Two-Dimensional Tellurium: Progress, Challenges, and Prospects
Corresponding Author: Han Zhang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 99
Abstract
Since the successful fabrication of two-dimensional (2D) tellurium (Te) in 2017, its fascinating properties including a thickness dependence bandgap, environmental stability, piezoelectric effect, high carrier mobility, and photoresponse among others show great potential for various applications. These include photodetectors, field-effect transistors, piezoelectric devices, modulators, and energy harvesting devices. However, as a new member of the 2D material family, much less known is about 2D Te compared to other 2D materials. Motivated by this lack of knowledge, we review the recent progress of research into 2D Te nanoflakes. Firstly, we introduce the background and motivation of this review. Then, the crystal structures and synthesis methods are presented, followed by an introduction to their physical properties and applications. Finally, the challenges and further development directions are summarized. We believe that milestone investigations of 2D Te nanoflakes will emerge soon, which will bring about great industrial revelations in 2D materials-based nanodevice commercialization.
Highlights:
1 Physical Properties of the two-dimensional tellurium were discussed in detail, including electrical properties, optical properties, thermoelectric properties, and outstanding environmental stability.
2 Emerging applications based on atomically thin tellurene flakes were presented, such as photodetector, transistors, piezoelectric device, modulator, and energy harvesting devices.
3 The challenges encountered and prospects were presented.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L.A. Ba, M. Doering, V. Jamier, C. Jacob, Tellurium: an element with great biological potency and potential. Org. Biomol. Chem. 8(19), 4203–4216 (2010). https://doi.org/10.1039/c0Ob00086h
- J.W. Liu, J.H. Zhu, C.L. Zhang, H.W. Yu, S.H. Liang, Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity. J. Am. Chem. Soc. 132(26), 8945–8952 (2010). https://doi.org/10.1021/ja910871s
- H. Peng, N. Kioussis, G.J. Snyder, Elemental tellurium as a chiral p-type thermoelectric material. Phys. Rev. B 89(19), 195206 (2014). https://doi.org/10.1103/PhysRevB.89.195206
- J.P. Hermann, G. Quentin, J.M. Thuillier, Determination of the d14 piezoelectric coefficient of tellurium. Solid State Commun. 7(1), 161–163 (1969). https://doi.org/10.1016/0038-1098(69)90715-7
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065), 197–200 (2005). https://doi.org/10.1038/nature04233
- Y. Yin, R. Cao, J. Guo, C. Liu, J. Li et al., High-speed and high-responsivity hybrid silicon/black-phosphorus waveguide photodetectors at 2 μm. Laser Photonics Rev. 13(6), 1900032 (2019). https://doi.org/10.1002/lpor.201900032
- C. Xing, G. Jing, X. Liang, M. Qiu, Z. Li et al., Graphene oxide/black phosphorus nanoflake aerogels with robust thermo-stability and significantly enhanced photothermal properties in air. Nanoscale 9(24), 8096–8101 (2017). https://doi.org/10.1039/c7nr00663b
- A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401
- J. Wang, H. Yan, Z. Liu, Z. Wang, H. Gao et al., Langmuir-Blodgett self-assembly of ultrathin graphene quantum dot films with modulated optical properties. Nanoscale 10(41), 19612–19620 (2018). https://doi.org/10.1039/c8nr05159c
- Q. Bao, H. Zhang, B. Wang, Z. Ni, C.H.Y.X. Lim, Y. Wang, D.Y. Tang, K.P. Loh, Broadband graphene polarizer. Nat. Photonics 5(7), 411–415 (2011). https://doi.org/10.1038/nphoton.2011.102
- S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, D. Tang, Third order nonlinear optical property of Bi2Se3. Opt. Express 21(2), 2072–2082 (2013). https://doi.org/10.1364/oe.21.002072
- Z. Zheng, C. Zhao, S. Lu, Y. Chen, Y. Li, H. Zhang, S. Wen, Microwave and optical saturable absorption in graphene. Opt. Express 20(21), 23201–23214 (2012). https://doi.org/10.1364/oe.20.023201
- H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, J. Wang, Topological insulator as an optical modulator for pulsed solid-state lasers. Laser Photonics Rev. 7(6), L77–L83 (2013). https://doi.org/10.1002/lpor.201300084
- M. Qiu, D. Wang, W. Liang, L. Liu, Y. Zhang et al., Novel concept of the smart nir-light-controlled drug release of black phosphorus nanostructure for cancer therapy. Proc. Natl. Acad. Sci. U.S.A. 115(3), 501–506 (2018). https://doi.org/10.1073/pnas.1714421115
- A.H. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009). https://doi.org/10.1103/RevModPhys.81.109
- H. Zhang, S. Virally, Q. Bao, L.K. Ping, S. Massar, N. Godbout, P. Kockaert, Z-scan measurement of the nonlinear refractive index of graphene. Opt. Lett. 37(11), 1856–1858 (2012). https://doi.org/10.1364/ol.37.001856
- S.B. Lu, L.L. Miao, Z.N. Guo, X. Qi, C.J. Zhao et al., Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material. Opt. Express 23(9), 11183–11194 (2015). https://doi.org/10.1364/oe.23.011183
- R. Cao, H.D. Wang, Z.N. Guo, D.K. Sang, L.Y. Zhang et al., Black phosphorous/indium selenide photoconductive detector for visible and near-infrared light with high sensitivity. Adv. Opt. Mater. 7(12), 1900020 (2019). https://doi.org/10.1002/adom.201900020
- Q. Zhou, Q. Chen, Y. Tong, J. Wang, Light-induced ambient degradation of few-layer black phosphorus: mechanism and protection. Angew. Chem. Int. Ed. 55(38), 11437–11441 (2016). https://doi.org/10.1002/anie.201605168
- J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen et al., Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability. ACS Photonics 4(6), 1466–1476 (2017). https://doi.org/10.1021/acsphotonics.7b00231
- M.H. Jeong, D.H. Kwak, H.S. Ra, A.Y. Lee, J.S. Lee, Realizing long-term stability and thickness control of black phosphorus by ambient thermal treatment. ACS Appl. Mater. Interfaces 10(22), 19069–19075 (2018). https://doi.org/10.1021/acsami.8b04627
- H. Zhang, S.B. Lu, J. Zheng, J. Du, S.C. Wen, D.Y. Tang, K.P. Loh, Molybdenum disulfide (MoS) as a broadband saturable absorber for ultra-fast photonics. Opt. Express 22(6), 7249–7260 (2014). https://doi.org/10.1364/oe.22.007249
- B. Wu, X. Liu, J. Yin, H. Lee, Bulk β-Te to few layered β-tellurenes: indirect to direct band-gap transitions showing semiconducting property. Mater. Res. Express 4(9), 095902 (2017). https://doi.org/10.1088/2053-1591/aa8ae3
- Y. Wang, G. Qiu, R. Wang, S. Huang, Q. Wang et al., Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 1(4), 228–236 (2018). https://doi.org/10.1038/s41928-018-0058-4
- M. Amani, C. Tan, G. Zhang, C. Zhao, J. Bullock et al., Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano 12(7), 7253–7263 (2018). https://doi.org/10.1021/acsnano.8b03424
- A. Vonhippel, Structure and conductivity in the vib group of the periodic system. J. Chem. Phys. 16(4), 372–380 (1948). https://doi.org/10.1063/1.1746893
- W. Zhang, Q. Wu, O.V. Yazyev, H. Weng, Z. Guo, W.-D. Cheng, G.-L. Chai, Topological phase transitions driven by strain in monolayer tellurium. Phys. Rev. B 98(11), 115411 (2018). https://doi.org/10.1103/PhysRevB.98.115411
- C. Lin, W. Cheng, G. Chai, H. Zhang, Thermoelectric properties of two-dimensional selenene and tellurene from group-VI elements. Phys. Chem. Chem. Phys. 20(37), 24250–24256 (2018). https://doi.org/10.1039/C8CP04069A
- A.K. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009). https://doi.org/10.1126/science.1158877
- L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. Rev. Sect. Phys. Lett. 473(5–6), 51–87 (2009). https://doi.org/10.1016/j.physrep.2009.02.003
- Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai et al., Carbon-based supercapacitors produced by activation of graphene. Science 332(6037), 1537–1541 (2011). https://doi.org/10.1126/science.1200770
- C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48(42), 7752–7777 (2009). https://doi.org/10.1002/anie.200901678
- Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu et al., Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Res. 4(3), 297–307 (2011). https://doi.org/10.1007/s12274-010-0082-9
- K.T. Chen, M.H. Hsieh, Y.S. Su, J. Wen, S.T. Chang, Carrier mobility calculation for monolayer black phosphorous. J. Nanosci. Nanotechnol. 19(10), 6821–6825 (2019). https://doi.org/10.1166/jnn.2019.17126
- T. Vy, R. Soklaski, Y. Liang, L. Yang, Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89(23), 235319 (2014). https://doi.org/10.1103/PhysRevB.89.235319
- N. Youngblood, C. Chen, S.J. Koester, M. Li, Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 9(4), 247–252 (2015). https://doi.org/10.1038/nphoton.2015.23
- Q. Jiang, L. Xu, N. Chen, H. Zhang, L. Dai, S. Wang, Facile synthesis of black phosphorus: an efficient electrocatalyst for the oxygen evolving reaction. Angew. Chem. Int. Ed. 55(44), 13849–13853 (2016). https://doi.org/10.1002/anie.201607393
- H. Mu, S. Lin, Z. Wang, S. Xiao, P. Li et al., Black phosphorus-polymer composites for pulsed lasers. Adv. Opt. Mater. 3(10), 1447–1453 (2015). https://doi.org/10.1002/adom.201500336
- J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun et al., Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 7, 12967 (2016). https://doi.org/10.1038/ncomms12967
- Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z.X. Shen, K.P. Loh, D.Y. Materials, Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 19(19), 3077–3083 (2009). https://doi.org/10.1002/adfm.200901007
- K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010). https://doi.org/10.1103/PhysRevLett.105.136805
- A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010). https://doi.org/10.1021/nl903868w
- Z. Wang, D. Gresch, A.A. Soluyanov, W. Xie, S. Kushwaha et al., MoTe2: a type-ii weyl topological metal. Phys. Rev. Lett. 117(5), 056805 (2016). https://doi.org/10.1103/PhysRevLett.117.056805
- M. Liu, X.W. Zheng, Y.L. Qi, H. Liu, H. Zhang, Microfiber-based few-layer MoS2 saturable absorber for 2.5 Ghz passively harmonic mode-locked fiber laser. Opt. Express 22(19), 22841–22846 (2014). https://doi.org/10.1364/OE.22.022841
- J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, H. Zhang, Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction. Sci. Rep. 4, 6346 (2014). https://doi.org/10.1038/srep06346
- L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song et al., Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability. Laser Photonics Rev. 12(1), 1700221 (2018). https://doi.org/10.1002/lpor.201700221
- D.A. Bandurin, A.V. Tyurnina, G.L. Yu, A. Mishchenko, V. Zolyomi et al., High electron mobility, quantum hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 12(3), 223–227 (2017). https://doi.org/10.1038/nnano.2016.242
- X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin, H. Li, Y. Bando, D. Golberg, T. Zhai, Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors. Adv. Mater. 27(48), 8035–8041 (2015). https://doi.org/10.1002/adma.201503873
- W. Chen, H. Luo, Z. Han, C. Li, L. Yong, Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber. Laser Phys. Lett. 13(10), 105108 (2016). https://doi.org/10.1088/1612-2011/13/10/105108
- Y. Tan, Z. Guo, L. Ma, H. Zhang, S. Akhmadaliev, S. Zhou, F. Chen, Q-switched waveguide laser based on two-dimensional semiconducting materials: tungsten disulfide and black phosphorous. Opt. Express 24(3), 2858–2866 (2016). https://doi.org/10.1364/OE.24.002858
- D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang et al., WS2 mode-locked ultrafast fiber laser. Sci. Rep. 5, 7965 (2015). https://doi.org/10.1038/srep07965
- Y.J. Zhu, W.W. Wang, R.J. Qi, X.L. Hu, Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids. Angew. Chem. Int. Ed. 43(11), 1410–1414 (2004). https://doi.org/10.1002/anie.200353101
- M.S. Mo, J.H. Zeng, X.M. Liu, W.C. Yu, S.Y. Zhang, Y.T. Qian, Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes. Adv. Mater. 14(22), 1658–1662 (2002). https://doi.org/10.1002/1521-4095(20021118)14:22%3c1658:Aid-adma1658%3e3.0.Co;2-2
- B. Mayers, Y.N. Xia, One-dimensional nanostructures of trigonal tellurium with various morphologies can be synthesized using a solution-phase approach. J. Mater. Chem. 12(6), 1875–1881 (2002). https://doi.org/10.1039/b201058e
- H.S. Qian, S.H. Yu, J.Y. Gong, L.B. Luo, L.F. Fei, High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly (vinyl pyrrolidone)-assisted hydrothermal process. Langmuir 22(8), 3830–3835 (2006). https://doi.org/10.1021/la053021l
- Z. Wang, L. Wang, J. Huang, H. Wang, L. Pan, X. Wei, Formation of single-crystal tellurium nanowires and nanotubes via hydrothermal recrystallization and their gas sensing properties at room temperature. J. Mater. Chem. 20(12), 2457–2463 (2010). https://doi.org/10.1039/b924462j
- Q.Y. Lu, F. Gao, S. Komarneni, A green chemical approach to the synthesis of tellurium nanowires. Langmuir 21(13), 6002–6005 (2005). https://doi.org/10.1021/la050594p
- Y. Zhang, F. Zhang, L. Wu, Y. Zhang, W. Huang et al., Van der waals integration of bismuth quantum dots-decorated tellurium nanotubes (Te@Bi) heterojunctions and plasma-enhanced optoelectronic applications. Small 15(27), 1903233 (2019). https://doi.org/10.1002/smll.201903233
- D.H. Webber, R.L. Brutchey, Photolytic preparation of tellurium nanorods. Chem. Commun. 38, 5701–5703 (2009). https://doi.org/10.1039/b912434a
- C. Metraux, B. Grobety, Tellurium nanotubes and nanorods synthesized by physical vapor deposition. J. Mater. Res. 19(7), 2159–2164 (2004). https://doi.org/10.1557/jmr.2004.0277
- R.B. Zheng, W.L. Cheng, E.K. Wang, S.J. Dong, Synthesis of tellurium nanorods via spontaneous oxidation of NaHTe at room temperature. Chem. Phys. Lett. 395(4–6), 302–305 (2004). https://doi.org/10.1016/j.cplett.2004.07.091
- Z.L. Zhu, X.L. Cai, S. Yi, Y.L. Chen, Y.W. Dai et al., Multivalency-driven formation of Te-based monolayer materials: a combined first-principles and experiment study. Phys. Rev. Lett. 119, 106101 (2017). https://doi.org/10.1103/PhysRevLett.119.106101
- J. Qiao, Y. Pan, F. Yang, C. Wang, Y. Chai, W. Ji, Few-layer tellurium: one-dimensional-like layered elementary semiconductor with striking physical properties. Sci. Bull. 63(3), 159–168 (2018). https://doi.org/10.1016/j.scib.2018.01.010
- A. Khandelwal, K. Mani, M.H. Karigerasi, I. Lahiri, Phosphorene—the two-dimensional black phosphorous: properties, synthesis and applications. Mater. Sci. Eng. B Adv. Funct. Solid State Mater. 221, 17–34 (2017). https://doi.org/10.1016/j.mseb.2017.03.011
- A. Apte, E. Bianco, A. Krishnamoorthy, S. Yazdi, R. Rao et al., Polytypism in ultrathin tellurium. 2D Mater. 6(1), 015013 (2018). https://doi.org/10.1088/2053-1583/aae7f6
- Q. Wang, M. Safdar, K. Xu, M. Mirza, Z. Wang, J. He, Van der waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano 8(7), 7497–7505 (2014). https://doi.org/10.1021/nn5028104
- X. Huang, J. Guan, Z. Lin, B. Liu, S. Xing, W. Wang, J. Guo, Epitaxial growth and band structure of te film on graphene. Nano Lett. 17(8), 4619–4623 (2017). https://doi.org/10.1021/acs.nanolett.7b01029
- W. Huang, C. Xing, Y. Wang, Z. Li, Facile fabrication and characterizations of two-dimensional bismuth (iii) sulfide nanosheets for high-performance photodetector applications under ambient conditions. Nanoscale 10(5), 1702082 (2017). https://doi.org/10.1039/C7NR09046C
- Y. Xu, Z. Wang, Z. Guo, H. Huang, Q. Xiao, H. Zhang, X.F. Yu, Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots. Adv. Opt. Mater. 4, 1223–1229 (2014). https://doi.org/10.1002/adom.201600214
- W. Wu, G. Qiu, Y. Wang, R. Wang, P. Ye, Tellurene: its physical properties, scalable nanomanufacturing, and device applications. Chem. Soc. Rev. 47(19), 7203–7212 (2018). https://doi.org/10.1039/c8cs00598b
- Z. Guo, Z. Han, S. Lu, Z. Wang, P.K. Chu, From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 25(45), 6996–7002 (2015). https://doi.org/10.1002/adfm.201502902
- J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, Y. Liu, Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers. Sci. Rep. 6, 30361 (2016). https://doi.org/10.1038/srep30361
- Y. Ge, S. Chen, Y. Xu, Z. He, Z. Liang et al., Few-layer selenium-doped black phosphorus: synthesis, nonlinear optical properties and ultrafast photonics applications. J. Mater. Chem. C 5, 6103–6388 (2017). https://doi.org/10.1039/c7tc01267e
- Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li et al., Ultrathin 2d nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv. Funct. Mater. 28(16), 1705833 (2018). https://doi.org/10.1002/adfm.201705833
- R.W. Dutton, R.S. Muller, Electrical properties of tellurium thin films. Proc. IEEE 59(10), 1511–1517 (1971). https://doi.org/10.1109/PROC.1971.8463
- K. Okuyama, Y. Kumagai, Grain growth of evaporated Te films on a heatedand cooled substrate. J. Appl. Phys. 46, 1473–1477 (1975). https://doi.org/10.1063/1.321786
- P. Weimer, A p-type tellurium thin-film transistor. Proc. IEEE 52(5), 608–609 (1964). https://doi.org/10.1109/PROC.1964.3003
- Q.Y. He, Y. Liu, C.L. Tan, W. Zhai, G.H. Nam, H. Zhang, Quest for p-Type two-dimensional semiconductors. ACS Nano 13, 12294–12300 (2019). https://doi.org/10.1021/acsnano.9b07618
- J. Lee, K.F. Mak, J. Shan, Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nano 11(5), 421–425 (2016). https://doi.org/10.1038/NNANO.2015.337
- D.K. Sang, B. Wen, S. Gao, Y. Zeng, F. Meng, Z. Guo, H. Zhang, Electronic and optical properties of two-dimensional tellurene: from first-principles calculations. Nanomaterials 9(8), 1075 (2019). https://doi.org/10.3390/nano9081075
- Z. Zhu, C. Cai, C. Niu, C. Wang, Q. Sun, X. Han, Z. Guo, Y. Jia, Tellurene-a monolayer of tellurium from first-principles prediction (2016). arXiv preprint https://arxiv.org/abs/1605.03253v1
- L. Xian, A. Perez Paz, E. Bianco, P.M. Ajayan, A. Rubio, Square selenene and tellurene: novel group VIelemental 2D materials with nontrivial topological properties. 2D Mater. 4(4), 041003 (2017). https://doi.org/10.1088/2053-1583/aa8418
- Y. Liu, W. Wu, W.A. Goddard III, Tellurium: fast electrical and atomic transport along the weak interaction direction. J. Am. Chem. Soc. 140(2), 550–553 (2018). https://doi.org/10.1021/jacs.7b09964
- X. Zhang, Y. Pan, Y. Meng, R. Quhe, Y. Wang et al., Three-layer phosphorene-metal interfaces. Nano Res. 11, 707–721 (2018). https://doi.org/10.1007/s12274-017-1680-6
- J.N. Ma, Y. He, Y. Liu, D.D. Han, Y.L. Zhang, Facile fabrication of flexible graphene FETs by sunlight reduction of graphene oxide. Opt. Lett. 42(17), 3403–3406 (2017). https://doi.org/10.1364/OL.42.003403
- B. Peng, H. Zhang, H. Shao, Y. Xu, R. Zhang, H. Zhua, The electronic, optical, and thermodynamic properties of borophene from first-principles calculations. J. Mater. Chem. C 4(16), 3592–3598 (2016). https://doi.org/10.1039/c6tc00115g
- K. Yang, S. Cahangirov, A. Cantarero, A. Rubio, R.D. Agosta, Thermoelectric properties of atomically thin silicene and germanene nanostructures. Phys. Rev. B 89(12), 125403 (2014). https://doi.org/10.1103/PhysRevB.89.125403
- Y.D. Kuang, L. Lindsay, S.Q. Shi, G.P. Zheng, Tensile strains give rise to strong size effects for thermal conductivities of silicene, germanene and stanine. Nanoscale 8(6), 3760–3767 (2016). https://doi.org/10.1039/c5nr08231e
- J. Zheng, F. Chi, Y. Guo, Exchange and electric fields enhanced spin thermoelectric performance of germanene nano-ribbon. J. Phys.-Condens. Matter 27(29), 295302 (2015). https://doi.org/10.1088/0953-8984/27/29/295302
- K. Zberecki, M. Wierzbicki, J. Barnas, R. Swirkowicz, Thermoelectric effects in silicene nanoribbons. Phys. Rev. B 88(11), 115404 (2013). https://doi.org/10.1103/PhysRevB.88.115404
- S. Zhang, S. Guo, Z. Chen, Y. Wang, H. Gao et al., Recent progress in 2D group-Va semiconductors: from theory to experiment. Chem. Soc. Rev. 47(3), 982–1021 (2018). https://doi.org/10.1039/c7cs00125h
- B. Peng, H. Zhang, H. Shao, K. Xu, G. Ni, J. Li, H. Zhu, C.M. Soukoulis, Chemical intuition for high thermoelectric performance in monolayer black phosphorus, alpha-arsenene and aw-antimonene. J. Mater. Chem. A 6(5), 2018–2033 (2018). https://doi.org/10.1039/c7ta09480a
- Z. Gao, F. Tao, J. Ren, Unusually low thermal conductivity of atomically thin 2d tellurium. Nanoscale 10(27), 12997–13003 (2018). https://doi.org/10.1039/c8nr01649f
- S. Sharma, N. Singh, U. Schwingenschlögl, Two-dimensional tellurene as excellent thermoelectric material. ACS Appl. Energy Mater. 1(5), 1950–1954 (2018). https://doi.org/10.1021/acsaem.8b00032
- Y. Zhang, F. Zhang, Y. Xu, W. Huang, L. Wu, Y. Zhang, X. Zhang, H. Zhang, Self-healable black phosphorus photodetectors. Adv. Funct. Mater. 29, 1906610 (2019). https://doi.org/10.1002/adfm.201906610
- X. Zeng, M. Luo, G. Liu, X. Wang, W. Tao, Y. Lin, X. Ji, L. Nie, L. Mei, Polydopamine-modified black phosphorous nanocapsule with enhanced stability and photothermal performance for tumor multimodal treatments. Adv. Sci. 5(10), 1800510 (2018). https://doi.org/10.1002/advs.201800510
- J.E.S. Fonsaca, S.H. Domingues, E.S. Orth, A.J.G. Zarbin, Air stable black phosphorous in polyaniline-based nanocomposite. Sci. Rep. 7, 10165 (2017). https://doi.org/10.1038/s41598-017-10533-5
- H. Yang, Y. Zhang, F. Hu, Q. Wang, Urchin-like cop nanocrystals as hydrogen evolution reaction and oxygen reduction reaction dual-electrocatalyst with superior stability. Nano Lett. 15(11), 7616–7620 (2015). https://doi.org/10.1021/acs.nanolett.5b03446
- L. Liu, J. Tang, Q.-Q. Wang, D.-X. Shi, G.-Y. Zhang, Thermal stability of MoS2 encapsulated by graphene. Acta Phys. Sin. 67(22), 226501 (2018). https://doi.org/10.7498/aps.67.20181255
- Y.C. Liu, V. Wang, M.G. Xia, S.L. Zhang, First-principles study on structural, thermal, mechanical and dynamic stability of t’-MoS2. J. Phys.-Condens. Matter 29(9), 095702 (2017). https://doi.org/10.1088/1361-648X/aa5213
- P. Budania, P. Baine, J. Montgomery, C. McGeough, T. Cafolla et al., Long-term stability of mechanically exfoliated MoS2 flakes. MRS Commun. 7(4), 813–818 (2017). https://doi.org/10.1557/mrc.2017.105
- K.F. Mak, M.Y. Sfeir, Y. Wu, C.H. Lui, J.A. Misewich, T.F. Heinz, Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 101(19), 196405 (2008). https://doi.org/10.1103/physrevlett.101.196405
- Y. Xu, Z. Shi, X. Shi, K. Zhang, H. Zhang, Recent progress in black phosphorus and black-phosphorus-analogue materials: properties, synthesis and applications. Nanoscale 11(31), 14491–14527 (2019). https://doi.org/10.1039/c9nr04348a
- Y. Hong, J. Zhang, X.C. Zeng, Thermal conductivity of monolayer MoSe2 and MoS2. J. Phys. Chem. C 120(45), 26067–26075 (2016). https://doi.org/10.1021/acs.jpcc.6b07262
- D. Lim, E.S. Kannan, I. Lee, S. Rathi, L. Li et al., High performance MoS2-based field-effect transistor enabled by hydrazine doping. Nanotechnology 27(22), 225201 (2016). https://doi.org/10.1088/0957-4484/27/22/225201
- S. Hong, H. Im, Y.K. Hong, N. Liu, S. Kim, J.H. Park, N-type doping effect of CVD-grown multilayer MoSe2 thin film transistors by two-step functionalization. Adv. Electron. Mater. 4(12), 1800308 (2018). https://doi.org/10.1002/aelm.201800308
- S. Larentis, B. Fallahazad, E. Tutuc, Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl. Phys. Lett. 101(22), 223104 (2012). https://doi.org/10.1063/1.4768218
- M.W. Iqbal, M.Z. Iqbal, M.F. Khan, M.A. Shehzad, Y. Seo, J.H. Park, C. Hwang, J. Eom, High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BNfilms. Sci. Rep. 5, 10699 (2015). https://doi.org/10.1038/srep10699
- H.M. Khalil, M.F. Khan, J. Eom, H. Noh, Highly stable and tunable chemical doping of multilayer WS2 field effect transistor: reduction in contact resistance. ACS Appl. Mater. Interfaces 7(42), 23589–23596 (2015). https://doi.org/10.1021/acsami.5b06825
- H.H. Huang, X. Fan, D.J. Singh, W.T. Zheng, Recent progress of TMD nanomaterials: phase transitions and applications. Nanoscale 12, 1247–1268 (2019). https://doi.org/10.1039/c9nr08313h
- Y. Zhang, Y. Yao, M.G. Sendeku, L. Yin, X. Zhan, F. Wang, Z. Wang, J. He, Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv. Mater. 31(41), e1901694 (2019). https://doi.org/10.1002/adma.201901694
- M. Long, P. Wang, H. Fang, W.J. Hu, Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 29(19), 1803807 (2019). https://doi.org/10.1002/adfm.201803807
- Z. Sun, H. Chang, Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology. ACS Nano 8(5), 4133–4156 (2014). https://doi.org/10.1021/nn500508c
- F.H.L. Koppens, T. Mueller, P. Avouris, A.C. Ferrari, M.S. Vitiello, M. Polini, Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9(10), 780–793 (2014). https://doi.org/10.1038/nnano.2014.215
- X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, H. Zhang, Environmentally robust black phosphorus nanosheets in solution: application for self-powered photodetector. Adv. Funct. Mater. 27(18), 1606834 (2017). https://doi.org/10.1002/adfm.201606834
- Z. Li, H. Qiao, Z. Guo, X. Ren, Z. Huang et al., High-performance photo-electrochemical photodetector based on liquid-exfoliated few-layered InSe nanosheets with enhanced stability. Adv. Funct. Mater. 28(16), 1705237 (2018). https://doi.org/10.1002/adfm.201705237
- L. Ye, H. Li, Z. Chen, J. Xu, Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics 3(4), 692–699 (2016). https://doi.org/10.1021/acsphotonics.6b00079
- Q. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian et al., Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 16(7), 4648–4655 (2016). https://doi.org/10.1021/acs.nanolett.6b01977
- X. Chen, X. Lu, B. Deng, O. Sinai, Y. Shao et al., Widely tunable black phosphorus mid-infrared photodetector. Nat. Commun. 8, 1672 (2017). https://doi.org/10.1038/s41467-017-01978-3
- W. Huang, C. Xing, Y. Wang, Z. Li, L. Wu et al., Facile fabrication and characterization of two-dimensional bismuth(iii) sulfide nanosheets for high-performance photodetector applications under ambient conditions. Nanoscale 10(5), 2404–2412 (2018). https://doi.org/10.1039/c7nr09046c
- Z. Huang, W. Han, H. Tang, L. Ren, D.S. Chander, X. Qi, H. Zhang, Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure. 2D Mater. 2(3), 035011 (2015). https://doi.org/10.1088/2053-1583/2/3/035011
- O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8(7), 497–501 (2013). https://doi.org/10.1038/nnano.2013.100
- K. Roy, M. Padmanabhan, S. Goswami, T.P. Sai, G. Ramalingam, S. Raghavan, A. Ghosh, Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 8(11), 826–830 (2013). https://doi.org/10.1038/nnano.2013.206
- Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
- D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8(2), 1102–1120 (2014). https://doi.org/10.1021/nn500064s
- W. Zhang, J.-K. Huang, C.-H. Chen, Y.-H. Chang, Y.-J. Cheng, L.-J. Li, High-gain phototransistors based on a CVDMoS2 monolayer. Adv. Mater. 25(25), 3456–3461 (2013). https://doi.org/10.1002/adma.201301244
- Y.-Q. Bie, G. Grosso, M. Heuck, M.M. Furchi, Y. Cao et al., A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotechnol. 12(12), 1124–1129 (2017). https://doi.org/10.1038/nnano.2017.209
- H. Huang, J. Wang, W. Hu, L. Liao, P. Wang et al., Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect. Nanotechnology 27(44), 445201 (2016). https://doi.org/10.1088/0957-4484/27/44/445201
- W. Yu, S. Li, Y. Zhang, W. Ma, T. Sun, J. Yuan, K. Fu, Q. Bao, Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility. Small 13(24), 1700268 (2017). https://doi.org/10.1002/smll.201700268
- K. Zhang, X. Fang, Y. Wang, Y. Wan, Q. Song et al., Ultrasensitive near-infrared photodetectors based on a graphene-MoTe2-graphene vertical van der waals heterostructure. ACS Appl. Mater. Interfaces 9(6), 5392–5398 (2017). https://doi.org/10.1021/acsami.6b14483
- F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4(9), 611–622 (2010). https://doi.org/10.1038/nphoton.2010.186
- F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, P. Avouris, Ultrafast graphene photodetector. Nat. Nanotechnol. 4(12), 839–843 (2009). https://doi.org/10.1038/nnano.2009.292
- T. Mueller, F. Xia, P. Avouris, Graphene photodetectors for high-speed optical communications. Nat. Photonics 4(5), 297–301 (2010). https://doi.org/10.1038/nphoton.2010.40
- T. Low, P. Avouris, Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8(2), 1086–1101 (2014). https://doi.org/10.1021/nn406627u
- L. Vicarelli, M.S. Vitiello, D. Coquillat, A. Lombardo, A.C. Ferrari et al., Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11(10), 865–871 (2012). https://doi.org/10.1038/nmat3417
- S. Deckoff-Jones, Y. Wang, H. Lin, W. Wu, J. Hu, Tellurene: a multifunctional material for midinfrared optoelectronics. ACS Photonics 6(7), 1632–1638 (2019). https://doi.org/10.1021/acsphotonics.9b00694
- W. Huang, Y. Zhang, Q. You, P. Huang, Y. Wang et al., Enhanced photodetection properties of tellurium@selenium roll-to-roll nanotube heterojunctions. Small 15(23), e1900902 (2019). https://doi.org/10.1002/smll.201900902
- Y. Zhang, F. Zhang, L. Wu, Y. Zhang, W. Huang et al., Van der waals integration of bismuth quantum dots-decorated tellurium nanotubes (Te@Bi) heterojunctions and plasma-enhanced optoelectronic applications. Small 15, e1903233 (2019). https://doi.org/10.1002/smll.201903233
- Y. Zhang, F. Zhang, Y. Xu, W. Huang, L. Wu et al., Epitaxial growth of topological insulators on semiconductors (Bi2Se3/Te@Se) toward high-performance photodetectors. Small Methods 3, 1900349 (2019). https://doi.org/10.1002/smtd.201900349
- C.H. Liu, Y.C. Chang, T.B. Norris, Z. Zhong, Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 9(4), 273–278 (2014). https://doi.org/10.1038/nnano.2014.31
- M. Buscema, D.J. Groenendijk, S.I. Blanter, G.A. Steele, H.S. van der Zant, A. Castellanos-Gomez, Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14(6), 3347–3352 (2014). https://doi.org/10.1021/nl5008085
- L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014). https://doi.org/10.1038/nnano.2014.35
- M. Long, Room temperature high-detectivity mid-infraredphotodetectors based on black arsenic phosphorus. Sci. Adv. 3(6), e1700589 (2017). https://doi.org/10.1126/sciadv.1700589
- S. Yuan, C. Shen, B. Deng, X. Chen, Q. Guo et al., Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBNheterostructures. Nano Lett. 18(5), 3172–3179 (2018). https://doi.org/10.1021/acs.nanolett.8b00835
- J. Bullock, M. Amani, J. Cho, Y.-Z. Chen, G.H. Ahn et al., Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat. Photonics 12(10), 601–607 (2018). https://doi.org/10.1038/s41566-018-0239-8
- X.C. Liu, D.S. Qu, H.M. Li, I. Moon, F. Ahmed et al., Modulation of quantum tunneling via a vertical two-dimensional black phosphorusand molybdenum disulfide p-n junction. ACS Nano 11(9), 9143–9150 (2017). https://doi.org/10.1021/acsnano.7b03994
- W. Wang, A. Klots, D. Prasai, Y. Yang, K.I. Bolotin, J. Valentine, Hot electron-based near-infrared photodetection using bilayer MoS2. Nano Lett. 15(11), 7440–7444 (2015). https://doi.org/10.1021/acs.nanolett.5b02866
- M. Long, Y. Wang, P. Wang, X. Zhou, H. Xia et al., Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 13(2), 2511–2519 (2019). https://doi.org/10.1021/acsnano.8b09476
- A.D. Oyedele, S. Yang, L. Liang, A.A. Puretzky, K. Wang et al., PdSe2: pentagonal Two-Dimensional Layers with High Air Stabilityfor Electronics. J. Am. Chem. Soc. 139(40), 14090–14097 (2017). https://doi.org/10.1021/jacs.7b04865
- N. Perea-López, A.L. Elías, A. Berkdemir, A. Castro-Beltran, H.R. Gutiérrez et al., Photosensor device based on few-layered WS2films. Adv. Funct. Mater. 23(44), 5511–5517 (2013). https://doi.org/10.1002/adfm.201300760
- H.C.P. Movva, A. Rai, S. Kang, K. Kim, B. Fallahazad et al., High-mobility holes in dual-gated WSe2 field-effect transistors. ACS Nano 9(10), 10402–10410 (2015). https://doi.org/10.1021/acsnano.5b04611
- Z. Zheng, T. Zhang, J. Yao, Y. Zhang, J. Xu, G. Yang, Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices. Nanotechnology 27(22), 225501 (2016). https://doi.org/10.1088/0957-4484/27/22/225501
- T.F. Yang, B.Y. Zheng, Z. Wang, T. Xu, C. Pan et al., Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions. Nat. Commun. 8(1), 1–9 (2017). https://doi.org/10.1038/s41467-017-02093-z
- X. Zhou, X. Hu, S. Zhou, H. Song, Q. Zhang et al., Tunneling diode based on WSe2/SnS2 heterostructure incorporating high detectivity and responsivity. Adv. Mater. 30(7), 1703286 (2018). https://doi.org/10.1002/adma.201703286
- F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010). https://doi.org/10.1038/nnano.2010.89
- Y.G. Lee, S.K. Lim, C.G. Kang, Y.J. Kim, D.H. Choi, H.-J. Chung, R. Choi, B.H. Lee, Origin of the channel width dependent field effect mobility of graphene field effect transistors. Microelectron. Eng. 163, 55–59 (2016). https://doi.org/10.1016/j.mee.2016.06.004
- L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin et al., Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335(6071), 947–950 (2012). https://doi.org/10.1126/science.1218461
- Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu et al., Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv. Mater. 29, 1703811 (2017). https://doi.org/10.1002/adma.201703811
- Y. Xu, Z. Shi, X. Shi, K. Zhang, Z. Han, Recent progress in black phosphorus and black-phosphorus-analogue materials: properties, synthesis and applications. Nanoscale 11, 14491–14527 (2019). https://doi.org/10.1039/c9nr04348a
- J. Li, X. Sun, C. Xu, X. Zhang, Y. Pan et al., Electrical contacts in monolayer blue phosphorene devices. Nano Res. 11, 1834–1849 (2018). https://doi.org/10.1007/s12274-017-1801-2
- H.D. Wang, D.K. Sang, Z.N. Guo, R. Cao, J.L. Zhao et al., Black phosphorus-based field effect transistor devices for Ag ions detection. Chin. Phys. B 27(8), 087308 (2018). https://doi.org/10.1088/1674-1056/27/8/087308
- W. Huang, Z. Xie, T. Fan, J. Li, Y. Wang et al., Black-phosphorus-analogue tin monosulfide: an emerging optoelectronic two-dimensional material for high-performance photodetection with improved stability under ambient/harsh conditions. J. Mater. Chem. C 6(36), 9582–9593 (2018). https://doi.org/10.1039/c8tc03284j
- B. Tang, Z.G. Yu, L. Huang, J. Chai, S.L. Wong et al., Direct n- to p-type channel conversion in monolayer/few-layer WS2 field-effect transistors by atomic nitrogen treatment. ACS Nano 12(3), 2506–2513 (2018). https://doi.org/10.1021/acsnano.7b08261
- B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011). https://doi.org/10.1038/nnano.2010.279
- H.M. Li, D.Y. Lee, M.S. Choi, D.S. Qu, X.C. Liu et al., Gate-controlled Schottky barrier modulation for superior photoresponse of MoS2 field effect transistor. IEEE Int. Electron Devices Meet. 13, 507–510 (2013). https://doi.org/10.1109/IEDM.2013.6724662
- Y.W. Lan, C.M. Torres, S.H. Tsai, X. Zhu, Y. Shi et al., Atomic-monolayer MoS2 band-to-band tunneling field-effect transistor. Small 12(41), 5676–5683 (2016). https://doi.org/10.1002/smll.201601310
- M. Strojnik, A. Kovic, A. Mrzel, J. Buh, J. Strle, D. Mihailovic, MoS2 nanotube field effect transistors. AIP Adv. 4(9), 097114 (2014). https://doi.org/10.1063/1.4894440
- W. Feng, W. Zheng, W. Cao, P. Hu, Back gated multilayer InSe transistors with enhanced carrier mobilities via the suppression of carrier scattering from a dielectric interface. Adv. Mater. 26(38), 6587–6593 (2014). https://doi.org/10.1002/adma.201402427
- S. Sucharitakul, N.J. Goble, U.R. Kumar, R. Sankar, Z.A. Bogorad, F.-C. Chou, Y.-T. Chen, X.P.A. Gao, Intrinsic electron mobility exceeding 103 cm2/(Vs) in multilayer InSe FETs. Nano Lett. 15(6), 3815–3819 (2015). https://doi.org/10.1021/acs.nanolett.5b00493
- W. Feng, X. Zhou, W.Q. Tian, W. Zheng, P. Hu, Performance improvement of multilayer InSe transistors with optimized metal contacts. Phys. Chem. Chem. Phys. 17(5), 3653–3658 (2015). https://doi.org/10.1039/c4cp04968c
- J. Liu, C. Xia, H. Li, A. Pan, High on/off ratio photosensitive field effect transistors based on few layer SnS2. Nanotechnology 27(34), 34lt01 (2016). https://doi.org/10.1088/0957-4484/27/34/34lt01
- Y. Du, J. Maassen, W. Wu, Z. Luo, X. Xu, P.D. Ye, Auxetic black phosphorus: a 2D material with negative Poisson’s ratio. Nano Lett. 16(10), 6701–6708 (2016). https://doi.org/10.1021/acs.nanolett.6b03607
- J. Yan, X. Zhang, Y. Pan, J. Li, B. Shi et al., Monolayer tellurene–metal contacts. J. Mater. Chem. C 6(23), 6153–6163 (2018). https://doi.org/10.1039/c8tc01421c
- X. Ren, Y. Wang, Z. Xie, F. Xue, C. Leighton, C.D. Frisbie, Gate-tuned insulator-metal transition in electrolyte-gated transistors based on tellurene. Nano Lett. 19(7), 4738–4744 (2019). https://doi.org/10.1021/acs.nanolett.9b01827
- H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang et al., Ultrathin compound semiconductor on insulator layers forhigh-performance nanoscale transistors. Nature 468, 286–289 (2010). https://doi.org/10.1038/nature09541
- C.A. Dimitriadis, P.A. Coxon, L. Dozsa, L. Papadimitriou, N. Economou, Performance of thin-film transistors on polysilicon films grown bylow-pressure chemical vapor deposition at various pressures. IEEE Trans. Electron Devices 39(3), 598–606 (1992). https://doi.org/10.1109/16.123484
- C. Zhao, C.L. Tan, D.H. Lien, X.H. Song, M. Amani et al., Evaporated tellurium thin films for p-type field-effect transistors and circuits. Nat. Nano 15(1), 53–58 (2020). https://doi.org/10.1038/s41565-019-0585-9
- K.-A.N. Duerloo, M.T. Ong, E.J. Reed, Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 3(19), 2871–2876 (2012). https://doi.org/10.1021/jz3012436
- W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin et al., Piezoelectricity of single-atomic-layer MoSS for energy conversion and piezotronics. Nature 514(7523), 470–474 (2014). https://doi.org/10.1038/nature13792
- H. Zhu, Y. Wang, J. Xiao, M. Liu, S. Xiong et al., Observation of piezoelectricity in free-standing monolayer MoS2. Nat. Nanotechnol. 10(2), 151–155 (2015). https://doi.org/10.1038/nnano.2014.309
- T.I. Lee, S. Lee, E. Lee, S. Sohn, Y. Lee et al., High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly. Adv. Mater. 25(21), 2920–2925 (2013). https://doi.org/10.1002/adma.201300657
- W. He, N. Van Huynh, Y.T. Qian, J.S. Hwang, Y.P. Yan, H. Choi, D.J. Kang, Synthesis of ultra-thin tellurium nanoflakes on textiles for high-performance flexible and wearable nanogenerators. Appl. Surf. Sci. 392, 1055–1061 (2017). https://doi.org/10.1016/j.apsusc.2016.09.157
- L. Wu, W. Huang, Y. Wang, J. Zhao, D. Ma et al., 2D tellurium based high-performance all-optical nonlinear photonic devices. Adv. Funct. Mater. 29(4), 1806346 (2019). https://doi.org/10.1002/adfm.201806346
- J. Guo, J. Zhao, D. Huang, Y. Wang, F. Zhang et al., Two-dimensional tellurium-polymer membrane for ultrafast photonics. Nanoscale 11(13), 6235–6242 (2019). https://doi.org/10.1039/c9nr00736a
- M.A. Van Camp, S. Assefa, D.M. Gill, T. Barwicz, S.M. Shank, P.M. Rice, T. Topuria, W.M. Green, Demonstration of electrooptic modulation at 2165 nm using a silicon Mach-Zehnder interferometer. Opt. Express 20(27), 28009–28016 (2012). https://doi.org/10.1364/OE.20.028009
- L. Shen, N. Healy, C.J. Mitchell, J.S. Penades, M. Nedeljkovic, G.Z. Mashanovich, A.C. Peacock, Mid-infrared all-optical modulation in low-loss germanium-on-silicon waveguides. Opt. Lett. 40(2), 268–271 (2015). https://doi.org/10.1364/ol.40.000268
- M. Nedeljkovic, S. Stankovic, C.J. Mitchell, A.Z. Khokhar, S.A. Reynolds et al., Mid-infrared thermo-optic modulators in SoI. IEEE Photonics Technol. Lett. 26(13), 1352–1355 (2014). https://doi.org/10.1109/lpt.2014.2323702
- A. Malik, S. Dwivedi, L. Van Landschoot, M. Munceb, Y. Shimura et al., Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared. Opt. Express 22(23), 28479–28488 (2014). https://doi.org/10.1364/oe.22.028479
- Z. Yi, S. Chakravarty, C.J. Chung, R.T. Chen, Miniature mid-infrared thermooptic switch with photonic crystal waveguide based silicon-on-sapphire Mach–Zehnder interferometers, in Proc. SPIE, Opt. Interconnects XVI, vol 9753 (2016), p. 97530Q. https://doi.org/10.1117/12.2214440
- W.S. Whitney, M.C. Sherrott, D. Jariwala, W.-H. Lin, H.A. Bechtel, G.R. Rossman, H.A. Atwater, Field effect optoelectronic modulation of quantum-confined carriers in black phosphorus. Nano Lett. 17(1), 78–84 (2017). https://doi.org/10.1021/acs.nanolett.6b03362
- R. Peng, K. Khaliji, N. Youngblood, R. Grassi, T. Low, M. Li, Midinfrared electro-optic modulation in few-layer black phosphorus. Nano Lett. 17(10), 6315–6320 (2017). https://doi.org/10.1021/acs.nanolett.7b03050
- Y. Yao, R. Shankar, M.A. Kats, Y. Song, J. Kong, M. Loncar, F. Capasso, Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett. 14(11), 6526–6532 (2014). https://doi.org/10.1021/nl503104n
- J. Chiles, S. Fathpour, Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics. Optica 1(5), 350–355 (2014). https://doi.org/10.1364/optica.1.000350
- R. Poudyal, P. Loskot, R. Nepal, R. Parajuli, S.K. Khadka, Mitigating the current energy crisis in Nepal with renewable energy sources. Renew. Sustain. Energy Rev. 116, 109388 (2019). https://doi.org/10.1016/j.rser.2019.109388
- S.C. Peter, Reduction of CO2 to chemicals and fuels: a solution to global warming and energy crisis. ACS Energy Lett. 3(7), 1557–1561 (2018). https://doi.org/10.1021/acsenergylett.8b00878
- X. Du, X. Zhang, Z. Yang, Y. Gong, Water oxidation catalysis beginning with CuCo2S4: Investigation of the true electrochemically driven catalyst. Chem. Asian J. 13(3), 266–270 (2018). https://doi.org/10.1002/asia.201701684
- A. Lawrence, Quasar viscosity crisis. Nat. Astron. 2(2), 102–103 (2018). https://doi.org/10.1038/s41550-017-0372-1
- J. Xiong, J. Di, H. Li, Atomically thin 2D multinary nanosheets for energy-related photo, electrocatalysis. Adv. Sci. 5(7), 1800244 (2018). https://doi.org/10.1002/advs.201800244
- R. Lei, H. Zhai, J. Nie, W. Zhong, Y. Bai et al., Butterfly-inspired triboelectric nanogenerators with spring-assisted linkage structure for water wave energy harvesting. Adv. Mater. Technol. 4(3), 1800514 (2019). https://doi.org/10.1002/admt.201800514
- H. Choi, K. Jeong, J. Chae, H. Park, J. Baeck et al., Enhancement in thermoelectric properties of Te-embedded Bi2Te3 by preferential phonon scattering in heterostructure interface. Nano Energy 47, 374–384 (2018). https://doi.org/10.1016/j.nanoen.2018.03.009
- G. Qiu, S. Huang, M. Segovia, P.K. Venuthurumilli, Y. Wang, W. Wu, X. Xu, P.D. Ye, Thermoelectric performance of 2D Tellurium with accumulation contacts. Nano Lett. 19(3), 1955–1962 (2019). https://doi.org/10.1021/acs.nanolett.8b05144
- S. Huang, M. Segovia, X. Yang, Y.R. Koh, Y. Wang et al., Anisotropic thermal conductivity in 2D Tellurium. 2D Mater. 7(1), 015008 (2019). https://doi.org/10.1088/2053-1583/ab4eee
- D.K. Sang, T. Ding, M.N. Wu, Y. Li, J. Li, F. Liu, Z. Guo, H. Zhang, H. Xie, Monolayer β-tellurene: a promising p-type thermoelectric material via first-principles calculations. Nanoscale 11(39), 18116–18123 (2019). https://doi.org/10.1039/c9nr04176a
- K.R. Sapkota, P. Lu, D.L. Medlin, G.T. Wang, High temperature synthesis and characterization of ultrathin tellurium nanostructures. APL Mater. 7(8), 081103 (2019). https://doi.org/10.1063/1.5109899
- M. Kayyalha, J. Maassen, M. Lundstrom, L. Shi, Y.P. Chen, Gate-tunable and thickness-dependent electronic and thermoelectric transport in few-layer MoS2. J. Appl. Phys. 120(13), 134305 (2016). https://doi.org/10.1063/1.4963364
- M.-J. Lee, J.-H. Ahn, J.H. Sung, H. Heo, S.G. Jeon et al., Thermoelectric materials by using two-dimensional materials with negative correlation between electrical and thermal conductivity. Nat. Commun. 7, 12011 (2016). https://doi.org/10.1038/ncomms12011
- J. Min, C. Zhao, Z. Zeng, Y. Jia, Z. Du, Tunable visible-light excitonic absorption and high photoconversion efficiency in two-dimensional group-VI monolayer materials. Phys. Rev. B 100(8), 085402 (2019). https://doi.org/10.1103/PhysRevB.100.085402
- K. Wu, H. Ma, Y. Gao, W. Hu, J. Yang, Highly-efficient heterojunction solar cells based on two-dimensional tellurene and transition metal dichalcogenides. J. Mater. Chem. A 7(13), 7430–7436 (2019). https://doi.org/10.1039/c9ta00280d
- H. Yang, Y. Ma, Y. Liang, B. Huang, Y. Dai, Monolayer HfTeSe4: a promising two-dimensional photovoltaic material for solar cells with high efficiency. ACS Appl. Mater. Interfaces 11(41), 37901–37907 (2019). https://doi.org/10.1021/acsami.9b14920
- Y. Mao, C. Xu, J. Yuan, H. Zhao, A two-dimensional GeSe/SnSe heterostructure for high performance thin-film solar cells. J. Mater. Chem. A 7(18), 11265–11271 (2019). https://doi.org/10.1039/c9ta01219b
- J. Dai, X.C. Zeng, Bilayer phosphorene: Effect of stacking order on bandgap and its potential applications in thin-film solar cells. J. Phys. Chem. Lett. 5(7), 1289–1293 (2014). https://doi.org/10.1021/jz500409m
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade, W. Ma, H. Yan, Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 1(2), 15027 (2016). https://doi.org/10.1038/nenergy.2015.27
- Y. Lin, C. Norman, D. Srivastava, F. Azough, L. Wang et al., Thermoelectric power generation from lanthanum strontium titanium oxide at room temperature through the addition of graphene. ACS Appl. Mater. Interfaces 7(29), 15898–15908 (2015). https://doi.org/10.1021/acsami.5b03522
- A. Agresti, S. Pescetelli, A.L. Palma, A.E. Del Rio Castillo, D. Konios et al., Graphene interface engineering for perovskite solar modules: 12.6% power conversion efficiency over 50 cm2 active area. ACS Energy Lett. 2(1), 279–287 (2017). https://doi.org/10.1021/acsenergylett.6b00672
- L. Valentini, M. Cardinali, S. Bittolo Bon, D. Bagnis, R. Verdejo, M.A. Lopez-Manchado, J.M. Kenny, Use of butylamine modified graphene sheets in polymer solar cells. J. Mater. Chem. 20(5), 995–1000 (2010). https://doi.org/10.1039/b919327h
- G. Qin, Q.B. Yan, Z. Qin, S.Y. Yue, H.J. Cui, Q.R. Zheng, G. Su, Hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance. Sci. Rep. 4, 6946 (2014). https://doi.org/10.1038/srep06946
- H.Y. Lv, W.J. Lu, D.F. Shao, Y.P. Sun, Large thermoelectric power factors in black phosphorus and phosphorene (2014). arXiv preprint https://arxiv.org/abs/1404.5171v1
- Y. Yang, J. Gao, Z. Zhang, S. Xiao, H.H. Xie et al., Black phosphorus based photocathodes in wideband bifacial dye-sensitized solar cells. Adv. Mater. 28(40), 8937–8944 (2016). https://doi.org/10.1002/adma.201602382
- X. Mettan, R. Pisoni, P. Matus, A. Pisoni, J. Jaćimović et al., Tuning of the thermoelectric figure of merit of CH3NH3MI3 (M=Pb, Sn) photovoltaic perovskites. J. Phys. Chem. C 119(21), 11506–11510 (2015). https://doi.org/10.1021/acs.jpcc.5b03939
- T. Okuda, K. Nakanishi, S. Miyasaka, Y. Tokura, Large thermoelectric response of metallic perovskites: Sr1−xLaxTiO3 (0 < ~x < ~0.1). Phys. Rev. B 63(11), 113104 (2001). https://doi.org/10.1103/PhysRevB.63.113104
- J.H. Heo, D.H. Song, H.J. Han, S.Y. Kim, J.H. Kim et al., Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate. Adv. Mater. 27(22), 3424–3430 (2015). https://doi.org/10.1002/adma.201500048
- D. Geng, X. Zhao, Z. Chen, W. Sun, W. Fu et al., Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv. Mater. 29(35), 1700072 (2017). https://doi.org/10.1002/adma.201700072
- C.-K. Chang, S. Kataria, C.-C. Kuo, A. Ganguly, B.-Y. Wang et al., Band gap engineering of chemical vapor deposited graphene by in situ BN doping. ACS Nano 7(2), 1333–1341 (2013). https://doi.org/10.1021/nn3049158
- R.S. Weatherup, B.C. Bayer, R. Blume, C. Ducati, C. Baehtz, R. Schlogl, S. Hofmann, In situ characterization of alloy catalysts for low-temperature graphene growth. Nano Lett. 11(10), 4154–4160 (2011). https://doi.org/10.1021/nl202036y
- J. Yu, J. Li, W. Zhang, H. Chang, Synthesis of high quality two-dimensional materials via chemical vapor deposition. Chem. Sci. 6(12), 6705–6716 (2015). https://doi.org/10.1039/C5SC01941A
- S.G. Sørensen, H.G. Füchtbauer, A.K. Tuxen, A.S. Walton, J.V. Lauritsen, Structure and electronic properties of in situ synthesized single-layer MoS2 on a gold surface. ACS Nano 8(7), 6788–6796 (2014). https://doi.org/10.1021/nn502812n
- J. Chen, B. Liu, Y. Liu, W. Tang, C.T. Nai et al., Chemical vapor deposition of large-sized hexagonal WSe2 crystals on dielectric substrates. Adv. Mater. 27(42), 6722–6727 (2015). https://doi.org/10.1002/adma.201503446
- Z.-J. Wang, G. Weinberg, Q. Zhang, T. Lunkenbein, A. Klein-Hoffmann et al., Direct observation of graphene growth and associated copper substrate dynamics by in situ scanning electron microscopy. ACS Nano 9(2), 1506–1519 (2015). https://doi.org/10.1021/nn5059826
- X. Li, L. Colombo, R.S. Ruoff, Synthesis of graphene films on copper foils by chemical vapor deposition. Adv. Mater. 28(29), 6247–6252 (2016). https://doi.org/10.1002/adma.201504760
- A.J. Mannix, Y.B. Kiral, M.C. Hersam, N.P. Guisinger, Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 1(2), 0014 (2017). https://doi.org/10.1038/s41570-016-0014
- D. Geng, H. Wang, Y. Wan, Z. Xu, B. Luo, J. Xu, G. Yu, Direct top–down fabrication of large-area graphene arrays by an in situ etching method. Adv. Mater. 27(28), 4195–4199 (2015). https://doi.org/10.1002/adma.201570189
References
L.A. Ba, M. Doering, V. Jamier, C. Jacob, Tellurium: an element with great biological potency and potential. Org. Biomol. Chem. 8(19), 4203–4216 (2010). https://doi.org/10.1039/c0Ob00086h
J.W. Liu, J.H. Zhu, C.L. Zhang, H.W. Yu, S.H. Liang, Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity. J. Am. Chem. Soc. 132(26), 8945–8952 (2010). https://doi.org/10.1021/ja910871s
H. Peng, N. Kioussis, G.J. Snyder, Elemental tellurium as a chiral p-type thermoelectric material. Phys. Rev. B 89(19), 195206 (2014). https://doi.org/10.1103/PhysRevB.89.195206
J.P. Hermann, G. Quentin, J.M. Thuillier, Determination of the d14 piezoelectric coefficient of tellurium. Solid State Commun. 7(1), 161–163 (1969). https://doi.org/10.1016/0038-1098(69)90715-7
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065), 197–200 (2005). https://doi.org/10.1038/nature04233
Y. Yin, R. Cao, J. Guo, C. Liu, J. Li et al., High-speed and high-responsivity hybrid silicon/black-phosphorus waveguide photodetectors at 2 μm. Laser Photonics Rev. 13(6), 1900032 (2019). https://doi.org/10.1002/lpor.201900032
C. Xing, G. Jing, X. Liang, M. Qiu, Z. Li et al., Graphene oxide/black phosphorus nanoflake aerogels with robust thermo-stability and significantly enhanced photothermal properties in air. Nanoscale 9(24), 8096–8101 (2017). https://doi.org/10.1039/c7nr00663b
A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401
J. Wang, H. Yan, Z. Liu, Z. Wang, H. Gao et al., Langmuir-Blodgett self-assembly of ultrathin graphene quantum dot films with modulated optical properties. Nanoscale 10(41), 19612–19620 (2018). https://doi.org/10.1039/c8nr05159c
Q. Bao, H. Zhang, B. Wang, Z. Ni, C.H.Y.X. Lim, Y. Wang, D.Y. Tang, K.P. Loh, Broadband graphene polarizer. Nat. Photonics 5(7), 411–415 (2011). https://doi.org/10.1038/nphoton.2011.102
S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, D. Tang, Third order nonlinear optical property of Bi2Se3. Opt. Express 21(2), 2072–2082 (2013). https://doi.org/10.1364/oe.21.002072
Z. Zheng, C. Zhao, S. Lu, Y. Chen, Y. Li, H. Zhang, S. Wen, Microwave and optical saturable absorption in graphene. Opt. Express 20(21), 23201–23214 (2012). https://doi.org/10.1364/oe.20.023201
H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, J. Wang, Topological insulator as an optical modulator for pulsed solid-state lasers. Laser Photonics Rev. 7(6), L77–L83 (2013). https://doi.org/10.1002/lpor.201300084
M. Qiu, D. Wang, W. Liang, L. Liu, Y. Zhang et al., Novel concept of the smart nir-light-controlled drug release of black phosphorus nanostructure for cancer therapy. Proc. Natl. Acad. Sci. U.S.A. 115(3), 501–506 (2018). https://doi.org/10.1073/pnas.1714421115
A.H. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009). https://doi.org/10.1103/RevModPhys.81.109
H. Zhang, S. Virally, Q. Bao, L.K. Ping, S. Massar, N. Godbout, P. Kockaert, Z-scan measurement of the nonlinear refractive index of graphene. Opt. Lett. 37(11), 1856–1858 (2012). https://doi.org/10.1364/ol.37.001856
S.B. Lu, L.L. Miao, Z.N. Guo, X. Qi, C.J. Zhao et al., Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material. Opt. Express 23(9), 11183–11194 (2015). https://doi.org/10.1364/oe.23.011183
R. Cao, H.D. Wang, Z.N. Guo, D.K. Sang, L.Y. Zhang et al., Black phosphorous/indium selenide photoconductive detector for visible and near-infrared light with high sensitivity. Adv. Opt. Mater. 7(12), 1900020 (2019). https://doi.org/10.1002/adom.201900020
Q. Zhou, Q. Chen, Y. Tong, J. Wang, Light-induced ambient degradation of few-layer black phosphorus: mechanism and protection. Angew. Chem. Int. Ed. 55(38), 11437–11441 (2016). https://doi.org/10.1002/anie.201605168
J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen et al., Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability. ACS Photonics 4(6), 1466–1476 (2017). https://doi.org/10.1021/acsphotonics.7b00231
M.H. Jeong, D.H. Kwak, H.S. Ra, A.Y. Lee, J.S. Lee, Realizing long-term stability and thickness control of black phosphorus by ambient thermal treatment. ACS Appl. Mater. Interfaces 10(22), 19069–19075 (2018). https://doi.org/10.1021/acsami.8b04627
H. Zhang, S.B. Lu, J. Zheng, J. Du, S.C. Wen, D.Y. Tang, K.P. Loh, Molybdenum disulfide (MoS) as a broadband saturable absorber for ultra-fast photonics. Opt. Express 22(6), 7249–7260 (2014). https://doi.org/10.1364/oe.22.007249
B. Wu, X. Liu, J. Yin, H. Lee, Bulk β-Te to few layered β-tellurenes: indirect to direct band-gap transitions showing semiconducting property. Mater. Res. Express 4(9), 095902 (2017). https://doi.org/10.1088/2053-1591/aa8ae3
Y. Wang, G. Qiu, R. Wang, S. Huang, Q. Wang et al., Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 1(4), 228–236 (2018). https://doi.org/10.1038/s41928-018-0058-4
M. Amani, C. Tan, G. Zhang, C. Zhao, J. Bullock et al., Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano 12(7), 7253–7263 (2018). https://doi.org/10.1021/acsnano.8b03424
A. Vonhippel, Structure and conductivity in the vib group of the periodic system. J. Chem. Phys. 16(4), 372–380 (1948). https://doi.org/10.1063/1.1746893
W. Zhang, Q. Wu, O.V. Yazyev, H. Weng, Z. Guo, W.-D. Cheng, G.-L. Chai, Topological phase transitions driven by strain in monolayer tellurium. Phys. Rev. B 98(11), 115411 (2018). https://doi.org/10.1103/PhysRevB.98.115411
C. Lin, W. Cheng, G. Chai, H. Zhang, Thermoelectric properties of two-dimensional selenene and tellurene from group-VI elements. Phys. Chem. Chem. Phys. 20(37), 24250–24256 (2018). https://doi.org/10.1039/C8CP04069A
A.K. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009). https://doi.org/10.1126/science.1158877
L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. Rev. Sect. Phys. Lett. 473(5–6), 51–87 (2009). https://doi.org/10.1016/j.physrep.2009.02.003
Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai et al., Carbon-based supercapacitors produced by activation of graphene. Science 332(6037), 1537–1541 (2011). https://doi.org/10.1126/science.1200770
C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48(42), 7752–7777 (2009). https://doi.org/10.1002/anie.200901678
Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu et al., Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Res. 4(3), 297–307 (2011). https://doi.org/10.1007/s12274-010-0082-9
K.T. Chen, M.H. Hsieh, Y.S. Su, J. Wen, S.T. Chang, Carrier mobility calculation for monolayer black phosphorous. J. Nanosci. Nanotechnol. 19(10), 6821–6825 (2019). https://doi.org/10.1166/jnn.2019.17126
T. Vy, R. Soklaski, Y. Liang, L. Yang, Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89(23), 235319 (2014). https://doi.org/10.1103/PhysRevB.89.235319
N. Youngblood, C. Chen, S.J. Koester, M. Li, Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 9(4), 247–252 (2015). https://doi.org/10.1038/nphoton.2015.23
Q. Jiang, L. Xu, N. Chen, H. Zhang, L. Dai, S. Wang, Facile synthesis of black phosphorus: an efficient electrocatalyst for the oxygen evolving reaction. Angew. Chem. Int. Ed. 55(44), 13849–13853 (2016). https://doi.org/10.1002/anie.201607393
H. Mu, S. Lin, Z. Wang, S. Xiao, P. Li et al., Black phosphorus-polymer composites for pulsed lasers. Adv. Opt. Mater. 3(10), 1447–1453 (2015). https://doi.org/10.1002/adom.201500336
J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun et al., Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 7, 12967 (2016). https://doi.org/10.1038/ncomms12967
Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z.X. Shen, K.P. Loh, D.Y. Materials, Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 19(19), 3077–3083 (2009). https://doi.org/10.1002/adfm.200901007
K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010). https://doi.org/10.1103/PhysRevLett.105.136805
A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010). https://doi.org/10.1021/nl903868w
Z. Wang, D. Gresch, A.A. Soluyanov, W. Xie, S. Kushwaha et al., MoTe2: a type-ii weyl topological metal. Phys. Rev. Lett. 117(5), 056805 (2016). https://doi.org/10.1103/PhysRevLett.117.056805
M. Liu, X.W. Zheng, Y.L. Qi, H. Liu, H. Zhang, Microfiber-based few-layer MoS2 saturable absorber for 2.5 Ghz passively harmonic mode-locked fiber laser. Opt. Express 22(19), 22841–22846 (2014). https://doi.org/10.1364/OE.22.022841
J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, H. Zhang, Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction. Sci. Rep. 4, 6346 (2014). https://doi.org/10.1038/srep06346
L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song et al., Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability. Laser Photonics Rev. 12(1), 1700221 (2018). https://doi.org/10.1002/lpor.201700221
D.A. Bandurin, A.V. Tyurnina, G.L. Yu, A. Mishchenko, V. Zolyomi et al., High electron mobility, quantum hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 12(3), 223–227 (2017). https://doi.org/10.1038/nnano.2016.242
X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin, H. Li, Y. Bando, D. Golberg, T. Zhai, Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors. Adv. Mater. 27(48), 8035–8041 (2015). https://doi.org/10.1002/adma.201503873
W. Chen, H. Luo, Z. Han, C. Li, L. Yong, Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber. Laser Phys. Lett. 13(10), 105108 (2016). https://doi.org/10.1088/1612-2011/13/10/105108
Y. Tan, Z. Guo, L. Ma, H. Zhang, S. Akhmadaliev, S. Zhou, F. Chen, Q-switched waveguide laser based on two-dimensional semiconducting materials: tungsten disulfide and black phosphorous. Opt. Express 24(3), 2858–2866 (2016). https://doi.org/10.1364/OE.24.002858
D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang et al., WS2 mode-locked ultrafast fiber laser. Sci. Rep. 5, 7965 (2015). https://doi.org/10.1038/srep07965
Y.J. Zhu, W.W. Wang, R.J. Qi, X.L. Hu, Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids. Angew. Chem. Int. Ed. 43(11), 1410–1414 (2004). https://doi.org/10.1002/anie.200353101
M.S. Mo, J.H. Zeng, X.M. Liu, W.C. Yu, S.Y. Zhang, Y.T. Qian, Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes. Adv. Mater. 14(22), 1658–1662 (2002). https://doi.org/10.1002/1521-4095(20021118)14:22%3c1658:Aid-adma1658%3e3.0.Co;2-2
B. Mayers, Y.N. Xia, One-dimensional nanostructures of trigonal tellurium with various morphologies can be synthesized using a solution-phase approach. J. Mater. Chem. 12(6), 1875–1881 (2002). https://doi.org/10.1039/b201058e
H.S. Qian, S.H. Yu, J.Y. Gong, L.B. Luo, L.F. Fei, High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly (vinyl pyrrolidone)-assisted hydrothermal process. Langmuir 22(8), 3830–3835 (2006). https://doi.org/10.1021/la053021l
Z. Wang, L. Wang, J. Huang, H. Wang, L. Pan, X. Wei, Formation of single-crystal tellurium nanowires and nanotubes via hydrothermal recrystallization and their gas sensing properties at room temperature. J. Mater. Chem. 20(12), 2457–2463 (2010). https://doi.org/10.1039/b924462j
Q.Y. Lu, F. Gao, S. Komarneni, A green chemical approach to the synthesis of tellurium nanowires. Langmuir 21(13), 6002–6005 (2005). https://doi.org/10.1021/la050594p
Y. Zhang, F. Zhang, L. Wu, Y. Zhang, W. Huang et al., Van der waals integration of bismuth quantum dots-decorated tellurium nanotubes (Te@Bi) heterojunctions and plasma-enhanced optoelectronic applications. Small 15(27), 1903233 (2019). https://doi.org/10.1002/smll.201903233
D.H. Webber, R.L. Brutchey, Photolytic preparation of tellurium nanorods. Chem. Commun. 38, 5701–5703 (2009). https://doi.org/10.1039/b912434a
C. Metraux, B. Grobety, Tellurium nanotubes and nanorods synthesized by physical vapor deposition. J. Mater. Res. 19(7), 2159–2164 (2004). https://doi.org/10.1557/jmr.2004.0277
R.B. Zheng, W.L. Cheng, E.K. Wang, S.J. Dong, Synthesis of tellurium nanorods via spontaneous oxidation of NaHTe at room temperature. Chem. Phys. Lett. 395(4–6), 302–305 (2004). https://doi.org/10.1016/j.cplett.2004.07.091
Z.L. Zhu, X.L. Cai, S. Yi, Y.L. Chen, Y.W. Dai et al., Multivalency-driven formation of Te-based monolayer materials: a combined first-principles and experiment study. Phys. Rev. Lett. 119, 106101 (2017). https://doi.org/10.1103/PhysRevLett.119.106101
J. Qiao, Y. Pan, F. Yang, C. Wang, Y. Chai, W. Ji, Few-layer tellurium: one-dimensional-like layered elementary semiconductor with striking physical properties. Sci. Bull. 63(3), 159–168 (2018). https://doi.org/10.1016/j.scib.2018.01.010
A. Khandelwal, K. Mani, M.H. Karigerasi, I. Lahiri, Phosphorene—the two-dimensional black phosphorous: properties, synthesis and applications. Mater. Sci. Eng. B Adv. Funct. Solid State Mater. 221, 17–34 (2017). https://doi.org/10.1016/j.mseb.2017.03.011
A. Apte, E. Bianco, A. Krishnamoorthy, S. Yazdi, R. Rao et al., Polytypism in ultrathin tellurium. 2D Mater. 6(1), 015013 (2018). https://doi.org/10.1088/2053-1583/aae7f6
Q. Wang, M. Safdar, K. Xu, M. Mirza, Z. Wang, J. He, Van der waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano 8(7), 7497–7505 (2014). https://doi.org/10.1021/nn5028104
X. Huang, J. Guan, Z. Lin, B. Liu, S. Xing, W. Wang, J. Guo, Epitaxial growth and band structure of te film on graphene. Nano Lett. 17(8), 4619–4623 (2017). https://doi.org/10.1021/acs.nanolett.7b01029
W. Huang, C. Xing, Y. Wang, Z. Li, Facile fabrication and characterizations of two-dimensional bismuth (iii) sulfide nanosheets for high-performance photodetector applications under ambient conditions. Nanoscale 10(5), 1702082 (2017). https://doi.org/10.1039/C7NR09046C
Y. Xu, Z. Wang, Z. Guo, H. Huang, Q. Xiao, H. Zhang, X.F. Yu, Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots. Adv. Opt. Mater. 4, 1223–1229 (2014). https://doi.org/10.1002/adom.201600214
W. Wu, G. Qiu, Y. Wang, R. Wang, P. Ye, Tellurene: its physical properties, scalable nanomanufacturing, and device applications. Chem. Soc. Rev. 47(19), 7203–7212 (2018). https://doi.org/10.1039/c8cs00598b
Z. Guo, Z. Han, S. Lu, Z. Wang, P.K. Chu, From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 25(45), 6996–7002 (2015). https://doi.org/10.1002/adfm.201502902
J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, Y. Liu, Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers. Sci. Rep. 6, 30361 (2016). https://doi.org/10.1038/srep30361
Y. Ge, S. Chen, Y. Xu, Z. He, Z. Liang et al., Few-layer selenium-doped black phosphorus: synthesis, nonlinear optical properties and ultrafast photonics applications. J. Mater. Chem. C 5, 6103–6388 (2017). https://doi.org/10.1039/c7tc01267e
Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li et al., Ultrathin 2d nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv. Funct. Mater. 28(16), 1705833 (2018). https://doi.org/10.1002/adfm.201705833
R.W. Dutton, R.S. Muller, Electrical properties of tellurium thin films. Proc. IEEE 59(10), 1511–1517 (1971). https://doi.org/10.1109/PROC.1971.8463
K. Okuyama, Y. Kumagai, Grain growth of evaporated Te films on a heatedand cooled substrate. J. Appl. Phys. 46, 1473–1477 (1975). https://doi.org/10.1063/1.321786
P. Weimer, A p-type tellurium thin-film transistor. Proc. IEEE 52(5), 608–609 (1964). https://doi.org/10.1109/PROC.1964.3003
Q.Y. He, Y. Liu, C.L. Tan, W. Zhai, G.H. Nam, H. Zhang, Quest for p-Type two-dimensional semiconductors. ACS Nano 13, 12294–12300 (2019). https://doi.org/10.1021/acsnano.9b07618
J. Lee, K.F. Mak, J. Shan, Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nano 11(5), 421–425 (2016). https://doi.org/10.1038/NNANO.2015.337
D.K. Sang, B. Wen, S. Gao, Y. Zeng, F. Meng, Z. Guo, H. Zhang, Electronic and optical properties of two-dimensional tellurene: from first-principles calculations. Nanomaterials 9(8), 1075 (2019). https://doi.org/10.3390/nano9081075
Z. Zhu, C. Cai, C. Niu, C. Wang, Q. Sun, X. Han, Z. Guo, Y. Jia, Tellurene-a monolayer of tellurium from first-principles prediction (2016). arXiv preprint https://arxiv.org/abs/1605.03253v1
L. Xian, A. Perez Paz, E. Bianco, P.M. Ajayan, A. Rubio, Square selenene and tellurene: novel group VIelemental 2D materials with nontrivial topological properties. 2D Mater. 4(4), 041003 (2017). https://doi.org/10.1088/2053-1583/aa8418
Y. Liu, W. Wu, W.A. Goddard III, Tellurium: fast electrical and atomic transport along the weak interaction direction. J. Am. Chem. Soc. 140(2), 550–553 (2018). https://doi.org/10.1021/jacs.7b09964
X. Zhang, Y. Pan, Y. Meng, R. Quhe, Y. Wang et al., Three-layer phosphorene-metal interfaces. Nano Res. 11, 707–721 (2018). https://doi.org/10.1007/s12274-017-1680-6
J.N. Ma, Y. He, Y. Liu, D.D. Han, Y.L. Zhang, Facile fabrication of flexible graphene FETs by sunlight reduction of graphene oxide. Opt. Lett. 42(17), 3403–3406 (2017). https://doi.org/10.1364/OL.42.003403
B. Peng, H. Zhang, H. Shao, Y. Xu, R. Zhang, H. Zhua, The electronic, optical, and thermodynamic properties of borophene from first-principles calculations. J. Mater. Chem. C 4(16), 3592–3598 (2016). https://doi.org/10.1039/c6tc00115g
K. Yang, S. Cahangirov, A. Cantarero, A. Rubio, R.D. Agosta, Thermoelectric properties of atomically thin silicene and germanene nanostructures. Phys. Rev. B 89(12), 125403 (2014). https://doi.org/10.1103/PhysRevB.89.125403
Y.D. Kuang, L. Lindsay, S.Q. Shi, G.P. Zheng, Tensile strains give rise to strong size effects for thermal conductivities of silicene, germanene and stanine. Nanoscale 8(6), 3760–3767 (2016). https://doi.org/10.1039/c5nr08231e
J. Zheng, F. Chi, Y. Guo, Exchange and electric fields enhanced spin thermoelectric performance of germanene nano-ribbon. J. Phys.-Condens. Matter 27(29), 295302 (2015). https://doi.org/10.1088/0953-8984/27/29/295302
K. Zberecki, M. Wierzbicki, J. Barnas, R. Swirkowicz, Thermoelectric effects in silicene nanoribbons. Phys. Rev. B 88(11), 115404 (2013). https://doi.org/10.1103/PhysRevB.88.115404
S. Zhang, S. Guo, Z. Chen, Y. Wang, H. Gao et al., Recent progress in 2D group-Va semiconductors: from theory to experiment. Chem. Soc. Rev. 47(3), 982–1021 (2018). https://doi.org/10.1039/c7cs00125h
B. Peng, H. Zhang, H. Shao, K. Xu, G. Ni, J. Li, H. Zhu, C.M. Soukoulis, Chemical intuition for high thermoelectric performance in monolayer black phosphorus, alpha-arsenene and aw-antimonene. J. Mater. Chem. A 6(5), 2018–2033 (2018). https://doi.org/10.1039/c7ta09480a
Z. Gao, F. Tao, J. Ren, Unusually low thermal conductivity of atomically thin 2d tellurium. Nanoscale 10(27), 12997–13003 (2018). https://doi.org/10.1039/c8nr01649f
S. Sharma, N. Singh, U. Schwingenschlögl, Two-dimensional tellurene as excellent thermoelectric material. ACS Appl. Energy Mater. 1(5), 1950–1954 (2018). https://doi.org/10.1021/acsaem.8b00032
Y. Zhang, F. Zhang, Y. Xu, W. Huang, L. Wu, Y. Zhang, X. Zhang, H. Zhang, Self-healable black phosphorus photodetectors. Adv. Funct. Mater. 29, 1906610 (2019). https://doi.org/10.1002/adfm.201906610
X. Zeng, M. Luo, G. Liu, X. Wang, W. Tao, Y. Lin, X. Ji, L. Nie, L. Mei, Polydopamine-modified black phosphorous nanocapsule with enhanced stability and photothermal performance for tumor multimodal treatments. Adv. Sci. 5(10), 1800510 (2018). https://doi.org/10.1002/advs.201800510
J.E.S. Fonsaca, S.H. Domingues, E.S. Orth, A.J.G. Zarbin, Air stable black phosphorous in polyaniline-based nanocomposite. Sci. Rep. 7, 10165 (2017). https://doi.org/10.1038/s41598-017-10533-5
H. Yang, Y. Zhang, F. Hu, Q. Wang, Urchin-like cop nanocrystals as hydrogen evolution reaction and oxygen reduction reaction dual-electrocatalyst with superior stability. Nano Lett. 15(11), 7616–7620 (2015). https://doi.org/10.1021/acs.nanolett.5b03446
L. Liu, J. Tang, Q.-Q. Wang, D.-X. Shi, G.-Y. Zhang, Thermal stability of MoS2 encapsulated by graphene. Acta Phys. Sin. 67(22), 226501 (2018). https://doi.org/10.7498/aps.67.20181255
Y.C. Liu, V. Wang, M.G. Xia, S.L. Zhang, First-principles study on structural, thermal, mechanical and dynamic stability of t’-MoS2. J. Phys.-Condens. Matter 29(9), 095702 (2017). https://doi.org/10.1088/1361-648X/aa5213
P. Budania, P. Baine, J. Montgomery, C. McGeough, T. Cafolla et al., Long-term stability of mechanically exfoliated MoS2 flakes. MRS Commun. 7(4), 813–818 (2017). https://doi.org/10.1557/mrc.2017.105
K.F. Mak, M.Y. Sfeir, Y. Wu, C.H. Lui, J.A. Misewich, T.F. Heinz, Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 101(19), 196405 (2008). https://doi.org/10.1103/physrevlett.101.196405
Y. Xu, Z. Shi, X. Shi, K. Zhang, H. Zhang, Recent progress in black phosphorus and black-phosphorus-analogue materials: properties, synthesis and applications. Nanoscale 11(31), 14491–14527 (2019). https://doi.org/10.1039/c9nr04348a
Y. Hong, J. Zhang, X.C. Zeng, Thermal conductivity of monolayer MoSe2 and MoS2. J. Phys. Chem. C 120(45), 26067–26075 (2016). https://doi.org/10.1021/acs.jpcc.6b07262
D. Lim, E.S. Kannan, I. Lee, S. Rathi, L. Li et al., High performance MoS2-based field-effect transistor enabled by hydrazine doping. Nanotechnology 27(22), 225201 (2016). https://doi.org/10.1088/0957-4484/27/22/225201
S. Hong, H. Im, Y.K. Hong, N. Liu, S. Kim, J.H. Park, N-type doping effect of CVD-grown multilayer MoSe2 thin film transistors by two-step functionalization. Adv. Electron. Mater. 4(12), 1800308 (2018). https://doi.org/10.1002/aelm.201800308
S. Larentis, B. Fallahazad, E. Tutuc, Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl. Phys. Lett. 101(22), 223104 (2012). https://doi.org/10.1063/1.4768218
M.W. Iqbal, M.Z. Iqbal, M.F. Khan, M.A. Shehzad, Y. Seo, J.H. Park, C. Hwang, J. Eom, High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BNfilms. Sci. Rep. 5, 10699 (2015). https://doi.org/10.1038/srep10699
H.M. Khalil, M.F. Khan, J. Eom, H. Noh, Highly stable and tunable chemical doping of multilayer WS2 field effect transistor: reduction in contact resistance. ACS Appl. Mater. Interfaces 7(42), 23589–23596 (2015). https://doi.org/10.1021/acsami.5b06825
H.H. Huang, X. Fan, D.J. Singh, W.T. Zheng, Recent progress of TMD nanomaterials: phase transitions and applications. Nanoscale 12, 1247–1268 (2019). https://doi.org/10.1039/c9nr08313h
Y. Zhang, Y. Yao, M.G. Sendeku, L. Yin, X. Zhan, F. Wang, Z. Wang, J. He, Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv. Mater. 31(41), e1901694 (2019). https://doi.org/10.1002/adma.201901694
M. Long, P. Wang, H. Fang, W.J. Hu, Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 29(19), 1803807 (2019). https://doi.org/10.1002/adfm.201803807
Z. Sun, H. Chang, Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology. ACS Nano 8(5), 4133–4156 (2014). https://doi.org/10.1021/nn500508c
F.H.L. Koppens, T. Mueller, P. Avouris, A.C. Ferrari, M.S. Vitiello, M. Polini, Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9(10), 780–793 (2014). https://doi.org/10.1038/nnano.2014.215
X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, H. Zhang, Environmentally robust black phosphorus nanosheets in solution: application for self-powered photodetector. Adv. Funct. Mater. 27(18), 1606834 (2017). https://doi.org/10.1002/adfm.201606834
Z. Li, H. Qiao, Z. Guo, X. Ren, Z. Huang et al., High-performance photo-electrochemical photodetector based on liquid-exfoliated few-layered InSe nanosheets with enhanced stability. Adv. Funct. Mater. 28(16), 1705237 (2018). https://doi.org/10.1002/adfm.201705237
L. Ye, H. Li, Z. Chen, J. Xu, Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics 3(4), 692–699 (2016). https://doi.org/10.1021/acsphotonics.6b00079
Q. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian et al., Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 16(7), 4648–4655 (2016). https://doi.org/10.1021/acs.nanolett.6b01977
X. Chen, X. Lu, B. Deng, O. Sinai, Y. Shao et al., Widely tunable black phosphorus mid-infrared photodetector. Nat. Commun. 8, 1672 (2017). https://doi.org/10.1038/s41467-017-01978-3
W. Huang, C. Xing, Y. Wang, Z. Li, L. Wu et al., Facile fabrication and characterization of two-dimensional bismuth(iii) sulfide nanosheets for high-performance photodetector applications under ambient conditions. Nanoscale 10(5), 2404–2412 (2018). https://doi.org/10.1039/c7nr09046c
Z. Huang, W. Han, H. Tang, L. Ren, D.S. Chander, X. Qi, H. Zhang, Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure. 2D Mater. 2(3), 035011 (2015). https://doi.org/10.1088/2053-1583/2/3/035011
O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8(7), 497–501 (2013). https://doi.org/10.1038/nnano.2013.100
K. Roy, M. Padmanabhan, S. Goswami, T.P. Sai, G. Ramalingam, S. Raghavan, A. Ghosh, Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 8(11), 826–830 (2013). https://doi.org/10.1038/nnano.2013.206
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8(2), 1102–1120 (2014). https://doi.org/10.1021/nn500064s
W. Zhang, J.-K. Huang, C.-H. Chen, Y.-H. Chang, Y.-J. Cheng, L.-J. Li, High-gain phototransistors based on a CVDMoS2 monolayer. Adv. Mater. 25(25), 3456–3461 (2013). https://doi.org/10.1002/adma.201301244
Y.-Q. Bie, G. Grosso, M. Heuck, M.M. Furchi, Y. Cao et al., A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotechnol. 12(12), 1124–1129 (2017). https://doi.org/10.1038/nnano.2017.209
H. Huang, J. Wang, W. Hu, L. Liao, P. Wang et al., Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect. Nanotechnology 27(44), 445201 (2016). https://doi.org/10.1088/0957-4484/27/44/445201
W. Yu, S. Li, Y. Zhang, W. Ma, T. Sun, J. Yuan, K. Fu, Q. Bao, Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility. Small 13(24), 1700268 (2017). https://doi.org/10.1002/smll.201700268
K. Zhang, X. Fang, Y. Wang, Y. Wan, Q. Song et al., Ultrasensitive near-infrared photodetectors based on a graphene-MoTe2-graphene vertical van der waals heterostructure. ACS Appl. Mater. Interfaces 9(6), 5392–5398 (2017). https://doi.org/10.1021/acsami.6b14483
F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4(9), 611–622 (2010). https://doi.org/10.1038/nphoton.2010.186
F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, P. Avouris, Ultrafast graphene photodetector. Nat. Nanotechnol. 4(12), 839–843 (2009). https://doi.org/10.1038/nnano.2009.292
T. Mueller, F. Xia, P. Avouris, Graphene photodetectors for high-speed optical communications. Nat. Photonics 4(5), 297–301 (2010). https://doi.org/10.1038/nphoton.2010.40
T. Low, P. Avouris, Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8(2), 1086–1101 (2014). https://doi.org/10.1021/nn406627u
L. Vicarelli, M.S. Vitiello, D. Coquillat, A. Lombardo, A.C. Ferrari et al., Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11(10), 865–871 (2012). https://doi.org/10.1038/nmat3417
S. Deckoff-Jones, Y. Wang, H. Lin, W. Wu, J. Hu, Tellurene: a multifunctional material for midinfrared optoelectronics. ACS Photonics 6(7), 1632–1638 (2019). https://doi.org/10.1021/acsphotonics.9b00694
W. Huang, Y. Zhang, Q. You, P. Huang, Y. Wang et al., Enhanced photodetection properties of tellurium@selenium roll-to-roll nanotube heterojunctions. Small 15(23), e1900902 (2019). https://doi.org/10.1002/smll.201900902
Y. Zhang, F. Zhang, L. Wu, Y. Zhang, W. Huang et al., Van der waals integration of bismuth quantum dots-decorated tellurium nanotubes (Te@Bi) heterojunctions and plasma-enhanced optoelectronic applications. Small 15, e1903233 (2019). https://doi.org/10.1002/smll.201903233
Y. Zhang, F. Zhang, Y. Xu, W. Huang, L. Wu et al., Epitaxial growth of topological insulators on semiconductors (Bi2Se3/Te@Se) toward high-performance photodetectors. Small Methods 3, 1900349 (2019). https://doi.org/10.1002/smtd.201900349
C.H. Liu, Y.C. Chang, T.B. Norris, Z. Zhong, Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 9(4), 273–278 (2014). https://doi.org/10.1038/nnano.2014.31
M. Buscema, D.J. Groenendijk, S.I. Blanter, G.A. Steele, H.S. van der Zant, A. Castellanos-Gomez, Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14(6), 3347–3352 (2014). https://doi.org/10.1021/nl5008085
L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014). https://doi.org/10.1038/nnano.2014.35
M. Long, Room temperature high-detectivity mid-infraredphotodetectors based on black arsenic phosphorus. Sci. Adv. 3(6), e1700589 (2017). https://doi.org/10.1126/sciadv.1700589
S. Yuan, C. Shen, B. Deng, X. Chen, Q. Guo et al., Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBNheterostructures. Nano Lett. 18(5), 3172–3179 (2018). https://doi.org/10.1021/acs.nanolett.8b00835
J. Bullock, M. Amani, J. Cho, Y.-Z. Chen, G.H. Ahn et al., Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat. Photonics 12(10), 601–607 (2018). https://doi.org/10.1038/s41566-018-0239-8
X.C. Liu, D.S. Qu, H.M. Li, I. Moon, F. Ahmed et al., Modulation of quantum tunneling via a vertical two-dimensional black phosphorusand molybdenum disulfide p-n junction. ACS Nano 11(9), 9143–9150 (2017). https://doi.org/10.1021/acsnano.7b03994
W. Wang, A. Klots, D. Prasai, Y. Yang, K.I. Bolotin, J. Valentine, Hot electron-based near-infrared photodetection using bilayer MoS2. Nano Lett. 15(11), 7440–7444 (2015). https://doi.org/10.1021/acs.nanolett.5b02866
M. Long, Y. Wang, P. Wang, X. Zhou, H. Xia et al., Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 13(2), 2511–2519 (2019). https://doi.org/10.1021/acsnano.8b09476
A.D. Oyedele, S. Yang, L. Liang, A.A. Puretzky, K. Wang et al., PdSe2: pentagonal Two-Dimensional Layers with High Air Stabilityfor Electronics. J. Am. Chem. Soc. 139(40), 14090–14097 (2017). https://doi.org/10.1021/jacs.7b04865
N. Perea-López, A.L. Elías, A. Berkdemir, A. Castro-Beltran, H.R. Gutiérrez et al., Photosensor device based on few-layered WS2films. Adv. Funct. Mater. 23(44), 5511–5517 (2013). https://doi.org/10.1002/adfm.201300760
H.C.P. Movva, A. Rai, S. Kang, K. Kim, B. Fallahazad et al., High-mobility holes in dual-gated WSe2 field-effect transistors. ACS Nano 9(10), 10402–10410 (2015). https://doi.org/10.1021/acsnano.5b04611
Z. Zheng, T. Zhang, J. Yao, Y. Zhang, J. Xu, G. Yang, Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices. Nanotechnology 27(22), 225501 (2016). https://doi.org/10.1088/0957-4484/27/22/225501
T.F. Yang, B.Y. Zheng, Z. Wang, T. Xu, C. Pan et al., Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions. Nat. Commun. 8(1), 1–9 (2017). https://doi.org/10.1038/s41467-017-02093-z
X. Zhou, X. Hu, S. Zhou, H. Song, Q. Zhang et al., Tunneling diode based on WSe2/SnS2 heterostructure incorporating high detectivity and responsivity. Adv. Mater. 30(7), 1703286 (2018). https://doi.org/10.1002/adma.201703286
F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010). https://doi.org/10.1038/nnano.2010.89
Y.G. Lee, S.K. Lim, C.G. Kang, Y.J. Kim, D.H. Choi, H.-J. Chung, R. Choi, B.H. Lee, Origin of the channel width dependent field effect mobility of graphene field effect transistors. Microelectron. Eng. 163, 55–59 (2016). https://doi.org/10.1016/j.mee.2016.06.004
L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin et al., Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335(6071), 947–950 (2012). https://doi.org/10.1126/science.1218461
Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu et al., Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv. Mater. 29, 1703811 (2017). https://doi.org/10.1002/adma.201703811
Y. Xu, Z. Shi, X. Shi, K. Zhang, Z. Han, Recent progress in black phosphorus and black-phosphorus-analogue materials: properties, synthesis and applications. Nanoscale 11, 14491–14527 (2019). https://doi.org/10.1039/c9nr04348a
J. Li, X. Sun, C. Xu, X. Zhang, Y. Pan et al., Electrical contacts in monolayer blue phosphorene devices. Nano Res. 11, 1834–1849 (2018). https://doi.org/10.1007/s12274-017-1801-2
H.D. Wang, D.K. Sang, Z.N. Guo, R. Cao, J.L. Zhao et al., Black phosphorus-based field effect transistor devices for Ag ions detection. Chin. Phys. B 27(8), 087308 (2018). https://doi.org/10.1088/1674-1056/27/8/087308
W. Huang, Z. Xie, T. Fan, J. Li, Y. Wang et al., Black-phosphorus-analogue tin monosulfide: an emerging optoelectronic two-dimensional material for high-performance photodetection with improved stability under ambient/harsh conditions. J. Mater. Chem. C 6(36), 9582–9593 (2018). https://doi.org/10.1039/c8tc03284j
B. Tang, Z.G. Yu, L. Huang, J. Chai, S.L. Wong et al., Direct n- to p-type channel conversion in monolayer/few-layer WS2 field-effect transistors by atomic nitrogen treatment. ACS Nano 12(3), 2506–2513 (2018). https://doi.org/10.1021/acsnano.7b08261
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011). https://doi.org/10.1038/nnano.2010.279
H.M. Li, D.Y. Lee, M.S. Choi, D.S. Qu, X.C. Liu et al., Gate-controlled Schottky barrier modulation for superior photoresponse of MoS2 field effect transistor. IEEE Int. Electron Devices Meet. 13, 507–510 (2013). https://doi.org/10.1109/IEDM.2013.6724662
Y.W. Lan, C.M. Torres, S.H. Tsai, X. Zhu, Y. Shi et al., Atomic-monolayer MoS2 band-to-band tunneling field-effect transistor. Small 12(41), 5676–5683 (2016). https://doi.org/10.1002/smll.201601310
M. Strojnik, A. Kovic, A. Mrzel, J. Buh, J. Strle, D. Mihailovic, MoS2 nanotube field effect transistors. AIP Adv. 4(9), 097114 (2014). https://doi.org/10.1063/1.4894440
W. Feng, W. Zheng, W. Cao, P. Hu, Back gated multilayer InSe transistors with enhanced carrier mobilities via the suppression of carrier scattering from a dielectric interface. Adv. Mater. 26(38), 6587–6593 (2014). https://doi.org/10.1002/adma.201402427
S. Sucharitakul, N.J. Goble, U.R. Kumar, R. Sankar, Z.A. Bogorad, F.-C. Chou, Y.-T. Chen, X.P.A. Gao, Intrinsic electron mobility exceeding 103 cm2/(Vs) in multilayer InSe FETs. Nano Lett. 15(6), 3815–3819 (2015). https://doi.org/10.1021/acs.nanolett.5b00493
W. Feng, X. Zhou, W.Q. Tian, W. Zheng, P. Hu, Performance improvement of multilayer InSe transistors with optimized metal contacts. Phys. Chem. Chem. Phys. 17(5), 3653–3658 (2015). https://doi.org/10.1039/c4cp04968c
J. Liu, C. Xia, H. Li, A. Pan, High on/off ratio photosensitive field effect transistors based on few layer SnS2. Nanotechnology 27(34), 34lt01 (2016). https://doi.org/10.1088/0957-4484/27/34/34lt01
Y. Du, J. Maassen, W. Wu, Z. Luo, X. Xu, P.D. Ye, Auxetic black phosphorus: a 2D material with negative Poisson’s ratio. Nano Lett. 16(10), 6701–6708 (2016). https://doi.org/10.1021/acs.nanolett.6b03607
J. Yan, X. Zhang, Y. Pan, J. Li, B. Shi et al., Monolayer tellurene–metal contacts. J. Mater. Chem. C 6(23), 6153–6163 (2018). https://doi.org/10.1039/c8tc01421c
X. Ren, Y. Wang, Z. Xie, F. Xue, C. Leighton, C.D. Frisbie, Gate-tuned insulator-metal transition in electrolyte-gated transistors based on tellurene. Nano Lett. 19(7), 4738–4744 (2019). https://doi.org/10.1021/acs.nanolett.9b01827
H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang et al., Ultrathin compound semiconductor on insulator layers forhigh-performance nanoscale transistors. Nature 468, 286–289 (2010). https://doi.org/10.1038/nature09541
C.A. Dimitriadis, P.A. Coxon, L. Dozsa, L. Papadimitriou, N. Economou, Performance of thin-film transistors on polysilicon films grown bylow-pressure chemical vapor deposition at various pressures. IEEE Trans. Electron Devices 39(3), 598–606 (1992). https://doi.org/10.1109/16.123484
C. Zhao, C.L. Tan, D.H. Lien, X.H. Song, M. Amani et al., Evaporated tellurium thin films for p-type field-effect transistors and circuits. Nat. Nano 15(1), 53–58 (2020). https://doi.org/10.1038/s41565-019-0585-9
K.-A.N. Duerloo, M.T. Ong, E.J. Reed, Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 3(19), 2871–2876 (2012). https://doi.org/10.1021/jz3012436
W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin et al., Piezoelectricity of single-atomic-layer MoSS for energy conversion and piezotronics. Nature 514(7523), 470–474 (2014). https://doi.org/10.1038/nature13792
H. Zhu, Y. Wang, J. Xiao, M. Liu, S. Xiong et al., Observation of piezoelectricity in free-standing monolayer MoS2. Nat. Nanotechnol. 10(2), 151–155 (2015). https://doi.org/10.1038/nnano.2014.309
T.I. Lee, S. Lee, E. Lee, S. Sohn, Y. Lee et al., High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly. Adv. Mater. 25(21), 2920–2925 (2013). https://doi.org/10.1002/adma.201300657
W. He, N. Van Huynh, Y.T. Qian, J.S. Hwang, Y.P. Yan, H. Choi, D.J. Kang, Synthesis of ultra-thin tellurium nanoflakes on textiles for high-performance flexible and wearable nanogenerators. Appl. Surf. Sci. 392, 1055–1061 (2017). https://doi.org/10.1016/j.apsusc.2016.09.157
L. Wu, W. Huang, Y. Wang, J. Zhao, D. Ma et al., 2D tellurium based high-performance all-optical nonlinear photonic devices. Adv. Funct. Mater. 29(4), 1806346 (2019). https://doi.org/10.1002/adfm.201806346
J. Guo, J. Zhao, D. Huang, Y. Wang, F. Zhang et al., Two-dimensional tellurium-polymer membrane for ultrafast photonics. Nanoscale 11(13), 6235–6242 (2019). https://doi.org/10.1039/c9nr00736a
M.A. Van Camp, S. Assefa, D.M. Gill, T. Barwicz, S.M. Shank, P.M. Rice, T. Topuria, W.M. Green, Demonstration of electrooptic modulation at 2165 nm using a silicon Mach-Zehnder interferometer. Opt. Express 20(27), 28009–28016 (2012). https://doi.org/10.1364/OE.20.028009
L. Shen, N. Healy, C.J. Mitchell, J.S. Penades, M. Nedeljkovic, G.Z. Mashanovich, A.C. Peacock, Mid-infrared all-optical modulation in low-loss germanium-on-silicon waveguides. Opt. Lett. 40(2), 268–271 (2015). https://doi.org/10.1364/ol.40.000268
M. Nedeljkovic, S. Stankovic, C.J. Mitchell, A.Z. Khokhar, S.A. Reynolds et al., Mid-infrared thermo-optic modulators in SoI. IEEE Photonics Technol. Lett. 26(13), 1352–1355 (2014). https://doi.org/10.1109/lpt.2014.2323702
A. Malik, S. Dwivedi, L. Van Landschoot, M. Munceb, Y. Shimura et al., Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared. Opt. Express 22(23), 28479–28488 (2014). https://doi.org/10.1364/oe.22.028479
Z. Yi, S. Chakravarty, C.J. Chung, R.T. Chen, Miniature mid-infrared thermooptic switch with photonic crystal waveguide based silicon-on-sapphire Mach–Zehnder interferometers, in Proc. SPIE, Opt. Interconnects XVI, vol 9753 (2016), p. 97530Q. https://doi.org/10.1117/12.2214440
W.S. Whitney, M.C. Sherrott, D. Jariwala, W.-H. Lin, H.A. Bechtel, G.R. Rossman, H.A. Atwater, Field effect optoelectronic modulation of quantum-confined carriers in black phosphorus. Nano Lett. 17(1), 78–84 (2017). https://doi.org/10.1021/acs.nanolett.6b03362
R. Peng, K. Khaliji, N. Youngblood, R. Grassi, T. Low, M. Li, Midinfrared electro-optic modulation in few-layer black phosphorus. Nano Lett. 17(10), 6315–6320 (2017). https://doi.org/10.1021/acs.nanolett.7b03050
Y. Yao, R. Shankar, M.A. Kats, Y. Song, J. Kong, M. Loncar, F. Capasso, Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett. 14(11), 6526–6532 (2014). https://doi.org/10.1021/nl503104n
J. Chiles, S. Fathpour, Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics. Optica 1(5), 350–355 (2014). https://doi.org/10.1364/optica.1.000350
R. Poudyal, P. Loskot, R. Nepal, R. Parajuli, S.K. Khadka, Mitigating the current energy crisis in Nepal with renewable energy sources. Renew. Sustain. Energy Rev. 116, 109388 (2019). https://doi.org/10.1016/j.rser.2019.109388
S.C. Peter, Reduction of CO2 to chemicals and fuels: a solution to global warming and energy crisis. ACS Energy Lett. 3(7), 1557–1561 (2018). https://doi.org/10.1021/acsenergylett.8b00878
X. Du, X. Zhang, Z. Yang, Y. Gong, Water oxidation catalysis beginning with CuCo2S4: Investigation of the true electrochemically driven catalyst. Chem. Asian J. 13(3), 266–270 (2018). https://doi.org/10.1002/asia.201701684
A. Lawrence, Quasar viscosity crisis. Nat. Astron. 2(2), 102–103 (2018). https://doi.org/10.1038/s41550-017-0372-1
J. Xiong, J. Di, H. Li, Atomically thin 2D multinary nanosheets for energy-related photo, electrocatalysis. Adv. Sci. 5(7), 1800244 (2018). https://doi.org/10.1002/advs.201800244
R. Lei, H. Zhai, J. Nie, W. Zhong, Y. Bai et al., Butterfly-inspired triboelectric nanogenerators with spring-assisted linkage structure for water wave energy harvesting. Adv. Mater. Technol. 4(3), 1800514 (2019). https://doi.org/10.1002/admt.201800514
H. Choi, K. Jeong, J. Chae, H. Park, J. Baeck et al., Enhancement in thermoelectric properties of Te-embedded Bi2Te3 by preferential phonon scattering in heterostructure interface. Nano Energy 47, 374–384 (2018). https://doi.org/10.1016/j.nanoen.2018.03.009
G. Qiu, S. Huang, M. Segovia, P.K. Venuthurumilli, Y. Wang, W. Wu, X. Xu, P.D. Ye, Thermoelectric performance of 2D Tellurium with accumulation contacts. Nano Lett. 19(3), 1955–1962 (2019). https://doi.org/10.1021/acs.nanolett.8b05144
S. Huang, M. Segovia, X. Yang, Y.R. Koh, Y. Wang et al., Anisotropic thermal conductivity in 2D Tellurium. 2D Mater. 7(1), 015008 (2019). https://doi.org/10.1088/2053-1583/ab4eee
D.K. Sang, T. Ding, M.N. Wu, Y. Li, J. Li, F. Liu, Z. Guo, H. Zhang, H. Xie, Monolayer β-tellurene: a promising p-type thermoelectric material via first-principles calculations. Nanoscale 11(39), 18116–18123 (2019). https://doi.org/10.1039/c9nr04176a
K.R. Sapkota, P. Lu, D.L. Medlin, G.T. Wang, High temperature synthesis and characterization of ultrathin tellurium nanostructures. APL Mater. 7(8), 081103 (2019). https://doi.org/10.1063/1.5109899
M. Kayyalha, J. Maassen, M. Lundstrom, L. Shi, Y.P. Chen, Gate-tunable and thickness-dependent electronic and thermoelectric transport in few-layer MoS2. J. Appl. Phys. 120(13), 134305 (2016). https://doi.org/10.1063/1.4963364
M.-J. Lee, J.-H. Ahn, J.H. Sung, H. Heo, S.G. Jeon et al., Thermoelectric materials by using two-dimensional materials with negative correlation between electrical and thermal conductivity. Nat. Commun. 7, 12011 (2016). https://doi.org/10.1038/ncomms12011
J. Min, C. Zhao, Z. Zeng, Y. Jia, Z. Du, Tunable visible-light excitonic absorption and high photoconversion efficiency in two-dimensional group-VI monolayer materials. Phys. Rev. B 100(8), 085402 (2019). https://doi.org/10.1103/PhysRevB.100.085402
K. Wu, H. Ma, Y. Gao, W. Hu, J. Yang, Highly-efficient heterojunction solar cells based on two-dimensional tellurene and transition metal dichalcogenides. J. Mater. Chem. A 7(13), 7430–7436 (2019). https://doi.org/10.1039/c9ta00280d
H. Yang, Y. Ma, Y. Liang, B. Huang, Y. Dai, Monolayer HfTeSe4: a promising two-dimensional photovoltaic material for solar cells with high efficiency. ACS Appl. Mater. Interfaces 11(41), 37901–37907 (2019). https://doi.org/10.1021/acsami.9b14920
Y. Mao, C. Xu, J. Yuan, H. Zhao, A two-dimensional GeSe/SnSe heterostructure for high performance thin-film solar cells. J. Mater. Chem. A 7(18), 11265–11271 (2019). https://doi.org/10.1039/c9ta01219b
J. Dai, X.C. Zeng, Bilayer phosphorene: Effect of stacking order on bandgap and its potential applications in thin-film solar cells. J. Phys. Chem. Lett. 5(7), 1289–1293 (2014). https://doi.org/10.1021/jz500409m
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade, W. Ma, H. Yan, Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 1(2), 15027 (2016). https://doi.org/10.1038/nenergy.2015.27
Y. Lin, C. Norman, D. Srivastava, F. Azough, L. Wang et al., Thermoelectric power generation from lanthanum strontium titanium oxide at room temperature through the addition of graphene. ACS Appl. Mater. Interfaces 7(29), 15898–15908 (2015). https://doi.org/10.1021/acsami.5b03522
A. Agresti, S. Pescetelli, A.L. Palma, A.E. Del Rio Castillo, D. Konios et al., Graphene interface engineering for perovskite solar modules: 12.6% power conversion efficiency over 50 cm2 active area. ACS Energy Lett. 2(1), 279–287 (2017). https://doi.org/10.1021/acsenergylett.6b00672
L. Valentini, M. Cardinali, S. Bittolo Bon, D. Bagnis, R. Verdejo, M.A. Lopez-Manchado, J.M. Kenny, Use of butylamine modified graphene sheets in polymer solar cells. J. Mater. Chem. 20(5), 995–1000 (2010). https://doi.org/10.1039/b919327h
G. Qin, Q.B. Yan, Z. Qin, S.Y. Yue, H.J. Cui, Q.R. Zheng, G. Su, Hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance. Sci. Rep. 4, 6946 (2014). https://doi.org/10.1038/srep06946
H.Y. Lv, W.J. Lu, D.F. Shao, Y.P. Sun, Large thermoelectric power factors in black phosphorus and phosphorene (2014). arXiv preprint https://arxiv.org/abs/1404.5171v1
Y. Yang, J. Gao, Z. Zhang, S. Xiao, H.H. Xie et al., Black phosphorus based photocathodes in wideband bifacial dye-sensitized solar cells. Adv. Mater. 28(40), 8937–8944 (2016). https://doi.org/10.1002/adma.201602382
X. Mettan, R. Pisoni, P. Matus, A. Pisoni, J. Jaćimović et al., Tuning of the thermoelectric figure of merit of CH3NH3MI3 (M=Pb, Sn) photovoltaic perovskites. J. Phys. Chem. C 119(21), 11506–11510 (2015). https://doi.org/10.1021/acs.jpcc.5b03939
T. Okuda, K. Nakanishi, S. Miyasaka, Y. Tokura, Large thermoelectric response of metallic perovskites: Sr1−xLaxTiO3 (0 < ~x < ~0.1). Phys. Rev. B 63(11), 113104 (2001). https://doi.org/10.1103/PhysRevB.63.113104
J.H. Heo, D.H. Song, H.J. Han, S.Y. Kim, J.H. Kim et al., Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate. Adv. Mater. 27(22), 3424–3430 (2015). https://doi.org/10.1002/adma.201500048
D. Geng, X. Zhao, Z. Chen, W. Sun, W. Fu et al., Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv. Mater. 29(35), 1700072 (2017). https://doi.org/10.1002/adma.201700072
C.-K. Chang, S. Kataria, C.-C. Kuo, A. Ganguly, B.-Y. Wang et al., Band gap engineering of chemical vapor deposited graphene by in situ BN doping. ACS Nano 7(2), 1333–1341 (2013). https://doi.org/10.1021/nn3049158
R.S. Weatherup, B.C. Bayer, R. Blume, C. Ducati, C. Baehtz, R. Schlogl, S. Hofmann, In situ characterization of alloy catalysts for low-temperature graphene growth. Nano Lett. 11(10), 4154–4160 (2011). https://doi.org/10.1021/nl202036y
J. Yu, J. Li, W. Zhang, H. Chang, Synthesis of high quality two-dimensional materials via chemical vapor deposition. Chem. Sci. 6(12), 6705–6716 (2015). https://doi.org/10.1039/C5SC01941A
S.G. Sørensen, H.G. Füchtbauer, A.K. Tuxen, A.S. Walton, J.V. Lauritsen, Structure and electronic properties of in situ synthesized single-layer MoS2 on a gold surface. ACS Nano 8(7), 6788–6796 (2014). https://doi.org/10.1021/nn502812n
J. Chen, B. Liu, Y. Liu, W. Tang, C.T. Nai et al., Chemical vapor deposition of large-sized hexagonal WSe2 crystals on dielectric substrates. Adv. Mater. 27(42), 6722–6727 (2015). https://doi.org/10.1002/adma.201503446
Z.-J. Wang, G. Weinberg, Q. Zhang, T. Lunkenbein, A. Klein-Hoffmann et al., Direct observation of graphene growth and associated copper substrate dynamics by in situ scanning electron microscopy. ACS Nano 9(2), 1506–1519 (2015). https://doi.org/10.1021/nn5059826
X. Li, L. Colombo, R.S. Ruoff, Synthesis of graphene films on copper foils by chemical vapor deposition. Adv. Mater. 28(29), 6247–6252 (2016). https://doi.org/10.1002/adma.201504760
A.J. Mannix, Y.B. Kiral, M.C. Hersam, N.P. Guisinger, Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 1(2), 0014 (2017). https://doi.org/10.1038/s41570-016-0014
D. Geng, H. Wang, Y. Wan, Z. Xu, B. Luo, J. Xu, G. Yu, Direct top–down fabrication of large-area graphene arrays by an in situ etching method. Adv. Mater. 27(28), 4195–4199 (2015). https://doi.org/10.1002/adma.201570189