction from two to zero. J. Am. Chem. Soc. 130, 6534–6543 (2008). https://doi.org/10.1021/ja711467g
- Y. Zhou, Y. Zhang, M. Lin, J. Long, Z. Zhang et al., Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis. Nat. Commun. 6, 8340 (2015). https://doi.org/10.1038/ncomms9340
- J. Li, S. Qin, J. Xu, J. Xiong, C. Wu et al., Randomized, double-blind, placebo-controlled phase iii trial of apatinib in patients with chemotherapy-refractory advanced or metastatic adenocarcinoma of the stomach or gastroesophageal junction. J. Clin. Oncol. 34, 1448–1454 (2016). https://doi.org/10.1200/JCO.2015.63.5995
- T. Zhang, C. Zhou, Y. Zhao, T. Bian, L. Shang et al., Bubble template synthesis of Sn2Nb2O7 hollow spheres for enhanced visible-light-driven photocatalytic hydrogen production. Chem. Commun. 49, 9872–9874 (2013). https://doi.org/10.1039/c3cc45683h
- Y. Zhao, G. Chen, T. Bian, C. Zhou, T. Zhang, Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 27, 7823 (2015). https://doi.org/10.1002/adma.201503730
- Y.R. Liu, E.W. Loh, T.H. Lan, S.F. Chen, Y.H. Yu et al., ADRA1A gene is associated with BMI in chronic schizophrenia patients exposed to antipsychotics. Pharmacogenomics J. 10, 30–39 (2010). https://doi.org/10.1038/tpj.2009.55
- Y. Zhao, B. Li, Q. Wang, W. Gao, C.J. Wang et al., NiTi-layered double hydroxides nanosheets as efficient photocatalysts for oxygen evolution from water using visible light. Chem. Sci. 5, 951–958 (2014). https://doi.org/10.1039/C3SC52546E
- A. Hasani, M. Tekalgne, Q.V. Le, H.W. Jang, S.Y. Kim, Two-dimensional materials as catalysts for solar fuels: hydrogen evolution reaction and CO2 reduction. J. Mater. Chem A 7, 430–454 (2019). https://doi.org/10.1039/C8TA09496A
- Y. Xu, W. Zhao, R. Xu, Y. Shi, B. Zhang, Synthesis of ultrathin CdS nanosheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution. Chem. Commun. 49, 9803–9805 (2013). https://doi.org/10.1039/C3CC46342G
- Q. He, C. Li, F. Geng, H. Yang, P. Li et al., Aerosol optical properties retrieved from sun photometer measurements over Shanghai, China. J. Geophys. Res. Atmos. 117, 16204 (2012). https://doi.org/10.1029/2011JD017220
- H. Li, J. Wu, Z. Yin, H. Zhang, Preparation and applications of mechanically exfoliated single-layer and multi layer MoS2 and WSe2 nanosheets. ACS Chem. Res. 47, 1067–1075 (2014). https://doi.org/10.1021/ar4002312
- J. Yu, C.Y. Xu, F.X. Ma, S.P. Hu, L. Zhen, Monodisperse sns2 nanosheets for high-performance photocatalytic hydrogen generation. ACS Appl. Mater. Interfaces. 6, 22370–22377 (2014). https://doi.org/10.1021/am506396z
- C. Lin, X. Zhu, J. Feng, C. Wu, Y. Xie, Hydrogen-incorporated TiS2 ultrathin nanosheets with ultrahigh conductivity for stamp-transferrable electrodes. J. Am. Chem. Soc. 135, 5144–5151 (2013). https://doi.org/10.1021/ja400041f
- Y.H. Sang, Z.H. Zhao, M.W. Zhao, P. Hao, Y.H. Leng, H. Liu, From UV to near-infrared, WS2 nanosheet: a novel photocatalyst for full solar light spectrum photodegradation. Adv. Mater. 27, 363–369 (2015). https://doi.org/10.1002/adma.201403264
- Y. Wu, M. Xu, X. Chen, S. Yang, H. Wu, J. Pan, X. Xiong, CTAB-assisted synthesis of novel ultrathin MoSe2 nanosheets perpendicular to graphene for adsorption and photodegradation of organic dyes under visible light. Nanoscale 8, 440–450 (2015). https://doi.org/10.1039/C5NR05748E
- S. Balendhran, S. Walia, H. Nili, J.Z. Ou, S. Zhuiykov et al., Semiconductors: two-dimensional molybdenum trioxide and dichalcogenides. Adv. Funct. Mater. 23, 3946 (2013). https://doi.org/10.1002/adfm.201370159
- M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013). https://doi.org/10.1038/nchem.1589
- J.T. Jang, S. Jeong, J.W. Seo, M.C. Kim, E. Sim et al., Ultrathin zirconium disulfide nanodiscs. J. Am. Chem. Soc. 133, 7636–7639 (2011). https://doi.org/10.1021/ja200400n
- J. Xie, J. Zhang, L. Shuang, F. Grote, X. Zhang et al., Correction to controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 136, 1680 (2014). https://doi.org/10.1021/ja4129636
- J. Hou, S. Cao, Y. Wu, F. Liang, L. Ye, Z. Lin, L. Sun, Perovskite-based nanocubes with simultaneously improved visible-light absorption and charge separation enabling efficient photocatalytic CO2 reduction. Nano Energy 30, 59–68 (2016). https://doi.org/10.1016/j.nanoen.2016.09.033
- W.Q. Li, G. Wang, X.N. Zhang, H.P. Geng, J.L. Shen et al., Geometrical and morphological optimizations of plasmonic nanoarrays for high-performance SERS detection. Nanoscale (2015). https://doi.org/10.1039/C5NR03140K
- M. Ablikim, S.S. Fang, H.X. Yang, M.G. Zhao, G.S. Varner et al., Observation of the decay ψ(2S) → k(892)k−+c.c. Phys. Lett. B 614, 752–769 (2005). https://doi.org/10.1016/j.physletb.2005.03.071
- J. Di, J. Xia, Y. Huang, M. Ji, W. Fan, Z. Chen, H. Li, Constructing carbon quantum dots/Bi2SiO5 ultrathin nanosheets with enhanced photocatalytic activity and mechanism investigation. Chem. Eng. J. 302, 334–343 (2016). https://doi.org/10.1016/j.cej.2016.05.009
- H. Liu, F. Wang, L. Liu, X.Y. Jia, W. Zheng et al., Synthesis, characterization, and ethylene polymerization behaviors of late-transition metal complexes coordinated with chlorinated bis(arylimino)pyridine ligand. Polymer 55, 4611–4618 (2014). https://doi.org/10.1016/j.polymer.2014.07.015
- L. Tan, X.C. Zhu, M.S. Tan, L. Sun, L. Tan et al., The genetic variation of ARRB2 is associated with late-onset Alzheimer’s disease in Han Chinese. Curr. Alzheimer Res. 11, 408–412 (2014). https://doi.org/10.2174/1567205011666140317095014
- A. Hameed, T. Montini, V. Gombac, P. Fornasiero, Surface phases and photocatalytic activity correlation of Bi2O3/Bi2O4-x nanocomposite. J. Am. Chem. Soc. 130, 9658–9659 (2008). https://doi.org/10.1021/ja803603y
- M. Guan, C. Xiao, J. Zhang, S. Fan, Y. Xie, Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J. Am. Chem. Soc. 135, 10411–10417 (2013). https://doi.org/10.1021/ja402956f
- J. Di, J.X. Xia, M.X. Ji, B. Wang, S. Yin et al., Advanced photocatalytic performance of graphene-like BN modified BIOBr flower-like materials for the removal of pollutants and mechanism insight. Appl. Catal. B Environ. 183, 254–262 (2016). https://doi.org/10.1016/j.apcatb.2015.10.036
- D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010). https://doi.org/10.1039/b917103g
- T.F. Yeh, J.M. Syu, C. Cheng, T.H. Chang, H. Teng, Graphite oxide as a photocatalyst for hydrogen production from water. Adv. Funct. Mater. 20, 2255–2262 (2010). https://doi.org/10.1002/adfm.201000274
- J. Chu, J. Sun, L.I. Peng, L.I. Guangsheng, Y. Niu et al., Effect of platelet-rich plasma combined with human umbilical cord-mesenchymal stem cells on the healing of osteoporotic fracture in rats. Chin. J. Osteoporos. 135, 10411–10417 (2016). https://doi.org/10.1155/2016/9458396
- Z. Zhou, J. Wang, J. Yu, Y. Shen, Y. Zhang, Dissolution and liquid crystals phase of 2D polymeric carbon nitride. J. Am. Chem. Soc. 137, 2179–2182 (2015). https://doi.org/10.1021/ja512179x
- N. Ping, L. Zhang, G. Liu, H.M. Cheng, Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2, 4763–4770 (2012). https://doi.org/10.1002/adfm.201200922
- S. Yang, Y. Gong, J. Zhang, Z. Liang, P.M.A. Jayan, Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 25, 2452–2456 (2013). https://doi.org/10.1002/adma.201204453
- C.X. Liu, Z.Y. Luo, Y.W. Li, M. Chen, J. Xu et al., Active waveguides by low-fluence carbon implantation in Nd3+-doped fluorophosphate glasses. Mod. Phys. Lett. B 30, 1550266 (2016). https://doi.org/10.1142/S0217984915502668
- H. Xu, J. Yan, X. She, L. Xu, J. Xia et al., Graphene-analogue carbon nitride: novel exfoliation synthesis and its application in photocatalysis and photoelectrochemical selective detection of trace amount of Cu2+. Nanoscale 6, 1406–1415 (2014). https://doi.org/10.1039/C3NR04759H
- X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y. Xie, Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 135, 18–21 (2013). https://doi.org/10.1021/ja308249k
- I. Hevesi, L. Nánai, R. Vajtai, Laser light stimulated oxidation of vanadium at nonuniform illumination. Superlattice Microstruct. 3, 409–412 (1987). https://doi.org/10.1016/0749-6036(87)90214-X
- H. Ou, L. Lin, Y. Zheng, P. Yang, Y. Fang, X. Wang, Tri-s-triazine-based crystalline carbon nitride nanosheets for an improved hydrogen evolution. Adv. Mater. 29, 1700008 (2017). https://doi.org/10.1002/adma.201700008
- Z.T.Z. Tao, K.W.K. Wang, F.Y.F. Yi, C.Y.C. Yan, Q.L.Q. Li et al., A 3D soc design for H.264 application with on-chip dram stacking, in 2010 IEEE International 3D Systems Integration Conference (3DIC), vol. 1, Corpus ID: 11735204 (2010). https://doi.org/10.1109/3DIC.2010.5751446
- J. Ryu, Y.J. Jang, S. Choi, H.J. Kang, H. Park, J.S. Lee, S. Park, All-in-one synthesis of mesoporous silicon nanosheets from natural clay and their applicability to hydrogen evolution. NPG Asia Mater. 8, e248 (2016). https://doi.org/10.1038/am.2016.35
- Y.P. Xie, J.-Y. Xing, X.-Y. Li, X. Wang, H.-J. Sun et al., Survey of sweetpotato viruses in China. Acta Virol. 57, 81–84 (2013). https://doi.org/10.4149/av_2013_01_81
- O. Mashtalir, K.M. Cook, V.N. Mochalin, M. Crowe, M.W. Barsoum, Y. Gogotsi, Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J. Mater. Chem. A 2, 14334–14338 (2014). https://doi.org/10.1039/C4TA02638A
- J. Su, G.D. Li, X.H. Li, J.S. Chen, 2D/2D heterojunctions for catalysis. Adv. Sci. 6, 1801702 (2019). https://doi.org/10.1002/advs.201801702
- K. Maeda, M. Eguchi, T. Oshima, Perovskite oxide nanosheets with tunable band-edge potentials and high photocatalytic hydrogen-evolution activity. Angew. Chem. Int. Ed. 53, 13164–13168 (2014). https://doi.org/10.1002/anie.201408441
- C.K. Ngaw, Q. Xu, T.T.Y. Tan, P. Hu, S. Cao, J.S.C. Loo, A strategy for in situ synthesis of well-defined core–shell Au@TiO2 hollow spheres for enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 257, 112–121 (2014). https://doi.org/10.1016/j.cej.2014.07.059
- J. Li, G. Zhan, Y. Yu, L. Zhang, Superior visible light hydrogen evolution of Janus bilayer junctions via atomic-level charge flow steering. Nat. Commun. 7, 11480 (2016). https://doi.org/10.1038/ncomms11480
- Y. Wu, Z. Li, W. Ma, Y. Huang, L. Huo et al., PDT-S-T: a new polymer with optimized molecular conformation for controlled aggregation and π–π stacking and its application in efficient photovoltaic devices. Adv. Mater. 25, 3449–3455 (2013). https://doi.org/10.1002/adma.201301174
- E.Q. Chen, X.Q. Song, Y.L. Wang, T.Y. Zhou, L. Bai et al., Construction of a highly-active, liver-specific transcriptional regulatory element through combination of the albumin promoter and α-fetoprotein enhancer. Plasmid 79, 87–88 (2011). https://doi.org/10.1016/j.plasmid.2010.11.006
- S. Deckoff-Jones, J. Zhang, C.E. Petoukhoff, M.K.L. Man, S. Lei et al., Observing the interplay between surface and bulk optical nonlinearities in thin van der Waals crystals. Sci. Rep. 6, 22620 (2016). https://doi.org/10.1038/srep22620
- Y. Sun, Z. Sun, S. Gao, H. Cheng, Q. Liu et al., Photoelectrochemical reactions: all-surface-atomic-metal chalcogenide sheets for high-efficiency visible-light photoelectrochemical water splitting. Adv. Energy Mater. 4, 1 (2014). https://doi.org/10.1002/aenm.201470002
- Y. Sun, Z. Sun, S. Gao, H. Cheng, Q. Liu et al., All-surface-atomic-metal chalcogenide sheets for high-efficiency visible-light photoelectrochemical water splitting. Adv. Energy Mater. 4, 1300611 (2014). https://doi.org/10.1002/aenm.201300611
- D. Liang, H. Luo, Y.F. Liu, Z.Y. Hao, Y. Wang et al., Lysilactones A–C, three 6H-dibenzo(b, d)pyran-6-one glycosides from Lysimachia clethroides, total synthesis of lysilactone A. Tetrahedron 69, 2093–2097 (2013). https://doi.org/10.1016/j.tet.2013.01.029
- Y. Li, Z. Wang, T. Xia, H. Ju, K. Zhang et al., Implementing metal-to-ligand charge transfer in organic semiconductor for improved visible-near-infrared photocatalysis. Adv. Mater. 28, 6959–6965 (2016). https://doi.org/10.1002/adma.201601960
- F. Lei, L. Zhang, Y. Sun, L. Liang, K. Liu et al., Atomic-layer-confined doping for atomic-level insights into visible-light water splitting. Angew. Chem. Int. Ed. 54, 9266–9270 (2015). https://doi.org/10.1002/ange.201503410
- G. Liu, P. Niu, C.H. Sun, S.C. Smith, Z.G. Chen, G.Q. Lu, H.M. Cheng, Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc. 132, 11642–11648 (2010). https://doi.org/10.1021/ja103798k
- J. Zhou, Y. Huang, X. Cao, B. Ouyang, W. Sun et al., Two-dimensional NiCo2O4 nanosheet-coated three-dimensional graphene networks for high-rate, long-cycle-life supercapacitors. Nanoscale 7, 7035–7039 (2015). https://doi.org/10.1039/C4NR06527A
- Q. Qiao, B.H. Li, C.X. Shan, J.S. Liu, J. Yu et al., Light-emitting diodes fabricated from small-size ZnO quantum dots. Mater. Lett. 74, 104–106 (2012). https://doi.org/10.1016/j.matlet.2012.01.048
- C. Huang, C. Chen, M. Zhang, L. Lin, X. Ye et al., Carbon-doped BN nanosheets for metal-free photoredox catalysis. Nat. Commun. 6, 7698 (2015). https://doi.org/10.1038/ncomms8698
- W. Bi, C. Ye, C. Xiao, W. Tong, X. Zhang, W. Shao, Y. Xie, Spatial location engineering of oxygen vacancies for optimized photocatalytic. Small 10, 2820–2825 (2014). https://doi.org/10.1002/smll.201303548
- B.E.S. Collaboration, M. Ablikim, J.Z. Bai, Y. Ban, J.G. Bian et al., Observation of the decay (2S)k(892)k + c.c. Phys. Lett. B 614, 37–43 (2005). https://doi.org/10.1016/j.physletb.2005.03.071
- S. Gao, B. Gu, X. Jiao, Y. Sun, X. Zu et al., Highly efficient and exceptionally durable CO2 photoreduction to methanol over freestanding defective single-unit-cell bismuth vanadate layers. J. Am. Chem. Soc. 139, 3438–3445 (2017). https://doi.org/10.1021/jacs.6b11263
- M. Cargnello, T. Montini, S.Y. Smolin, J.B. Prieb, J.J. Delgado Jaén et al., Engineering titania nanostructure to tune and improve its photocatalytic activity. Proc. Natl. Acad. Sci. 113, 3966–3971 (2016). https://doi.org/10.1073/pnas.1524806113
- J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu et al., Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers. Sci. Rep. 7, 42357 (2017). https://doi.org/10.1038/srep42357
- Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen et al., Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices. Adv. Opt. Mater. 6, 1701166 (2018). https://doi.org/10.1002/adom.201701166
- B. Guo, S.H. Wang, Z.X. Wu, Z.X. Wang, D.H. Wang et al., Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber. Opt. Express 26, 22750 (2018). https://doi.org/10.1364/oe.26.022750
- X. Jiang, S. Liu, W. Liang, S. Luo, Z. He et al., Broadband nonlinear photonics in few-layer MXene Ti3C2tx (t = F, O, or OH). Laser Photonics Rev. 12, 1700229–1700239 (2018). https://doi.org/10.1002/lpor.201700229
- X. Jiang, L. Zhang, S. Liu, Y. Zhang, Z. He et al., Ultrathin metal–organic framework: an emerging broadband nonlinear optical material for ultrafast photonics. Adv. Opt. Mater. 6, 1800561 (2018). https://doi.org/10.1002/adom.201800561
- Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li et al., Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability. 2D Mater. 4, 045010 (2017). https://doi.org/10.1088/2053-1583/aa87c1
- Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang et al., Pulsed lasers employing solution-processed plasmonic Cu3−xP colloidal nanocrystals. Adv. Mater. 28, 3535–3542 (2016). https://doi.org/10.1002/adma.201504927
- X. Zhu, S. Chen, M. Zhang, L. Chen, Q. Wu et al., TiS2-based saturable absorber for ultrafast fiber laser. Photonics Res. 6, C44 (2018). https://doi.org/10.1364/prj.6.000c44
- P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin et al., Two-dimensional CH3NH3PBi3 perovskite nanosheets for ultrafast pulsed fiber lasers. ACS Appl. Mater. Interfaces. 9, 12759–12765 (2017). https://doi.org/10.1021/acsami.7b01709
- M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin et al., 2D black phosphorus saturable absorbers for ultrafast photonics. Adv. Opt. Mater. 7, 1800224 (2018). https://doi.org/10.1002/adom.201800224
- Y.F. Song, H. Zhang, D.Y. Tang, D.Y. Shen, Polarization rotation vector solitons in a graphene mode-locked fiber laser. Opt. Express 20, 27283–27289 (2012). https://doi.org/10.1364/OE.20.027283
- Y. Chen, M. Wu, P. Tang, S. Chen, J. Du et al., The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber. Laser Phys. Lett. 11, 055101 (2014). https://doi.org/10.1088/1612-2011/11/5/055101
- Y. Ge, S. Chen, Y. Xu, Z. He, Z. Liang et al., Few-layer selenium-doped black phosphorus: synthesis, nonlinear optical properties and ultrafast photonics applications. J. Mater. Chem. C 5, 6129–6135 (2017). https://doi.org/10.1039/c7tc01267e
- J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, Y. Liu, Black phosphorus: a two-dimension saturable absorption material for mid-infrared q-switched and mode-locked fiber lasers. Sci. Rep. 6, 30361 (2016). https://doi.org/10.1038/srep30361
- M. Liu, N. Zhao, H. Liu, X. Zheng, A. Luo et al., Dual-wavelength harmonically mode-locked fiber laser with topological insulator saturable absorber. IEEE Photonics Technol. Lett. 26, 983–986 (2014). https://doi.org/10.1109/lpt.2014.2311101
- M. Liu, Z.R. Cai, S. Hu, A.P. Luo, C.J. Zhao et al., Dissipative rogue waves induced by long-range chaotic multi-pulse interactions in a fiber laser with a topological insulator-deposited microfiber photonic device. Opt. Lett. 40, 4767–4770 (2015). https://doi.org/10.1364/OL.40.004767
- G. Zheng, Y. Chen, H. Huang, C. Zhao, S. Lu et al., Improved transfer quality of CVD-grown graphene by ultrasonic processing of target substrates: applications for ultra-fast laser photonics. ACS Appl. Mater. Interfaces. 5, 10288–10293 (2013). https://doi.org/10.1021/am403205v
- Y.F. Song, H. Zhang, L.M. Zhao, D.Y. Shen, D.Y. Tang, Coexistence and interaction of vector and bound vector solitons in a dispersion-managed fiber laser mode locked by graphene. Opt. Express 24, 1814–1822 (2016). https://doi.org/10.1364/OE.24.001814
- Y. Song, S. Chen, Q. Zhang, L. Li, L. Zhao, H. Zhang, D. Tang, Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber. Opt. Express 24, 25933–25942 (2016). https://doi.org/10.1364/OE.24.025933
- Z.C. Luo, M. Liu, Z.N. Guo, X.F. Jiang, A.P. Luo et al., Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser. Opt. Express 23, 20030–20039 (2015). https://doi.org/10.1364/OE.23.020030
- Q. Wang, Y. Chen, L. Miao, G. Jiang, S. Chen et al., Wide spectral and wavelength-tunable dissipative soliton fiber laser with topological insulator nano-sheets self-assembly films sandwiched by PMMA polymer. Opt. Express 23, 7681–7693 (2015). https://doi.org/10.1364/OE.23.007681
- Y. Xu, W. Wang, Y. Ge, H. Guo, X. Zhang et al., Stabilization of black phosphorous quantum dots in PMMA nanofiber film and broadband nonlinear optics and ultrafast photonics application. Adv. Funct. Mater. 27, 1702437 (2017). https://doi.org/10.1002/adfm.201702437
- X.F. Jiang, Z. Zeng, S. Li, Z. Guo, H. Zhang, F. Huang, Q.H. Xu, Tunable broadband nonlinear optical properties of black phosphorus quantum dots for femtosecond laser pulses. Materials (Basel) 10, 210 (2017). https://doi.org/10.3390/ma10020210
- Z. Wang, Y. Xu, S.C. Dhanabalan, J. Sophia, C. Zhao et al., Black phosphorus quantum dots as an efficient saturable absorber for bound soliton operation in an erbium doped fiber laser. IEEE Photonics J. 8, 1–10 (2016). https://doi.org/10.1109/jphot.2016.2598085
- C. Ma, C. Wang, B. Gao, J. Adams, G. Wu, H. Zhang, Recent progress in ultrafast lasers based on 2d materials as a saturable absorber. Appl. Phys. Rev. 6, 041304 (2019). https://doi.org/10.1063/1.5099188
- T. Jiang, K. Yin, C. Wang, J. You, H. Ouyang et al., Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect. Photonics Res. 8, 78 (2019). https://doi.org/10.1364/prj.8.000078
- Y. Song, X. Shi, C. Wu, D. Tang, H. Zhang, Recent progress of study on optical solitons in fiber lasers. Appl. Phys. Rev. 6, 021313 (2019). https://doi.org/10.1063/1.5091811
- Y. Fang, Y. Ge, C. Wang, H. Zhang, Mid-infrared photonics using 2D materials: status and challenges. Laser Photonics Rev. 14, 1900098 (2019). https://doi.org/10.1002/lpor.201900098
- J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen et al., Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation. Adv. Opt. Mater. 5, 1700026 (2017). https://doi.org/10.1002/adom.201700026
- J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen et al., Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability. ACS Photonics 4, 1466–1476 (2017). https://doi.org/10.1021/acsphotonics.7b00231
- C. Wang, Y. Wang, X. Jiang, J. Xu, W. Huang et al., MXene Ti3C2Tx: a promising photothermal conversion material and application in all-optical modulation and all-optical information loading. Adv. Opt. Mater. 7, 1900060 (2019). https://doi.org/10.1002/adom.201900060
- Y. Wang, W. Huang, J. Zhao, H. Huang, C. Wang et al., A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect. J. Mater. Chem. C 7, 871–878 (2019). https://doi.org/10.1039/c8tc05513k
- L. Wu, W. Huang, Y. Wang, J. Zhao, D. Ma et al., 2d tellurium based high-performance all-optical nonlinear photonic devices. Adv. Funct. Mater. 29, 1806346 (2019). https://doi.org/10.1002/adfm.201806346
- S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao et al., Few-layer topological insulator for all-optical signal processing using the nonlinear kerr effect. Adv. Opt. Mater. 3, 1769–1778 (2015). https://doi.org/10.1002/adom.201500347
- Y. Song, Y. Chen, X. Jiang, Y. Ge, Y. Wang et al., Nonlinear few-layer MXene-assisted all-optical wavelength conversion at telecommunication band. Adv. Opt. Mater. 7, 1801777 (2019). https://doi.org/10.1002/adom.201801777
- Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen et al., All-optical phosphorene phase modulator with enhanced stability under ambient conditions. Laser Photonics Rev. 12, 1800016 (2018). https://doi.org/10.1002/lpor.201800016
- L. Wu, K. Chen, W. Huang, Z. Lin, J. Zhao et al., Perovskite CSPBX3: a promising nonlinear optical material and its applications for ambient all-optical switching with enhanced stability. Adv. Opt. Mater. 6, 1800400 (2018). https://doi.org/10.1002/adom.201800400
- L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang et al., Kerr nonlinearity in 2D graphdiyne for passive photonic diodes. Adv. Mater. 31, 1807981 (2019). https://doi.org/10.1002/adma.201807981
- L. Wu, X. Jiang, J. Zhao, W. Liang, Z. Li et al., Mxene-based nonlinear optical information converter for all-optical modulator and switcher. Laser Photonics Rev. 12, 1800215 (2018). https://doi.org/10.1002/lpor.201800215
- L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang et al., Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion. Adv. Opt. Mater. 6, 1700985 (2018). https://doi.org/10.1002/adom.201700985
- Q. Wu, S. Chen, Y. Wang, L. Wu, X. Jiang et al., MZI-based all-optical modulator using mxene Ti3C2Tx (T = F, O, or OH) deposited microfiber. Adv. Mater. Technol. 4, 1800532 (2019). https://doi.org/10.1002/admt.201800532
- Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang et al., An all-optical, actively q-switched fiber laser by an antimonene-based optical modulator. Laser Photonics Rev. 13, 1800313 (2019). https://doi.org/10.1002/lpor.201800313
- Q. Ou, Y. Zhang, Z. Wang, J.A. Yuwono, R. Wang et al., Strong depletion in hybrid perovskite p–n junctions induced by local electronic doping. Adv. Mater. 30, 1705792 (2018). https://doi.org/10.1002/adma.201705792
- P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu et al., On-nanowire axial heterojunction design for high-performance photodetectors. ACS Nano 10, 8474–8481 (2016). https://doi.org/10.1021/acsnano.6b03458
- Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu et al., Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv. Mater. 29, 1703811 (2017). https://doi.org/10.1002/adma.201703811
- Z. Huang, W. Han, H. Tang, L. Ren, D.S. Chander, X. Qi, H. Zhang, Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure. 2D Mater. 2, 035011 (2015). https://doi.org/10.1088/2053-1583/2/3/035011
- X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao et al., Environmentally robust black phosphorus nanosheets in solution: application for self-powered photodetector. Adv. Funct. Mater. 27, 1606834 (2017). https://doi.org/10.1002/adfm.201606834
- Y. Xu, J. Yuan, K. Zhang, Y. Hou, Q. Sun et al., Field-induced n-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility. Adv. Funct. Mater. 27, 1702211 (2017). https://doi.org/10.1002/adfm.201702211
- X. Ji, N. Kong, J. Wang, W. Li, Y. Xiao et al., A novel top-down synthesis of ultrathin 2D boron nanosheets for multimodal imaging-guided cancer therapy. Adv. Mater. 30, 1803031 (2018). https://doi.org/10.1002/adma.201803031
- X. Liang, X. Ye, C. Wang, C. Xing, Q. Miao et al., Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation. J. Control. Release 296, 150–161 (2019). https://doi.org/10.1016/j.jconrel.2019.01.027
- M. Luo, T. Fan, Y. Zhou, H. Zhang, L. Mei, 2D black phosphorus-based biomedical applications. Adv. Funct. Mater. 29(13), 1808306 (2019). https://doi.org/10.1002/adfm.201808306
- Z.B. Sun, Y.T. Zhao, Z.B. Li, H.D. Cui, Y.Y. Zhou et al., TiL4-coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer. Small 13, 1602896 (2017). https://doi.org/10.1002/smll.201602896
- M. Qiu, D. Wang, W. Liang, L. Liu, Y. Zhang et al., Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy. Proc. Natl. Acad. Sci. 115, 501–506 (2018). https://doi.org/10.1073/pnas.1714421115
- F. Yin, K. Hu, S. Chen, D. Wang, J. Zhang et al., Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells. J. Mater. Chem. B 5, 5433–5440 (2017). https://doi.org/10.1039/c7tb01068k
- T. Fan, Y. Zhou, M. Qiu, H. Zhang, Black phosphorus: a novel nanoplatform with potential in the field of bio-photonic nanomedicine. J. Innov. Opt. Health Sci. 11, 1830003 (2018). https://doi.org/10.1142/s1793545818300033
- W. Tao, X. Ji, X. Xu, M.A. Islam, Z. Li et al., Antimonene quantum dots: synthesis and application as near-infrared photothermal agents for effective cancer therapy. Angew. Chem. Int. Ed. 56, 11896–11900 (2017). https://doi.org/10.1002/anie.201703657
- T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang et al., Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat. Commun. 10, 28 (2019). https://doi.org/10.1038/s41467-018-07947-8
- H. Xie, Z. Li, Z. Sun, J. Shao, X.F. Yu et al., Metabolizable ultrathin Bi2Se3 nanosheets in imaging-guided photothermal therapy. Small 12, 4136–4145 (2016). https://doi.org/10.1002/smll.201601050
- W. Tao, X. Ji, X. Zhu, L. Li, J. Wang et al., Two-dimensional antimonene-based photonic nanomedicine for cancer theranostics. Adv. Mater. 30, 1802061 (2018). https://doi.org/10.1002/adma.201802061
- J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang et al., Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347, 970–974 (2015). https://doi.org/10.1126/science.aaa3145
- J. Xia, J. Di, H. Li, H. Xu, H. Li, S. Guo, Ionic liquid-induced strategy for carbon quantum dots/BiOx (x = Br, Cl) hybrid nanosheets with superior visible light-driven photocatalysis. Appl. Catal. B Environ. 181, 260–269 (2016). https://doi.org/10.1016/j.apcatb.2015.07.035
- F. Xiang, S. Nan, Y. Liu, X. Chen, X. Zhou, Simultaneously enhanced stability and selectivity for propene epoxidation with H2 and O2 on Au catalysts supported on nano-crystalline mesoporous TS-1. ACS Catal. 7, 2668–2675 (2017). https://doi.org/10.1021/acscatal.6b03498
- B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang et al., Single-atom catalysis of Co oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011). https://doi.org/10.1038/nchem.1095
- Z. Chen, S. Pronkin, T.P. Fellinger, K. Kailasam, G. Vilé et al., Merging single-atom-dispersed silver and carbon nitride to a joint electronic system via copolymerization with silver tricyanomethanide. ACS Nano 10, 3166–3175 (2016). https://doi.org/10.1021/acsnano.5b04210
- X. Li, W. Bi, L. Zhang, S. Tao, Y. Xie, Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 28, 2427–2431 (2016). https://doi.org/10.1002/adma.201505281
- S. Ida, N. Kim, E. Ertekin, S. Takenaka, T. Ishihara, Photocatalytic reaction centers in two-dimensional titanium oxide crystals. J. Am. Chem. Soc. 137, 239–244 (2014). https://doi.org/10.1021/ja509970z
- Z. Han, F. Qiu, R. Eisenberg, P.L. Holland, T.D. Krauss, Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 338, 1321–1324 (2012). https://doi.org/10.1021/acscatal.5b02036
- X. Lu, K. Xu, S. Tao, Z. Shao, X. Peng et al., Engineering the electronic structure of two-dimensional subnanopore nanosheets using molecular titanium-oxide incorporation for enhanced photocatalytic activity. Chem. Sci. 7, 1462–1467 (2016). https://doi.org/10.1039/C5SC03551A
- Y.J. Yuan, Z.J. Ye, H. Lu, B. Hu, Y.H. Li et al., Constructing anatase TiO2 nanosheets with exposed (001) facets/layered MoS2 two-dimensional nanojunction for enhanced solar hydrogen generation. ACS Catal. 6, 532–541 (2016). https://doi.org/10.1021/acscatal.5b02036
- S. Ida, A. Takashiba, S. Koga, H. Hagiwara, T. Ishihara, Potential gradient and photocatalytic activity of an ultrathin p–n junction surface prepared with two-dimensional semiconducting nanocrystals. J. Am. Chem. Soc. 136, 1872–1878 (2014). https://doi.org/10.1021/ja409465k
- Y.Z. Huang, L.M. Wu, X.T. Wu, L.H. Li, L. Chen, Y.F. Zhang, Pb2B5O9I: an iodide borate with strong second harmonic generation. J. Am. Chem. Soc. 132, 12788–12789 (2010). https://doi.org/10.1021/ja106066k
- Y. Hou, A.B. Laursen, J. Zhang, G. Zhang, Y. Zhu et al., Layered nanojunctions for hydrogen-evolution catalysis. Angew. Chem. Int. Ed. 125, 3709–3713 (2013). https://doi.org/10.1002/anie.201210294
- Y.H. Huang, J.J. Wang, Z.M. Liu, G.D. Lin, H.B. Zhang, Highly efficient Ni–ZrO2 catalyst doped with YB2O3 for co-methanation of CO and CO2. Appl. Catal. A Gen. 466, 300–306 (2013). https://doi.org/10.1016/j.apcata.2013.06.021
- F. Wen, C. An, X. Wu, Y. Yang, J. Xu et al., MiR-34a regulates mitochondrial content and fat ectopic deposition induced by resistin through the AMPK/PPARα pathway in HepG2 cells. Int. J. Biochem. Cell Biol. 94, 133–145 (2018). https://doi.org/10.1016/j.biocel.2017.11.008
- J.L. Gunjakar, T.W. Kim, H.N. Kim, I.Y. Kim, S.J. Hwang, Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: highly active visible light photocatalysts with improved chemical stability. J. Am. Chem. Soc. 133, 14998–15007 (2011). https://doi.org/10.1021/ja203388r
- Y. Sun, Z. Sun, S. Gao, H. Cheng, Q. Liu et al., Fabrication of flexible and freestanding zinc chalcogenide single layers. Nat. Commun. 3, 1057 (2012). https://doi.org/10.1038/ncomms2066
- Y. Liu, L. Liang, C. Xiao, X. Hua, Z. Li, B. Pan, Y. Xie, Promoting photogenerated holes utilization in pore-rich WO3 ultrathin nanosheets for efficient oxygen-evolving photoanode. Adv. Energy Mater. 6, 1600437 (2016). https://doi.org/10.1002/aenm.201600437
- Y. Sun, Z. Sun, S. Gao, H. Cheng, Q. Liu et al., Fabrication of flexible and freestanding zinc chalcogenide single layers. Nat. Commun. 3, 1–7 (2012). https://doi.org/10.1038/ncomms2066
- Q. He, C. Li, F. Geng, H. Yang, P. Li et al., Aerosol optical properties retrieved from sun photometer measurements over Shanghai, China. J. Geophys. Res. Atmos. 117, 74–82 (2012). https://doi.org/10.1029/2011JD017220
- Y. Sun, Z. Sun, S. Gao, H. Cheng, Q. Liu et al., Photoelectrochemical reactions: all-surface-atomic-metal chalcogenide sheets for high-efficiency visible-light photoelectrochemical water splitting. Adv. Energy Mater. 4, 1300574 (2014). https://doi.org/10.1002/aenm.201470002
- J. Zhu, Z. Yin, Y. Dan, T. Sun, Q. Yan, Hierarchical hollow spheres composed of ultrathin Fe2O3 nanosheets for lithium storage and photocatalytic water oxidation. Energy Environ. Sci. 6, 987–993 (2013). https://doi.org/10.1039/C2EE24148J
- M. Ablikim, J.Z. Bai, Y. Bai, Y. Ban, X. Cai et al., Measurements of the observed cross sections for e+e− → exclusive light hadrons containing π0π0 at √s = 3.773, 3.650 and 3.6648 GeV. Phys. Lett. B 670, 179–183 (2008). https://doi.org/10.1016/j.physletb.2008.10.051
- K.C. Kwon, S. Choi, K. Hong, D.M. Andoshe, J.M. Suh et al., Tungsten disulfide thin film/p-type si heterojunction photocathode for efficient photochemical hydrogen production. MRS Commun. 7, 272–279 (2017). https://doi.org/10.1002/anie.201210294
- M. Zhang, J. Guan, Y. Tu, S. Chen, Y. Wang et al., Highly efficient H2 production from H2S via a robust graphene-encapsulated metal catalyst. Energy Environ. Sci. 13, 119–126 (2020). https://doi.org/10.1039/C9EE03231B
- H. Wang, R. Peng, Z.D. Hood, M. Naguib, S.P. Adhikari, Z. Wu, Titania composites with 2D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation. Chemsuschem 9, 1490–1497 (2016). https://doi.org/10.1002/cssc.201600165
- J. Peng, X. Chen, W.J. Ong, X. Zhao, N. Li, Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis. Chem 5, 18–50 (2019). https://doi.org/10.1016/j.chempr.2018.08.037
- T. Su, R. Peng, Z.D. Hood, M. Naguib, I.N. Ivanov, J.K. Keum, Z. Qin, Z. Guo, Z. Wu, One-step synthesis of Nb2O5/C/Nb2C (MXene) composites and their use as photocatalysts for hydrogen evolution. Chemsuschem 11, 688 (2018). https://doi.org/10.1002/cssc.201702317
- J. Ran, G. Gao, F.T. Li, T.Y. Ma, A. Du, S.Z. Qiao, Ti3C2 Mxene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 8, 13907 (2017). https://doi.org/10.1038/ncomms13907
- M. Shao, Y. Shao, J.W. Chai, Y. Qu, H. Pan, Synergistic effect of 2D Ti2C and g-C3N4 for efficient photocatalytic hydrogen production. J. Mater. Chem. A 5, 16748–16756 (2017). https://doi.org/10.1039/C7TA04122E
- A. Vasileff, C. Xu, Y. Jiao, Y. Zheng, S.Z. Qiao, Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 4, 1809–1831 (2018). https://doi.org/10.1016/j.chempr.2018.05.001
- L. Liang, F. Lei, S. Gao, Y. Sun, X. Jiao et al., Single unit cell bismuth tungstate layers realizing robust solar CO2 reduction to methanol. Angew. Chem. Int. Ed. 127, 14177–14180 (2015). https://doi.org/10.1002/anie.201506966
- S. Asif, R. Kashif, N. Mohsin, M. Waheed, J. Jiseon et al., Heterostructural TiO2/Ti3C2Tx (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine. Chem. Eng. J. 349, 748–755 (2017). https://doi.org/10.1021/jacs.6b11263
- N. Li, X. Chen, W.J. Ong, D.R. MacFarlane, X. Zhao, A.K. Cheetham, C. Sun, Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes). ACS Nano 11, 10825–10833 (2017). https://doi.org/10.1021/acsnano.7b03738
- Y. Bai, L. Ye, T. Chen, L. Wang, X. Shi, X. Zhang, D. Chen, Facet-dependent photocatalytic N2 fixation of bismuth-rich Bi5O7i nanosheets. ACS Appl. Mater. Interfaces. 8, 27661–27668 (2016). https://doi.org/10.1021/acsami.6b08129
- H. Li, J. Shang, Z. Ai, L. Zhang, Efficient visible light nitrogen fixation with BIOBr nanosheets of oxygen vacancies on the exposed 001 facets. J. Am. Chem. Soc. 137, 6393–6399 (2015). https://doi.org/10.1021/jacs.5b03105
- S. Cao, B. Shen, T. Tong, J. Fu, J. Yu, 2D/2D heterojunction of ultrathin mxene/Bi2Wo6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 28, 1800136 (2018). https://doi.org/10.1002/adfm.201800136
- M. Ye, X. Wang, E. Liu, J. Ye, D. Wang, Boosting the photocatalytic activity of P25 for carbon dioxide reduction using a surface-alkalinized titanium carbide MXene as co-catalyst. Chemsuschem 11, 1606–1611 (2018). https://doi.org/10.1002/cssc.201800083
- C. Liu, Q. Xu, Q. Zhang, Y. Zhu, J. Xu, Layered BioBr/Ti3C2 MXene composite with improved visible-light photocatalytic activity. J. Mater. Sci. 54, 2458–2471 (2019). https://doi.org/10.1007/s10853-018-2990-0
- X.Y. Kong, W.L. Tan, B.J. Ng, S.P. Chai, A.R. Mohamed, Harnessing Vis-NIR broad spectrum for photocatalytic CO2 reduction over carbon quantum dots-decorated ultrathin Bi2Wo6 nanosheets. Nano Res. 10, 1720–1731 (2017). https://doi.org/10.1007/s12274-017-1435-4
- J.R. Christianson, D. Zhu, R.J. Hamers, J.R. Schmidt, Mechanism of N2 reduction to NH3 by aqueous solvated electrons. J. Phys. Chem. B 118, 195–203 (2014). https://doi.org/10.1021/jp406535p
- H. Li, F. Qin, Z. Yang, X. Cui, J. Wang, L. Zhang, New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on BioCl possessing oxygen vacancies. J. Am. Chem. Soc. 139, 3513–3521 (2017). https://doi.org/10.1021/jacs.6b12850
- N. Zhang, X. Li, H. Ye, S. Chen, H. Ju et al., Oxide defect engineering enables to couple solar energy into oxygen activation. J. Am. Chem. Soc. 138, 8928–8935 (2016). https://doi.org/10.1021/jacs.6b04629
- X.B. Li, C.H. Liu, R. Zhang, X.T. Huang, Y.Y. Li et al., Determination and pharmacokinetics of amygdalin in rats by LC-MS–MS. J. Chromatogr. Sci. 52, 476–481 (2013). https://doi.org/10.1093/chromsci/bmt063
- C. Peng, X. Yang, Y. Li, H. Yu, H. Wang, F. Peng, Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity. ACS Appl. Mater. Interfaces. 8, 6051–6060 (2016). https://doi.org/10.1021/acsami.5b11973
- Z. Lin, D. Barbara, P.L. Taberna, K.L. Van Aken, B. Anasori, Y. Gogotsi, P. Simon, Capacitance of Ti3C2tx mxene in ionic liquid electrolyte. J. Power Sources 326, 575–579 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.035
- X. Xie, N. Zhang, Z.R. Tang, M. Anpo, Y.J. Xu, Ti3C2Tx MXene as a janus cocatalyst for concurrent promoted photoactivity and inhibited photocorrosion. Appl. Catal. B Environ. 237, 43–49 (2018). https://doi.org/10.1016/j.apcatb.2018.05.070
- H. Wang, Y. Wu, T. Xiao, X. Yuan, G. Zeng et al., Formation of quasi-core–shell In2S3/anatase TiO2 @metallic Ti3C2tx hybrids with favorable charge transfer channels for excellent visible-light-photocatalytic performance. Appl. Catal. B Environ. 233, 213–225 (2018). https://doi.org/10.1016/j.apcatb.2018.04.012
- J.M. Campos-Martin, G. Blanco-Brieva, J.L. Fierro, Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew. Chem. Int. Ed. 45, 6962–6984 (2006). https://doi.org/10.1002/anie.200503779
- K. Sato, M. Aoki, R. Noyori, A “Green” Route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide. Science 281, 1646–1647 (1998). https://doi.org/10.1126/science.281.5383.1646
- S. Yang, A. Verdaguer-Casadevall, L. Arnarson, L. Silvioli, V. Čolić et al., Toward the decentralized electrochemical production of H2O2: a focus on the catalysis. ACS Catal. 8, 4064–4081 (2018). https://doi.org/10.1021/acscatal.8b00217
- W. Zhan, L. Ji, Z.M. Ge, X. Wang, R.T. Li, A continuous-flow synthesis of primary amides from hydrolysis of nitriles using hydrogen peroxide as oxidant. Tetrahedron 74, 1527–1532 (2018). https://doi.org/10.1016/j.tet.2018.02.017
- M. Ksibi, Chemical oxidation with hydrogen peroxide for domestic wastewater treatment. Chem. Eng. J. 119, 161–165 (2006). https://doi.org/10.1016/j.cej.2006.03.022
- R.N. Gurram, M. Al-Shannag, N.J. Lecher, S.M. Duncan, E.L. Singsaas, M. Alkasrawi, Bioconversion of paper mill sludge to bioethanol in the presence of accelerants or hydrogen peroxide pretreatment. Bioresour. Technol. 192, 529–539 (2015). https://doi.org/10.1016/j.biortech.2015.06.010
- K. Mase, M. Yoneda, Y. Yamada, S. Fukuzumi, Seawater usable for production and consumption of hydrogen peroxide as a solar fuel. Nat. Commun. 7, 1–7 (2016). https://doi.org/10.1038/ncomms11470
- Y.Q. Lan, X.L. Wang, L.Z. Dong, Q. Man, J.X. Su, Exploring the performance improvement of oxygen evolution reaction in stable bimetal–organic framework system. Angew. Chem. Int. Ed. 57, 9660–9664 (2018). https://doi.org/10.1002/anie.201803587
- Z. Zhang, K. Liu, Z. Feng, Y. Bao, B. Dong, Hierarchical sheet-on-sheet ZnIn2S4/g-C3N4 heterostructure with highly efficient photocatalytic H2 production based on photoinduced interfacial charge transfer. Sci. Rep. 6, 19221 (2016). https://doi.org/10.1038/srep19221
- C.Z. Liu, Y.F. Zhang, X.F. Li, X.F. Lu, Z. Chang et al., The high energy X-ray telescope (HE) onboard the insight-HXMT astronomy satellite. Sci. China Phys. Mech. 63, 249503 (2020). https://doi.org/10.1007/s11433-019-1486-x
- M. Zhong, T. Hisatomi, Y. Kuang, J. Zhao, M. Liu et al., Surface modification of CoOx loaded BiVo4 photoanodes with ultrathin p-type NiO layers for improved solar water oxidation. J. Am. Chem. Soc. 137, 5053–5060 (2015). https://doi.org/10.1021/jacs.5b00256
- L. Wang, X. Zheng, L. Chen, Y. Xiong, H. Xu, Van der Waals heterostructures comprised of ultrathin polymer nanosheets for efficient z-scheme overall water splitting. Angew. Chem. Int. Ed. 130, 3512–3516 (2018). https://doi.org/10.1002/ange.201710557
- M. Zhu, S. Kim, L. Mao, M. Fujitsuka, J. Zhang, X. Wang, T. Majima, Metal-free photocatalyst for H2 evolution in visible to near-infrared region: black phosphorus/graphitic carbon nitride. J. Am. Chem. Soc. 139, 13234–13242 (2017). https://doi.org/10.1021/jacs.5b00256
- J. Ran, W. Guo, H. Wang, B. Zhu, J. Yu, S.Z. Qiao, Metal-free 2D/2D phosphorene/g-C3N4 van der Waals heterojunction for highly enhanced visible-light photocatalytic h2 production. Adv. Mater. 30, 1800128 (2018). https://doi.org/10.1002/adma.201800128
- Q. Gai, X. Zheng, W. Liu, Q. Dong, Y. Wang, R. Gao, S. Ren, 2D–2D heterostructured CdS–CoP photocatalysts for efficient H2 evolution under visible light irradiation. Int. J. Hydrog. Energy 44, 27412–27420 (2019). https://doi.org/10.1016/j.ijhydene.2019.08.196
- R. Sasikala, A. Gaikwad, O. Jayakumar, K. Girija, R. Rao, A. Tyagi, S. Bharadwaj, Nanohybrid MoS2-PANI-CdS photocatalyst for hydrogen evolution from water. Colloids Surf. A 481, 485–492 (2015). https://doi.org/10.1016/j.colsurfa.2015.06.027
- M. Luo, W. Yao, C. Huang, Q. Wu, Q. Xu, Shape effects of pt nanoparticles on hydrogen production via Pt/CdS photocatalysts under visible light. J. Mater. Chem A 3, 13884–13891 (2015). https://doi.org/10.1039/C5TA00218D
- D. Lang, T. Shen, Q. Xiang, Roles of MoS2 and graphene as cocatalysts in the enhanced visible-light photocatalytic H2 production activity of multiarmed CdS nanorods. ChemCatChem 7, 943–951 (2015). https://doi.org/10.1002/cctc.201403062
- W. Jiang, Y. Liu, R. Zong, Z. Li, W. Yao, Y. Zhu, Photocatalytic hydrogen generation on bifunctional ternary heterostructured In2S3/MoS2/CdS composites with high activity and stability under visible light irradiation. J. Mater. Chem. A 3, 18406–18412 (2015). https://doi.org/10.1039/C5TA04258E
- T. Jia, A. Kolpin, C. Ma, R.C.T. Chan, W.M. Kwok, S.E. Tsang, A graphene dispersed CdS–MoS2 nanocrystal ensemble for cooperative photocatalytic hydrogen production from water. Chem. Commun. 50, 1185–1188 (2014). https:/
References
K. Huang, Z. Li, J. Lin, G. Han, P. Huang, Two-dimensional transition metal carbides and nitrides (mxenes) for biomedical applications. Chem. Soc. Rev. 47, 5109–5124 (2018). https://doi.org/10.1039/C7CS00838D
K. Khan, A.K. Tareen, M. Aslam, K.H. Thebo, U. Khan et al., A comprehensive review on synthesis of pristine and doped inorganic room temperature stable mayenite electride, [Ca24Al28O64]4+(e−)4 and its applications as a catalyst. Prog. Solid State Chem. 54, 1–19 (2018). https://doi.org/10.1016/j.progsolidstchem.2018.12.001
K. Khan, A.K. Tareen, M. Aslam, A. Mahmood, Q. Khan et al., Going green with batteries and supercapacitor: two dimensional materials and their nanocomposites based energy storage applications. Prog. Solid State Chem. 34, 100254 (2019). https://doi.org/10.1016/j.progsolidstchem.2019.100254
K. Khan, A.K. Tareen, M. Aslam, Y. Zhang, R. Wang, Z. Ouyang, Z. Gou, H. Zhang, Recent advances in two-dimensional materials and their nanocomposites in sustainable energy conversion applications. Nanoscale 11, 21622–21678 (2019). https://doi.org/10.1039/c9nr05919a
I. Dincer, Renewable energy and sustainable development: a crucial review. Renew. Sust. Energy Rev. 4, 157–175 (2000). https://doi.org/10.1016/S1364-0321(99)00011-8
X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44, 5148–5180 (2015). https://doi.org/10.1039/C4CS00448E
X. Chia, A.Y.S. Eng, A. Ambrosi, S.M. Tan, M. Pumera, Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chem. Rev. 115, 11941–11966 (2015). https://doi.org/10.1021/acs.chemrev.5b00287
H. Yin, Z. Tang, Ultrathin two-dimensional layered metal hydroxides: an emerging platform for advanced catalysis, energy conversion and storage. Chem. Soc. Rev. 45, 4873–4891 (2016). https://doi.org/10.1039/c6cs00343e
Y. Shi, H. Li, L.J. Li, Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 44, 2744–2756 (2015). https://doi.org/10.1039/C4CS00256C
Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015). https://doi.org/10.1039/c4cs00470a
J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2d mxenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72–133 (2019). https://doi.org/10.1039/C8CS00324F
H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff, Y. Jiao, Y. Zheng, S.Z. Qiao, Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118, 6337–6408 (2018). https://doi.org/10.1021/acs.chemrev.7b00689
Z. Zhang, E.S. Penev, B.I. Yakobson, Two-dimensional boron: structures, properties and applications. Chem. Soc. Rev. 46, 6746–6763 (2017)
Q. Meng, R.W. Xiu, J. Taeho, W. Miae, P.G. Young et al., Omnipotent phosphorene: a next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications. Chem. Soc. Rev. 47, 5588–5601 (2018). https://doi.org/10.1039/c8cs00342d
L. Dai, D.W. Chang, J.B. Baek, W. Lu, Carbon nanomaterials: carbon nanomaterials for advanced energy conversion and storage. Small 8, 1122 (2012). https://doi.org/10.1002/smll.201101594
K. Khan, L. Jia, Z. Wenwei, X. Wei, Y. Ye, S. Weijie, Low temperature synthesis of nano porous 12Cao·7Al2O3 powder by hydrothermal method. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 31, 1201–1205 (2016). https://doi.org/10.1007/s11595-016-1512-7
K. Khan, A.K. Tareen, S. Elshahat, A.K. Yadav, U. Khan et al., Facile synthesis of cationic doped [Ca24Al28O64]4+.(4e−) composite via rapid citrate sol–gel method. Dalton Trans. 47, 3819–3830 (2018). https://doi.org/10.1039/c7dt04543c
K. Khan, A.K. Tareen, J. Li, U. Khan, A. Nairan et al., Facile synthesis of tin-doped mayenite electride composite as a non-noble metal durable electrocatalyst for oxygen reduction reaction (ORR). Dalton Trans. 47, 13498–13506 (2018). https://doi.org/10.1039/c8dt02548g
K. Khan, A.K. Tareen, M. Aslam, R. Wang, Y. Zhang et al., Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C 9, 1–9 (2019). https://doi.org/10.1039/c9tc04187g
K. Khan, A.K. Tareen, M. Aslam, S.A. Khan, Q. Khan et al., Fe-doped mayenite electride composite with 2d reduced graphene oxide: as a non-platinum based, highly durable electrocatalyst for oxygen reduction reaction. Sci. Rep. 9, 19809 (2019). https://doi.org/10.1038/s41598-019-55207-6
K. Khan, A.K. Tareen, M. Aslam, Q. Khan, S.A. Khan et al., Novel two-dimensional carbon–chromium nitride-based composite as an electrocatalyst for oxygen reduction reaction. Front. Chem. 7, 738 (2019). https://doi.org/10.3389/fchem.2019.00738
K. Khan, A.K. Tareen, M. Aslam, R. Wang, Y. Zhang et al., Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C 8, 387–440 (2020). https://doi.org/10.1039/c9tc04187g
K. Khan, A.K. Tareen, S. Elshahat, N. Muhammad, J. Li et al., Facile metal-free reduction-based synthesis of pristine and cation-doped conductive mayenite. RSC Adv. 8, 24276–24285 (2018). https://doi.org/10.1039/c8ra02790krsc.li/rsc-advances
K. Khan, A.K. Tareen, U. Khan, A. Nairan, S. Elshahat et al., Single step synthesis of highly conductive room-temperature stable cation-substituted mayenite electride target and thin film. Sci. Rep. (2018). https://doi.org/10.1038/s41598-019-41512-7
A.K. Tareen, G.S. Priyanga, K. Khan, E. Pervaiz, T. Thomas, M. Yang, Nickel-based transition metal nitride electrocatalysts for the oxygen evolution reaction. Chemsuschem 12, 3941–3954 (2019). https://doi.org/10.1002/cssc.201900553
W. Zou, K. Khan, X. Zhao, C. Zhu, J. Huang et al., Direct fabrication of C12A7 electride target and room temperature deposition of thin films with low work function. Mater. Res. Express 4, 1–20 (2017). https://doi.org/10.1088/2053-1591/aa63c7
K. Khan, A.K. Tareen, M. Aslam, M.F. Khan, Z. Shi et al., Synthesis, properties and novel electrocatalytic applications of the 2-D borophene xenes. Prog. Solid State Chem. 58, 100283 (2020). https://doi.org/10.1016/j.progsolidstchem.2020.100283
W. Fan, Q. Zhang, Y. Wang, Semiconductor-based nanocomposites for photocatalytic H2 production and Co2 conversion. Phys. Chem. Chem. Phys. 15, 2632–2649 (2013). https://doi.org/10.1039/c2cp43524a
B. Luo, G. Liu, L. Wang, Recent advances in 2D materials for photocatalysis. Nanoscale 8, 6904–6920 (2016). https://doi.org/10.1039/c6nr00546b
W.J. Zhang, W.W. Li, X.G. Chen, Z.G. Hu, W. Liu et al., Phonon mode and phase transition behaviors of (1 − x)PbSc1/2Ta1/2O3−xPbHfO3 relaxor ferroelectric ceramics determined by temperature-dependent raman spectra. Appl. Phys. Lett. 99, 074103 (2011). https://doi.org/10.1063/1.3614431
R.D. Bonito, M.L. Elliott, E.A.D. Jardinm, Detection of an arbuscular mycorrhizal fungus in roots of different plant species with the PCR. Appl. Environ. Microb. 61, 2809–2810 (1995)
J. Di, J. Xiong, H. Li, Z. Liu, Ultrathin 2d photocatalysts: electronic-structure tailoring, hybridization, and applications. Adv. Mater. 30, 1–30 (2017). https://doi.org/10.1002/adma.201704548
J. Ran, J. Zhang, J. Yu, M. Jaroniec, S.Z. Qiao, Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 46, 7787–7812 (2015). https://doi.org/10.1039/C3CS60425J
Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987–10043 (2014). https://doi.org/10.1021/cr500008u
L.T.C. Equally, J. Zhang, L.Z. Li, N.A. Kumar, X.S. Zhao, Functionalization of chemically derived graphene for improving its electrocapacitive energy storage properties. Energy Environ. Sci. 9, 1891–1930 (2016). https://doi.org/10.1039/C6EE00158K
W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116, 7159–7329 (2016). https://doi.org/10.1021/acs.chemrev.6b00075
A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). https://doi.org/10.1038/238037a0
H.M. Tosine, J. Lawrence, J.H. Carey, Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions. B-Environ. Contam. Toxicol. 16, 697–701 (1976). https://doi.org/10.1007/BF01685575
X. Zhou, N. Liu, J. Schmidt, A. Kahnt, A. Osvet et al., Noble-metal-free photocatalytic hydrogen evolution activity: the impact of ball milling anatase nanopowders with TiH2. Adv. Mater. 29, 1604747 (2017). https://doi.org/10.1002/adma.201604747
W.B. Choi, D.S. Chung, J.H. Kang, H.Y. Kim, Y.W. Jin et al., Fully sealed, high-brightness carbon-nanotube field-emission display. Appl. Phys. Lett. 75, 3129 (1999). https://doi.org/10.1063/1.125253
T. Hisatomi, K. Maeda, K. Takanabe, J. Kubota, K. Domen, Aspects of the water splitting mechanism on (Ga1 − xZnx)(n1 − xOx) photocatalyst modified with Rh2–YCrYo3 cocatalyst. J. Phys. Chem. C 113, 21458–21466 (2009). https://doi.org/10.1021/jp9079662
T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520–7535 (2014). https://doi.org/10.1039/C3CS60378D
Q. Bao, H. Zhang, B. Wang, Z. Ni, C.H.Y.X. Lim et al., Broadband graphene polarizer. Nat. Photonics 5, 411–415 (2011). https://doi.org/10.1038/nphoton.2011.102
W. Tao, N. Kong, X.Y. Ji, Y.P. Zhang, A. Sharma et al., Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chem. Soc. Rev. 48, 2891–2912 (2019). https://doi.org/10.1039/C8CS00823J
C. Tan, X. Cao, X.J. Wu, Q. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896
Y. Sun, S. Gao, F. Lei, Y. Xie, Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem. Soc. Rev. 44, 623–636 (2014). https://doi.org/10.1039/C4CS00236A
Z. Du, S. Yang, S. Li, J. Lou, S. Zhang et al., Conversion of non-van der waals solids to 2d transition-metal chalcogenides. Nature 577, 492–496 (2020). https://doi.org/10.1038/s41586-019-1904-x
T. Su, Q. Shao, Z. Qin, Z. Guo, Z. Wu, Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal. 8, 2253–2276 (2018). https://doi.org/10.1021/acscatal.7b03437
J. Low, S. Cao, J. Yu, S. Wageh, Two-dimensional layered composite photocatalysts. Chem. Commun. 50, 10768–10777 (2014). https://doi.org/10.1039/C4CC02553A
S. Kouser, A. Thannikoth, U. Gupta, U.V. Waghmare, C.N.R. Rao, 2D-gas as a photocatalyst for water splitting to produce H2O2. Small 11, 4723–4730 (2015). https://doi.org/10.1002/smll.201501077
Z. Chao, L. Wang, L. Gang, Q.L. Gao, H.M. Cheng, Template-free synthesis of Ta3N5 nanorod arrays for efficient photoelectrochemical water splitting. Chem. Commun. 49, 3019–3021 (2013). https://doi.org/10.1039/C3CC40760H
N. Singh, G. Jabbour, U. Schwingenschlgl, Optical and photocatalytic properties of two-dimensional MoS2. Eur. Phys. J. B 85, 392–471 (2012). https://doi.org/10.1140/epjb/e2012-30449-7
Q. Li, X. Li, S. Wageh, A.A. Al-Ghamdi, J. Yu, CdS/graphene nanocomposite photocatalysts. Adv. Energy Mater. 5, 1500010 (2015). https://doi.org/10.1002/aenm.201500010
Y. Li, Y.L. Li, B. Sa, R. Ahuja, Review of two-dimensional materials for photocatalytic water splitting from a theoretical perspective. Catal. Sci. Technol. 7, 545–559 (2017). https://doi.org/10.1039/C6CY02178F
G.F. Chen, T.Y. Ma, Z.Q. Liu, N. Li, S.Z. Qiao, Efficient and stable bifunctional electrocatalysts Ni/Nix My (M = P, S) for overall water splitting. Adv. Funct. Mater. 26, 3314–3323 (2016). https://doi.org/10.1002/adfm.201505626
M. Monai, M. Melchionna, P. Fornasiero, Chapter One - From metal to metal-free catalysts: Routes to sustainable chemistry. Adv. Catal. 63, 1–73 (2018). https://doi.org/10.1016/bs.acat.2018.10.001
T. Tian, Y. Li, D. Xie, Y. Shen, J. Ren et al., Clinical features and risk factors for post-partum depression in a large cohort of chinese women with recurrent major depressive disorder. J. Affect. Disord. 136, 983–987 (2012). https://doi.org/10.1016/j.jad.2011.06.047
X. Li, M.W. Lin, J. Lin, B. Huang, A.A. Puretzky et al., Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der waals epitaxy. Sci. Adv. 2, 1501882 (2016). https://doi.org/10.1126/sciadv.1501882
Q. Liang, L. Ye, Z.H. Huang, Q. Xu, Y. Bai, F. Kang, Q.H. Yang, A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors. Nanoscale 6, 13831–13837 (2014). https://doi.org/10.1039/c4nr04541f
R. Kobayashi, S. Tanigawa, T. Takashima, B. Ohtani, H. Irie, Silver-inserted heterojunction photocatalysts for z-scheme overall pure-water splitting under visible-light irradiation. J. Phys. Chem. C 118, 22450–22456 (2014). https://doi.org/10.1021/jp5069973
B. Lin, H. Li, H. An, W. Hao, J. Wei et al., Preparation of 2d/2d g-C3N4 nanosheet@ZNiN2S4 nanoleaf heterojunctions with well-designed high-speed charge transfer nanochannels towards high-efficiency photocatalytic hydrogen evolution. Appl. Catal. B Environ. 220, 542–552 (2018). https://doi.org/10.1016/j.apcatb.2017.08.071
H. Xiao, C. Tan, Z.Y.A. Zhang, 25th anniversary article: hybrid nanostructures based on two-dimensional nanomaterials. Adv. Mater. 26, 2185–2204 (2014). https://doi.org/10.1002/adma.201304964
Y.J. Wang, Y.M. Tao, F.Y. Li, Y.H. Wang, X.J. Xu et al., Pharmacological characterization of ATPM [(–)-3-aminothiazolo[5,4-b]-N-cyclopropylmethylmorphinan hydrochloride], a novel mixed κ-agonist and μ-agonist/-antagonist that attenuates morphine antinociceptive tolerance and heroin self-administration behavior. J. Pharmacol. Exp. Ther. 329, 306–313 (2009). https://doi.org/10.1124/jpet.108.142802
J. Yang, D. Wang, H. Han, C. Li, Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 46, 1900–1909 (2013). https://doi.org/10.1021/ar300227e
M. Melchionna, P. Fornasiero, Updates on the roadmap for photocatalysis. ACS Catal. 10, 5493–5501 (2020). https://doi.org/10.1021/acscatal.0c01204
B. Ohtani, Preparing articles on photocatalysis-beyond the illusions, misconceptions, and speculation. Chem. Lett. 37, 216–229 (2008). https://doi.org/10.1246/cl.2008.216
J. Zhang, Y. Huang, L. Jin, F. Rosei, F. Vetrone, J.P. Claverie, Efficient upconverting multiferroic core@shell photocatalysts: visible-to-near-infrared photon harvesting. ACS Appl. Mater. Interfaces. 9, 8142–8150 (2017). https://doi.org/10.1021/acsami.7b00158
L. Wang, X. Xu, Q. Cheng, S.X. Dou, Y. Du, Near-infrared-driven photocatalysts: design, construction, and applications. Small (2019). https://doi.org/10.1002/smll.201904107
M. Freitag, N. Möller, A. Rühling, C.A. Strassert, B.J. Ravoo, F. Glorius, Photocatalysis in the dark: near-infrared light driven photoredox catalysis by an upconversion nanoparticle/photocatalyst system. ChemPhotoChem 3, 24–27 (2019). https://doi.org/10.1002/cptc.201800212
H. Chen, W. Liu, B. Hu, Z. Qin, H. Liu, A full-spectrum photocatalyst with strong near-infrared photoactivity derived from synergy of nano-heterostructured Er3+-doped multi-phase oxides. Nanoscale 9, 18940–18950 (2017). https://doi.org/10.1039/C7NR08090E
S.E. Braslavsky, A.M. Braun, A.E. Cassano, A.V. Emeline, M.I. Litter et al., Glossary of terms used in photocatalysis and radiation catalysis. Pure Appl. Chem. 83, 931–1014 (2011). https://doi.org/10.1351/PAC-REC-09-09-36
M.J. Munoz-Batista, U. Caudillo-Flores, F. Ung-Medina, M. del Carmen Chávez-Parga, J.A. Cortés, A. Kubacka, M. Fernández-García, Gas phase 2-propanol degradation using titania photocatalysts: study of the quantum efficiency. Appl. Catal. B Environ. 201, 400–410 (2017). https://doi.org/10.1016/j.apcatb.2016.08.014
M. Shelef, R.W. McCabe, Twenty-five years after introduction of automotive catalysts: what next? Catal. Today 62, 35–50 (2000). https://doi.org/10.1016/S0920-5861(00)00407-7
S. Sui, X. Wang, X. Zhou, Y. Su, S. Riffat, C.-J. Liu, A comprehensive review of pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells. J. Mater. Chem. A 5, 1808–1825 (2017). https://doi.org/10.1039/C6TA08580F
J. Kou, C. Lu, J. Wang, Y. Chen, Z. Xu, R.S. Varma, Selectivity enhancement in heterogeneous photocatalytic transformations. Chem. Rev. 117, 1445–1514 (2017). https://doi.org/10.1021/acs.chemrev.6b00396
G.J. Ruiz-Mercado, R.L. Smith, M.A. Gonzalez, Sustainability indicators for chemical processes: i. Taxonomy. Ind. Eng. Chem. Res. 51, 2309–2328 (2012). https://doi.org/10.1021/ie102116e
S.M. Fortier, N.T. Nassar, G.W. Lederer, J. Brainard, J. Gambogi, E.A. McCullough, Draft critical mineral list-summary of methodology and background information US geological survey technical input document in response to secretarial order no. 3359. 2018-1021 (2018). https://doi.org/10.3133/ofr20181021
A.L. Gulley, N.T. Nassar, S. Xun, China, the united states, and competition for resources that enable emerging technologies. Proc. Natl. Acad. Sci. U.S.A. 115, 4111–4115 (2018). https://doi.org/10.1073/pnas.1717152115
T. Paik, M. Cargnello, T.R. Gordon, S. Zhang, H. Yun et al., Photocatalytic hydrogen evolution from substoichiometric colloidal WO3−x nanowires. ACS Energy Lett. 3, 1904–1910 (2018). https://doi.org/10.1021/acsenergylett.8b00925
G. Carraro, C. Maccato, A. Gasparotto, T. Montini, S. Turner et al., Enhanced hydrogen production by photoreforming of renewable oxygenates through nanostructured Fe2O3 polymorphs. Adv. Funct. Mater. 24, 372–378 (2014). https://doi.org/10.1002/adfm.201302043
S. Qamar, F. Lei, L. Liang, S. Gao, K. Liu et al., Ultrathin TiO2 flakes optimizing solar light driven CO2 reduction. Nano Energy 26, 692–698 (2016). https://doi.org/10.1016/j.nanoen.2016.06.029
S. Gao, Y. Sun, F. Lei, J. Liu, L. Liang et al., Freestanding atomically-thin cuprous oxide sheets for improved visible-light photoelectrochemical water splitting. Nano Energy 8, 205–213 (2014). https://doi.org/10.1016/j.nanoen.2014.05.017
F. Lei, Y. Sun, K. Liu, S. Gao, L. Liang, B. Pan, Y. Xie, Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc. 136, 6826–6829 (2014). https://doi.org/10.1021/ja501866r
J. Wang, C.J. Liu, Preparation of 2D WO3 nanomaterials with enhanced catalytic activities: current status and perspective. Chembioeng. Rev. 2, 335–350 (2015). https://doi.org/10.1002/cben.201500014
L. Wang, T. Sasaki, Titanium oxide nanosheets: graphene analogues with versatile functionalities. Chem. Rev. 114, 9455–9486 (2014). https://doi.org/10.1021/cr400627u
N. Sakai, Y. Ebina, K. Takada, T. Sasaki, Photocurrent generation from semiconducting manganese oxide nanosheets in response to visible light. J. Phys. Chem. B 109, 9651–9655 (2005). https://doi.org/10.1021/jp0500485
R. Ma, T. Sasaki, Nanosheets of oxides and hydroxides: ultimate 2d charge-bearing functional crystallites. Adv. Mater. 22, 5082–5104 (2011). https://doi.org/10.1002/adma.201001722
K. Akatsuka, G. Takanashi, Y. Ebina, M.A. Haga, T. Sasaki, Electronic band structure of exfoliated titanium- and/or niobium-based oxide nanosheets probed by electrochemical and photoelectrochemical measurements. J. Phys. Chem. C 116, 12426–12433 (2012). https://doi.org/10.1021/jp302417a
S. Ida, C. Ogata, M. Eguchi, W.J. Youngblood, T.E. Mallouk, Y. Matsumoto, Photoluminescence of perovskite nanosheets prepared by exfoliation of layered oxides, K2Ln2Ti3O10, KLnNb2o7, and RbLnTa2O7 (ln: lanthanide ion). J. Am. Chem. Soc. 39, 7052–7059 (2008). https://doi.org/10.1021/ja7114772
K. Maeda, M. Eguchi, T. Oshima, Perovskite oxide nanosheets with tunable band-edge potentials and high photocatalytic hydrogen-evolution activity. Angew. Chem. Int. Ed. 46, 13164 (2015). https://doi.org/10.1002/anie.201408441
H. Yu, Q. Sun, X. Jia, X. Wang, J. Yu, Facile synthesis of porous Bi2WO6 nanosheets with high photocatalytic performance. Dalton Trans. 44, 14532–14539 (2015). https://doi.org/10.1039/C5DT01859E
E.L. Tae, K.E. Lee, J.S. Jeong, K.B. Yoon, Synthesis of diamond-shape titanate molecular sheets with different sizes and realization of quantum confinement effect during dimensionality reduction from two to zero. J. Am. Chem. Soc. 130, 6534–6543 (2008). https://doi.org/10.1021/ja711467g
Y. Zhou, Y. Zhang, M. Lin, J. Long, Z. Zhang et al., Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis. Nat. Commun. 6, 8340 (2015). https://doi.org/10.1038/ncomms9340
J. Li, S. Qin, J. Xu, J. Xiong, C. Wu et al., Randomized, double-blind, placebo-controlled phase iii trial of apatinib in patients with chemotherapy-refractory advanced or metastatic adenocarcinoma of the stomach or gastroesophageal junction. J. Clin. Oncol. 34, 1448–1454 (2016). https://doi.org/10.1200/JCO.2015.63.5995
T. Zhang, C. Zhou, Y. Zhao, T. Bian, L. Shang et al., Bubble template synthesis of Sn2Nb2O7 hollow spheres for enhanced visible-light-driven photocatalytic hydrogen production. Chem. Commun. 49, 9872–9874 (2013). https://doi.org/10.1039/c3cc45683h
Y. Zhao, G. Chen, T. Bian, C. Zhou, T. Zhang, Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 27, 7823 (2015). https://doi.org/10.1002/adma.201503730
Y.R. Liu, E.W. Loh, T.H. Lan, S.F. Chen, Y.H. Yu et al., ADRA1A gene is associated with BMI in chronic schizophrenia patients exposed to antipsychotics. Pharmacogenomics J. 10, 30–39 (2010). https://doi.org/10.1038/tpj.2009.55
Y. Zhao, B. Li, Q. Wang, W. Gao, C.J. Wang et al., NiTi-layered double hydroxides nanosheets as efficient photocatalysts for oxygen evolution from water using visible light. Chem. Sci. 5, 951–958 (2014). https://doi.org/10.1039/C3SC52546E
A. Hasani, M. Tekalgne, Q.V. Le, H.W. Jang, S.Y. Kim, Two-dimensional materials as catalysts for solar fuels: hydrogen evolution reaction and CO2 reduction. J. Mater. Chem A 7, 430–454 (2019). https://doi.org/10.1039/C8TA09496A
Y. Xu, W. Zhao, R. Xu, Y. Shi, B. Zhang, Synthesis of ultrathin CdS nanosheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution. Chem. Commun. 49, 9803–9805 (2013). https://doi.org/10.1039/C3CC46342G
Q. He, C. Li, F. Geng, H. Yang, P. Li et al., Aerosol optical properties retrieved from sun photometer measurements over Shanghai, China. J. Geophys. Res. Atmos. 117, 16204 (2012). https://doi.org/10.1029/2011JD017220
H. Li, J. Wu, Z. Yin, H. Zhang, Preparation and applications of mechanically exfoliated single-layer and multi layer MoS2 and WSe2 nanosheets. ACS Chem. Res. 47, 1067–1075 (2014). https://doi.org/10.1021/ar4002312
J. Yu, C.Y. Xu, F.X. Ma, S.P. Hu, L. Zhen, Monodisperse sns2 nanosheets for high-performance photocatalytic hydrogen generation. ACS Appl. Mater. Interfaces. 6, 22370–22377 (2014). https://doi.org/10.1021/am506396z
C. Lin, X. Zhu, J. Feng, C. Wu, Y. Xie, Hydrogen-incorporated TiS2 ultrathin nanosheets with ultrahigh conductivity for stamp-transferrable electrodes. J. Am. Chem. Soc. 135, 5144–5151 (2013). https://doi.org/10.1021/ja400041f
Y.H. Sang, Z.H. Zhao, M.W. Zhao, P. Hao, Y.H. Leng, H. Liu, From UV to near-infrared, WS2 nanosheet: a novel photocatalyst for full solar light spectrum photodegradation. Adv. Mater. 27, 363–369 (2015). https://doi.org/10.1002/adma.201403264
Y. Wu, M. Xu, X. Chen, S. Yang, H. Wu, J. Pan, X. Xiong, CTAB-assisted synthesis of novel ultrathin MoSe2 nanosheets perpendicular to graphene for adsorption and photodegradation of organic dyes under visible light. Nanoscale 8, 440–450 (2015). https://doi.org/10.1039/C5NR05748E
S. Balendhran, S. Walia, H. Nili, J.Z. Ou, S. Zhuiykov et al., Semiconductors: two-dimensional molybdenum trioxide and dichalcogenides. Adv. Funct. Mater. 23, 3946 (2013). https://doi.org/10.1002/adfm.201370159
M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013). https://doi.org/10.1038/nchem.1589
J.T. Jang, S. Jeong, J.W. Seo, M.C. Kim, E. Sim et al., Ultrathin zirconium disulfide nanodiscs. J. Am. Chem. Soc. 133, 7636–7639 (2011). https://doi.org/10.1021/ja200400n
J. Xie, J. Zhang, L. Shuang, F. Grote, X. Zhang et al., Correction to controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 136, 1680 (2014). https://doi.org/10.1021/ja4129636
J. Hou, S. Cao, Y. Wu, F. Liang, L. Ye, Z. Lin, L. Sun, Perovskite-based nanocubes with simultaneously improved visible-light absorption and charge separation enabling efficient photocatalytic CO2 reduction. Nano Energy 30, 59–68 (2016). https://doi.org/10.1016/j.nanoen.2016.09.033
W.Q. Li, G. Wang, X.N. Zhang, H.P. Geng, J.L. Shen et al., Geometrical and morphological optimizations of plasmonic nanoarrays for high-performance SERS detection. Nanoscale (2015). https://doi.org/10.1039/C5NR03140K
M. Ablikim, S.S. Fang, H.X. Yang, M.G. Zhao, G.S. Varner et al., Observation of the decay ψ(2S) → k(892)k−+c.c. Phys. Lett. B 614, 752–769 (2005). https://doi.org/10.1016/j.physletb.2005.03.071
J. Di, J. Xia, Y. Huang, M. Ji, W. Fan, Z. Chen, H. Li, Constructing carbon quantum dots/Bi2SiO5 ultrathin nanosheets with enhanced photocatalytic activity and mechanism investigation. Chem. Eng. J. 302, 334–343 (2016). https://doi.org/10.1016/j.cej.2016.05.009
H. Liu, F. Wang, L. Liu, X.Y. Jia, W. Zheng et al., Synthesis, characterization, and ethylene polymerization behaviors of late-transition metal complexes coordinated with chlorinated bis(arylimino)pyridine ligand. Polymer 55, 4611–4618 (2014). https://doi.org/10.1016/j.polymer.2014.07.015
L. Tan, X.C. Zhu, M.S. Tan, L. Sun, L. Tan et al., The genetic variation of ARRB2 is associated with late-onset Alzheimer’s disease in Han Chinese. Curr. Alzheimer Res. 11, 408–412 (2014). https://doi.org/10.2174/1567205011666140317095014
A. Hameed, T. Montini, V. Gombac, P. Fornasiero, Surface phases and photocatalytic activity correlation of Bi2O3/Bi2O4-x nanocomposite. J. Am. Chem. Soc. 130, 9658–9659 (2008). https://doi.org/10.1021/ja803603y
M. Guan, C. Xiao, J. Zhang, S. Fan, Y. Xie, Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J. Am. Chem. Soc. 135, 10411–10417 (2013). https://doi.org/10.1021/ja402956f
J. Di, J.X. Xia, M.X. Ji, B. Wang, S. Yin et al., Advanced photocatalytic performance of graphene-like BN modified BIOBr flower-like materials for the removal of pollutants and mechanism insight. Appl. Catal. B Environ. 183, 254–262 (2016). https://doi.org/10.1016/j.apcatb.2015.10.036
D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010). https://doi.org/10.1039/b917103g
T.F. Yeh, J.M. Syu, C. Cheng, T.H. Chang, H. Teng, Graphite oxide as a photocatalyst for hydrogen production from water. Adv. Funct. Mater. 20, 2255–2262 (2010). https://doi.org/10.1002/adfm.201000274
J. Chu, J. Sun, L.I. Peng, L.I. Guangsheng, Y. Niu et al., Effect of platelet-rich plasma combined with human umbilical cord-mesenchymal stem cells on the healing of osteoporotic fracture in rats. Chin. J. Osteoporos. 135, 10411–10417 (2016). https://doi.org/10.1155/2016/9458396
Z. Zhou, J. Wang, J. Yu, Y. Shen, Y. Zhang, Dissolution and liquid crystals phase of 2D polymeric carbon nitride. J. Am. Chem. Soc. 137, 2179–2182 (2015). https://doi.org/10.1021/ja512179x
N. Ping, L. Zhang, G. Liu, H.M. Cheng, Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2, 4763–4770 (2012). https://doi.org/10.1002/adfm.201200922
S. Yang, Y. Gong, J. Zhang, Z. Liang, P.M.A. Jayan, Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 25, 2452–2456 (2013). https://doi.org/10.1002/adma.201204453
C.X. Liu, Z.Y. Luo, Y.W. Li, M. Chen, J. Xu et al., Active waveguides by low-fluence carbon implantation in Nd3+-doped fluorophosphate glasses. Mod. Phys. Lett. B 30, 1550266 (2016). https://doi.org/10.1142/S0217984915502668
H. Xu, J. Yan, X. She, L. Xu, J. Xia et al., Graphene-analogue carbon nitride: novel exfoliation synthesis and its application in photocatalysis and photoelectrochemical selective detection of trace amount of Cu2+. Nanoscale 6, 1406–1415 (2014). https://doi.org/10.1039/C3NR04759H
X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y. Xie, Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 135, 18–21 (2013). https://doi.org/10.1021/ja308249k
I. Hevesi, L. Nánai, R. Vajtai, Laser light stimulated oxidation of vanadium at nonuniform illumination. Superlattice Microstruct. 3, 409–412 (1987). https://doi.org/10.1016/0749-6036(87)90214-X
H. Ou, L. Lin, Y. Zheng, P. Yang, Y. Fang, X. Wang, Tri-s-triazine-based crystalline carbon nitride nanosheets for an improved hydrogen evolution. Adv. Mater. 29, 1700008 (2017). https://doi.org/10.1002/adma.201700008
Z.T.Z. Tao, K.W.K. Wang, F.Y.F. Yi, C.Y.C. Yan, Q.L.Q. Li et al., A 3D soc design for H.264 application with on-chip dram stacking, in 2010 IEEE International 3D Systems Integration Conference (3DIC), vol. 1, Corpus ID: 11735204 (2010). https://doi.org/10.1109/3DIC.2010.5751446
J. Ryu, Y.J. Jang, S. Choi, H.J. Kang, H. Park, J.S. Lee, S. Park, All-in-one synthesis of mesoporous silicon nanosheets from natural clay and their applicability to hydrogen evolution. NPG Asia Mater. 8, e248 (2016). https://doi.org/10.1038/am.2016.35
Y.P. Xie, J.-Y. Xing, X.-Y. Li, X. Wang, H.-J. Sun et al., Survey of sweetpotato viruses in China. Acta Virol. 57, 81–84 (2013). https://doi.org/10.4149/av_2013_01_81
O. Mashtalir, K.M. Cook, V.N. Mochalin, M. Crowe, M.W. Barsoum, Y. Gogotsi, Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J. Mater. Chem. A 2, 14334–14338 (2014). https://doi.org/10.1039/C4TA02638A
J. Su, G.D. Li, X.H. Li, J.S. Chen, 2D/2D heterojunctions for catalysis. Adv. Sci. 6, 1801702 (2019). https://doi.org/10.1002/advs.201801702
K. Maeda, M. Eguchi, T. Oshima, Perovskite oxide nanosheets with tunable band-edge potentials and high photocatalytic hydrogen-evolution activity. Angew. Chem. Int. Ed. 53, 13164–13168 (2014). https://doi.org/10.1002/anie.201408441
C.K. Ngaw, Q. Xu, T.T.Y. Tan, P. Hu, S. Cao, J.S.C. Loo, A strategy for in situ synthesis of well-defined core–shell Au@TiO2 hollow spheres for enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 257, 112–121 (2014). https://doi.org/10.1016/j.cej.2014.07.059
J. Li, G. Zhan, Y. Yu, L. Zhang, Superior visible light hydrogen evolution of Janus bilayer junctions via atomic-level charge flow steering. Nat. Commun. 7, 11480 (2016). https://doi.org/10.1038/ncomms11480
Y. Wu, Z. Li, W. Ma, Y. Huang, L. Huo et al., PDT-S-T: a new polymer with optimized molecular conformation for controlled aggregation and π–π stacking and its application in efficient photovoltaic devices. Adv. Mater. 25, 3449–3455 (2013). https://doi.org/10.1002/adma.201301174
E.Q. Chen, X.Q. Song, Y.L. Wang, T.Y. Zhou, L. Bai et al., Construction of a highly-active, liver-specific transcriptional regulatory element through combination of the albumin promoter and α-fetoprotein enhancer. Plasmid 79, 87–88 (2011). https://doi.org/10.1016/j.plasmid.2010.11.006
S. Deckoff-Jones, J. Zhang, C.E. Petoukhoff, M.K.L. Man, S. Lei et al., Observing the interplay between surface and bulk optical nonlinearities in thin van der Waals crystals. Sci. Rep. 6, 22620 (2016). https://doi.org/10.1038/srep22620
Y. Sun, Z. Sun, S. Gao, H. Cheng, Q. Liu et al., Photoelectrochemical reactions: all-surface-atomic-metal chalcogenide sheets for high-efficiency visible-light photoelectrochemical water splitting. Adv. Energy Mater. 4, 1 (2014). https://doi.org/10.1002/aenm.201470002
Y. Sun, Z. Sun, S. Gao, H. Cheng, Q. Liu et al., All-surface-atomic-metal chalcogenide sheets for high-efficiency visible-light photoelectrochemical water splitting. Adv. Energy Mater. 4, 1300611 (2014). https://doi.org/10.1002/aenm.201300611
D. Liang, H. Luo, Y.F. Liu, Z.Y. Hao, Y. Wang et al., Lysilactones A–C, three 6H-dibenzo(b, d)pyran-6-one glycosides from Lysimachia clethroides, total synthesis of lysilactone A. Tetrahedron 69, 2093–2097 (2013). https://doi.org/10.1016/j.tet.2013.01.029
Y. Li, Z. Wang, T. Xia, H. Ju, K. Zhang et al., Implementing metal-to-ligand charge transfer in organic semiconductor for improved visible-near-infrared photocatalysis. Adv. Mater. 28, 6959–6965 (2016). https://doi.org/10.1002/adma.201601960
F. Lei, L. Zhang, Y. Sun, L. Liang, K. Liu et al., Atomic-layer-confined doping for atomic-level insights into visible-light water splitting. Angew. Chem. Int. Ed. 54, 9266–9270 (2015). https://doi.org/10.1002/ange.201503410
G. Liu, P. Niu, C.H. Sun, S.C. Smith, Z.G. Chen, G.Q. Lu, H.M. Cheng, Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc. 132, 11642–11648 (2010). https://doi.org/10.1021/ja103798k
J. Zhou, Y. Huang, X. Cao, B. Ouyang, W. Sun et al., Two-dimensional NiCo2O4 nanosheet-coated three-dimensional graphene networks for high-rate, long-cycle-life supercapacitors. Nanoscale 7, 7035–7039 (2015). https://doi.org/10.1039/C4NR06527A
Q. Qiao, B.H. Li, C.X. Shan, J.S. Liu, J. Yu et al., Light-emitting diodes fabricated from small-size ZnO quantum dots. Mater. Lett. 74, 104–106 (2012). https://doi.org/10.1016/j.matlet.2012.01.048
C. Huang, C. Chen, M. Zhang, L. Lin, X. Ye et al., Carbon-doped BN nanosheets for metal-free photoredox catalysis. Nat. Commun. 6, 7698 (2015). https://doi.org/10.1038/ncomms8698
W. Bi, C. Ye, C. Xiao, W. Tong, X. Zhang, W. Shao, Y. Xie, Spatial location engineering of oxygen vacancies for optimized photocatalytic. Small 10, 2820–2825 (2014). https://doi.org/10.1002/smll.201303548
B.E.S. Collaboration, M. Ablikim, J.Z. Bai, Y. Ban, J.G. Bian et al., Observation of the decay (2S)k(892)k + c.c. Phys. Lett. B 614, 37–43 (2005). https://doi.org/10.1016/j.physletb.2005.03.071
S. Gao, B. Gu, X. Jiao, Y. Sun, X. Zu et al., Highly efficient and exceptionally durable CO2 photoreduction to methanol over freestanding defective single-unit-cell bismuth vanadate layers. J. Am. Chem. Soc. 139, 3438–3445 (2017). https://doi.org/10.1021/jacs.6b11263
M. Cargnello, T. Montini, S.Y. Smolin, J.B. Prieb, J.J. Delgado Jaén et al., Engineering titania nanostructure to tune and improve its photocatalytic activity. Proc. Natl. Acad. Sci. 113, 3966–3971 (2016). https://doi.org/10.1073/pnas.1524806113
J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu et al., Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers. Sci. Rep. 7, 42357 (2017). https://doi.org/10.1038/srep42357
Y. Ge, Z. Zhu, Y. Xu, Y. Chen, S. Chen et al., Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices. Adv. Opt. Mater. 6, 1701166 (2018). https://doi.org/10.1002/adom.201701166
B. Guo, S.H. Wang, Z.X. Wu, Z.X. Wang, D.H. Wang et al., Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber. Opt. Express 26, 22750 (2018). https://doi.org/10.1364/oe.26.022750
X. Jiang, S. Liu, W. Liang, S. Luo, Z. He et al., Broadband nonlinear photonics in few-layer MXene Ti3C2tx (t = F, O, or OH). Laser Photonics Rev. 12, 1700229–1700239 (2018). https://doi.org/10.1002/lpor.201700229
X. Jiang, L. Zhang, S. Liu, Y. Zhang, Z. He et al., Ultrathin metal–organic framework: an emerging broadband nonlinear optical material for ultrafast photonics. Adv. Opt. Mater. 6, 1800561 (2018). https://doi.org/10.1002/adom.201800561
Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li et al., Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability. 2D Mater. 4, 045010 (2017). https://doi.org/10.1088/2053-1583/aa87c1
Z. Liu, H. Mu, S. Xiao, R. Wang, Z. Wang et al., Pulsed lasers employing solution-processed plasmonic Cu3−xP colloidal nanocrystals. Adv. Mater. 28, 3535–3542 (2016). https://doi.org/10.1002/adma.201504927
X. Zhu, S. Chen, M. Zhang, L. Chen, Q. Wu et al., TiS2-based saturable absorber for ultrafast fiber laser. Photonics Res. 6, C44 (2018). https://doi.org/10.1364/prj.6.000c44
P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin et al., Two-dimensional CH3NH3PBi3 perovskite nanosheets for ultrafast pulsed fiber lasers. ACS Appl. Mater. Interfaces. 9, 12759–12765 (2017). https://doi.org/10.1021/acsami.7b01709
M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin et al., 2D black phosphorus saturable absorbers for ultrafast photonics. Adv. Opt. Mater. 7, 1800224 (2018). https://doi.org/10.1002/adom.201800224
Y.F. Song, H. Zhang, D.Y. Tang, D.Y. Shen, Polarization rotation vector solitons in a graphene mode-locked fiber laser. Opt. Express 20, 27283–27289 (2012). https://doi.org/10.1364/OE.20.027283
Y. Chen, M. Wu, P. Tang, S. Chen, J. Du et al., The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber. Laser Phys. Lett. 11, 055101 (2014). https://doi.org/10.1088/1612-2011/11/5/055101
Y. Ge, S. Chen, Y. Xu, Z. He, Z. Liang et al., Few-layer selenium-doped black phosphorus: synthesis, nonlinear optical properties and ultrafast photonics applications. J. Mater. Chem. C 5, 6129–6135 (2017). https://doi.org/10.1039/c7tc01267e
J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, Y. Liu, Black phosphorus: a two-dimension saturable absorption material for mid-infrared q-switched and mode-locked fiber lasers. Sci. Rep. 6, 30361 (2016). https://doi.org/10.1038/srep30361
M. Liu, N. Zhao, H. Liu, X. Zheng, A. Luo et al., Dual-wavelength harmonically mode-locked fiber laser with topological insulator saturable absorber. IEEE Photonics Technol. Lett. 26, 983–986 (2014). https://doi.org/10.1109/lpt.2014.2311101
M. Liu, Z.R. Cai, S. Hu, A.P. Luo, C.J. Zhao et al., Dissipative rogue waves induced by long-range chaotic multi-pulse interactions in a fiber laser with a topological insulator-deposited microfiber photonic device. Opt. Lett. 40, 4767–4770 (2015). https://doi.org/10.1364/OL.40.004767
G. Zheng, Y. Chen, H. Huang, C. Zhao, S. Lu et al., Improved transfer quality of CVD-grown graphene by ultrasonic processing of target substrates: applications for ultra-fast laser photonics. ACS Appl. Mater. Interfaces. 5, 10288–10293 (2013). https://doi.org/10.1021/am403205v
Y.F. Song, H. Zhang, L.M. Zhao, D.Y. Shen, D.Y. Tang, Coexistence and interaction of vector and bound vector solitons in a dispersion-managed fiber laser mode locked by graphene. Opt. Express 24, 1814–1822 (2016). https://doi.org/10.1364/OE.24.001814
Y. Song, S. Chen, Q. Zhang, L. Li, L. Zhao, H. Zhang, D. Tang, Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber. Opt. Express 24, 25933–25942 (2016). https://doi.org/10.1364/OE.24.025933
Z.C. Luo, M. Liu, Z.N. Guo, X.F. Jiang, A.P. Luo et al., Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser. Opt. Express 23, 20030–20039 (2015). https://doi.org/10.1364/OE.23.020030
Q. Wang, Y. Chen, L. Miao, G. Jiang, S. Chen et al., Wide spectral and wavelength-tunable dissipative soliton fiber laser with topological insulator nano-sheets self-assembly films sandwiched by PMMA polymer. Opt. Express 23, 7681–7693 (2015). https://doi.org/10.1364/OE.23.007681
Y. Xu, W. Wang, Y. Ge, H. Guo, X. Zhang et al., Stabilization of black phosphorous quantum dots in PMMA nanofiber film and broadband nonlinear optics and ultrafast photonics application. Adv. Funct. Mater. 27, 1702437 (2017). https://doi.org/10.1002/adfm.201702437
X.F. Jiang, Z. Zeng, S. Li, Z. Guo, H. Zhang, F. Huang, Q.H. Xu, Tunable broadband nonlinear optical properties of black phosphorus quantum dots for femtosecond laser pulses. Materials (Basel) 10, 210 (2017). https://doi.org/10.3390/ma10020210
Z. Wang, Y. Xu, S.C. Dhanabalan, J. Sophia, C. Zhao et al., Black phosphorus quantum dots as an efficient saturable absorber for bound soliton operation in an erbium doped fiber laser. IEEE Photonics J. 8, 1–10 (2016). https://doi.org/10.1109/jphot.2016.2598085
C. Ma, C. Wang, B. Gao, J. Adams, G. Wu, H. Zhang, Recent progress in ultrafast lasers based on 2d materials as a saturable absorber. Appl. Phys. Rev. 6, 041304 (2019). https://doi.org/10.1063/1.5099188
T. Jiang, K. Yin, C. Wang, J. You, H. Ouyang et al., Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect. Photonics Res. 8, 78 (2019). https://doi.org/10.1364/prj.8.000078
Y. Song, X. Shi, C. Wu, D. Tang, H. Zhang, Recent progress of study on optical solitons in fiber lasers. Appl. Phys. Rev. 6, 021313 (2019). https://doi.org/10.1063/1.5091811
Y. Fang, Y. Ge, C. Wang, H. Zhang, Mid-infrared photonics using 2D materials: status and challenges. Laser Photonics Rev. 14, 1900098 (2019). https://doi.org/10.1002/lpor.201900098
J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen et al., Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation. Adv. Opt. Mater. 5, 1700026 (2017). https://doi.org/10.1002/adom.201700026
J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen et al., Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability. ACS Photonics 4, 1466–1476 (2017). https://doi.org/10.1021/acsphotonics.7b00231
C. Wang, Y. Wang, X. Jiang, J. Xu, W. Huang et al., MXene Ti3C2Tx: a promising photothermal conversion material and application in all-optical modulation and all-optical information loading. Adv. Opt. Mater. 7, 1900060 (2019). https://doi.org/10.1002/adom.201900060
Y. Wang, W. Huang, J. Zhao, H. Huang, C. Wang et al., A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect. J. Mater. Chem. C 7, 871–878 (2019). https://doi.org/10.1039/c8tc05513k
L. Wu, W. Huang, Y. Wang, J. Zhao, D. Ma et al., 2d tellurium based high-performance all-optical nonlinear photonic devices. Adv. Funct. Mater. 29, 1806346 (2019). https://doi.org/10.1002/adfm.201806346
S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao et al., Few-layer topological insulator for all-optical signal processing using the nonlinear kerr effect. Adv. Opt. Mater. 3, 1769–1778 (2015). https://doi.org/10.1002/adom.201500347
Y. Song, Y. Chen, X. Jiang, Y. Ge, Y. Wang et al., Nonlinear few-layer MXene-assisted all-optical wavelength conversion at telecommunication band. Adv. Opt. Mater. 7, 1801777 (2019). https://doi.org/10.1002/adom.201801777
Y. Wang, F. Zhang, X. Tang, X. Chen, Y. Chen et al., All-optical phosphorene phase modulator with enhanced stability under ambient conditions. Laser Photonics Rev. 12, 1800016 (2018). https://doi.org/10.1002/lpor.201800016
L. Wu, K. Chen, W. Huang, Z. Lin, J. Zhao et al., Perovskite CSPBX3: a promising nonlinear optical material and its applications for ambient all-optical switching with enhanced stability. Adv. Opt. Mater. 6, 1800400 (2018). https://doi.org/10.1002/adom.201800400
L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang et al., Kerr nonlinearity in 2D graphdiyne for passive photonic diodes. Adv. Mater. 31, 1807981 (2019). https://doi.org/10.1002/adma.201807981
L. Wu, X. Jiang, J. Zhao, W. Liang, Z. Li et al., Mxene-based nonlinear optical information converter for all-optical modulator and switcher. Laser Photonics Rev. 12, 1800215 (2018). https://doi.org/10.1002/lpor.201800215
L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang et al., Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion. Adv. Opt. Mater. 6, 1700985 (2018). https://doi.org/10.1002/adom.201700985
Q. Wu, S. Chen, Y. Wang, L. Wu, X. Jiang et al., MZI-based all-optical modulator using mxene Ti3C2Tx (T = F, O, or OH) deposited microfiber. Adv. Mater. Technol. 4, 1800532 (2019). https://doi.org/10.1002/admt.201800532
Y. Wang, W. Huang, C. Wang, J. Guo, F. Zhang et al., An all-optical, actively q-switched fiber laser by an antimonene-based optical modulator. Laser Photonics Rev. 13, 1800313 (2019). https://doi.org/10.1002/lpor.201800313
Q. Ou, Y. Zhang, Z. Wang, J.A. Yuwono, R. Wang et al., Strong depletion in hybrid perovskite p–n junctions induced by local electronic doping. Adv. Mater. 30, 1705792 (2018). https://doi.org/10.1002/adma.201705792
P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu et al., On-nanowire axial heterojunction design for high-performance photodetectors. ACS Nano 10, 8474–8481 (2016). https://doi.org/10.1021/acsnano.6b03458
Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu et al., Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv. Mater. 29, 1703811 (2017). https://doi.org/10.1002/adma.201703811
Z. Huang, W. Han, H. Tang, L. Ren, D.S. Chander, X. Qi, H. Zhang, Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure. 2D Mater. 2, 035011 (2015). https://doi.org/10.1088/2053-1583/2/3/035011
X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao et al., Environmentally robust black phosphorus nanosheets in solution: application for self-powered photodetector. Adv. Funct. Mater. 27, 1606834 (2017). https://doi.org/10.1002/adfm.201606834
Y. Xu, J. Yuan, K. Zhang, Y. Hou, Q. Sun et al., Field-induced n-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility. Adv. Funct. Mater. 27, 1702211 (2017). https://doi.org/10.1002/adfm.201702211
X. Ji, N. Kong, J. Wang, W. Li, Y. Xiao et al., A novel top-down synthesis of ultrathin 2D boron nanosheets for multimodal imaging-guided cancer therapy. Adv. Mater. 30, 1803031 (2018). https://doi.org/10.1002/adma.201803031
X. Liang, X. Ye, C. Wang, C. Xing, Q. Miao et al., Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation. J. Control. Release 296, 150–161 (2019). https://doi.org/10.1016/j.jconrel.2019.01.027
M. Luo, T. Fan, Y. Zhou, H. Zhang, L. Mei, 2D black phosphorus-based biomedical applications. Adv. Funct. Mater. 29(13), 1808306 (2019). https://doi.org/10.1002/adfm.201808306
Z.B. Sun, Y.T. Zhao, Z.B. Li, H.D. Cui, Y.Y. Zhou et al., TiL4-coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer. Small 13, 1602896 (2017). https://doi.org/10.1002/smll.201602896
M. Qiu, D. Wang, W. Liang, L. Liu, Y. Zhang et al., Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy. Proc. Natl. Acad. Sci. 115, 501–506 (2018). https://doi.org/10.1073/pnas.1714421115
F. Yin, K. Hu, S. Chen, D. Wang, J. Zhang et al., Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells. J. Mater. Chem. B 5, 5433–5440 (2017). https://doi.org/10.1039/c7tb01068k
T. Fan, Y. Zhou, M. Qiu, H. Zhang, Black phosphorus: a novel nanoplatform with potential in the field of bio-photonic nanomedicine. J. Innov. Opt. Health Sci. 11, 1830003 (2018). https://doi.org/10.1142/s1793545818300033
W. Tao, X. Ji, X. Xu, M.A. Islam, Z. Li et al., Antimonene quantum dots: synthesis and application as near-infrared photothermal agents for effective cancer therapy. Angew. Chem. Int. Ed. 56, 11896–11900 (2017). https://doi.org/10.1002/anie.201703657
T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang et al., Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat. Commun. 10, 28 (2019). https://doi.org/10.1038/s41467-018-07947-8
H. Xie, Z. Li, Z. Sun, J. Shao, X.F. Yu et al., Metabolizable ultrathin Bi2Se3 nanosheets in imaging-guided photothermal therapy. Small 12, 4136–4145 (2016). https://doi.org/10.1002/smll.201601050
W. Tao, X. Ji, X. Zhu, L. Li, J. Wang et al., Two-dimensional antimonene-based photonic nanomedicine for cancer theranostics. Adv. Mater. 30, 1802061 (2018). https://doi.org/10.1002/adma.201802061
J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang et al., Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347, 970–974 (2015). https://doi.org/10.1126/science.aaa3145
J. Xia, J. Di, H. Li, H. Xu, H. Li, S. Guo, Ionic liquid-induced strategy for carbon quantum dots/BiOx (x = Br, Cl) hybrid nanosheets with superior visible light-driven photocatalysis. Appl. Catal. B Environ. 181, 260–269 (2016). https://doi.org/10.1016/j.apcatb.2015.07.035
F. Xiang, S. Nan, Y. Liu, X. Chen, X. Zhou, Simultaneously enhanced stability and selectivity for propene epoxidation with H2 and O2 on Au catalysts supported on nano-crystalline mesoporous TS-1. ACS Catal. 7, 2668–2675 (2017). https://doi.org/10.1021/acscatal.6b03498
B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang et al., Single-atom catalysis of Co oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011). https://doi.org/10.1038/nchem.1095
Z. Chen, S. Pronkin, T.P. Fellinger, K. Kailasam, G. Vilé et al., Merging single-atom-dispersed silver and carbon nitride to a joint electronic system via copolymerization with silver tricyanomethanide. ACS Nano 10, 3166–3175 (2016). https://doi.org/10.1021/acsnano.5b04210
X. Li, W. Bi, L. Zhang, S. Tao, Y. Xie, Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 28, 2427–2431 (2016). https://doi.org/10.1002/adma.201505281
S. Ida, N. Kim, E. Ertekin, S. Takenaka, T. Ishihara, Photocatalytic reaction centers in two-dimensional titanium oxide crystals. J. Am. Chem. Soc. 137, 239–244 (2014). https://doi.org/10.1021/ja509970z
Z. Han, F. Qiu, R. Eisenberg, P.L. Holland, T.D. Krauss, Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 338, 1321–1324 (2012). https://doi.org/10.1021/acscatal.5b02036
X. Lu, K. Xu, S. Tao, Z. Shao, X. Peng et al., Engineering the electronic structure of two-dimensional subnanopore nanosheets using molecular titanium-oxide incorporation for enhanced photocatalytic activity. Chem. Sci. 7, 1462–1467 (2016). https://doi.org/10.1039/C5SC03551A
Y.J. Yuan, Z.J. Ye, H. Lu, B. Hu, Y.H. Li et al., Constructing anatase TiO2 nanosheets with exposed (001) facets/layered MoS2 two-dimensional nanojunction for enhanced solar hydrogen generation. ACS Catal. 6, 532–541 (2016). https://doi.org/10.1021/acscatal.5b02036
S. Ida, A. Takashiba, S. Koga, H. Hagiwara, T. Ishihara, Potential gradient and photocatalytic activity of an ultrathin p–n junction surface prepared with two-dimensional semiconducting nanocrystals. J. Am. Chem. Soc. 136, 1872–1878 (2014). https://doi.org/10.1021/ja409465k
Y.Z. Huang, L.M. Wu, X.T. Wu, L.H. Li, L. Chen, Y.F. Zhang, Pb2B5O9I: an iodide borate with strong second harmonic generation. J. Am. Chem. Soc. 132, 12788–12789 (2010). https://doi.org/10.1021/ja106066k
Y. Hou, A.B. Laursen, J. Zhang, G. Zhang, Y. Zhu et al., Layered nanojunctions for hydrogen-evolution catalysis. Angew. Chem. Int. Ed. 125, 3709–3713 (2013). https://doi.org/10.1002/anie.201210294
Y.H. Huang, J.J. Wang, Z.M. Liu, G.D. Lin, H.B. Zhang, Highly efficient Ni–ZrO2 catalyst doped with YB2O3 for co-methanation of CO and CO2. Appl. Catal. A Gen. 466, 300–306 (2013). https://doi.org/10.1016/j.apcata.2013.06.021
F. Wen, C. An, X. Wu, Y. Yang, J. Xu et al., MiR-34a regulates mitochondrial content and fat ectopic deposition induced by resistin through the AMPK/PPARα pathway in HepG2 cells. Int. J. Biochem. Cell Biol. 94, 133–145 (2018). https://doi.org/10.1016/j.biocel.2017.11.008
J.L. Gunjakar, T.W. Kim, H.N. Kim, I.Y. Kim, S.J. Hwang, Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: highly active visible light photocatalysts with improved chemical stability. J. Am. Chem. Soc. 133, 14998–15007 (2011). https://doi.org/10.1021/ja203388r
Y. Sun, Z. Sun, S. Gao, H. Cheng, Q. Liu et al., Fabrication of flexible and freestanding zinc chalcogenide single layers. Nat. Commun. 3, 1057 (2012). https://doi.org/10.1038/ncomms2066
Y. Liu, L. Liang, C. Xiao, X. Hua, Z. Li, B. Pan, Y. Xie, Promoting photogenerated holes utilization in pore-rich WO3 ultrathin nanosheets for efficient oxygen-evolving photoanode. Adv. Energy Mater. 6, 1600437 (2016). https://doi.org/10.1002/aenm.201600437
Y. Sun, Z. Sun, S. Gao, H. Cheng, Q. Liu et al., Fabrication of flexible and freestanding zinc chalcogenide single layers. Nat. Commun. 3, 1–7 (2012). https://doi.org/10.1038/ncomms2066
Q. He, C. Li, F. Geng, H. Yang, P. Li et al., Aerosol optical properties retrieved from sun photometer measurements over Shanghai, China. J. Geophys. Res. Atmos. 117, 74–82 (2012). https://doi.org/10.1029/2011JD017220
Y. Sun, Z. Sun, S. Gao, H. Cheng, Q. Liu et al., Photoelectrochemical reactions: all-surface-atomic-metal chalcogenide sheets for high-efficiency visible-light photoelectrochemical water splitting. Adv. Energy Mater. 4, 1300574 (2014). https://doi.org/10.1002/aenm.201470002
J. Zhu, Z. Yin, Y. Dan, T. Sun, Q. Yan, Hierarchical hollow spheres composed of ultrathin Fe2O3 nanosheets for lithium storage and photocatalytic water oxidation. Energy Environ. Sci. 6, 987–993 (2013). https://doi.org/10.1039/C2EE24148J
M. Ablikim, J.Z. Bai, Y. Bai, Y. Ban, X. Cai et al., Measurements of the observed cross sections for e+e− → exclusive light hadrons containing π0π0 at √s = 3.773, 3.650 and 3.6648 GeV. Phys. Lett. B 670, 179–183 (2008). https://doi.org/10.1016/j.physletb.2008.10.051
K.C. Kwon, S. Choi, K. Hong, D.M. Andoshe, J.M. Suh et al., Tungsten disulfide thin film/p-type si heterojunction photocathode for efficient photochemical hydrogen production. MRS Commun. 7, 272–279 (2017). https://doi.org/10.1002/anie.201210294
M. Zhang, J. Guan, Y. Tu, S. Chen, Y. Wang et al., Highly efficient H2 production from H2S via a robust graphene-encapsulated metal catalyst. Energy Environ. Sci. 13, 119–126 (2020). https://doi.org/10.1039/C9EE03231B
H. Wang, R. Peng, Z.D. Hood, M. Naguib, S.P. Adhikari, Z. Wu, Titania composites with 2D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation. Chemsuschem 9, 1490–1497 (2016). https://doi.org/10.1002/cssc.201600165
J. Peng, X. Chen, W.J. Ong, X. Zhao, N. Li, Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis. Chem 5, 18–50 (2019). https://doi.org/10.1016/j.chempr.2018.08.037
T. Su, R. Peng, Z.D. Hood, M. Naguib, I.N. Ivanov, J.K. Keum, Z. Qin, Z. Guo, Z. Wu, One-step synthesis of Nb2O5/C/Nb2C (MXene) composites and their use as photocatalysts for hydrogen evolution. Chemsuschem 11, 688 (2018). https://doi.org/10.1002/cssc.201702317
J. Ran, G. Gao, F.T. Li, T.Y. Ma, A. Du, S.Z. Qiao, Ti3C2 Mxene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 8, 13907 (2017). https://doi.org/10.1038/ncomms13907
M. Shao, Y. Shao, J.W. Chai, Y. Qu, H. Pan, Synergistic effect of 2D Ti2C and g-C3N4 for efficient photocatalytic hydrogen production. J. Mater. Chem. A 5, 16748–16756 (2017). https://doi.org/10.1039/C7TA04122E
A. Vasileff, C. Xu, Y. Jiao, Y. Zheng, S.Z. Qiao, Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 4, 1809–1831 (2018). https://doi.org/10.1016/j.chempr.2018.05.001
L. Liang, F. Lei, S. Gao, Y. Sun, X. Jiao et al., Single unit cell bismuth tungstate layers realizing robust solar CO2 reduction to methanol. Angew. Chem. Int. Ed. 127, 14177–14180 (2015). https://doi.org/10.1002/anie.201506966
S. Asif, R. Kashif, N. Mohsin, M. Waheed, J. Jiseon et al., Heterostructural TiO2/Ti3C2Tx (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine. Chem. Eng. J. 349, 748–755 (2017). https://doi.org/10.1021/jacs.6b11263
N. Li, X. Chen, W.J. Ong, D.R. MacFarlane, X. Zhao, A.K. Cheetham, C. Sun, Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes). ACS Nano 11, 10825–10833 (2017). https://doi.org/10.1021/acsnano.7b03738
Y. Bai, L. Ye, T. Chen, L. Wang, X. Shi, X. Zhang, D. Chen, Facet-dependent photocatalytic N2 fixation of bismuth-rich Bi5O7i nanosheets. ACS Appl. Mater. Interfaces. 8, 27661–27668 (2016). https://doi.org/10.1021/acsami.6b08129
H. Li, J. Shang, Z. Ai, L. Zhang, Efficient visible light nitrogen fixation with BIOBr nanosheets of oxygen vacancies on the exposed 001 facets. J. Am. Chem. Soc. 137, 6393–6399 (2015). https://doi.org/10.1021/jacs.5b03105
S. Cao, B. Shen, T. Tong, J. Fu, J. Yu, 2D/2D heterojunction of ultrathin mxene/Bi2Wo6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 28, 1800136 (2018). https://doi.org/10.1002/adfm.201800136
M. Ye, X. Wang, E. Liu, J. Ye, D. Wang, Boosting the photocatalytic activity of P25 for carbon dioxide reduction using a surface-alkalinized titanium carbide MXene as co-catalyst. Chemsuschem 11, 1606–1611 (2018). https://doi.org/10.1002/cssc.201800083
C. Liu, Q. Xu, Q. Zhang, Y. Zhu, J. Xu, Layered BioBr/Ti3C2 MXene composite with improved visible-light photocatalytic activity. J. Mater. Sci. 54, 2458–2471 (2019). https://doi.org/10.1007/s10853-018-2990-0
X.Y. Kong, W.L. Tan, B.J. Ng, S.P. Chai, A.R. Mohamed, Harnessing Vis-NIR broad spectrum for photocatalytic CO2 reduction over carbon quantum dots-decorated ultrathin Bi2Wo6 nanosheets. Nano Res. 10, 1720–1731 (2017). https://doi.org/10.1007/s12274-017-1435-4
J.R. Christianson, D. Zhu, R.J. Hamers, J.R. Schmidt, Mechanism of N2 reduction to NH3 by aqueous solvated electrons. J. Phys. Chem. B 118, 195–203 (2014). https://doi.org/10.1021/jp406535p
H. Li, F. Qin, Z. Yang, X. Cui, J. Wang, L. Zhang, New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on BioCl possessing oxygen vacancies. J. Am. Chem. Soc. 139, 3513–3521 (2017). https://doi.org/10.1021/jacs.6b12850
N. Zhang, X. Li, H. Ye, S. Chen, H. Ju et al., Oxide defect engineering enables to couple solar energy into oxygen activation. J. Am. Chem. Soc. 138, 8928–8935 (2016). https://doi.org/10.1021/jacs.6b04629
X.B. Li, C.H. Liu, R. Zhang, X.T. Huang, Y.Y. Li et al., Determination and pharmacokinetics of amygdalin in rats by LC-MS–MS. J. Chromatogr. Sci. 52, 476–481 (2013). https://doi.org/10.1093/chromsci/bmt063
C. Peng, X. Yang, Y. Li, H. Yu, H. Wang, F. Peng, Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity. ACS Appl. Mater. Interfaces. 8, 6051–6060 (2016). https://doi.org/10.1021/acsami.5b11973
Z. Lin, D. Barbara, P.L. Taberna, K.L. Van Aken, B. Anasori, Y. Gogotsi, P. Simon, Capacitance of Ti3C2tx mxene in ionic liquid electrolyte. J. Power Sources 326, 575–579 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.035
X. Xie, N. Zhang, Z.R. Tang, M. Anpo, Y.J. Xu, Ti3C2Tx MXene as a janus cocatalyst for concurrent promoted photoactivity and inhibited photocorrosion. Appl. Catal. B Environ. 237, 43–49 (2018). https://doi.org/10.1016/j.apcatb.2018.05.070
H. Wang, Y. Wu, T. Xiao, X. Yuan, G. Zeng et al., Formation of quasi-core–shell In2S3/anatase TiO2 @metallic Ti3C2tx hybrids with favorable charge transfer channels for excellent visible-light-photocatalytic performance. Appl. Catal. B Environ. 233, 213–225 (2018). https://doi.org/10.1016/j.apcatb.2018.04.012
J.M. Campos-Martin, G. Blanco-Brieva, J.L. Fierro, Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew. Chem. Int. Ed. 45, 6962–6984 (2006). https://doi.org/10.1002/anie.200503779
K. Sato, M. Aoki, R. Noyori, A “Green” Route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide. Science 281, 1646–1647 (1998). https://doi.org/10.1126/science.281.5383.1646
S. Yang, A. Verdaguer-Casadevall, L. Arnarson, L. Silvioli, V. Čolić et al., Toward the decentralized electrochemical production of H2O2: a focus on the catalysis. ACS Catal. 8, 4064–4081 (2018). https://doi.org/10.1021/acscatal.8b00217
W. Zhan, L. Ji, Z.M. Ge, X. Wang, R.T. Li, A continuous-flow synthesis of primary amides from hydrolysis of nitriles using hydrogen peroxide as oxidant. Tetrahedron 74, 1527–1532 (2018). https://doi.org/10.1016/j.tet.2018.02.017
M. Ksibi, Chemical oxidation with hydrogen peroxide for domestic wastewater treatment. Chem. Eng. J. 119, 161–165 (2006). https://doi.org/10.1016/j.cej.2006.03.022
R.N. Gurram, M. Al-Shannag, N.J. Lecher, S.M. Duncan, E.L. Singsaas, M. Alkasrawi, Bioconversion of paper mill sludge to bioethanol in the presence of accelerants or hydrogen peroxide pretreatment. Bioresour. Technol. 192, 529–539 (2015). https://doi.org/10.1016/j.biortech.2015.06.010
K. Mase, M. Yoneda, Y. Yamada, S. Fukuzumi, Seawater usable for production and consumption of hydrogen peroxide as a solar fuel. Nat. Commun. 7, 1–7 (2016). https://doi.org/10.1038/ncomms11470
Y.Q. Lan, X.L. Wang, L.Z. Dong, Q. Man, J.X. Su, Exploring the performance improvement of oxygen evolution reaction in stable bimetal–organic framework system. Angew. Chem. Int. Ed. 57, 9660–9664 (2018). https://doi.org/10.1002/anie.201803587
Z. Zhang, K. Liu, Z. Feng, Y. Bao, B. Dong, Hierarchical sheet-on-sheet ZnIn2S4/g-C3N4 heterostructure with highly efficient photocatalytic H2 production based on photoinduced interfacial charge transfer. Sci. Rep. 6, 19221 (2016). https://doi.org/10.1038/srep19221
C.Z. Liu, Y.F. Zhang, X.F. Li, X.F. Lu, Z. Chang et al., The high energy X-ray telescope (HE) onboard the insight-HXMT astronomy satellite. Sci. China Phys. Mech. 63, 249503 (2020). https://doi.org/10.1007/s11433-019-1486-x
M. Zhong, T. Hisatomi, Y. Kuang, J. Zhao, M. Liu et al., Surface modification of CoOx loaded BiVo4 photoanodes with ultrathin p-type NiO layers for improved solar water oxidation. J. Am. Chem. Soc. 137, 5053–5060 (2015). https://doi.org/10.1021/jacs.5b00256
L. Wang, X. Zheng, L. Chen, Y. Xiong, H. Xu, Van der Waals heterostructures comprised of ultrathin polymer nanosheets for efficient z-scheme overall water splitting. Angew. Chem. Int. Ed. 130, 3512–3516 (2018). https://doi.org/10.1002/ange.201710557
M. Zhu, S. Kim, L. Mao, M. Fujitsuka, J. Zhang, X. Wang, T. Majima, Metal-free photocatalyst for H2 evolution in visible to near-infrared region: black phosphorus/graphitic carbon nitride. J. Am. Chem. Soc. 139, 13234–13242 (2017). https://doi.org/10.1021/jacs.5b00256
J. Ran, W. Guo, H. Wang, B. Zhu, J. Yu, S.Z. Qiao, Metal-free 2D/2D phosphorene/g-C3N4 van der Waals heterojunction for highly enhanced visible-light photocatalytic h2 production. Adv. Mater. 30, 1800128 (2018). https://doi.org/10.1002/adma.201800128
Q. Gai, X. Zheng, W. Liu, Q. Dong, Y. Wang, R. Gao, S. Ren, 2D–2D heterostructured CdS–CoP photocatalysts for efficient H2 evolution under visible light irradiation. Int. J. Hydrog. Energy 44, 27412–27420 (2019). https://doi.org/10.1016/j.ijhydene.2019.08.196
R. Sasikala, A. Gaikwad, O. Jayakumar, K. Girija, R. Rao, A. Tyagi, S. Bharadwaj, Nanohybrid MoS2-PANI-CdS photocatalyst for hydrogen evolution from water. Colloids Surf. A 481, 485–492 (2015). https://doi.org/10.1016/j.colsurfa.2015.06.027
M. Luo, W. Yao, C. Huang, Q. Wu, Q. Xu, Shape effects of pt nanoparticles on hydrogen production via Pt/CdS photocatalysts under visible light. J. Mater. Chem A 3, 13884–13891 (2015). https://doi.org/10.1039/C5TA00218D
D. Lang, T. Shen, Q. Xiang, Roles of MoS2 and graphene as cocatalysts in the enhanced visible-light photocatalytic H2 production activity of multiarmed CdS nanorods. ChemCatChem 7, 943–951 (2015). https://doi.org/10.1002/cctc.201403062
W. Jiang, Y. Liu, R. Zong, Z. Li, W. Yao, Y. Zhu, Photocatalytic hydrogen generation on bifunctional ternary heterostructured In2S3/MoS2/CdS composites with high activity and stability under visible light irradiation. J. Mater. Chem. A 3, 18406–18412 (2015). https://doi.org/10.1039/C5TA04258E
T. Jia, A. Kolpin, C. Ma, R.C.T. Chan, W.M. Kwok, S.E. Tsang, A graphene dispersed CdS–MoS2 nanocrystal ensemble for cooperative photocatalytic hydrogen production from water. Chem. Commun. 50, 1185–1188 (2014). https:/