Berlin Green Framework-Based Gas Sensor for Room-Temperature and High-Selectivity Detection of Ammonia
Corresponding Author: Han Zhang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 63
Abstract
Ammonia detection possesses great potential in atmosphere environmental protection, agriculture, industry, and rapid medical diagnosis. However, it still remains a great challenge to balance the sensitivity, selectivity, working temperature, and response/recovery speed. In this work, Berlin green (BG) framework is demonstrated as a highly promising sensing material for ammonia detection by both density functional theory simulation and experimental gas sensing investigation. Vacancy in BG framework offers abundant active sites for ammonia absorption, and the absorbed ammonia transfers sufficient electron to BG, arousing remarkable enhancement of resistance. Pristine BG framework shows remarkable response to ammonia at 50–110 °C with the highest response at 80 °C, which is jointly influenced by ammonia's absorption onto BG surface and insertion into BG lattice. The sensing performance of BG can hardly be achieved at room temperature due to its high resistance. Introduction of conductive Ti3CN MXene overcomes the high resistance of pure BG framework, and the simply prepared BG/Ti3CN mixture shows high selectivity to ammonia at room temperature with satisfying response/recovery speed.
Highlights:
1 Berlin green (BG) framework is highly promising for ammonia detection demonstrated by both theoretical and experimental investigations.
2 BG/Ti3CN mixture shows high selectivity to ammonia at room temperature with satisfying response/recovery speed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Stokstad, Ammonia pollution from farming may exact hefty health costs. Science 343(6168), 238–238 (2014). https://doi.org/10.1126/science.343.6168.238
- S. Bandyopadhyay, B. Chatterjee, P. Nag, A. Bandyopadhyay, Nanocrystalline PbS as ammonia gas sensor: synthesis and characterization. CLEAN—Soil, Air, Water 43(8), 1121–1127 (2015). https://doi.org/10.1002/clen.201400437
- H. Tai, S. Wang, Z. Duan, Y. Jiang, Evolution of breath analysis based on humidity and gas sensors: potential and challenges. Sens. Actuat. B 318, 128104 (2020). https://doi.org/10.1016/j.snb.2020.128104
- S.C. Hernandez, D. Chaudhuri, W. Chen, N.V. Myung, A. Mulchandani, Single polypyrrole nanowire ammonia gas sensor. Electroanalysis 19(19–20), 2125–2130 (2007). https://doi.org/10.1002/elan.200703933
- T. Yang, Y. Liu, H. Wang, Y. Duo, B. Zhang et al., Recent advances in 0D nanostructure-functionalized low-dimensional nanomaterials for chemiresistive gas sensors. J. Mater. Chem. C 8, 7272–7299 (2020). https://doi.org/10.1039/D0TC00387E
- S.-Y. Jeong, J.-S. Kim, J.-H. Lee, Rational design of semiconductor-based chemiresistors and their libraries for next-generation artificial olfaction. Adv. Mater. 32(51), 2002075 (2020). https://doi.org/10.1002/adma.202002075
- Y. Jian, W. Hu, Z. Zhao, P. Cheng, H. Haick et al., Gas sensors based on chemi-resistive hybrid functional nanomaterials. Nano-Micro Lett. 12(1), 71 (2020). https://doi.org/10.1007/s40820-020-0407-5
- I. H. Kadhim, H. A. Hassan, Q. N. Abdullah, Hydrogen gas sensor based on nanocrystalline SnO2 thin film grown on bare Si substrates. Nano-Micro Lett. 8(1), 20–28 (2016). https://doi.org/10.1007/s40820-015-0057-1
- Y. Ren, Y. Zou, Y. Liu, X. Zhou, J. Ma et al., Synthesis of orthogonally assembled 3D cross-stacked metal oxide semiconducting nanowires. Nat. Mater. 19, 203 (2019). https://doi.org/10.1038/s41563-019-0542-x
- M. Xue, F. Li, D. Chen, Z. Yang, X. Wang et al., High-oriented polypyrrole nanotubes for next-generation gas sensor. Adv. Mater. 28, 8265 (2016). https://doi.org/10.1002/adma.201602302
- Y. Liu, H. Wang, S. Yang, K. Chen, T. Yang et al., ppb level ammonia detection of 3-D PbS quantum dots/reduced graphene oxide nanococoons at room temperature and Schottky barrier modulated behavior. Sens. Actuat. B 255, 2979–2987 (2018). https://doi.org/10.1016/j.snb.2017.09.120
- R. Kumar, X. Liu, J. Zhang, M. Kumar, Room-temperature gas sensors under photoactivation: from metal oxides to 2D materials. Nano-Micro Lett. 12(1), 164 (2020). https://doi.org/10.1007/s40820-020-00503-4
- D. Wu, Z. Guo, X. Yin, Q. Pang, B. Tu et al., Metal–organic frameworks as cathode materials for Li–O2 batteries. Adv. Mater. 26(20), 3258–3262 (2014). https://doi.org/10.1002/adma.201305492
- K.J. Erickson, F. Léonard, V. Stavila, M.E. Foster, C.D. Spataru et al., Thin film thermoelectric metal–organic framework with high seebeck coefficient and low thermal conductivity. Adv. Mater. 27(22), 3453–3459 (2015). https://doi.org/10.1002/adma.201501078
- S. Wang, C.M. McGuirk, A. d’Aquino, J.A. Mason, C.A. Mirkin, Metal–organic framework nanoparticles. Adv. Mater. 30(37), 1800202 (2018). https://doi.org/10.1002/adma.201800202
- Z. Zhuang, D. Liu, Conductive MOFs with photophysical properties: applications and thin-film fabrication. Nano-Micro Lett. 12(1), 132 (2020). https://doi.org/10.1007/s40820-020-00470-w
- M.G. Campbell, S.F. Liu, T.M. Swager, M. Dincă, Chemiresistive sensor arrays from conductive 2D metal–organic frameworks. J. Am. Chem. Soc. 137(43), 13780–13783 (2015). https://doi.org/10.1021/jacs.5b09600
- M. Drobek, J.-H. Kim, M. Bechelany, C. Vallicari, A. Julbe et al., MOF-based membrane encapsulated ZnO nanowires for enhanced gas sensor selectivity. ACS Appl. Mater. Interfaces 8(13), 8323–8328 (2016). https://doi.org/10.1021/acsami.5b12062
- M.-S. Yao, W.-X. Tang, G.-E. Wang, B. Nath, G. Xu, MOF thin film-coated metal oxide nanowire array: significantly improved chemiresistor sensor performance. Adv. Mater. 28(26), 5229–5234 (2016). https://doi.org/10.1002/adma.201506457
- Z. Zhuang, D. Liu, Conductive MOFs with photophysical properties: applications and thin-film fabrication. Nano-Micro Lett. 12, 132 (2020). https://doi.org/10.1007/s40820-020-00470-w
- M.-S. Yao, J.-W. Xiu, Q.-Q. Huang, W.-H. Li, W.-W. Wu et al., Van der Waals heterostructured MOF-on-MOF thin films: cascading functionality to realize advanced chemiresistive sensing. Angew. Chem. Int. Ed. 58(42), 14915–14919 (2019). https://doi.org/10.1002/anie.201907772
- X. Fang, B. Zong, S. Mao, Metal-organic framework-based sensors for environmental contaminant sensing. Nano-Micro Lett. 10(4), 64 (2018). https://doi.org/10.1007/s40820-018-0218-0
- R.-L. Liu, Z.-Q. Shi, X.-Y. Wang, Z.-F. Li, G. Li, Two highly stable proton conductive cobalt(II)-organic frameworks as impedance sensors for formic acid. Chem. Eur. J. 25(62), 14108–14116 (2019). https://doi.org/10.1002/chem.201902169
- R. Liu, Y. Liu, S. Yu, C. Yang, Z. Li et al., A highly proton-conductive 3D ionic cadmium-organic framework for ammonia and amines impedance sensing. ACS Appl. Mater. Interfaces 11(1), 1713–1722 (2019). https://doi.org/10.1021/acsami.8b18891
- Z. Sun, S. Yu, L. Zhao, J. Wang, Z. Li et al., A highly stable two-dimensional copper(II) organic framework for proton conduction and ammonia impedance sensing. Chem. Eur. J. 24(42), 10829–10839 (2018). https://doi.org/10.1002/chem.201801844
- H. Tokoro, S. Ohkoshi, Novel magnetic functionalities of Prussian blue analogs. Dalton Trans. 40(26), 6825–6833 (2011). https://doi.org/10.1039/c0dt01829e
- W.-J. Li, C. Han, G. Cheng, S.-L. Chou, H.-K. Liu et al., Chemical properties, structural properties, and energy storage applications of Prussian blue analogues. Small 15(32), 1900470 (2019). https://doi.org/10.1002/smll.201900470
- A. Takahashi, H. Tanaka, D. Parajuli, T. Nakamura, K. Minami et al., Historical pigment exhibiting ammonia gas capture beyond standard adsorbents with adsorption sites of two kinds. J. Am. Chem. Soc. 138(20), 6376–6379 (2016). https://doi.org/10.1021/jacs.6b02721
- F.X. Bu, M. Hu, W. Zhang, Q. Meng, L. Xu et al., Three-dimensional hierarchical Prussian blue composed of ultrathin nanosheets: enhanced hetero-catalytic and adsorption properties. Chem. Commun. 51(99), 17568–17571 (2015). https://doi.org/10.1039/c5cc06281k
- X. Pu, B. Jiang, X. Wang, W. Liu, L. Dong et al., High-performance aqueous zinc-ion batteries realized by MOF materials. Nano-Micro Lett. 12(1), 152 (2020). https://doi.org/10.1007/s40820-020-00487-1
- X. Wu, W. Deng, J. Qian, Y. Cao, X. Ai et al., Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries. J. Mater. Chem. A 1(35), 10130 (2013). https://doi.org/10.1039/c3ta12036h
- X. Wu, M. Shao, C. Wu, J. Qian, Y. Cao et al., Low defect FeFe(CN)6 framework as stable host material for high performance Li-ion batteries. ACS Appl. Mater. Interfaces 8(36), 23706–23712 (2016). https://doi.org/10.1021/acsami.6b06880
- N. Yue, J. Weicheng, W. Rongguo, D. Guomin, H. Yifan, Hybrid nanostructures combining graphene–MoS2 quantum dots for gas sensing. J. Mater. Chem. A 4(21), 8198–8203 (2016). https://doi.org/10.1039/c6ta03267b
- E. Lee, A. VahidMohammadi, B.C. Prorok, Y.S. Yoon, M. Beidaghi et al., Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl. Mater. Interfaces 9(42), 37184–37190 (2017). https://doi.org/10.1021/acsami.7b11055
- H. Liao, X. Guo, P. Wan, G. Yu, Conductive Mxene nanocomposite organohydrogel for flexible, healable, low-temperature tolerant strain sensors. Adv. Funct. Mater. 29(39), 1904507 (2019). https://doi.org/10.1002/adfm.201904507
- W.Y. Chen, X. Jiang, S.N. Lai, D. Peroulis, L. Stanciu, Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat. Commun. 11(1), 1302 (2020). https://doi.org/10.1038/s41467-020-15092-4
- L. Gao, C. Li, W. Huang, S. Mei, H. Lin et al., MXene/polymer membranes: synthesis, properties, and emerging applications. Chem. Mater. 32(5), 1703–1747 (2020). https://doi.org/10.1021/acs.chemmater.9b04408
- L. Gao, H. Chen, F. Zhang, S. Mei, Y. Zhang et al., Ultrafast relaxation dynamics and nonlinear response of few-layer niobium carbide MXene. Small Methods 4(8), 2000250 (2020). https://doi.org/10.1002/smtd.202000250
- C. Lu, L. Yang, B. Yan, L. Sun, P. Zhang et al., Nitrogen-doped Ti3C2 Mxene: mechanism investigation and electrochemical analysis. Adv. Funct. Mater. 30(47), 2000852 (2020). https://doi.org/10.1002/adfm.202000852
- A.D. Handoko, S.N. Steinmann, Z.W. She, Theory-guided materials design: two-dimensional MXenes in electro- and photocatalysis. Nanoscale Horiz. 4(4), 809–827 (2019). https://doi.org/10.1039/C9NH00100J
- B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92(1), 508–517 (1990). https://doi.org/10.1063/1.458452
- B. Delley, From molecules to solids with the DMol3 approach. J. Chem. Phys. 113(18), 7756–7764 (2000). https://doi.org/10.1063/1.1316015
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- D.M. Pajerowski, T. Watanabe, T. Yamamoto, Y. Einaga, Electronic conductivity in berlin green and Prussian blue. Phys. Rev. B 83(15), 153202 (2011). https://doi.org/10.1103/PhysRevB.83.153202
- D.K. Nandakumar, Y. Zhang, S.K. Ravi, N. Guo, C. Zhang et al., Solar energy triggered clean water harvesting from humid air existing above sea surface enabled by a hydrogel with ultrahigh hygroscopicity. Adv. Mater. 31(10), 1806730 (2019). https://doi.org/10.1002/adma.201806730
- J. Zhang, X. Liu, G. Neri, N. Pinna, Nanostructured materials for room-temperature gas sensors. Adv. Mater. 28(5), 795–831 (2016). https://doi.org/10.1002/adma.201503825
- J. Wang, Z. Li, S. Zhang, S. Yan, B. Cao et al., Enhanced NH3 gas-sensing performance of silica modified CeO2 nanostructure based sensors. Sens. Actuat. B 255, 862–870 (2018). https://doi.org/10.1016/j.snb.2017.08.149
- Z. Li, Z. Lin, N. Wang, J. Wang, W. Liu et al., High precision NH3 sensing using network nano-sheet Co3O4 arrays based sensor at room temperature. Sens. Actuat. B 235, 222–231 (2016). https://doi.org/10.1016/j.snb.2016.05.063
- Q. Feng, X. Li, J. Wang, A.M. Gaskov, Reduced graphene oxide (rGO) encapsulated Co3O4 composite nanofibers for highly selective ammonia sensors. Sens. Actuat. B 222, 864–870 (2016). https://doi.org/10.1016/j.snb.2015.09.021
- F. Schütt, V. Postica, R. Adelung, O. Lupan, Single and networked ZnO-CNT hybrid tetrapods for selective room-temperature high-performance ammonia sensors. ACS Appl. Mater. Interfaces 9(27), 23107–23118 (2017). https://doi.org/10.1021/acsami.7b03702
References
E. Stokstad, Ammonia pollution from farming may exact hefty health costs. Science 343(6168), 238–238 (2014). https://doi.org/10.1126/science.343.6168.238
S. Bandyopadhyay, B. Chatterjee, P. Nag, A. Bandyopadhyay, Nanocrystalline PbS as ammonia gas sensor: synthesis and characterization. CLEAN—Soil, Air, Water 43(8), 1121–1127 (2015). https://doi.org/10.1002/clen.201400437
H. Tai, S. Wang, Z. Duan, Y. Jiang, Evolution of breath analysis based on humidity and gas sensors: potential and challenges. Sens. Actuat. B 318, 128104 (2020). https://doi.org/10.1016/j.snb.2020.128104
S.C. Hernandez, D. Chaudhuri, W. Chen, N.V. Myung, A. Mulchandani, Single polypyrrole nanowire ammonia gas sensor. Electroanalysis 19(19–20), 2125–2130 (2007). https://doi.org/10.1002/elan.200703933
T. Yang, Y. Liu, H. Wang, Y. Duo, B. Zhang et al., Recent advances in 0D nanostructure-functionalized low-dimensional nanomaterials for chemiresistive gas sensors. J. Mater. Chem. C 8, 7272–7299 (2020). https://doi.org/10.1039/D0TC00387E
S.-Y. Jeong, J.-S. Kim, J.-H. Lee, Rational design of semiconductor-based chemiresistors and their libraries for next-generation artificial olfaction. Adv. Mater. 32(51), 2002075 (2020). https://doi.org/10.1002/adma.202002075
Y. Jian, W. Hu, Z. Zhao, P. Cheng, H. Haick et al., Gas sensors based on chemi-resistive hybrid functional nanomaterials. Nano-Micro Lett. 12(1), 71 (2020). https://doi.org/10.1007/s40820-020-0407-5
I. H. Kadhim, H. A. Hassan, Q. N. Abdullah, Hydrogen gas sensor based on nanocrystalline SnO2 thin film grown on bare Si substrates. Nano-Micro Lett. 8(1), 20–28 (2016). https://doi.org/10.1007/s40820-015-0057-1
Y. Ren, Y. Zou, Y. Liu, X. Zhou, J. Ma et al., Synthesis of orthogonally assembled 3D cross-stacked metal oxide semiconducting nanowires. Nat. Mater. 19, 203 (2019). https://doi.org/10.1038/s41563-019-0542-x
M. Xue, F. Li, D. Chen, Z. Yang, X. Wang et al., High-oriented polypyrrole nanotubes for next-generation gas sensor. Adv. Mater. 28, 8265 (2016). https://doi.org/10.1002/adma.201602302
Y. Liu, H. Wang, S. Yang, K. Chen, T. Yang et al., ppb level ammonia detection of 3-D PbS quantum dots/reduced graphene oxide nanococoons at room temperature and Schottky barrier modulated behavior. Sens. Actuat. B 255, 2979–2987 (2018). https://doi.org/10.1016/j.snb.2017.09.120
R. Kumar, X. Liu, J. Zhang, M. Kumar, Room-temperature gas sensors under photoactivation: from metal oxides to 2D materials. Nano-Micro Lett. 12(1), 164 (2020). https://doi.org/10.1007/s40820-020-00503-4
D. Wu, Z. Guo, X. Yin, Q. Pang, B. Tu et al., Metal–organic frameworks as cathode materials for Li–O2 batteries. Adv. Mater. 26(20), 3258–3262 (2014). https://doi.org/10.1002/adma.201305492
K.J. Erickson, F. Léonard, V. Stavila, M.E. Foster, C.D. Spataru et al., Thin film thermoelectric metal–organic framework with high seebeck coefficient and low thermal conductivity. Adv. Mater. 27(22), 3453–3459 (2015). https://doi.org/10.1002/adma.201501078
S. Wang, C.M. McGuirk, A. d’Aquino, J.A. Mason, C.A. Mirkin, Metal–organic framework nanoparticles. Adv. Mater. 30(37), 1800202 (2018). https://doi.org/10.1002/adma.201800202
Z. Zhuang, D. Liu, Conductive MOFs with photophysical properties: applications and thin-film fabrication. Nano-Micro Lett. 12(1), 132 (2020). https://doi.org/10.1007/s40820-020-00470-w
M.G. Campbell, S.F. Liu, T.M. Swager, M. Dincă, Chemiresistive sensor arrays from conductive 2D metal–organic frameworks. J. Am. Chem. Soc. 137(43), 13780–13783 (2015). https://doi.org/10.1021/jacs.5b09600
M. Drobek, J.-H. Kim, M. Bechelany, C. Vallicari, A. Julbe et al., MOF-based membrane encapsulated ZnO nanowires for enhanced gas sensor selectivity. ACS Appl. Mater. Interfaces 8(13), 8323–8328 (2016). https://doi.org/10.1021/acsami.5b12062
M.-S. Yao, W.-X. Tang, G.-E. Wang, B. Nath, G. Xu, MOF thin film-coated metal oxide nanowire array: significantly improved chemiresistor sensor performance. Adv. Mater. 28(26), 5229–5234 (2016). https://doi.org/10.1002/adma.201506457
Z. Zhuang, D. Liu, Conductive MOFs with photophysical properties: applications and thin-film fabrication. Nano-Micro Lett. 12, 132 (2020). https://doi.org/10.1007/s40820-020-00470-w
M.-S. Yao, J.-W. Xiu, Q.-Q. Huang, W.-H. Li, W.-W. Wu et al., Van der Waals heterostructured MOF-on-MOF thin films: cascading functionality to realize advanced chemiresistive sensing. Angew. Chem. Int. Ed. 58(42), 14915–14919 (2019). https://doi.org/10.1002/anie.201907772
X. Fang, B. Zong, S. Mao, Metal-organic framework-based sensors for environmental contaminant sensing. Nano-Micro Lett. 10(4), 64 (2018). https://doi.org/10.1007/s40820-018-0218-0
R.-L. Liu, Z.-Q. Shi, X.-Y. Wang, Z.-F. Li, G. Li, Two highly stable proton conductive cobalt(II)-organic frameworks as impedance sensors for formic acid. Chem. Eur. J. 25(62), 14108–14116 (2019). https://doi.org/10.1002/chem.201902169
R. Liu, Y. Liu, S. Yu, C. Yang, Z. Li et al., A highly proton-conductive 3D ionic cadmium-organic framework for ammonia and amines impedance sensing. ACS Appl. Mater. Interfaces 11(1), 1713–1722 (2019). https://doi.org/10.1021/acsami.8b18891
Z. Sun, S. Yu, L. Zhao, J. Wang, Z. Li et al., A highly stable two-dimensional copper(II) organic framework for proton conduction and ammonia impedance sensing. Chem. Eur. J. 24(42), 10829–10839 (2018). https://doi.org/10.1002/chem.201801844
H. Tokoro, S. Ohkoshi, Novel magnetic functionalities of Prussian blue analogs. Dalton Trans. 40(26), 6825–6833 (2011). https://doi.org/10.1039/c0dt01829e
W.-J. Li, C. Han, G. Cheng, S.-L. Chou, H.-K. Liu et al., Chemical properties, structural properties, and energy storage applications of Prussian blue analogues. Small 15(32), 1900470 (2019). https://doi.org/10.1002/smll.201900470
A. Takahashi, H. Tanaka, D. Parajuli, T. Nakamura, K. Minami et al., Historical pigment exhibiting ammonia gas capture beyond standard adsorbents with adsorption sites of two kinds. J. Am. Chem. Soc. 138(20), 6376–6379 (2016). https://doi.org/10.1021/jacs.6b02721
F.X. Bu, M. Hu, W. Zhang, Q. Meng, L. Xu et al., Three-dimensional hierarchical Prussian blue composed of ultrathin nanosheets: enhanced hetero-catalytic and adsorption properties. Chem. Commun. 51(99), 17568–17571 (2015). https://doi.org/10.1039/c5cc06281k
X. Pu, B. Jiang, X. Wang, W. Liu, L. Dong et al., High-performance aqueous zinc-ion batteries realized by MOF materials. Nano-Micro Lett. 12(1), 152 (2020). https://doi.org/10.1007/s40820-020-00487-1
X. Wu, W. Deng, J. Qian, Y. Cao, X. Ai et al., Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries. J. Mater. Chem. A 1(35), 10130 (2013). https://doi.org/10.1039/c3ta12036h
X. Wu, M. Shao, C. Wu, J. Qian, Y. Cao et al., Low defect FeFe(CN)6 framework as stable host material for high performance Li-ion batteries. ACS Appl. Mater. Interfaces 8(36), 23706–23712 (2016). https://doi.org/10.1021/acsami.6b06880
N. Yue, J. Weicheng, W. Rongguo, D. Guomin, H. Yifan, Hybrid nanostructures combining graphene–MoS2 quantum dots for gas sensing. J. Mater. Chem. A 4(21), 8198–8203 (2016). https://doi.org/10.1039/c6ta03267b
E. Lee, A. VahidMohammadi, B.C. Prorok, Y.S. Yoon, M. Beidaghi et al., Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl. Mater. Interfaces 9(42), 37184–37190 (2017). https://doi.org/10.1021/acsami.7b11055
H. Liao, X. Guo, P. Wan, G. Yu, Conductive Mxene nanocomposite organohydrogel for flexible, healable, low-temperature tolerant strain sensors. Adv. Funct. Mater. 29(39), 1904507 (2019). https://doi.org/10.1002/adfm.201904507
W.Y. Chen, X. Jiang, S.N. Lai, D. Peroulis, L. Stanciu, Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat. Commun. 11(1), 1302 (2020). https://doi.org/10.1038/s41467-020-15092-4
L. Gao, C. Li, W. Huang, S. Mei, H. Lin et al., MXene/polymer membranes: synthesis, properties, and emerging applications. Chem. Mater. 32(5), 1703–1747 (2020). https://doi.org/10.1021/acs.chemmater.9b04408
L. Gao, H. Chen, F. Zhang, S. Mei, Y. Zhang et al., Ultrafast relaxation dynamics and nonlinear response of few-layer niobium carbide MXene. Small Methods 4(8), 2000250 (2020). https://doi.org/10.1002/smtd.202000250
C. Lu, L. Yang, B. Yan, L. Sun, P. Zhang et al., Nitrogen-doped Ti3C2 Mxene: mechanism investigation and electrochemical analysis. Adv. Funct. Mater. 30(47), 2000852 (2020). https://doi.org/10.1002/adfm.202000852
A.D. Handoko, S.N. Steinmann, Z.W. She, Theory-guided materials design: two-dimensional MXenes in electro- and photocatalysis. Nanoscale Horiz. 4(4), 809–827 (2019). https://doi.org/10.1039/C9NH00100J
B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92(1), 508–517 (1990). https://doi.org/10.1063/1.458452
B. Delley, From molecules to solids with the DMol3 approach. J. Chem. Phys. 113(18), 7756–7764 (2000). https://doi.org/10.1063/1.1316015
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
D.M. Pajerowski, T. Watanabe, T. Yamamoto, Y. Einaga, Electronic conductivity in berlin green and Prussian blue. Phys. Rev. B 83(15), 153202 (2011). https://doi.org/10.1103/PhysRevB.83.153202
D.K. Nandakumar, Y. Zhang, S.K. Ravi, N. Guo, C. Zhang et al., Solar energy triggered clean water harvesting from humid air existing above sea surface enabled by a hydrogel with ultrahigh hygroscopicity. Adv. Mater. 31(10), 1806730 (2019). https://doi.org/10.1002/adma.201806730
J. Zhang, X. Liu, G. Neri, N. Pinna, Nanostructured materials for room-temperature gas sensors. Adv. Mater. 28(5), 795–831 (2016). https://doi.org/10.1002/adma.201503825
J. Wang, Z. Li, S. Zhang, S. Yan, B. Cao et al., Enhanced NH3 gas-sensing performance of silica modified CeO2 nanostructure based sensors. Sens. Actuat. B 255, 862–870 (2018). https://doi.org/10.1016/j.snb.2017.08.149
Z. Li, Z. Lin, N. Wang, J. Wang, W. Liu et al., High precision NH3 sensing using network nano-sheet Co3O4 arrays based sensor at room temperature. Sens. Actuat. B 235, 222–231 (2016). https://doi.org/10.1016/j.snb.2016.05.063
Q. Feng, X. Li, J. Wang, A.M. Gaskov, Reduced graphene oxide (rGO) encapsulated Co3O4 composite nanofibers for highly selective ammonia sensors. Sens. Actuat. B 222, 864–870 (2016). https://doi.org/10.1016/j.snb.2015.09.021
F. Schütt, V. Postica, R. Adelung, O. Lupan, Single and networked ZnO-CNT hybrid tetrapods for selective room-temperature high-performance ammonia sensors. ACS Appl. Mater. Interfaces 9(27), 23107–23118 (2017). https://doi.org/10.1021/acsami.7b03702