Recent Progress of Two-Dimensional Thermoelectric Materials
Corresponding Author: Han Zhang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 36
Abstract
Thermoelectric generators have attracted a wide research interest owing to their ability to directly convert heat into electrical power. Moreover, the thermoelectric properties of traditional inorganic and organic materials have been significantly improved over the past few decades. Among these compounds, layered two-dimensional (2D) materials, such as graphene, black phosphorus, transition metal dichalcogenides, IVA–VIA compounds, and MXenes, have generated a large research attention as a group of potentially high-performance thermoelectric materials. Due to their unique electronic, mechanical, thermal, and optoelectronic properties, thermoelectric devices based on such materials can be applied in a variety of applications. Herein, a comprehensive review on the development of 2D materials for thermoelectric applications, as well as theoretical simulations and experimental preparation, is presented. In addition, nanodevice and new applications of 2D thermoelectric materials are also introduced. At last, current challenges are discussed and several prospects in this field are proposed.
Highlights:
1 A comprehensive review on the recent development of two-dimensional (2D) nanomaterials for bulk or thin-film thermoelectric materials, as well as composite filler, has been extensively presented.
2 Development of micro-device platform and its application to study the inherent thermoelectric properties of individual single- and few-layer 2D nanomaterials.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z.G. Chen, G. Han, L. Yang, L. Cheng, J. Zou, Nanostructured thermoelectric materials: current research and future challenge. Prog. Nat. Sci. 22(6), 535–549 (2012). https://doi.org/10.1016/j.pnsc.2012.11.011
- T. Zhu, Y. Liu, C. Fu, J.P. Heremans, J.G. Snyder, X. Zhao, Compromise and synergy in high-efficiency thermoelectric materials. Adv. Mater. 29(14), 1605884 (2017). https://doi.org/10.1002/adma.201605884
- G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7(2), 105–114 (2008). https://doi.org/10.1038/nmat2090
- M. Rull-Bravo, A. Moure, J.F. Fernandez, M. Martin-Gonzalez, Skutterudites as thermoelectric materials: revisited. RSC Adv. 5(52), 41653–41667 (2015). https://doi.org/10.1039/c5ra03942h
- P. Sundarraj, D. Maity, S.S. Roy, R.A. Taylor, Recent advances in thermoelectric materials and solar thermoelectric generators - a critical review. RSC Adv. 4(87), 46860–46874 (2014). https://doi.org/10.1039/c4ra05322b
- G. Tan, L.-D. Zhao, M.G. Kanatzidis, Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 116(19), 12123–12149 (2016). https://doi.org/10.1021/acs.chemrev.6b00255
- C. Gayner, K.K. Kar, Recent advances in thermoelectric materials. Prog. Mater Sci. 83, 330–382 (2016). https://doi.org/10.1016/j.pmatsci.2016.07.002
- G. Zhang, Y.-W. Zhang, Thermoelectric properties of two-dimensional transition metal dichalcogenides. J. Mater. Chem. C 5(31), 7684–7698 (2017). https://doi.org/10.1039/c7tc01088e
- D. Li, C. Luo, Y. Chen, D. Feng, Y. Gong, C. Pan, J. He, High performance polymer thermoelectric composite achieved by carbon-coated carbon nanotubes network. ACS Appl. Energy Mater. 2(4), 2427–2434 (2019). https://doi.org/10.1021/acsaem.9b00334
- Z.-H. Ge, L.-D. Zhao, D. Wu, X. Liu, B.-P. Zhang, J.-F. Li, J. He, Low-cost, abundant binary sulfides as promising thermoelectric materials. Mater. Today 19(4), 227–239 (2016). https://doi.org/10.1016/j.mattod.2015.10.004
- S. Ortega, M. Ibanez, Y. Liu, Y. Zhang, M.V. Kovalenko, D. Cadavid, A. Cabot, Bottom-up engineering of thermoelectric nanomaterials and devices from solution-processed nanoparticle building blocks. Chem. Soc. Rev. 46(12), 3510–3528 (2017). https://doi.org/10.1039/c6cs00567e
- R. Kroon, D.A. Mengistie, D. Kiefer, J. Hynynen, J.D. Ryan, L. Yu, C. Muller, Thermoelectric plastics: from design to synthesis, processing and structure-property relationships. Chem. Soc. Rev. 45(22), 6147–6164 (2016). https://doi.org/10.1039/c6cs00149a
- L. Wang, Z. Zhang, L. Geng, T. Yuan, Y. Liu et al., Solution-printable fullerene/TiS2 organic/inorganic hybrids for high-performance flexible n-type thermoelectrics. Energy Environ. Sci. 11(5), 1307–1317 (2018). https://doi.org/10.1039/c7ee03617e
- J. Yang, H.-L. Yip, A.K.Y. Jen, Rational design of advanced thermoelectric materials. Adv. Energy Mater. 3(5), 549–565 (2013). https://doi.org/10.1002/aenm.201200514
- J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed. 48(46), 8616–8639 (2009). https://doi.org/10.1002/anie.200900598
- J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321(5888), 554–557 (2008). https://doi.org/10.1126/science.1159725
- B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich et al., High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320(5876), 634–638 (2008). https://doi.org/10.1126/science.1156446
- K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489(7416), 414–418 (2012). https://doi.org/10.1038/nature11439
- Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G.J. Snyder, Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473(7345), 66–69 (2011). https://doi.org/10.1038/nature09996
- J.P. Heremans, C.M. Thrush, D.T. Morelli, Thermopower enhancement in lead telluride nanostructures. Phys. Rev. B 70(11), 115334 (2004). https://doi.org/10.1103/PhysRevB.70.115334
- F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007). https://doi.org/10.1038/nmat1967
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
- C. Nie, L. Yu, X. Wei, J. Shen, W. Lu, W. Chen, S. Feng, H. Shi, Ultrafast growth of large-area monolayer MoS2 film via gold foil assistant CVD for a highly sensitive photodetector. Nanotechnology 28(27), 275203 (2017). https://doi.org/10.1088/1361-6528/aa7473
- Y. Yu, G.-H. Nam, Q. He, X.-J. Wu, K. Zhang et al., High phase-purity 1T’-MoS2- and 1T’-MoSe2- layered crystals. Nat. Chem. 10(6), 638–643 (2018). https://doi.org/10.1038/s41557-018-0035-6
- J. Lai, X. Liu, J. Ma, Q. Wang, K. Zhang et al., Anisotropic broadband photoresponse of layered type-II weyl semimetal MoTe2. Adv. Mater. 30(22), e1707152 (2018). https://doi.org/10.1002/adma.201707152
- J. Yang, T. Lu, Y.W. Myint, J. Pei, D. Macdonald, J.-C. Zheng, Y. Lu, Robust excitons and trions in monolayer MoTe2. ACS Nano 9(6), 6603–6609 (2015). https://doi.org/10.1021/acsnano.5b02665
- C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008). https://doi.org/10.1126/science.1157996
- L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014). https://doi.org/10.1038/nnano.2014.35
- M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional transition metal carbides. ACS Nano 6(2), 1322–1331 (2012)
- W. Tao, N. Kong, X. Ji, Y. Zhang, A. Sharma et al., Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chem. Soc. Rev. 48(11), 2891–2912 (2019). https://doi.org/10.1039/c8cs00823j
- A. Molle, J. Goldberger, M. Houssa, Y. Xu, S.C. Zhang, D. Akinwande, Buckled two-dimensional Xene sheets. Nat. Mater. 16(2), 163–169 (2017). https://doi.org/10.1038/nmat4802
- Y. Liu, S. Zhang, J. He, Z.M. Wang, Z. Liu, Recent progress in the fabrication, properties, and devices of heterostructures based on 2D materials. Nano-Micro Lett. 11, 13 (2019). https://doi.org/10.1007/s40820-019-0245-5
- L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508(7496), 373–377 (2014). https://doi.org/10.1038/nature13184
- C. Chang, M. Wu, D. He, Y. Pei, C.-F. Wu et al., 3D charge and 2D phonon transports leading to high out-of-plane in n-type SnSe crystals. Science 360(6390), 778 (2018). https://doi.org/10.1126/science.aaq1479
- K. Nielsch, J. Bachmann, J. Kimling, H. Boettner, Thermoelectric nanostructures: from physical model systems towards nanograined composites. Adv. Energy Mater. 1(5), 713–731 (2011). https://doi.org/10.1002/aenm.201100207
- H. Wang, C. Li, P. Fang, Z. Zhang, J.Z. Zhang, Synthesis, properties, and optoelectronic applications of two-dimensional MoS2 and MoS2-based heterostructures. Chem. Soc. Rev. 47(16), 6101–6127 (2018). https://doi.org/10.1039/c8cs00314a
- F. Wang, Z. Wang, L. Yin, R. Cheng, J. Wang et al., 2D library beyond graphene and transition metal dichalcogenides: a focus on photodetection. Chem. Soc. Rev. 47(16), 6296–6341 (2018). https://doi.org/10.1039/c8cs00255j
- S. Wang, A. Robertson, J.H. Warner, Atomic structure of defects and dopants in 2D layered transition metal dichalcogenides. Chem. Soc. Rev. 47(17), 6764–6794 (2018). https://doi.org/10.1039/c8cs00236c
- Y. Zhang, Y. Zheng, K. Rui, H.H. Hng, K. Hippalgaonkar et al., 2D black phosphorus for energy storage and thermoelectric applications. Small 13(28), 1700661 (2017). https://doi.org/10.1002/smll.201700661
- H. Babaei, J.M. Khodadadi, S. Sinha, Large theoretical thermoelectric power factor of suspended single-layer MoS2. Appl. Phys. Lett. 105(19), 193901 (2014). https://doi.org/10.1063/1.4901342
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
- A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009). https://doi.org/10.1103/RevModPhys.81.109
- A. Dey, O.P. Bajpai, A.K. Sikder, S. Chattopadhyay, M.A.S. Khan, Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: a proficient move towards waste energy harvesting. Renew. Sust. Energy Rev. 53, 653–671 (2016). https://doi.org/10.1016/j.rser.2015.09.004
- K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9–10), 351–355 (2008). https://doi.org/10.1016/j.ssc.2008.02.024
- P. Wei, W. Bao, Y. Pu, C.N. Lau, J. Shi, Anomalous thermoelectric transport of dirac particles in graphene. Phys. Rev. Lett. 102(16), 166808 (2009). https://doi.org/10.1103/PhysRevLett.102.166808
- A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008). https://doi.org/10.1021/nl0731872
- D. Dragoman, M. Dragoman, Giant thermoelectric effect in graphene. Appl. Phys. Lett. 91(20), 203116 (2007). https://doi.org/10.1063/1.2814080
- Y. Chen, T. Jayasekera, A. Calzolari, K.W. Kim, M.B. Nardelli, Thermoelectric properties of graphene nanoribbons, junctions and superlattices. J. Phys. Condens. Mat. 22(37), 372202 (2010). https://doi.org/10.1088/0953-8984/22/37/372202
- S.-G. Nam, D.-K. Ki, H.-J. Lee, Thermoelectric transport of massive Dirac fermions in bilayer graphene. Phys. Rev. B 82(24), 245416 (2010). https://doi.org/10.1103/PhysRevB.82.245416
- H. Sevincli, G. Cuniberti, Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons. Phys. Rev. B 81(11), 113401 (2010). https://doi.org/10.1103/PhysRevB.81.113401
- X. Xu, N.M. Gabor, J.S. Alden, A.M. van der Zande, P.L. McEuen, Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10(2), 562–566 (2010). https://doi.org/10.1021/nl903451y
- T. Gunst, T. Markussen, A.-P. Jauho, M. Brandbyge, Thermoelectric properties of finite graphene antidot lattices. Phys. Rev. B 84(15), 155449 (2011). https://doi.org/10.1103/PhysRevB.84.155449
- H. Karamitaheri, M. Pourfath, M. Pazoki, R. Faez, H. Kosina, Graphene-based antidots for thermoelectric applications. J. Electrochem. Soc. 158(12), K213–K216 (2011). https://doi.org/10.1149/2.025112jes
- F. Mazzamuto, V.H. Nguyen, Y. Apertet, C. Caer, C. Chassat, J. Saint-Martin, P. Dollfus, Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons. Phys. Rev. B 83(23), 235426 (2011). https://doi.org/10.1103/PhysRevB.83.235426
- C.-R. Wang, W.-S. Lu, L. Hao, W.-L. Lee, T.-K. Lee, F. Lin, I.C. Cheng, J.-Z. Chen, Enhanced thermoelectric power in dual-gated bilayer graphene. Phys. Rev. Lett. 107(18), 186602 (2011). https://doi.org/10.1103/PhysRevLett.107.186602
- Y. Chen, K. Chen, H. Bai, L. Li, Electrochemically reduced graphene porous material as light absorber for light-driven thermoelectric generator. J. Mater. Chem. 22(34), 17800–17804 (2012). https://doi.org/10.1039/c2jm33530a
- L. Liang, E. Cruz-Silva, E.C. Girao, V. Meunier, Enhanced thermoelectric figure of merit in assembled graphene nanoribbons. Phys. Rev. B 86(11), 115438 (2012). https://doi.org/10.1103/PhysRevB.86.115438
- S. Cho, S.D. Kang, W. Kim, E.-S. Lee, S.-J. Woo et al., Thermoelectric imaging of structural disorder in epitaxial graphene. Nat. Mater. 12(10), 913–918 (2013). https://doi.org/10.1038/nmat3708
- Y. Lu, Y. Song, F. Wang, Thermoelectric properties of graphene nanosheets-modified polyaniline hybrid nanocomposites by an in situ chemical polymerization. Mater. Chem. Phys. 138(1), 238–244 (2013). https://doi.org/10.1016/j.matchemphys.2012.11.052
- D. Wu, K. Yan, Y. Zhou, H. Wang, L. Lin, H. Peng, Z. Liu, Plasmon-enhanced photothermoelectric conversion in chemical vapor deposited graphene p–n junctions. J. Am. Chem. Soc. 135(30), 10926–10929 (2013). https://doi.org/10.1021/ja404890n
- T.J. Echtermeyer, P.S. Nene, M. Trushin, R.V. Gorbachev, A.L. Eiden et al., Photothermoelectric and photoelectric contributions to light detection in metal-graphene-metal photodetectors. Nano Lett. 14(7), 3733–3742 (2014). https://doi.org/10.1021/nl5004762
- Y. Xu, Z. Li, W. Duan, Thermal and thermoelectric properties of graphene. Small 10(11), 2182–2199 (2014). https://doi.org/10.1002/smll.201303701
- P. Dollfus, N. Viet Hung, J. Saint-Martin, Thermoelectric effects in graphene nanostructures. J. Phys. Condens. Mater. 27(13), 133204 (2015). https://doi.org/10.1088/0953-8984/27/13/133204
- J.Y. Kim, J.C. Grossman, High-efficiency thermoelectrics with functionalized graphene. Nano Lett. 15(5), 2830–2835 (2015). https://doi.org/10.1021/nl504257q
- F. Ghahari, H.-Y. Xie, T. Taniguchi, K. Watanabe, M.S. Foster, P. Kim, Enhanced thermoelectric power in graphene: violation of the mott relation by inelastic scattering. Phys. Rev. Lett. 116(13), 136802 (2016). https://doi.org/10.1103/PhysRevLett.116.136802
- Y. Anno, Y. Imakita, K. Takei, S. Akita, T. Arie, Enhancement of graphene thermoelectric performance through defect engineering. 2D Mater 4(2), 025019 (2017). https://doi.org/10.1088/2053-1583/aa57fc
- M.B. Lundeberg, Y. Gao, A. Woessner, C. Tan, P. Alonso-Gonzalez et al., Thermoelectric detection and imaging of propagating graphene plasmons. Nat. Mater. 16(2), 204–207 (2017). https://doi.org/10.1038/nmat4755
- N. Poudel, S.-J. Liang, D. Choi, B. Hou, L. Shen, H. Shi, L.K. Ang, L. Shi, S. Cronin, Cross-plane thermoelectric and thermionic transport across AU/h-BN/graphene heterostructures. Sci. Rep. 7, 14148 (2017). https://doi.org/10.1038/s41598-017-12704-w
- N. Yang, S. Hu, D. Ma, T. Lu, B. Li, Nanoscale graphene disk: a natural functionally graded material-how is fourier’s law violated along radius direction of 2D disk. Sci. Rep. 5, 14878 (2015). https://doi.org/10.1038/srep14878
- K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phy. Rev. Lett. 105(13), 136805 (2010). https://doi.org/10.1103/PhysRevLett.105.136805
- M. Buscema, M. Barkelid, V. Zwiller, H.S.J. van der Zant, G.A. Steele, A. Castellanos-gomez, large and tunable photothermoelectric effect in single-layer MoS2. Nano Lett. 13(2), 358–363 (2013). https://doi.org/10.1021/nl303321g
- K. Hippalgaonkar, Y. Wang, Y. Ye, D.Y. Qiu, H. Zhu, Y. Wang, J. Moore, S.G. Louie, X. Zhang, High thermoelectric power factor in two-dimensional crystals of MoS2. Phys. Rev. B 95(11), 115407 (2017). https://doi.org/10.1103/PhysRevB.95.115407
- J. Hong, C. Lee, J.S. Park, J.H. Shim, Control of valley degeneracy in MoS2 by layer thickness and electric field and its effect on thermoelectric properties. Phys. Rev. B 93(3), 035445 (2016). https://doi.org/10.1103/PhysRevB.93.035445
- J. Wu, H. Schmidt, K.K. Amara, X. Xu, G. Eda, B. Oezyilmaz, Large thermoelectricity via variable range hopping in chemical vapor deposition grown single-layer MoS2. Nano Lett. 14(5), 2730–2734 (2014). https://doi.org/10.1021/nl500666m
- A. Molina-Sanchez, L. Wirtz, Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 84(15), 155413 (2011). https://doi.org/10.1103/PhysRevB.84.155413
- Y. Cai, J. Lan, G. Zhang, Y.-W. Zhang, Lattice vibrational modes, phonon thermal conductivity of monolayer MoS2. Phys. Rev. B 89(3), 035438 (2014). https://doi.org/10.1103/PhysRevB.89.035438
- C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, Anomalous lattice vibrations of singleand few-layer MoS2. ACS Nano 4(5), 2695–2700 (2010). https://doi.org/10.1021/nn1003937
- A. Taube, J. Judek, A. Lapiriska, M. Zdrojek, Temperature-dependent thermal properties of supported MoS2 monolayers. ACS Appl. Mater. Interfaces. 7(9), 5061–5065 (2015). https://doi.org/10.1021/acsami.5b00690
- R. Yan, J.R. Simpson, S. Bertolazzi, J. Brivio, M. Watson et al., Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 8(1), 986–993 (2014). https://doi.org/10.1021/nn405826k
- S. Sahoo, A.P.S. Gaur, M. Ahmadi, M.J.F. Guinel, R.S. Katiyar, Temperature-dependent raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C 117(17), 9042–9047 (2013). https://doi.org/10.1021/jp402509w
- I. Jo, M.T. Pettes, E. Ou, W. Wu, L. Shi, Basal-plane thermal conductivity of few-layer molybdenum disulfide. Appl. Phys. Lett. 104(20), 201902 (2014). https://doi.org/10.1063/1.4876965
- X. Liu, G. Zhang, Q.-X. Pei, Y.-W. Zhang, Phonon thermal conductivity of monolayer MoS2 sheet and nanoribbons. Appl. Phys. Lett. 103(13), 133113 (2013). https://doi.org/10.1063/1.4823509
- Z. Ding, J.-W. Jiang, Q.-X. Pei, Y.-W. Zhang, In-plane and cross-plane thermal conductivities of molybdenum disulfide. Nanotechnology 26(6), 065703 (2015). https://doi.org/10.1088/0957-4484/26/6/065703
- G. Zhang, Y.-W. Zhang, Strain effects on thermoelectric properties of two-dimensional materials. Mech. Mate. 91, 382–398 (2015). https://doi.org/10.1016/j.mechmat.2015.03.009
- W.-X. Zhou, K.-Q. Chen, First-pprinciples determination of ultralow thermal conductivity of monolayer WSe2. Sci. Rep. 5, 15070 (2015). https://doi.org/10.1038/srep15070
- J. Ma, W. Li, X. Luo, Ballistic thermal transport in monolayer transition-metal dichalcogenides: role of atomic mass. Appl. Phys. Lett. 108(8), 082102 (2016). https://doi.org/10.1063/1.4942451
- X. Gu, R. Yang, Phonon transport in single-layer transition metal dichalcogenides: a first-principles study. Appl. Phys. Lett. 105(13), 131903 (2014). https://doi.org/10.1063/1.4896685
- T.-H. Liu, Y.-C. Chen, C.-W. Pao, C.-C. Chang, Anisotropic thermal conductivity of MoS2 nanoribbons: chirality, edge effects. Appl. Phys. Lett. 104(20), 201909 (2014). https://doi.org/10.1063/1.4878395
- W. Li, J. Carrete, N. Mingo, Thermal conductivity and phonon linewidths of monolayer MoS2 from first principles. Appl. Phys. Lett. 103(25), 253103 (2013). https://doi.org/10.1063/1.4850995
- D. Wickramaratne, F. Zahid, R.K. Lake, Electronic and thermoelectric properties of few-layer transition metal dichalcogenides. J. Chem. Phys. 140(12), 124710 (2014). https://doi.org/10.1063/1.4869142
- M. Achimovicova, N. Daneu, A. Recnik, J. Durisin, P. Balaz, M. Fabian, J. Kovac, A. Satka, Characterization of mechanochemically synthesized lead selenide. Chem. Pap. 63(5), 562–567 (2009). https://doi.org/10.2478/s11696-009-0050-6
- C. Guillen, J. Montero, J. Herrero, Characteristics of SnSe and SnSe2 thin films grown onto polycrystalline SnO2-coated glass substrates. Phys. Status Solidi A 208(3), 679–683 (2011). https://doi.org/10.1002/pssa.201026584
- M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee et al., New directions for low-dimensional thermoelectric materials. Adv. Mater. 19(8), 1043–1053 (2007). https://doi.org/10.1002/adma.200600527
- J.R. Szczech, J.M. Higgins, S. Jin, Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. J. Mater. Chem. 21(12), 4037–4055 (2011). https://doi.org/10.1039/c0jm02755c
- L.D. Hicks, M.S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47(24), 16631–16634 (1993). https://doi.org/10.1103/PhysRevB.47.16631
- G.D. Mahan, J.O. Sofo, The best thermoelectric. Proc. Natl. Acad. Sci. U.S.A. 93(15), 7436–7439 (1996). https://doi.org/10.1073/pnas.93.15.7436
- A. Samad, M. Noor-A-Alam, Y.-H. Shin, First principles study of a SnS2/graphene heterostructure: a promising anode material for rechargeable Na ion batteries. J. Mater. Chem. A 4(37), 14316–14323 (2016). https://doi.org/10.1039/c6ta05739j
- R. Fei, A. Faghaninia, R. Soklaski, J.-A. Yan, C. Lo, L. Yang, Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Lett. 14(11), 6393–6399 (2014). https://doi.org/10.1021/nl502865s
- L. Cheng, H. Liu, X. Tan, J. Zhang, J. Wei, H. Lv, J. Shi, X. Tang, Thermoelectric properties of a monolayer bismuth. J. Phys. Chem. C 118(2), 904–910 (2014). https://doi.org/10.1021/jp411383j
- A. Agarwal, M.N. Vashi, D. Lakshminarayana, N.M. Batra, Electrical resistivity anisotropy in layered p-SnSe single crystals. J. Mater. Sci. Mater. El. 11(1), 67–71 (2000). https://doi.org/10.1023/A:1008960305097
- K.-M. Chung, D. Wamwangi, M. Woda, M. Wuttig, W. Bensch, Investigation of SnSe, SnSe2, and Sn2Se3 alloys for phase change memory applications. J. Appl. Phys. 103(8), 083523 (2008). https://doi.org/10.1063/1.2894903
- S. Chen, K. Cai, W. Zhao, The effect of Te doping on the electronic structure and thermoelectric properties of SnSe. Phys. B 407(21), 4154–4159 (2012). https://doi.org/10.1016/j.physb.2012.06.041
- Q. Zhang, H. Wang, W. Liu, H. Wang, B. Yu et al., Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide. Energ. Environ. Sci. 5(1), 5246–5251 (2012). https://doi.org/10.1039/c1ee02465e
- I.U. Arachchige, M.G. Kanatzidis, Anomalous band gap evolution from band inversion in Pb1−xSnxTe nanocrystals. Nano Lett. 9(4), 1583–1587 (2009). https://doi.org/10.1021/nl8037757
- X. Shi, J.R. Salvador, J. Yang, H. Wang, Prospective thermoelectric materials: (AgSbTe2)100−x(SnTe)x quaternary system (x = 80, 85, 90, and 95). Sci. Adv. Mater. 3(4), 667–671 (2011). https://doi.org/10.1166/sam.2011.1198
- R.F. Brebrick, Deviations from Stoichiometry, electrical properties in SnTe. J. Phys. Chem. Solids 24(1), 27 (1963). https://doi.org/10.1016/0022-3697(63)90038-6
- Y. Chen, M.D. Nielsen, Y.-B. Gao, T.-J. Zhu, X. Zhao, J.P. Heremans, SnTe-AgSbTe2 thermoelectric alloys. Adv. Energy Mater. 2(1), 58–62 (2012). https://doi.org/10.1002/aenm.201100460
- M.-K. Han, J. Androulakis, S.-J. Kim, M.G. Kanatzidis, Lead-free thermoelectrics: high figure of merit in p-type AgSnmSbTem+2. Adv. Energy Mater. 2(1), 157–161 (2012). https://doi.org/10.1002/aenm.201100613
- Z.G. Chen, X.L. Shi, L.D. Zhao, J. Zou, High-performance SnSe thermoelectric materials: progress and future challenge. Prog. Mater Sci. 97, 283–346 (2018). https://doi.org/10.1016/j.pmatsci.2018.04.005
- L.-D. Zhao, C. Chang, G. Tan, M.G. Kanatzidis, SnSe: a remarkable new thermoelectric material. Energy Environ. Sci. 9(10), 3044–3060 (2016). https://doi.org/10.1039/c6ee01755j
- J.A. Kafalas, R.F. Brebrick, A.J. Strauss, Evidence that snte is semiconductor energy band model thermoelectric preparation at high pressure. Appl. Phys. Lett. 4(5), 93 (1964). https://doi.org/10.1063/1.1753977
- S.C. Dhanabalan, J.S. Ponraj, Z. Guo, S. Li, Q. Bao, H. Zhang, Emerging trends in phosphorene fabrication towards next generation devices. Adv. Sci. 4(6), 1600305 (2017). https://doi.org/10.1002/advs.201600305
- H.O. Churchill, P. Jarillo-Herrero, Two-dimensional crystals: phosphorus joins the family. Nat. Nanotechnol. 9(5), 330–331 (2014). https://doi.org/10.1038/nnano.2014.85
- M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, Y. Hu, Z. Zheng, H. Zhang, 2D black phosphorus saturable absorbers for ultrafast photonics. Adv. Opt. Mater. 7(1), 1800224 (2019). https://doi.org/10.1002/adom.201800224
- Z. Li, H. Xu, J. Shao, C. Jiang, F. Zhang, J. Lin, H. Zhang, J. Li, P. Huang, Polydopamine-functionalized black phosphorus quantum dots for cancer theranostics. Appl. Mater. Today 15, 297–304 (2019). https://doi.org/10.1016/j.apmt.2019.02.002
- R. Cao, H.D. Wang, Z.N. Guo, D.K. Sang, L.Y. Zhang et al., Black phosphorous/indium selenide photoconductive detector for visible and near-infrared light with high sensitivity. Adv. Opt. Mater. 7(12), 1900020 (2019). https://doi.org/10.1002/adom.201900020
- J. Qiao, X. Kong, Z.-X. Hu, F. Yang, W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014). https://doi.org/10.1038/ncomms5475
- R. Fei, L. Yang, Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 14(5), 2884–2889 (2014). https://doi.org/10.1021/nl500935z
- H. Wang, X. Wang, F. Xia, L. Wang, H. Jiang, Q. Xia, M.L. Chin, M. Dubey, S.-J. Han, Black phosphorus radio-frequency transistors. Nano Lett. 14(11), 6424–6429 (2014). https://doi.org/10.1021/nl5029717
- W. Huang, Z. Xie, T. Fan, J. Li, Y. Wang et al., Black-phosphorus-analogue tin monosulfide: an emerging optoelectronic two-dimensional material for high-performance photodetection with improved stability under ambient/harsh conditions. J. Mater. Chem. C 6(36), 9582–9593 (2018). https://doi.org/10.1039/c8tc03284j
- L. Viti, J. Hu, D. Coquillat, A. Politano, W. Knap, M.S. Vitiello, Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response. Sci. Rep. 6, 20474 (2016). https://doi.org/10.1038/srep20474
- M. Qiu, D. Wang, W. Liang, L. Liu, Y. Zhang et al., Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy. Proc. Natl. Acad. Sci. U.S.A. 115(3), 501–506 (2018). https://doi.org/10.1073/pnas.1714421115
- C. Xing, S. Chen, M. Qiu, X. Liang, Q. Liu et al., Conceptually novel black phosphorus/cellulose hydrogels as promising photothermal agents for effective cancer therapy. Adv. Healthc. Mater. 7(7), 1701510 (2018). https://doi.org/10.1002/adhm.201701510
- S. Luo, J. Zhao, J. Zou, Z. He, C. Xu, F. Liu, Y. Huang, L. Dong, L. Wang, H. Zhang, Self-standing polypyrrole/black phosphorus laminated film: promising electrode for flexible supercapacitor with enhanced capacitance and cycling stability. ACS Appl. Mater. Interfaces. 10(4), 3538–3548 (2018). https://doi.org/10.1021/acsami.7b15458
- H.-D. Wang, D.K. Sang, Z.-N. Guo, R. Cao, J.-L. Zhao et al., Black phosphorus-based field effect transistor devices for Ag ions detection. Chin. Phys. B 27(8), 087308 (2018). https://doi.org/10.1088/1674-1056/27/8/087308
- T. Hong, B. Chamlagain, W. Lin, H.-J. Chuang, M. Pan, Z. Zhou, Y.-Q. Xu, Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale 6(15), 8978–8983 (2014). https://doi.org/10.1039/c4nr02164a
- J. Sun, H.-W. Lee, M. Pasta, H. Yuan, G. Zheng, Y. Sun, Y. Li, Y. Cui, A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 10(11), 980–985 (2015). https://doi.org/10.1038/nnano.2015.194
- J. Sun, G. Zheng, H.-W. Lee, N. Liu, H. Wang, H. Yao, W. Yang, Y. Cui, Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett. 14(8), 4573–4580 (2014). https://doi.org/10.1021/nl501617j
- C.J. An, Y.H. Kang, C. Lee, S.Y. Cho, Preparation of highly stable black phosphorus by gold decoration for high-performance thermoelectric generators. Adv. Funct. Mater. 28(28), 1800532 (2018). https://doi.org/10.1002/adfm.201800532
- E. Flores, J.R. Ares, A. Castellanos-Gomez, M. Barawi, I.J. Ferrer, C. Sanchez, Thermoelectric power of bulk black-phosphorus. Appl. Phys. Lett. 106(2), 022102 (2015). https://doi.org/10.1063/1.4905636
- S.J. Choi, B.-K. Kim, T.-H. Lee, Y.H. Kim, Z. Li et al., Electrical and thermoelectric transport by variable range hopping in thin black phosphorus devices. Nano Lett. 16(7), 3969–3975 (2016). https://doi.org/10.1021/acs.nanolett.5b04957
- J. Zhang, H.J. Liu, L. Cheng, J. Wei, J.H. Liang et al., High thermoelectric performance can be achieved in black phosphorus. J. Mater. Chem. C 4(5), 991–998 (2016). https://doi.org/10.1039/c5tc03238e
- G. Qin, Q.-B. Yan, Z. Qin, S.-Y. Yue, H.-J. Cui, Q.-R. Zheng, G. Su, Hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance. Sci. Rep. 4, 6946 (2014). https://doi.org/10.1038/srep06946
- Y. Saito, T. Iizuka, T. Koretsune, R. Arita, S. Shimizu, Y. Iwasa, Gate-tuned thermoelectric power in black phosphorus. Nano Lett. 16(8), 4819–4824 (2016). https://doi.org/10.1021/acs.nanolett.6b00999
- B. Smith, B. Vermeersch, J. Carrete, E. Ou, J. Kim, N. Mingo, D. Akinwande, L. Shi, Temperature and thickness dependences of the anisotropic in-plane thermal conductivity of black phosphorus. Adv. Mater. 29(5), 1603756 (2017). https://doi.org/10.1002/adma.201603756
- B. Sun, X. Gu, Q. Zeng, X. Huang, Y. Yan, Z. Liu, R. Yang, Y.K. Koh, Temperature dependence of anisotropic thermal-conductivity tensor of bulk black phosphorus. Adv. Mater. 29(3), 1603297 (2017). https://doi.org/10.1002/adma.201603297
- S. Lee, F. Yang, J. Suh, S. Yang, Y. Lee et al., Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nat. Commun. 6, 8573 (2015). https://doi.org/10.1038/ncomms9573
- Z. Luo, J. Maassen, Y. Deng, Y. Du, R.P. Garrelts, M.S. Lundstrom, P.D. Ye, X. Xu, Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 6, 8572 (2015). https://doi.org/10.1038/ncomms9572
- A. Jain, A.J.H. McGaughey, Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep. 5, 8501 (2015). https://doi.org/10.1038/srep08501
- H. Jang, J.D. Wood, C.R. Ryder, M.C. Hersam, D.G. Cahill, Anisotropic thermal conductivity of exfoliated black phosphorus. Adv. Mater. 27(48), 8017–8022 (2015). https://doi.org/10.1002/adma.201503466
- M. Khazaei, M. Arai, T. Sasaki, M. Estili, Y. Sakka, Two-dimensional molybdenum carbides: potential thermoelectric materials of the MXene family. Phys. Chem. Chem. Phys. 16(17), 7841–7849 (2014). https://doi.org/10.1039/c4cp00467a
- M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman, Y. Gogotsi, M.W. Barsoum, New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 135(43), 15966–15969 (2013). https://doi.org/10.1021/ja405735d
- M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153), 1502–1505 (2013). https://doi.org/10.1126/science.1241488
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon, M.W. Barsoum, Y. Gogotsi, Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013). https://doi.org/10.1038/ncomms2664
- S. Kumar, U. Schwingenschlogl, Thermoelectric performance of functionalized Sc2C MXenes. Phys. Rev. B 94(3), 035405 (2016). https://doi.org/10.1103/PhysRevB.94.035405
- H. Kim, B. Anasori, Y. Gogotsi, H.N. Alshareef, Thermoelectric properties of two-dimensional molybdenum-based MXenes. Chem. Mater. 29(15), 6472–6479 (2017). https://doi.org/10.1021/acs.chemmater.7b02056
- S. Sarikurt, D. Cakir, M. Keceli, C. Sevik, The influence of surface functionalization on thermal transport and thermoelectric properties of MXene monolayers. Nanoscale 10(18), 8859–8868 (2018). https://doi.org/10.1039/c7nr09144c
- S. Kumar, U. Schwingenschlogl, Thermoelectric response of bulk and mono layer MoSe2 and WSe2. Chem. Mater. 27(4), 1278–1284 (2015). https://doi.org/10.1021/cm504244b
- S. Chandra, A. Banik, K. Biswas, N-type ultrathin few-layer nanosheets of bi-doped SnSe: synthesis and thermoelectric properties. ACS Energy Lett. 3(5), 1153–1158 (2018). https://doi.org/10.1021/acsenergylett.8b00399
- G. Han, S.R. Popuri, H.F. Greer, J.-W.G. Bos, W. Zhou et al., Facile surfactant-free synthesis of p-type SnSe nanoplates with exceptional thermoelectric power factors. Angew. Chem. Int. Ed. 55(22), 6433–6437 (2016). https://doi.org/10.1002/anie.201601420
- N.A. Rongione, M. Li, H. Wu, H.D. Nguyen, J.S. Kang, B. Ouyang, H. Xia, Y. Hu, High-performance solution-processable flexible SnSe nanosheet films for lower grade waste heat recovery. Adv. Electron. Mater. 5(3), 1800774 (2019). https://doi.org/10.1002/aelm.201800774
- H. Ju, M. Kim, D. Park, J. Kim, A strategy for low thermal conductivity and enhanced thermoelectric performance in SnSe: porous SnSe1–xSx nanosheets. Chem. Mater. 29(7), 3228–3236 (2017). https://doi.org/10.1021/acs.chemmater.7b00423
- M. Hong, Z.-G. Chen, L. Yang, T.C. Chasapis, S.D. Kang et al., Enhancing the thermoelectric performance of SnSe1−xTex nanoplates through band engineering. J. Mater. Chem. A 5(21), 10713–10721 (2017). https://doi.org/10.1039/c7ta02677c
- H. Ju, K. Kim, D. Park, J. Kim, Fabrication of porous SnSeS nanosheets with controlled porosity and their enhanced thermoelectric performance. Chem. Eng. J. 335, 560–566 (2018). https://doi.org/10.1016/j.cej.2017.11.003
- P. Xu, T. Fu, J. Xin, Y. Liu, P. Ying, X. Zhao, H. Pan, T. Zhu, Anisotropic thermoelectric properties of layered compound SnSe2. Sci. Bull. 62(24), 1663–1668 (2017). https://doi.org/10.1016/j.scib.2017.11.015
- Y. Wu, W. Li, A. Faghaninia, Z. Chen, J. Li et al., Promising thermoelectric performance in van der Waals layered SnSe2. Mater. Today Phys. 3, 127–136 (2017). https://doi.org/10.1016/j.mtphys.2017.10.001
- Y. Shu, X. Su, H. Xie, G. Zheng, W. Liu, Y. Yan, T. Luo, X. Yang, D. Yang, C. Uher, X. Tang, Modification of bulk heterojunction and Cl doping for high-performance thermoelectric SnSe2/SnSe nanocomposites. ACS Appl. Mater. Interfaces 10(18), 15793–15802 (2018). https://doi.org/10.1021/acsami.8b00524
- S. Saha, A. Banik, K. Biswas, Few-layer nanosheets of n-type SnSe2. Chem. Eur. J. 22(44), 15634–15638 (2016). https://doi.org/10.1002/chem.201604161
- X. Yan, X. Cui, B. Li, L.-S. Li, Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett. 10(5), 1869–1873 (2010). https://doi.org/10.1021/nl101060h
- J.S. Son, M.K. Choi, M.-K. Han, K. Park, J.-Y. Kim et al., N-type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates. Nano Lett. 12(2), 640–647 (2012). https://doi.org/10.1021/nl203389x
- Y. Min, G. Park, B. Kim, A. Giri, J. Zeng, J.W. Roh, S.I. Kim, K.H. Lee, U. Jeong, Synthesis of multishell nanoplates by consecutive epitaxial growth of Bi2Se3 and Bi2Te3 nanoplates and enhanced thermoelectric properties. ACS Nano 9(7), 6843–6853 (2015). https://doi.org/10.1021/nn507250r
- M. Hong, T.C. Chasapis, Z.-G. Chen, L. Yang, M.G. Kanatzidis, G.J. Snyder, J. Zou, N-type Bi2Te3−xSex nanoplates with enhanced thermoelectric efficiency driven by wide-fequency phonon scatterings and synergistic carrier scatterings. ACS Nano 10(4), 4719–4727 (2016). https://doi.org/10.1021/acsnano.6b01156
- Z. Lu, M. Layani, X. Zhao, L.P. Tan, T. Sun, S. Fan, Q. Yan, S. Magdassi, H.H. Hng, Fabrication of flexible thermoelectric thin film devices by inkjet printing. Small 10(17), 3551–3554 (2014). https://doi.org/10.1002/smll.201303126
- Z. Aabdin, N. Peranio, M. Winkler, D. Bessas, J. König, R.P. Hermann, H. Böttner, O. Eibl, Sb2Te3 and Bi2Te3 thin films grown by room-temperature MBE. J. Electron. Mater. 41(6), 1493–1497 (2011). https://doi.org/10.1007/s11664-011-1870-z
- H. You, S.-H. Bae, J. Kim, J.-S. Kim, C. Park, Deposition of nanocrystalline Bi2Te3 films using a modified MOCVD system. J. Electron. Mater. 40(5), 635–640 (2011). https://doi.org/10.1007/s11664-010-1490-z
- X. Tang, H. Chen, J.S. Ponraj, S.C. Dhanabalan, Q. Xiao, D. Fan, H. Zhang, Fluorination-enhanced ambient stability and electronic tolerance of black phosphorus quantum dots. Adv. Sci. 5(9), 1800420 (2018). https://doi.org/10.1002/advs.201800420
- X. Zhongjian, W. Dou, F. Taojian, X. Chenyang, L. Zhongjun et al., Black phosphorus analogue tin sulfide nanosheets: synthesis and application as near-infrared photothermal agents and drug delivery platforms for cancer therapy. J. Mater. Chem. B 6(29), 4747–4755 (2018). https://doi.org/10.1039/c8tb00729b
- J. Zhou, Z. Li, M. Ying, M. Liu, X. Wang, X. Wang, L. Cao, H. Zhang, G. Xu, Black phosphorus nanosheets for rapid microRNA detection. Nanoscale 10(11), 5060–5064 (2018). https://doi.org/10.1039/c7nr08900g
- L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang et al., Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, hgh stability, and applications in all-optical switching and wavelength conversion. Adv. Opt. Mater. 6(2), 1700985 (2018). https://doi.org/10.1002/adom.201700985
- Y. Zhou, M. Zhang, Z. Guo, L. Miao, S.-T. Han, Z. Wang, X. Zhang, H. Zhang, Z. Peng, Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices. Mater. Horizons 4(6), 997–1019 (2017). https://doi.org/10.1039/c7mh00543a
- Y. Xu, J. Yuan, K. Zhang, Y. Hou, Q. Sun et al., Field-induced n-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility. Adv. Funct. Mater. 27(38), 1702211 (2017). https://doi.org/10.1002/adfm.201702211
- X. Ren, J. Zhou, X. Qi, Y. Liu, Z. Huang et al., Few-layer black phosphorus nanosheets as electrocatalysts for highly efficient oxygen evolution reaction. Adv. Energy Mater. 7(19), 1700396 (2017). https://doi.org/10.1002/aenm.201700396
- M. Qiu, Z.T. Sun, D.K. Sang, X.G. Han, H. Zhang, C.M. Niu, Current progress in black phosphorus materials and their applications in electrochemical energy storage. Nanoscale 9(36), 13384–13403 (2017). https://doi.org/10.1039/c7nr03318d
- G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11(12), 5111–5116 (2011). https://doi.org/10.1021/nl201874w
- J. Pu, Y. Yomogida, K.-K. Liu, L.-J. Li, Y. Iwasa, T. Takenobu, Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12(8), 4013–4017 (2012). https://doi.org/10.1021/nl301335q
- B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011). https://doi.org/10.1038/nnano.2010.279
- J. Feng, W. Zhu, Y. Deng, Q. Song, Q. Zhang, Enhanced antioxidation and thermoelectric properties of the flexible screen-printed Bi2Te3 films through interface modification. ACS Appl. Energy Mater. 2(4), 2828–2836 (2019). https://doi.org/10.1021/acsaem.9b00178
- M.R. Scimeca, F. Yang, E. Zaia, N. Chen, P. Zhao et al., Rapid stoichiometry control in Cu2Se thin films for room-temperature power factor improvement. ACS Appl. Energy Mater. 2(2), 1517–1525 (2019). https://doi.org/10.1021/acsaem.8b02118
- A. Bano, N.K. Gaur, Interfacial coupling effect on electron transport in MoS2/SrTiO3 heterostructure: an ab initio study. Sci. Rep. 8, 714 (2018). https://doi.org/10.1038/s41598-017-18984-6
- H. Huang, Y. Cui, Q. Li, C. Dun, W. Zhou, W. Huang, L. Chen, C.A. Hewitt, D.L. Carroll, Metallic 1T phase MoS2 nanosheets for high-performance thermoelectric energy harvesting. Nano Energy 26, 172–179 (2016). https://doi.org/10.1016/j.nanoen.2016.05.022
- Y. Guo, C. Dun, J. Xu, P. Li, W. Huang et al., Wearable thermoelectric devices based on Au-decorated two-dimensional MoS2. ACS Appl. Mater. Interfaces 10(39), 33316–33321 (2018). https://doi.org/10.1021/acsami.8b10720
- Y. Zhou, J. Wan, Q. Li, L. Chen, J. Zhou et al., Chemical welding on semimetallic TiS2 nanosheets for high-performance flexible n-type thermoelectric films. ACS Appl. Mater. Interfaces 9(49), 42430–42437 (2017). https://doi.org/10.1021/acsami.7b15026
- R. Tian, C. Wan, Y. Wang, Q. Wei, T. Ishida et al., A solution-processed TiS2/organic hybrid superlattice film towards flexible thermoelectric devices. J. Mater. Chem. A 5(2), 564–570 (2017). https://doi.org/10.1039/c6ta08838d
- C. Wan, Y. Kodama, M. Kondo, R. Sasai, X. Qian et al., Dielectric mismatch mediates carrier mobility in organic-intercalated layered TiS2. Nano Lett. 15(10), 6302–6308 (2015). https://doi.org/10.1021/acs.nanolett.5b01013
- C. Wan, X. Gu, F. Dang, T. Itoh, Y. Wang et al., Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 14(6), 622–627 (2015). https://doi.org/10.1038/nmat4251
- Y. Lin, C. Norman, D. Srivastava, F. Azough, L. Wang et al., Thermoelectric power generation from lanthanum strontium titanium oxide at room temperature through the addition of graphene. ACS Appl. Mater. Interfaces 7(29), 15898–15908 (2015). https://doi.org/10.1021/acsami.5b03522
- D. Chen, Y. Zhao, Y. Chen, B. Wang, H. Chen, J. Zhou, Z. Liang, One-step chemical synthesis of ZnO/Graphene Oxide molecular hybrids for high-temperature thermoelectric applications. ACS Appl. Mater. Interfaces 7(5), 3224–3230 (2015). https://doi.org/10.1021/am507882f
- S. Li, T. Fan, X. Liu, F. Liu, H. Meng, Y. Liu, F. Pan, Graphene quantum dots embedded in Bi2Te3 nanosheets to enhance thermoelectric performance. ACS Appl. Mater. Interfaces 9(4), 3677–3685 (2017). https://doi.org/10.1021/acsami.6b14274
- J. Dong, W. Liu, H. Li, X. Su, X. Tang, C. Uher, In situ synthesis and thermoelectric properties of PbTe–graphene nanocomposites by utilizing a facile and novel wet chemical method. J. Mater. Chem. A 1(40), 12503–12511 (2013). https://doi.org/10.1039/c3ta12494k
- D. Zhao, X. Wang, D. Wu, Enhanced thermoelectric properties of graphene/Cu2SnSe3 composites. Crystals 7(3), 71 (2017). https://doi.org/10.3390/cryst7030071
- H. Chen, C. Yang, H. Liu, G. Zhang, D. Wan, F. Huang, Thermoelectric properties of CuInTe2/graphene composites. CrystEngComm 15(34), 6648–6651 (2013). https://doi.org/10.1039/c3ce40334c
- B. Feng, J. Xie, G. Cao, T. Zhu, X. Zhao, Enhanced thermoelectric properties of p-type CoSb3/graphene nanocomposite. J. Mater. Chem. A 1(42), 13111–13119 (2013). https://doi.org/10.1039/c3ta13202a
- S. Yang, J. Si, Q. Su, H. Wu, Enhanced thermoelectric performance of SnSe doped with layered MoS2/graphene. Mater. Lett. 193, 146–149 (2017). https://doi.org/10.1016/j.matlet.2017.01.079
- D. Suh, S. Lee, H. Mun, S.-H. Park, K.H. Lee, S.W. Kim, J.-Y. Choi, S. Baik, Enhanced thermoelectric performance of Bi0.5Sb1.5Te3-expanded graphene composites by simultaneous modulation of electronic and thermal carrier transport. Nano Energy 13, 67–76 (2015). https://doi.org/10.1016/j.nanoen.2015.02.001
- S. Li, X. Liu, Y. Liu, F. Liu, J. Luo, F. Pan, Optimized hetero-interfaces by tuning 2D SnS2 thickness in Bi2Te2.7Se0.3/SnS2 nanocomposites to enhance thermoelectric performance. Nano Energy 39, 297–305 (2017). https://doi.org/10.1016/j.nanoen.2017.07.011
- X.-Q. Huang, Y.-X. Chen, M. Yin, D. Feng, J. He, Origin of the enhancement in transport properties on polycrystalline SnSe with compositing two-dimensional material MoSe2. Nanotechnology 28(10), 105708 (2017). https://doi.org/10.1088/1361-6528/aa55e3
- Z.U. Khan, J. Edberg, M.M. Hamedi, R. Gabrielsson, H. Granberg et al., Thermoelectric polymers and their elastic aerogels. Adv. Mater. 28(22), 4556–4562 (2016). https://doi.org/10.1002/adma.201505364
- M. He, F. Qiu, Z. Lin, Towards high-performance polymer-based thermoelectric materials. Energy Environ. Sci. 6(5), 1352–1361 (2013). https://doi.org/10.1039/c3ee24193a
- X. Hu, K. Zhang, J. Zhang, S. Wang, Y. Qiu, Thermoelectric properties of conducting polymer nanowire-tellurium nanowire composites. ACS Appl. Energy Mater. 1(9), 4883–4890 (2018). https://doi.org/10.1021/acsaem.8b00909
- A.S. Kshirsagar, C. Hiragond, A. Dey, P.V. More, P.K. Khanna, Band engineered I/III/V-VI binary metal selenide/MWCNT/PANI nanocomposites for potential room temperature thermoelectric applications. ACS Appl. Energy Mater. 2(4), 2680–2691 (2019). https://doi.org/10.1021/acsaem.9b00013
- X. Wang, F. Meng, Q. Jiang, W. Zhou, F. Jiang et al., Simple layer-by-layer assembly method for simultaneously enhanced electrical conductivity and thermopower of PEDOT:PSS/Ce-MoS2 heterostructure films. ACS Appl. Energy Mater. 1(7), 3123–3133 (2018). https://doi.org/10.1021/acsaem.8b00315
- Y. Chen, Y. Zhao, Z. Liang, Solution processed organic thermoelectrics: towards flexible thermoelectric modules. Energy Environ. Sci. 8(2), 401–422 (2015). https://doi.org/10.1039/c4ee3297g
- B. Russ, A. Glaudell, J.J. Urban, M.L. Chabinyc, R.A. Segalman, Organic thermoelectric materials for energy harvesting, temperature control. Nat. Rev. Mater. 1(10), 16050 (2016). https://doi.org/10.1038/natrevmats.2016.50
- H. Ju, J. Kim, Chemically exfoliated SnSe nanosheets and their SnSe/Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) composite films for polymer based thermoelectric applications. ACS Nano 10(6), 5730–5739 (2016). https://doi.org/10.1021/acsnano.5b07355
- N.E. Coates, S.K. Yee, B. McCulloch, K.C. See, A. Majumdar, R.A. Segalman, J.J. Urban, Effect of interfacial properties on polymer-nanocrystal thermoelectric transport. Adv. Mater. 25(11), 1629–1633 (2013). https://doi.org/10.1002/adma.201203915
- L. Wang, Q. Yao, J. Xiao, K. Zeng, S. Qu, W. Shi, Q. Wang, L. Chen, Engineered molecular chain ordering in single-walled carbon nanotubes/polyaniline composite films for high-performance organic thermoelectric materials. Chem. Asian J. 11(12), 1804–1810 (2016). https://doi.org/10.1002/asia.201600212
- J. Choi, J.Y. Lee, S.S. Lee, C.R. Park, H.J.A.E.M. Kim, High-performance thermoelectric paper based on double carrier-filtering processes at nanowire heterojunctions. Adv. Energy Mater. 6(9), 1502181 (2016). https://doi.org/10.1002/aenm.201502181
- E.W. Zaia, A. Sahu, P. Zhou, M.P. Gordon, J.D. Forster et al., Carrier scattering at alloy nanointerfaces enhances power factor in PEDOT:PSS hybrid thermoelectrics. Nano Lett. 16(5), 3352–3359 (2016). https://doi.org/10.1021/acs.nanolett.6b01009
- H. Ju, D. Park, J. Kim, Fabrication of porous SnS nanosheets and their combination with conductive polymer for hybrid thermoelectric application. Chem. Eng. J. 356, 950–954 (2019). https://doi.org/10.1016/j.cej.2018.09.106
- H. Ju, J. Kim, Fabrication of conductive polymer/inorganic nanoparticles composite films: PEDOT:PSS with exfoliated tin selenide nanosheets for polymer-based thermoelectric devices. Chem. Eng. J. 297, 66–73 (2016). https://doi.org/10.1016/j.cej.2016.03.137
- H. Ju, D. Park, J. Kim, Fabrication of polyaniline-coated SnSeS Nanosheet/Polyvinylidene difluoride composites by a solution-based process and optimization for flexible thermoelectrics. ACS Appl. Mater. Interfaces. 10(14), 11920–11925 (2018). https://doi.org/10.1021/acsami.7b19667
- H. Ju, D. Park, J. Kim, Solution-processable flexible thermoelectric composite films based on conductive polymer/SnSe0.8S0.2 nanosheets/carbon nanotubes for wearable electronic applications. J. Mater. Chem. 6(14), 5627–5634 (2018). https://doi.org/10.1039/c7ta11285h
- X. Cheng, L. Wang, X. Wang, G. Chen, Flexible films of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/SnS nanobelt thermoelectric composites. Compos. Sci. Technol. 155, 247–251 (2018). https://doi.org/10.1016/j.compscitech.2017.12.028
- B. Zhang, J. Sun, H.E. Katz, F. Fang, R.L. Opila, Promising thermoelectric properties of commercial PEDOT:PSS materials and their Bi2Te3 powder composites. ACS Appl. Mater. Interfaces 2(11), 3170–3178 (2010). https://doi.org/10.1021/am100654p
- Y. Du, K.F. Cai, S. Chen, P. Cizek, T. Lin, Facile preparation and thermoelectric Properties of Bi2Te3 based alloy nanosheet/PEDOT:PSS composite films. ACS Appl. Mater. Interfaces 6(8), 5735–5743 (2014). https://doi.org/10.1021/am5002772
- F. Jiang, J. Xiong, W. Zhou, C. Liu, L. Wang, F. Zhao, H. Liu, J. Xu, Use of organic solvent-assisted exfoliated MoS2 for optimizing the thermoelectric performance of flexible PEDOT:PSS thin films. J. Mater. Chem. A 4(14), 5265–5273 (2016). https://doi.org/10.1039/c6ta00305b
- E.J. Bae, Y.H. Kang, K.-S. Jang, C. Lee, S.Y. Cho, Solution synthesis of telluride-based nano-barbell structures coated with PEDOT:PSS for spray-printed thermoelectric generators. Nanoscale 8(21), 10885–10890 (2016). https://doi.org/10.1039/c5nr07032e
- X. Li, C. Liu, T. Wang, W. Wang, X. Wang, Q. Jiang, F. Jiang, J. Xu, Preparation of 2D MoSe2/PEDOT:PSS composite and its thermoelectric properties. Mater. Res. Express 4(11), 116410 (2017). https://doi.org/10.1088/2053-1591/aa99f9
- Y. Wang, J. Yang, L. Wang, K. Du, Q. Yin, Q. Yin, Polypyrrole/graphene/polyaniline ternary nanocomposite with high thermoelectric power factor. ACS Appl. Mater. Interfaces 9(23), 20124–20131 (2017). https://doi.org/10.1021/acsami.7b05357
- L. Wang, Q. Yao, H. Bi, F. Huang, Q. Wang, L. Chen, PANI/graphene nanocomposite films with high thermoelectric properties by enhanced molecular ordering. J. Mater. Chem. A 3(13), 7086–7092 (2015). https://doi.org/10.1039/c4ta06422d
- Z. Zhang, G. Chen, H. Wang, W. Zhai, Enhanced thermoelectric property by the construction of a nanocomposite 3D interconnected architecture consisting of graphene nanolayers sandwiched by polypyrrole nanowires. J. Mater. Chem. C 3(8), 1649–1654 (2015). https://doi.org/10.1039/c4tc02471k
- K. Xu, G. Chen, D. Qiu, Convenient construction of poly(3,4-ethylenedioxythiophene)–graphene pie-like structure with enhanced thermoelectric performance. J. Mater. Chem. A 1(40), 12395–12399 (2013). https://doi.org/10.1039/c3ta12691a
- L. Wang, Q. Yao, H. Bi, F. Huang, Q. Wang, L. Chen, Large thermoelectric power factor in polyaniline/graphene nanocomposite films prepared by solution-assistant dispersing method. J. Mater. Chem. A 2(29), 11107–11113 (2014). https://doi.org/10.1039/c4ta01541j
- Y. Du, K.F. Cai, S.Z. Shen, P.S. Casey, Preparation and characterization of graphene nanosheets/poly(3-hexylthiophene) thermoelectric composite materials. Synth. Met. 162(23), 2102–2106 (2012). https://doi.org/10.1016/j.synthmet.2012.09.011
- F. Li, K. Cai, S. Shen, S. Chen, Preparation and thermoelectric properties of reduced graphene oxide/PEDOT:PSS composite films. Synth. Met. 197, 58–61 (2014). https://doi.org/10.1016/j.synthmet.2014.08.014
- Y. Jiang, Z. Wang, M. Shang, Z. Zhang, S. Zhang, Heat collection and supply of interconnected netlike graphene/polyethyleneglycol composites for thermoelectric devices. Nanoscale 7(25), 10950–10953 (2015). https://doi.org/10.1039/c5nr02051d
- G. Qiu, S. Huang, M. Segovia, P.K. Venuthurumilli, Y. Wang, W. Wu, X. Xu, P.D. Ye, Thermoelectric performance of 2D tellurium with accumulation contacts. Nano Lett. 19(3), 1955–1962 (2019). https://doi.org/10.1021/acs.nanolett.8b05144
- J.P. Heremans, M.S. Dresselhaus, L.E. Bell, D.T. Morelli, When thermoelectrics reached the nanoscale. Nat. Nanotechnol. 8(7), 471–473 (2013). https://doi.org/10.1038/nnano.2013.129
- J. Zeng, X. He, S.-J. Liang, E. Liu, Y. Sun et al., Experimental identification of critical condition for drastically enhancing thermoelectric power factor of two-dimensional layered materials. Nano Lett. 18(12), 7538–7545 (2018). https://doi.org/10.1021/acs.nanolett.8b03026
- J.P. Small, K.M. Perez, P. Kim, Modulation of thermoelectric power of individual carbon nanotubes. Phys. Rev. Lett. 91(25), 256801 (2003). https://doi.org/10.1103/PhysRevLett.91.256801
- J. Lee, W. Lee, G. Wehmeyer, S. Dhuey, D.L. Olynick et al., Investigation of phonon coherence and backscattering using silicon nanomeshes. Nat. Commun. 8, 14054 (2017). https://doi.org/10.1038/ncomms14054
- J.-K. Yu, S. Mitrovic, D. Tham, J. Varghese, J.R. Heath, Reduction of thermal conductivity in phononic nanomesh structures. Nat. Nanotechnol. 5(10), 718–721 (2010). https://doi.org/10.1038/nnano.2010.149
- M.T. Pettes, J. Maassen, I. Jo, M.S. Lundstrom, L. Shi, Effects of surface band bending and scattering on thermoelectric transport in suspended bismuth telluride nanoplates. Nano Lett. 13(11), 5316–5322 (2013). https://doi.org/10.1021/nl402828s
- A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard III, J.R. Heath, Silicon nanowires as efficient thermoelectric materials. Nature 451(7175), 168–171 (2008). https://doi.org/10.1038/nature06458
- K. Hippalgaonkar, B. Huang, R. Chen, K. Sawyer, P. Ercius, A. Majumdar, Fabrication of microdevices with integrated nanowires for investigating low-dimensional phonon transport. Nano Lett. 10(11), 4341–4348 (2010). https://doi.org/10.1021/nl101671r
- A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175), 163–167 (2008). https://doi.org/10.1038/nature06381
- J. Lim, H.-T. Wang, J. Tang, S.C. Andrews, H. So, J. Lee, D.H. Lee, T.P. Russell, P. Yang, Simultaneous thermoelectric property measurement and incoherent phonon transport in holey silicon. ACS Nano 10(1), 124–132 (2016). https://doi.org/10.1021/acsnano.5b05385
- J. Lee, J. Lim, P. Yang, Ballistic phonon transport in holey silicon. Nano Lett. 15(5), 3273–3279 (2015). https://doi.org/10.1021/acs.nanolett.5b00495
- J. Tang, H.-T. Wang, D.H. Lee, M. Fardy, Z. Huo, T.P. Russell, P. Yang, Holey silicon as an efficient thermoelectric material. Nano Lett. 10(10), 4279–4283 (2010). https://doi.org/10.1021/nl102931z
- G. Zeng, J.M.O. Zide, W. Kim, J.E. Bowers, A.C. Gossard, Cross-plane seebeck coefficient of ErAs:InGaAs∕InGaAlAs superlattices. J. Appl. Phys. 101(3), 035502 (2007). https://doi.org/10.1063/1.2433751
- B. Yang, W.L. Liu, J.L. Liu, K.L. Wang, G. Chen, Measurements of anisotropic thermoelectric properties in superlattices. Appl. Phys. Lett. 81(19), 3588–3590 (2002). https://doi.org/10.1063/1.1515876
- Z. Jia, C. Li, X. Li, J. Shi, Z. Liao, D. Yu, X. Wu, Thermoelectric signature of the chiral anomaly in Cd3As2. Nat. Commun. 7, 13013 (2016). https://doi.org/10.1038/ncomms13013
- J. Shen, Y. Jung, A.S. Disa, F.J. Walker, C.H. Ahn, J.J. Cha, Synthesis of SnTe nanoplates with 100 and 111 surfaces. Nano Lett. 14(7), 4183–4188 (2014). https://doi.org/10.1021/nl501953s
- Y.M. Zuev, J.S. Lee, C. Galloy, H. Park, P. Kim, Diameter ependence of the transport properties of antimony telluride nanowires. Nano Lett. 10(8), 3037–3040 (2010). https://doi.org/10.1021/nl101505q
- H. Karamitaheri, M. Pourfath, R. Faez, H. Kosina, Geometrical effects on the thermoelectric properties of ballistic graphene antidot lattices. J. Appl. Phys. 110(5), 054506 (2011). https://doi.org/10.1063/1.3629990
- J.Y. Kim, J.-H. Lee, J.C. Grossman, Thermal transport in functionalized graphene. ACS Nano 6(10), 9050–9057 (2012). https://doi.org/10.1021/nn3031595
- N. Xiao, X. Dong, L. Song, D. Liu, Y. Tay et al., Enhanced thermopower of graphene films with oxygen plasma treatment. ACS Nano 5(4), 2749–2755 (2011). https://doi.org/10.1021/nn2001849
- J. Oh, H. Yoo, J. Choi, J.Y. Kim, D.S. Lee et al., Significantly reduced thermal conductivity and enhanced thermoelectric properties of single- and bi-layer graphene nanomeshes with sub-10 nm neck-width. Nano Energy 35, 26–35 (2017). https://doi.org/10.1016/j.nanoen.2017.03.019
- T. Pei, L. Bao, R. Ma, S. Song, B. Ge et al., Epitaxy of ultrathin SnSe single crystals on polydimethylsiloxane: in-plane electrical anisotropy and gate-tunable thermopower. Adv. Electron. Mater. 2(11), 1600292 (2016). https://doi.org/10.1002/aelm.201600292
- M. Yoshida, T. Iizuka, Y. Saito, M. Onga, R. Suzuki, Y. Zhang, Y. Iwasa, S. Shimizu, Gate-optimized thermoelectric power factor in ultrathin WSe2 single crystals. Nano Lett. 16(3), 2061–2065 (2016). https://doi.org/10.1021/acs.nanolett.6b00075
- Z. Li, S.R. Bauers, N. Poudel, D. Hamann, X. Wang et al., Cross-plane seebeck coefficient measurement of misfit layered compounds (SnSe)(n)(TiSe2)(n), (n = 1,3,4,5). Nano Lett. 17(3), 1978–1986 (2017). https://doi.org/10.1021/acs.nanolett.6b05402
- J. Chen, D.M. Hamann, D. Choi, N. Poudel, L. Shen, L. Shi, D.C. Johnson, S. Cronin, Enhanced cross-plane thermoelectric transport of rotationally disordered SnSe2 via Se-vapor annealing. Nano Lett. 18(11), 6876–6881 (2018). https://doi.org/10.1021/acs.nanolett.8b02744
- Z.-Y. Juang, C.-C. Tseng, Y. Shi, W.-P. Hsieh, S. Ryuzaki et al., Graphene-Au nanoparticle based vertical heterostructures: a novel route towards high-ZT Thermoelectric devices. Nano Energy 38, 385–391 (2017). https://doi.org/10.1016/j.nanoen.2017.06.004
- C.-C. Chen, Z. Li, L. Shi, S.B. Cronin, Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures. Nano Res. 8(2), 666–672 (2014). https://doi.org/10.1007/s12274-014-0550-8
- J.T. Robinson, S.M. Tabakman, Y. Liang, H. Wang, H.S. Casalongue, V. Daniel, H. Dai, Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc. 133(17), 6825–6831 (2011). https://doi.org/10.1021/ja2010175
- J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun et al., Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 7, 12967 (2016). https://doi.org/10.1038/ncomms12967
- K. Yang, S. Zhang, G. Zhang, X. Sun, S.T. Lee, Z. Liu, Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 10(9), 3318–3323 (2010). https://doi.org/10.1021/nl100996u
- Z. Sun, H. Xie, S. Tang, X.-F. Yu, Z. Guo et al., Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angew. Chem. Int. Ed. 54(39), 11526–11530 (2015). https://doi.org/10.1002/anie.201506154
- N.M. Gabor, J.C.W. Song, Q. Ma, N.L. Nair, T. Taychatanapat et al., Hot carrier-assisted intrinsic photoresponse in graphene. Science 334(6056), 648–652 (2011). https://doi.org/10.1126/science.1211384
- Y. Yan, Z.-M. Liao, X. Ke, G. Van Tendeloo, Q. Wang et al., Topological surface state enhanced photothermoelectric effect in Bi2Se3 nanoribbons. Nano Lett. 14(8), 4389–4394 (2014). https://doi.org/10.1021/nl501276e
- D.J. Groenendijk, M. Buscema, G.A. Steele, S.M. de Vasconcellos, R. Bratschitsch, H.S.J. van der Zant, A. Castellanos-gomez, Photovoltaic and photothermoelectric effect in a double-gated WSe2 device. Nano Lett. 14(10), 5846–5852 (2014). https://doi.org/10.1021/nl502741k
- B.C. St-Antoine, D. Menard, R. Martel, Position sensitive photothermoelectric effect in suspended single-walled carbon nanotube films. Nano Lett. 9(10), 3503–3508 (2009). https://doi.org/10.1021/nl901696j
- Y. Zhang, H. Li, L. Wang, H. Wang, X. Xie, S.-L. Zhang, R. Liu, Z.-J. Qiu, Photothermoelectric and photovoltaic effects both present in MoS2. Sci. Rep. 5, 7938 (2015). https://doi.org/10.1038/srep07938
- D. Kraemer, B. Poudel, H.-P. Feng, J.C. Caylor, B. Yu et al., High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 10(7), 532–538 (2011). https://doi.org/10.1038/nmat3013
- X. Cai, A.B. Sushkov, R.J. Suess, M.M. Jadidi, G.S. Jenkins et al., Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nat. Nanotechnol. 9(10), 814–819 (2014). https://doi.org/10.1038/nnano.2014.182
- J.E. Muench, A. Ruocco, M.A. Giambra, V. Miseikis, D. Zhang et al., Waveguide-integrated, plasmonic enhanced graphene photodetectors. Nano Lett. 19(11), 7632–7644 (2019). https://doi.org/10.1021/acs.nanolett.9b02238
- E. Leong, R.J. Suess, A.B. Sushkov, H.D. Drew, T.E. Murphy, M. Mittendorff, Terahertz photoresponse of black phosphorus. Opt. Express 25(11), 12666–12674 (2017). https://doi.org/10.1364/OE.25.012666
References
Z.G. Chen, G. Han, L. Yang, L. Cheng, J. Zou, Nanostructured thermoelectric materials: current research and future challenge. Prog. Nat. Sci. 22(6), 535–549 (2012). https://doi.org/10.1016/j.pnsc.2012.11.011
T. Zhu, Y. Liu, C. Fu, J.P. Heremans, J.G. Snyder, X. Zhao, Compromise and synergy in high-efficiency thermoelectric materials. Adv. Mater. 29(14), 1605884 (2017). https://doi.org/10.1002/adma.201605884
G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7(2), 105–114 (2008). https://doi.org/10.1038/nmat2090
M. Rull-Bravo, A. Moure, J.F. Fernandez, M. Martin-Gonzalez, Skutterudites as thermoelectric materials: revisited. RSC Adv. 5(52), 41653–41667 (2015). https://doi.org/10.1039/c5ra03942h
P. Sundarraj, D. Maity, S.S. Roy, R.A. Taylor, Recent advances in thermoelectric materials and solar thermoelectric generators - a critical review. RSC Adv. 4(87), 46860–46874 (2014). https://doi.org/10.1039/c4ra05322b
G. Tan, L.-D. Zhao, M.G. Kanatzidis, Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 116(19), 12123–12149 (2016). https://doi.org/10.1021/acs.chemrev.6b00255
C. Gayner, K.K. Kar, Recent advances in thermoelectric materials. Prog. Mater Sci. 83, 330–382 (2016). https://doi.org/10.1016/j.pmatsci.2016.07.002
G. Zhang, Y.-W. Zhang, Thermoelectric properties of two-dimensional transition metal dichalcogenides. J. Mater. Chem. C 5(31), 7684–7698 (2017). https://doi.org/10.1039/c7tc01088e
D. Li, C. Luo, Y. Chen, D. Feng, Y. Gong, C. Pan, J. He, High performance polymer thermoelectric composite achieved by carbon-coated carbon nanotubes network. ACS Appl. Energy Mater. 2(4), 2427–2434 (2019). https://doi.org/10.1021/acsaem.9b00334
Z.-H. Ge, L.-D. Zhao, D. Wu, X. Liu, B.-P. Zhang, J.-F. Li, J. He, Low-cost, abundant binary sulfides as promising thermoelectric materials. Mater. Today 19(4), 227–239 (2016). https://doi.org/10.1016/j.mattod.2015.10.004
S. Ortega, M. Ibanez, Y. Liu, Y. Zhang, M.V. Kovalenko, D. Cadavid, A. Cabot, Bottom-up engineering of thermoelectric nanomaterials and devices from solution-processed nanoparticle building blocks. Chem. Soc. Rev. 46(12), 3510–3528 (2017). https://doi.org/10.1039/c6cs00567e
R. Kroon, D.A. Mengistie, D. Kiefer, J. Hynynen, J.D. Ryan, L. Yu, C. Muller, Thermoelectric plastics: from design to synthesis, processing and structure-property relationships. Chem. Soc. Rev. 45(22), 6147–6164 (2016). https://doi.org/10.1039/c6cs00149a
L. Wang, Z. Zhang, L. Geng, T. Yuan, Y. Liu et al., Solution-printable fullerene/TiS2 organic/inorganic hybrids for high-performance flexible n-type thermoelectrics. Energy Environ. Sci. 11(5), 1307–1317 (2018). https://doi.org/10.1039/c7ee03617e
J. Yang, H.-L. Yip, A.K.Y. Jen, Rational design of advanced thermoelectric materials. Adv. Energy Mater. 3(5), 549–565 (2013). https://doi.org/10.1002/aenm.201200514
J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed. 48(46), 8616–8639 (2009). https://doi.org/10.1002/anie.200900598
J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321(5888), 554–557 (2008). https://doi.org/10.1126/science.1159725
B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich et al., High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320(5876), 634–638 (2008). https://doi.org/10.1126/science.1156446
K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489(7416), 414–418 (2012). https://doi.org/10.1038/nature11439
Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G.J. Snyder, Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473(7345), 66–69 (2011). https://doi.org/10.1038/nature09996
J.P. Heremans, C.M. Thrush, D.T. Morelli, Thermopower enhancement in lead telluride nanostructures. Phys. Rev. B 70(11), 115334 (2004). https://doi.org/10.1103/PhysRevB.70.115334
F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007). https://doi.org/10.1038/nmat1967
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
C. Nie, L. Yu, X. Wei, J. Shen, W. Lu, W. Chen, S. Feng, H. Shi, Ultrafast growth of large-area monolayer MoS2 film via gold foil assistant CVD for a highly sensitive photodetector. Nanotechnology 28(27), 275203 (2017). https://doi.org/10.1088/1361-6528/aa7473
Y. Yu, G.-H. Nam, Q. He, X.-J. Wu, K. Zhang et al., High phase-purity 1T’-MoS2- and 1T’-MoSe2- layered crystals. Nat. Chem. 10(6), 638–643 (2018). https://doi.org/10.1038/s41557-018-0035-6
J. Lai, X. Liu, J. Ma, Q. Wang, K. Zhang et al., Anisotropic broadband photoresponse of layered type-II weyl semimetal MoTe2. Adv. Mater. 30(22), e1707152 (2018). https://doi.org/10.1002/adma.201707152
J. Yang, T. Lu, Y.W. Myint, J. Pei, D. Macdonald, J.-C. Zheng, Y. Lu, Robust excitons and trions in monolayer MoTe2. ACS Nano 9(6), 6603–6609 (2015). https://doi.org/10.1021/acsnano.5b02665
C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008). https://doi.org/10.1126/science.1157996
L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014). https://doi.org/10.1038/nnano.2014.35
M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional transition metal carbides. ACS Nano 6(2), 1322–1331 (2012)
W. Tao, N. Kong, X. Ji, Y. Zhang, A. Sharma et al., Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chem. Soc. Rev. 48(11), 2891–2912 (2019). https://doi.org/10.1039/c8cs00823j
A. Molle, J. Goldberger, M. Houssa, Y. Xu, S.C. Zhang, D. Akinwande, Buckled two-dimensional Xene sheets. Nat. Mater. 16(2), 163–169 (2017). https://doi.org/10.1038/nmat4802
Y. Liu, S. Zhang, J. He, Z.M. Wang, Z. Liu, Recent progress in the fabrication, properties, and devices of heterostructures based on 2D materials. Nano-Micro Lett. 11, 13 (2019). https://doi.org/10.1007/s40820-019-0245-5
L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508(7496), 373–377 (2014). https://doi.org/10.1038/nature13184
C. Chang, M. Wu, D. He, Y. Pei, C.-F. Wu et al., 3D charge and 2D phonon transports leading to high out-of-plane in n-type SnSe crystals. Science 360(6390), 778 (2018). https://doi.org/10.1126/science.aaq1479
K. Nielsch, J. Bachmann, J. Kimling, H. Boettner, Thermoelectric nanostructures: from physical model systems towards nanograined composites. Adv. Energy Mater. 1(5), 713–731 (2011). https://doi.org/10.1002/aenm.201100207
H. Wang, C. Li, P. Fang, Z. Zhang, J.Z. Zhang, Synthesis, properties, and optoelectronic applications of two-dimensional MoS2 and MoS2-based heterostructures. Chem. Soc. Rev. 47(16), 6101–6127 (2018). https://doi.org/10.1039/c8cs00314a
F. Wang, Z. Wang, L. Yin, R. Cheng, J. Wang et al., 2D library beyond graphene and transition metal dichalcogenides: a focus on photodetection. Chem. Soc. Rev. 47(16), 6296–6341 (2018). https://doi.org/10.1039/c8cs00255j
S. Wang, A. Robertson, J.H. Warner, Atomic structure of defects and dopants in 2D layered transition metal dichalcogenides. Chem. Soc. Rev. 47(17), 6764–6794 (2018). https://doi.org/10.1039/c8cs00236c
Y. Zhang, Y. Zheng, K. Rui, H.H. Hng, K. Hippalgaonkar et al., 2D black phosphorus for energy storage and thermoelectric applications. Small 13(28), 1700661 (2017). https://doi.org/10.1002/smll.201700661
H. Babaei, J.M. Khodadadi, S. Sinha, Large theoretical thermoelectric power factor of suspended single-layer MoS2. Appl. Phys. Lett. 105(19), 193901 (2014). https://doi.org/10.1063/1.4901342
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009). https://doi.org/10.1103/RevModPhys.81.109
A. Dey, O.P. Bajpai, A.K. Sikder, S. Chattopadhyay, M.A.S. Khan, Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: a proficient move towards waste energy harvesting. Renew. Sust. Energy Rev. 53, 653–671 (2016). https://doi.org/10.1016/j.rser.2015.09.004
K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9–10), 351–355 (2008). https://doi.org/10.1016/j.ssc.2008.02.024
P. Wei, W. Bao, Y. Pu, C.N. Lau, J. Shi, Anomalous thermoelectric transport of dirac particles in graphene. Phys. Rev. Lett. 102(16), 166808 (2009). https://doi.org/10.1103/PhysRevLett.102.166808
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008). https://doi.org/10.1021/nl0731872
D. Dragoman, M. Dragoman, Giant thermoelectric effect in graphene. Appl. Phys. Lett. 91(20), 203116 (2007). https://doi.org/10.1063/1.2814080
Y. Chen, T. Jayasekera, A. Calzolari, K.W. Kim, M.B. Nardelli, Thermoelectric properties of graphene nanoribbons, junctions and superlattices. J. Phys. Condens. Mat. 22(37), 372202 (2010). https://doi.org/10.1088/0953-8984/22/37/372202
S.-G. Nam, D.-K. Ki, H.-J. Lee, Thermoelectric transport of massive Dirac fermions in bilayer graphene. Phys. Rev. B 82(24), 245416 (2010). https://doi.org/10.1103/PhysRevB.82.245416
H. Sevincli, G. Cuniberti, Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons. Phys. Rev. B 81(11), 113401 (2010). https://doi.org/10.1103/PhysRevB.81.113401
X. Xu, N.M. Gabor, J.S. Alden, A.M. van der Zande, P.L. McEuen, Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10(2), 562–566 (2010). https://doi.org/10.1021/nl903451y
T. Gunst, T. Markussen, A.-P. Jauho, M. Brandbyge, Thermoelectric properties of finite graphene antidot lattices. Phys. Rev. B 84(15), 155449 (2011). https://doi.org/10.1103/PhysRevB.84.155449
H. Karamitaheri, M. Pourfath, M. Pazoki, R. Faez, H. Kosina, Graphene-based antidots for thermoelectric applications. J. Electrochem. Soc. 158(12), K213–K216 (2011). https://doi.org/10.1149/2.025112jes
F. Mazzamuto, V.H. Nguyen, Y. Apertet, C. Caer, C. Chassat, J. Saint-Martin, P. Dollfus, Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons. Phys. Rev. B 83(23), 235426 (2011). https://doi.org/10.1103/PhysRevB.83.235426
C.-R. Wang, W.-S. Lu, L. Hao, W.-L. Lee, T.-K. Lee, F. Lin, I.C. Cheng, J.-Z. Chen, Enhanced thermoelectric power in dual-gated bilayer graphene. Phys. Rev. Lett. 107(18), 186602 (2011). https://doi.org/10.1103/PhysRevLett.107.186602
Y. Chen, K. Chen, H. Bai, L. Li, Electrochemically reduced graphene porous material as light absorber for light-driven thermoelectric generator. J. Mater. Chem. 22(34), 17800–17804 (2012). https://doi.org/10.1039/c2jm33530a
L. Liang, E. Cruz-Silva, E.C. Girao, V. Meunier, Enhanced thermoelectric figure of merit in assembled graphene nanoribbons. Phys. Rev. B 86(11), 115438 (2012). https://doi.org/10.1103/PhysRevB.86.115438
S. Cho, S.D. Kang, W. Kim, E.-S. Lee, S.-J. Woo et al., Thermoelectric imaging of structural disorder in epitaxial graphene. Nat. Mater. 12(10), 913–918 (2013). https://doi.org/10.1038/nmat3708
Y. Lu, Y. Song, F. Wang, Thermoelectric properties of graphene nanosheets-modified polyaniline hybrid nanocomposites by an in situ chemical polymerization. Mater. Chem. Phys. 138(1), 238–244 (2013). https://doi.org/10.1016/j.matchemphys.2012.11.052
D. Wu, K. Yan, Y. Zhou, H. Wang, L. Lin, H. Peng, Z. Liu, Plasmon-enhanced photothermoelectric conversion in chemical vapor deposited graphene p–n junctions. J. Am. Chem. Soc. 135(30), 10926–10929 (2013). https://doi.org/10.1021/ja404890n
T.J. Echtermeyer, P.S. Nene, M. Trushin, R.V. Gorbachev, A.L. Eiden et al., Photothermoelectric and photoelectric contributions to light detection in metal-graphene-metal photodetectors. Nano Lett. 14(7), 3733–3742 (2014). https://doi.org/10.1021/nl5004762
Y. Xu, Z. Li, W. Duan, Thermal and thermoelectric properties of graphene. Small 10(11), 2182–2199 (2014). https://doi.org/10.1002/smll.201303701
P. Dollfus, N. Viet Hung, J. Saint-Martin, Thermoelectric effects in graphene nanostructures. J. Phys. Condens. Mater. 27(13), 133204 (2015). https://doi.org/10.1088/0953-8984/27/13/133204
J.Y. Kim, J.C. Grossman, High-efficiency thermoelectrics with functionalized graphene. Nano Lett. 15(5), 2830–2835 (2015). https://doi.org/10.1021/nl504257q
F. Ghahari, H.-Y. Xie, T. Taniguchi, K. Watanabe, M.S. Foster, P. Kim, Enhanced thermoelectric power in graphene: violation of the mott relation by inelastic scattering. Phys. Rev. Lett. 116(13), 136802 (2016). https://doi.org/10.1103/PhysRevLett.116.136802
Y. Anno, Y. Imakita, K. Takei, S. Akita, T. Arie, Enhancement of graphene thermoelectric performance through defect engineering. 2D Mater 4(2), 025019 (2017). https://doi.org/10.1088/2053-1583/aa57fc
M.B. Lundeberg, Y. Gao, A. Woessner, C. Tan, P. Alonso-Gonzalez et al., Thermoelectric detection and imaging of propagating graphene plasmons. Nat. Mater. 16(2), 204–207 (2017). https://doi.org/10.1038/nmat4755
N. Poudel, S.-J. Liang, D. Choi, B. Hou, L. Shen, H. Shi, L.K. Ang, L. Shi, S. Cronin, Cross-plane thermoelectric and thermionic transport across AU/h-BN/graphene heterostructures. Sci. Rep. 7, 14148 (2017). https://doi.org/10.1038/s41598-017-12704-w
N. Yang, S. Hu, D. Ma, T. Lu, B. Li, Nanoscale graphene disk: a natural functionally graded material-how is fourier’s law violated along radius direction of 2D disk. Sci. Rep. 5, 14878 (2015). https://doi.org/10.1038/srep14878
K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phy. Rev. Lett. 105(13), 136805 (2010). https://doi.org/10.1103/PhysRevLett.105.136805
M. Buscema, M. Barkelid, V. Zwiller, H.S.J. van der Zant, G.A. Steele, A. Castellanos-gomez, large and tunable photothermoelectric effect in single-layer MoS2. Nano Lett. 13(2), 358–363 (2013). https://doi.org/10.1021/nl303321g
K. Hippalgaonkar, Y. Wang, Y. Ye, D.Y. Qiu, H. Zhu, Y. Wang, J. Moore, S.G. Louie, X. Zhang, High thermoelectric power factor in two-dimensional crystals of MoS2. Phys. Rev. B 95(11), 115407 (2017). https://doi.org/10.1103/PhysRevB.95.115407
J. Hong, C. Lee, J.S. Park, J.H. Shim, Control of valley degeneracy in MoS2 by layer thickness and electric field and its effect on thermoelectric properties. Phys. Rev. B 93(3), 035445 (2016). https://doi.org/10.1103/PhysRevB.93.035445
J. Wu, H. Schmidt, K.K. Amara, X. Xu, G. Eda, B. Oezyilmaz, Large thermoelectricity via variable range hopping in chemical vapor deposition grown single-layer MoS2. Nano Lett. 14(5), 2730–2734 (2014). https://doi.org/10.1021/nl500666m
A. Molina-Sanchez, L. Wirtz, Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 84(15), 155413 (2011). https://doi.org/10.1103/PhysRevB.84.155413
Y. Cai, J. Lan, G. Zhang, Y.-W. Zhang, Lattice vibrational modes, phonon thermal conductivity of monolayer MoS2. Phys. Rev. B 89(3), 035438 (2014). https://doi.org/10.1103/PhysRevB.89.035438
C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, Anomalous lattice vibrations of singleand few-layer MoS2. ACS Nano 4(5), 2695–2700 (2010). https://doi.org/10.1021/nn1003937
A. Taube, J. Judek, A. Lapiriska, M. Zdrojek, Temperature-dependent thermal properties of supported MoS2 monolayers. ACS Appl. Mater. Interfaces. 7(9), 5061–5065 (2015). https://doi.org/10.1021/acsami.5b00690
R. Yan, J.R. Simpson, S. Bertolazzi, J. Brivio, M. Watson et al., Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 8(1), 986–993 (2014). https://doi.org/10.1021/nn405826k
S. Sahoo, A.P.S. Gaur, M. Ahmadi, M.J.F. Guinel, R.S. Katiyar, Temperature-dependent raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C 117(17), 9042–9047 (2013). https://doi.org/10.1021/jp402509w
I. Jo, M.T. Pettes, E. Ou, W. Wu, L. Shi, Basal-plane thermal conductivity of few-layer molybdenum disulfide. Appl. Phys. Lett. 104(20), 201902 (2014). https://doi.org/10.1063/1.4876965
X. Liu, G. Zhang, Q.-X. Pei, Y.-W. Zhang, Phonon thermal conductivity of monolayer MoS2 sheet and nanoribbons. Appl. Phys. Lett. 103(13), 133113 (2013). https://doi.org/10.1063/1.4823509
Z. Ding, J.-W. Jiang, Q.-X. Pei, Y.-W. Zhang, In-plane and cross-plane thermal conductivities of molybdenum disulfide. Nanotechnology 26(6), 065703 (2015). https://doi.org/10.1088/0957-4484/26/6/065703
G. Zhang, Y.-W. Zhang, Strain effects on thermoelectric properties of two-dimensional materials. Mech. Mate. 91, 382–398 (2015). https://doi.org/10.1016/j.mechmat.2015.03.009
W.-X. Zhou, K.-Q. Chen, First-pprinciples determination of ultralow thermal conductivity of monolayer WSe2. Sci. Rep. 5, 15070 (2015). https://doi.org/10.1038/srep15070
J. Ma, W. Li, X. Luo, Ballistic thermal transport in monolayer transition-metal dichalcogenides: role of atomic mass. Appl. Phys. Lett. 108(8), 082102 (2016). https://doi.org/10.1063/1.4942451
X. Gu, R. Yang, Phonon transport in single-layer transition metal dichalcogenides: a first-principles study. Appl. Phys. Lett. 105(13), 131903 (2014). https://doi.org/10.1063/1.4896685
T.-H. Liu, Y.-C. Chen, C.-W. Pao, C.-C. Chang, Anisotropic thermal conductivity of MoS2 nanoribbons: chirality, edge effects. Appl. Phys. Lett. 104(20), 201909 (2014). https://doi.org/10.1063/1.4878395
W. Li, J. Carrete, N. Mingo, Thermal conductivity and phonon linewidths of monolayer MoS2 from first principles. Appl. Phys. Lett. 103(25), 253103 (2013). https://doi.org/10.1063/1.4850995
D. Wickramaratne, F. Zahid, R.K. Lake, Electronic and thermoelectric properties of few-layer transition metal dichalcogenides. J. Chem. Phys. 140(12), 124710 (2014). https://doi.org/10.1063/1.4869142
M. Achimovicova, N. Daneu, A. Recnik, J. Durisin, P. Balaz, M. Fabian, J. Kovac, A. Satka, Characterization of mechanochemically synthesized lead selenide. Chem. Pap. 63(5), 562–567 (2009). https://doi.org/10.2478/s11696-009-0050-6
C. Guillen, J. Montero, J. Herrero, Characteristics of SnSe and SnSe2 thin films grown onto polycrystalline SnO2-coated glass substrates. Phys. Status Solidi A 208(3), 679–683 (2011). https://doi.org/10.1002/pssa.201026584
M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee et al., New directions for low-dimensional thermoelectric materials. Adv. Mater. 19(8), 1043–1053 (2007). https://doi.org/10.1002/adma.200600527
J.R. Szczech, J.M. Higgins, S. Jin, Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. J. Mater. Chem. 21(12), 4037–4055 (2011). https://doi.org/10.1039/c0jm02755c
L.D. Hicks, M.S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47(24), 16631–16634 (1993). https://doi.org/10.1103/PhysRevB.47.16631
G.D. Mahan, J.O. Sofo, The best thermoelectric. Proc. Natl. Acad. Sci. U.S.A. 93(15), 7436–7439 (1996). https://doi.org/10.1073/pnas.93.15.7436
A. Samad, M. Noor-A-Alam, Y.-H. Shin, First principles study of a SnS2/graphene heterostructure: a promising anode material for rechargeable Na ion batteries. J. Mater. Chem. A 4(37), 14316–14323 (2016). https://doi.org/10.1039/c6ta05739j
R. Fei, A. Faghaninia, R. Soklaski, J.-A. Yan, C. Lo, L. Yang, Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Lett. 14(11), 6393–6399 (2014). https://doi.org/10.1021/nl502865s
L. Cheng, H. Liu, X. Tan, J. Zhang, J. Wei, H. Lv, J. Shi, X. Tang, Thermoelectric properties of a monolayer bismuth. J. Phys. Chem. C 118(2), 904–910 (2014). https://doi.org/10.1021/jp411383j
A. Agarwal, M.N. Vashi, D. Lakshminarayana, N.M. Batra, Electrical resistivity anisotropy in layered p-SnSe single crystals. J. Mater. Sci. Mater. El. 11(1), 67–71 (2000). https://doi.org/10.1023/A:1008960305097
K.-M. Chung, D. Wamwangi, M. Woda, M. Wuttig, W. Bensch, Investigation of SnSe, SnSe2, and Sn2Se3 alloys for phase change memory applications. J. Appl. Phys. 103(8), 083523 (2008). https://doi.org/10.1063/1.2894903
S. Chen, K. Cai, W. Zhao, The effect of Te doping on the electronic structure and thermoelectric properties of SnSe. Phys. B 407(21), 4154–4159 (2012). https://doi.org/10.1016/j.physb.2012.06.041
Q. Zhang, H. Wang, W. Liu, H. Wang, B. Yu et al., Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide. Energ. Environ. Sci. 5(1), 5246–5251 (2012). https://doi.org/10.1039/c1ee02465e
I.U. Arachchige, M.G. Kanatzidis, Anomalous band gap evolution from band inversion in Pb1−xSnxTe nanocrystals. Nano Lett. 9(4), 1583–1587 (2009). https://doi.org/10.1021/nl8037757
X. Shi, J.R. Salvador, J. Yang, H. Wang, Prospective thermoelectric materials: (AgSbTe2)100−x(SnTe)x quaternary system (x = 80, 85, 90, and 95). Sci. Adv. Mater. 3(4), 667–671 (2011). https://doi.org/10.1166/sam.2011.1198
R.F. Brebrick, Deviations from Stoichiometry, electrical properties in SnTe. J. Phys. Chem. Solids 24(1), 27 (1963). https://doi.org/10.1016/0022-3697(63)90038-6
Y. Chen, M.D. Nielsen, Y.-B. Gao, T.-J. Zhu, X. Zhao, J.P. Heremans, SnTe-AgSbTe2 thermoelectric alloys. Adv. Energy Mater. 2(1), 58–62 (2012). https://doi.org/10.1002/aenm.201100460
M.-K. Han, J. Androulakis, S.-J. Kim, M.G. Kanatzidis, Lead-free thermoelectrics: high figure of merit in p-type AgSnmSbTem+2. Adv. Energy Mater. 2(1), 157–161 (2012). https://doi.org/10.1002/aenm.201100613
Z.G. Chen, X.L. Shi, L.D. Zhao, J. Zou, High-performance SnSe thermoelectric materials: progress and future challenge. Prog. Mater Sci. 97, 283–346 (2018). https://doi.org/10.1016/j.pmatsci.2018.04.005
L.-D. Zhao, C. Chang, G. Tan, M.G. Kanatzidis, SnSe: a remarkable new thermoelectric material. Energy Environ. Sci. 9(10), 3044–3060 (2016). https://doi.org/10.1039/c6ee01755j
J.A. Kafalas, R.F. Brebrick, A.J. Strauss, Evidence that snte is semiconductor energy band model thermoelectric preparation at high pressure. Appl. Phys. Lett. 4(5), 93 (1964). https://doi.org/10.1063/1.1753977
S.C. Dhanabalan, J.S. Ponraj, Z. Guo, S. Li, Q. Bao, H. Zhang, Emerging trends in phosphorene fabrication towards next generation devices. Adv. Sci. 4(6), 1600305 (2017). https://doi.org/10.1002/advs.201600305
H.O. Churchill, P. Jarillo-Herrero, Two-dimensional crystals: phosphorus joins the family. Nat. Nanotechnol. 9(5), 330–331 (2014). https://doi.org/10.1038/nnano.2014.85
M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, Y. Hu, Z. Zheng, H. Zhang, 2D black phosphorus saturable absorbers for ultrafast photonics. Adv. Opt. Mater. 7(1), 1800224 (2019). https://doi.org/10.1002/adom.201800224
Z. Li, H. Xu, J. Shao, C. Jiang, F. Zhang, J. Lin, H. Zhang, J. Li, P. Huang, Polydopamine-functionalized black phosphorus quantum dots for cancer theranostics. Appl. Mater. Today 15, 297–304 (2019). https://doi.org/10.1016/j.apmt.2019.02.002
R. Cao, H.D. Wang, Z.N. Guo, D.K. Sang, L.Y. Zhang et al., Black phosphorous/indium selenide photoconductive detector for visible and near-infrared light with high sensitivity. Adv. Opt. Mater. 7(12), 1900020 (2019). https://doi.org/10.1002/adom.201900020
J. Qiao, X. Kong, Z.-X. Hu, F. Yang, W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014). https://doi.org/10.1038/ncomms5475
R. Fei, L. Yang, Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 14(5), 2884–2889 (2014). https://doi.org/10.1021/nl500935z
H. Wang, X. Wang, F. Xia, L. Wang, H. Jiang, Q. Xia, M.L. Chin, M. Dubey, S.-J. Han, Black phosphorus radio-frequency transistors. Nano Lett. 14(11), 6424–6429 (2014). https://doi.org/10.1021/nl5029717
W. Huang, Z. Xie, T. Fan, J. Li, Y. Wang et al., Black-phosphorus-analogue tin monosulfide: an emerging optoelectronic two-dimensional material for high-performance photodetection with improved stability under ambient/harsh conditions. J. Mater. Chem. C 6(36), 9582–9593 (2018). https://doi.org/10.1039/c8tc03284j
L. Viti, J. Hu, D. Coquillat, A. Politano, W. Knap, M.S. Vitiello, Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response. Sci. Rep. 6, 20474 (2016). https://doi.org/10.1038/srep20474
M. Qiu, D. Wang, W. Liang, L. Liu, Y. Zhang et al., Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy. Proc. Natl. Acad. Sci. U.S.A. 115(3), 501–506 (2018). https://doi.org/10.1073/pnas.1714421115
C. Xing, S. Chen, M. Qiu, X. Liang, Q. Liu et al., Conceptually novel black phosphorus/cellulose hydrogels as promising photothermal agents for effective cancer therapy. Adv. Healthc. Mater. 7(7), 1701510 (2018). https://doi.org/10.1002/adhm.201701510
S. Luo, J. Zhao, J. Zou, Z. He, C. Xu, F. Liu, Y. Huang, L. Dong, L. Wang, H. Zhang, Self-standing polypyrrole/black phosphorus laminated film: promising electrode for flexible supercapacitor with enhanced capacitance and cycling stability. ACS Appl. Mater. Interfaces. 10(4), 3538–3548 (2018). https://doi.org/10.1021/acsami.7b15458
H.-D. Wang, D.K. Sang, Z.-N. Guo, R. Cao, J.-L. Zhao et al., Black phosphorus-based field effect transistor devices for Ag ions detection. Chin. Phys. B 27(8), 087308 (2018). https://doi.org/10.1088/1674-1056/27/8/087308
T. Hong, B. Chamlagain, W. Lin, H.-J. Chuang, M. Pan, Z. Zhou, Y.-Q. Xu, Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale 6(15), 8978–8983 (2014). https://doi.org/10.1039/c4nr02164a
J. Sun, H.-W. Lee, M. Pasta, H. Yuan, G. Zheng, Y. Sun, Y. Li, Y. Cui, A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 10(11), 980–985 (2015). https://doi.org/10.1038/nnano.2015.194
J. Sun, G. Zheng, H.-W. Lee, N. Liu, H. Wang, H. Yao, W. Yang, Y. Cui, Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett. 14(8), 4573–4580 (2014). https://doi.org/10.1021/nl501617j
C.J. An, Y.H. Kang, C. Lee, S.Y. Cho, Preparation of highly stable black phosphorus by gold decoration for high-performance thermoelectric generators. Adv. Funct. Mater. 28(28), 1800532 (2018). https://doi.org/10.1002/adfm.201800532
E. Flores, J.R. Ares, A. Castellanos-Gomez, M. Barawi, I.J. Ferrer, C. Sanchez, Thermoelectric power of bulk black-phosphorus. Appl. Phys. Lett. 106(2), 022102 (2015). https://doi.org/10.1063/1.4905636
S.J. Choi, B.-K. Kim, T.-H. Lee, Y.H. Kim, Z. Li et al., Electrical and thermoelectric transport by variable range hopping in thin black phosphorus devices. Nano Lett. 16(7), 3969–3975 (2016). https://doi.org/10.1021/acs.nanolett.5b04957
J. Zhang, H.J. Liu, L. Cheng, J. Wei, J.H. Liang et al., High thermoelectric performance can be achieved in black phosphorus. J. Mater. Chem. C 4(5), 991–998 (2016). https://doi.org/10.1039/c5tc03238e
G. Qin, Q.-B. Yan, Z. Qin, S.-Y. Yue, H.-J. Cui, Q.-R. Zheng, G. Su, Hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance. Sci. Rep. 4, 6946 (2014). https://doi.org/10.1038/srep06946
Y. Saito, T. Iizuka, T. Koretsune, R. Arita, S. Shimizu, Y. Iwasa, Gate-tuned thermoelectric power in black phosphorus. Nano Lett. 16(8), 4819–4824 (2016). https://doi.org/10.1021/acs.nanolett.6b00999
B. Smith, B. Vermeersch, J. Carrete, E. Ou, J. Kim, N. Mingo, D. Akinwande, L. Shi, Temperature and thickness dependences of the anisotropic in-plane thermal conductivity of black phosphorus. Adv. Mater. 29(5), 1603756 (2017). https://doi.org/10.1002/adma.201603756
B. Sun, X. Gu, Q. Zeng, X. Huang, Y. Yan, Z. Liu, R. Yang, Y.K. Koh, Temperature dependence of anisotropic thermal-conductivity tensor of bulk black phosphorus. Adv. Mater. 29(3), 1603297 (2017). https://doi.org/10.1002/adma.201603297
S. Lee, F. Yang, J. Suh, S. Yang, Y. Lee et al., Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nat. Commun. 6, 8573 (2015). https://doi.org/10.1038/ncomms9573
Z. Luo, J. Maassen, Y. Deng, Y. Du, R.P. Garrelts, M.S. Lundstrom, P.D. Ye, X. Xu, Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 6, 8572 (2015). https://doi.org/10.1038/ncomms9572
A. Jain, A.J.H. McGaughey, Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep. 5, 8501 (2015). https://doi.org/10.1038/srep08501
H. Jang, J.D. Wood, C.R. Ryder, M.C. Hersam, D.G. Cahill, Anisotropic thermal conductivity of exfoliated black phosphorus. Adv. Mater. 27(48), 8017–8022 (2015). https://doi.org/10.1002/adma.201503466
M. Khazaei, M. Arai, T. Sasaki, M. Estili, Y. Sakka, Two-dimensional molybdenum carbides: potential thermoelectric materials of the MXene family. Phys. Chem. Chem. Phys. 16(17), 7841–7849 (2014). https://doi.org/10.1039/c4cp00467a
M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman, Y. Gogotsi, M.W. Barsoum, New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 135(43), 15966–15969 (2013). https://doi.org/10.1021/ja405735d
M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153), 1502–1505 (2013). https://doi.org/10.1126/science.1241488
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon, M.W. Barsoum, Y. Gogotsi, Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013). https://doi.org/10.1038/ncomms2664
S. Kumar, U. Schwingenschlogl, Thermoelectric performance of functionalized Sc2C MXenes. Phys. Rev. B 94(3), 035405 (2016). https://doi.org/10.1103/PhysRevB.94.035405
H. Kim, B. Anasori, Y. Gogotsi, H.N. Alshareef, Thermoelectric properties of two-dimensional molybdenum-based MXenes. Chem. Mater. 29(15), 6472–6479 (2017). https://doi.org/10.1021/acs.chemmater.7b02056
S. Sarikurt, D. Cakir, M. Keceli, C. Sevik, The influence of surface functionalization on thermal transport and thermoelectric properties of MXene monolayers. Nanoscale 10(18), 8859–8868 (2018). https://doi.org/10.1039/c7nr09144c
S. Kumar, U. Schwingenschlogl, Thermoelectric response of bulk and mono layer MoSe2 and WSe2. Chem. Mater. 27(4), 1278–1284 (2015). https://doi.org/10.1021/cm504244b
S. Chandra, A. Banik, K. Biswas, N-type ultrathin few-layer nanosheets of bi-doped SnSe: synthesis and thermoelectric properties. ACS Energy Lett. 3(5), 1153–1158 (2018). https://doi.org/10.1021/acsenergylett.8b00399
G. Han, S.R. Popuri, H.F. Greer, J.-W.G. Bos, W. Zhou et al., Facile surfactant-free synthesis of p-type SnSe nanoplates with exceptional thermoelectric power factors. Angew. Chem. Int. Ed. 55(22), 6433–6437 (2016). https://doi.org/10.1002/anie.201601420
N.A. Rongione, M. Li, H. Wu, H.D. Nguyen, J.S. Kang, B. Ouyang, H. Xia, Y. Hu, High-performance solution-processable flexible SnSe nanosheet films for lower grade waste heat recovery. Adv. Electron. Mater. 5(3), 1800774 (2019). https://doi.org/10.1002/aelm.201800774
H. Ju, M. Kim, D. Park, J. Kim, A strategy for low thermal conductivity and enhanced thermoelectric performance in SnSe: porous SnSe1–xSx nanosheets. Chem. Mater. 29(7), 3228–3236 (2017). https://doi.org/10.1021/acs.chemmater.7b00423
M. Hong, Z.-G. Chen, L. Yang, T.C. Chasapis, S.D. Kang et al., Enhancing the thermoelectric performance of SnSe1−xTex nanoplates through band engineering. J. Mater. Chem. A 5(21), 10713–10721 (2017). https://doi.org/10.1039/c7ta02677c
H. Ju, K. Kim, D. Park, J. Kim, Fabrication of porous SnSeS nanosheets with controlled porosity and their enhanced thermoelectric performance. Chem. Eng. J. 335, 560–566 (2018). https://doi.org/10.1016/j.cej.2017.11.003
P. Xu, T. Fu, J. Xin, Y. Liu, P. Ying, X. Zhao, H. Pan, T. Zhu, Anisotropic thermoelectric properties of layered compound SnSe2. Sci. Bull. 62(24), 1663–1668 (2017). https://doi.org/10.1016/j.scib.2017.11.015
Y. Wu, W. Li, A. Faghaninia, Z. Chen, J. Li et al., Promising thermoelectric performance in van der Waals layered SnSe2. Mater. Today Phys. 3, 127–136 (2017). https://doi.org/10.1016/j.mtphys.2017.10.001
Y. Shu, X. Su, H. Xie, G. Zheng, W. Liu, Y. Yan, T. Luo, X. Yang, D. Yang, C. Uher, X. Tang, Modification of bulk heterojunction and Cl doping for high-performance thermoelectric SnSe2/SnSe nanocomposites. ACS Appl. Mater. Interfaces 10(18), 15793–15802 (2018). https://doi.org/10.1021/acsami.8b00524
S. Saha, A. Banik, K. Biswas, Few-layer nanosheets of n-type SnSe2. Chem. Eur. J. 22(44), 15634–15638 (2016). https://doi.org/10.1002/chem.201604161
X. Yan, X. Cui, B. Li, L.-S. Li, Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett. 10(5), 1869–1873 (2010). https://doi.org/10.1021/nl101060h
J.S. Son, M.K. Choi, M.-K. Han, K. Park, J.-Y. Kim et al., N-type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates. Nano Lett. 12(2), 640–647 (2012). https://doi.org/10.1021/nl203389x
Y. Min, G. Park, B. Kim, A. Giri, J. Zeng, J.W. Roh, S.I. Kim, K.H. Lee, U. Jeong, Synthesis of multishell nanoplates by consecutive epitaxial growth of Bi2Se3 and Bi2Te3 nanoplates and enhanced thermoelectric properties. ACS Nano 9(7), 6843–6853 (2015). https://doi.org/10.1021/nn507250r
M. Hong, T.C. Chasapis, Z.-G. Chen, L. Yang, M.G. Kanatzidis, G.J. Snyder, J. Zou, N-type Bi2Te3−xSex nanoplates with enhanced thermoelectric efficiency driven by wide-fequency phonon scatterings and synergistic carrier scatterings. ACS Nano 10(4), 4719–4727 (2016). https://doi.org/10.1021/acsnano.6b01156
Z. Lu, M. Layani, X. Zhao, L.P. Tan, T. Sun, S. Fan, Q. Yan, S. Magdassi, H.H. Hng, Fabrication of flexible thermoelectric thin film devices by inkjet printing. Small 10(17), 3551–3554 (2014). https://doi.org/10.1002/smll.201303126
Z. Aabdin, N. Peranio, M. Winkler, D. Bessas, J. König, R.P. Hermann, H. Böttner, O. Eibl, Sb2Te3 and Bi2Te3 thin films grown by room-temperature MBE. J. Electron. Mater. 41(6), 1493–1497 (2011). https://doi.org/10.1007/s11664-011-1870-z
H. You, S.-H. Bae, J. Kim, J.-S. Kim, C. Park, Deposition of nanocrystalline Bi2Te3 films using a modified MOCVD system. J. Electron. Mater. 40(5), 635–640 (2011). https://doi.org/10.1007/s11664-010-1490-z
X. Tang, H. Chen, J.S. Ponraj, S.C. Dhanabalan, Q. Xiao, D. Fan, H. Zhang, Fluorination-enhanced ambient stability and electronic tolerance of black phosphorus quantum dots. Adv. Sci. 5(9), 1800420 (2018). https://doi.org/10.1002/advs.201800420
X. Zhongjian, W. Dou, F. Taojian, X. Chenyang, L. Zhongjun et al., Black phosphorus analogue tin sulfide nanosheets: synthesis and application as near-infrared photothermal agents and drug delivery platforms for cancer therapy. J. Mater. Chem. B 6(29), 4747–4755 (2018). https://doi.org/10.1039/c8tb00729b
J. Zhou, Z. Li, M. Ying, M. Liu, X. Wang, X. Wang, L. Cao, H. Zhang, G. Xu, Black phosphorus nanosheets for rapid microRNA detection. Nanoscale 10(11), 5060–5064 (2018). https://doi.org/10.1039/c7nr08900g
L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang et al., Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, hgh stability, and applications in all-optical switching and wavelength conversion. Adv. Opt. Mater. 6(2), 1700985 (2018). https://doi.org/10.1002/adom.201700985
Y. Zhou, M. Zhang, Z. Guo, L. Miao, S.-T. Han, Z. Wang, X. Zhang, H. Zhang, Z. Peng, Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices. Mater. Horizons 4(6), 997–1019 (2017). https://doi.org/10.1039/c7mh00543a
Y. Xu, J. Yuan, K. Zhang, Y. Hou, Q. Sun et al., Field-induced n-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility. Adv. Funct. Mater. 27(38), 1702211 (2017). https://doi.org/10.1002/adfm.201702211
X. Ren, J. Zhou, X. Qi, Y. Liu, Z. Huang et al., Few-layer black phosphorus nanosheets as electrocatalysts for highly efficient oxygen evolution reaction. Adv. Energy Mater. 7(19), 1700396 (2017). https://doi.org/10.1002/aenm.201700396
M. Qiu, Z.T. Sun, D.K. Sang, X.G. Han, H. Zhang, C.M. Niu, Current progress in black phosphorus materials and their applications in electrochemical energy storage. Nanoscale 9(36), 13384–13403 (2017). https://doi.org/10.1039/c7nr03318d
G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11(12), 5111–5116 (2011). https://doi.org/10.1021/nl201874w
J. Pu, Y. Yomogida, K.-K. Liu, L.-J. Li, Y. Iwasa, T. Takenobu, Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12(8), 4013–4017 (2012). https://doi.org/10.1021/nl301335q
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011). https://doi.org/10.1038/nnano.2010.279
J. Feng, W. Zhu, Y. Deng, Q. Song, Q. Zhang, Enhanced antioxidation and thermoelectric properties of the flexible screen-printed Bi2Te3 films through interface modification. ACS Appl. Energy Mater. 2(4), 2828–2836 (2019). https://doi.org/10.1021/acsaem.9b00178
M.R. Scimeca, F. Yang, E. Zaia, N. Chen, P. Zhao et al., Rapid stoichiometry control in Cu2Se thin films for room-temperature power factor improvement. ACS Appl. Energy Mater. 2(2), 1517–1525 (2019). https://doi.org/10.1021/acsaem.8b02118
A. Bano, N.K. Gaur, Interfacial coupling effect on electron transport in MoS2/SrTiO3 heterostructure: an ab initio study. Sci. Rep. 8, 714 (2018). https://doi.org/10.1038/s41598-017-18984-6
H. Huang, Y. Cui, Q. Li, C. Dun, W. Zhou, W. Huang, L. Chen, C.A. Hewitt, D.L. Carroll, Metallic 1T phase MoS2 nanosheets for high-performance thermoelectric energy harvesting. Nano Energy 26, 172–179 (2016). https://doi.org/10.1016/j.nanoen.2016.05.022
Y. Guo, C. Dun, J. Xu, P. Li, W. Huang et al., Wearable thermoelectric devices based on Au-decorated two-dimensional MoS2. ACS Appl. Mater. Interfaces 10(39), 33316–33321 (2018). https://doi.org/10.1021/acsami.8b10720
Y. Zhou, J. Wan, Q. Li, L. Chen, J. Zhou et al., Chemical welding on semimetallic TiS2 nanosheets for high-performance flexible n-type thermoelectric films. ACS Appl. Mater. Interfaces 9(49), 42430–42437 (2017). https://doi.org/10.1021/acsami.7b15026
R. Tian, C. Wan, Y. Wang, Q. Wei, T. Ishida et al., A solution-processed TiS2/organic hybrid superlattice film towards flexible thermoelectric devices. J. Mater. Chem. A 5(2), 564–570 (2017). https://doi.org/10.1039/c6ta08838d
C. Wan, Y. Kodama, M. Kondo, R. Sasai, X. Qian et al., Dielectric mismatch mediates carrier mobility in organic-intercalated layered TiS2. Nano Lett. 15(10), 6302–6308 (2015). https://doi.org/10.1021/acs.nanolett.5b01013
C. Wan, X. Gu, F. Dang, T. Itoh, Y. Wang et al., Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 14(6), 622–627 (2015). https://doi.org/10.1038/nmat4251
Y. Lin, C. Norman, D. Srivastava, F. Azough, L. Wang et al., Thermoelectric power generation from lanthanum strontium titanium oxide at room temperature through the addition of graphene. ACS Appl. Mater. Interfaces 7(29), 15898–15908 (2015). https://doi.org/10.1021/acsami.5b03522
D. Chen, Y. Zhao, Y. Chen, B. Wang, H. Chen, J. Zhou, Z. Liang, One-step chemical synthesis of ZnO/Graphene Oxide molecular hybrids for high-temperature thermoelectric applications. ACS Appl. Mater. Interfaces 7(5), 3224–3230 (2015). https://doi.org/10.1021/am507882f
S. Li, T. Fan, X. Liu, F. Liu, H. Meng, Y. Liu, F. Pan, Graphene quantum dots embedded in Bi2Te3 nanosheets to enhance thermoelectric performance. ACS Appl. Mater. Interfaces 9(4), 3677–3685 (2017). https://doi.org/10.1021/acsami.6b14274
J. Dong, W. Liu, H. Li, X. Su, X. Tang, C. Uher, In situ synthesis and thermoelectric properties of PbTe–graphene nanocomposites by utilizing a facile and novel wet chemical method. J. Mater. Chem. A 1(40), 12503–12511 (2013). https://doi.org/10.1039/c3ta12494k
D. Zhao, X. Wang, D. Wu, Enhanced thermoelectric properties of graphene/Cu2SnSe3 composites. Crystals 7(3), 71 (2017). https://doi.org/10.3390/cryst7030071
H. Chen, C. Yang, H. Liu, G. Zhang, D. Wan, F. Huang, Thermoelectric properties of CuInTe2/graphene composites. CrystEngComm 15(34), 6648–6651 (2013). https://doi.org/10.1039/c3ce40334c
B. Feng, J. Xie, G. Cao, T. Zhu, X. Zhao, Enhanced thermoelectric properties of p-type CoSb3/graphene nanocomposite. J. Mater. Chem. A 1(42), 13111–13119 (2013). https://doi.org/10.1039/c3ta13202a
S. Yang, J. Si, Q. Su, H. Wu, Enhanced thermoelectric performance of SnSe doped with layered MoS2/graphene. Mater. Lett. 193, 146–149 (2017). https://doi.org/10.1016/j.matlet.2017.01.079
D. Suh, S. Lee, H. Mun, S.-H. Park, K.H. Lee, S.W. Kim, J.-Y. Choi, S. Baik, Enhanced thermoelectric performance of Bi0.5Sb1.5Te3-expanded graphene composites by simultaneous modulation of electronic and thermal carrier transport. Nano Energy 13, 67–76 (2015). https://doi.org/10.1016/j.nanoen.2015.02.001
S. Li, X. Liu, Y. Liu, F. Liu, J. Luo, F. Pan, Optimized hetero-interfaces by tuning 2D SnS2 thickness in Bi2Te2.7Se0.3/SnS2 nanocomposites to enhance thermoelectric performance. Nano Energy 39, 297–305 (2017). https://doi.org/10.1016/j.nanoen.2017.07.011
X.-Q. Huang, Y.-X. Chen, M. Yin, D. Feng, J. He, Origin of the enhancement in transport properties on polycrystalline SnSe with compositing two-dimensional material MoSe2. Nanotechnology 28(10), 105708 (2017). https://doi.org/10.1088/1361-6528/aa55e3
Z.U. Khan, J. Edberg, M.M. Hamedi, R. Gabrielsson, H. Granberg et al., Thermoelectric polymers and their elastic aerogels. Adv. Mater. 28(22), 4556–4562 (2016). https://doi.org/10.1002/adma.201505364
M. He, F. Qiu, Z. Lin, Towards high-performance polymer-based thermoelectric materials. Energy Environ. Sci. 6(5), 1352–1361 (2013). https://doi.org/10.1039/c3ee24193a
X. Hu, K. Zhang, J. Zhang, S. Wang, Y. Qiu, Thermoelectric properties of conducting polymer nanowire-tellurium nanowire composites. ACS Appl. Energy Mater. 1(9), 4883–4890 (2018). https://doi.org/10.1021/acsaem.8b00909
A.S. Kshirsagar, C. Hiragond, A. Dey, P.V. More, P.K. Khanna, Band engineered I/III/V-VI binary metal selenide/MWCNT/PANI nanocomposites for potential room temperature thermoelectric applications. ACS Appl. Energy Mater. 2(4), 2680–2691 (2019). https://doi.org/10.1021/acsaem.9b00013
X. Wang, F. Meng, Q. Jiang, W. Zhou, F. Jiang et al., Simple layer-by-layer assembly method for simultaneously enhanced electrical conductivity and thermopower of PEDOT:PSS/Ce-MoS2 heterostructure films. ACS Appl. Energy Mater. 1(7), 3123–3133 (2018). https://doi.org/10.1021/acsaem.8b00315
Y. Chen, Y. Zhao, Z. Liang, Solution processed organic thermoelectrics: towards flexible thermoelectric modules. Energy Environ. Sci. 8(2), 401–422 (2015). https://doi.org/10.1039/c4ee3297g
B. Russ, A. Glaudell, J.J. Urban, M.L. Chabinyc, R.A. Segalman, Organic thermoelectric materials for energy harvesting, temperature control. Nat. Rev. Mater. 1(10), 16050 (2016). https://doi.org/10.1038/natrevmats.2016.50
H. Ju, J. Kim, Chemically exfoliated SnSe nanosheets and their SnSe/Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) composite films for polymer based thermoelectric applications. ACS Nano 10(6), 5730–5739 (2016). https://doi.org/10.1021/acsnano.5b07355
N.E. Coates, S.K. Yee, B. McCulloch, K.C. See, A. Majumdar, R.A. Segalman, J.J. Urban, Effect of interfacial properties on polymer-nanocrystal thermoelectric transport. Adv. Mater. 25(11), 1629–1633 (2013). https://doi.org/10.1002/adma.201203915
L. Wang, Q. Yao, J. Xiao, K. Zeng, S. Qu, W. Shi, Q. Wang, L. Chen, Engineered molecular chain ordering in single-walled carbon nanotubes/polyaniline composite films for high-performance organic thermoelectric materials. Chem. Asian J. 11(12), 1804–1810 (2016). https://doi.org/10.1002/asia.201600212
J. Choi, J.Y. Lee, S.S. Lee, C.R. Park, H.J.A.E.M. Kim, High-performance thermoelectric paper based on double carrier-filtering processes at nanowire heterojunctions. Adv. Energy Mater. 6(9), 1502181 (2016). https://doi.org/10.1002/aenm.201502181
E.W. Zaia, A. Sahu, P. Zhou, M.P. Gordon, J.D. Forster et al., Carrier scattering at alloy nanointerfaces enhances power factor in PEDOT:PSS hybrid thermoelectrics. Nano Lett. 16(5), 3352–3359 (2016). https://doi.org/10.1021/acs.nanolett.6b01009
H. Ju, D. Park, J. Kim, Fabrication of porous SnS nanosheets and their combination with conductive polymer for hybrid thermoelectric application. Chem. Eng. J. 356, 950–954 (2019). https://doi.org/10.1016/j.cej.2018.09.106
H. Ju, J. Kim, Fabrication of conductive polymer/inorganic nanoparticles composite films: PEDOT:PSS with exfoliated tin selenide nanosheets for polymer-based thermoelectric devices. Chem. Eng. J. 297, 66–73 (2016). https://doi.org/10.1016/j.cej.2016.03.137
H. Ju, D. Park, J. Kim, Fabrication of polyaniline-coated SnSeS Nanosheet/Polyvinylidene difluoride composites by a solution-based process and optimization for flexible thermoelectrics. ACS Appl. Mater. Interfaces. 10(14), 11920–11925 (2018). https://doi.org/10.1021/acsami.7b19667
H. Ju, D. Park, J. Kim, Solution-processable flexible thermoelectric composite films based on conductive polymer/SnSe0.8S0.2 nanosheets/carbon nanotubes for wearable electronic applications. J. Mater. Chem. 6(14), 5627–5634 (2018). https://doi.org/10.1039/c7ta11285h
X. Cheng, L. Wang, X. Wang, G. Chen, Flexible films of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/SnS nanobelt thermoelectric composites. Compos. Sci. Technol. 155, 247–251 (2018). https://doi.org/10.1016/j.compscitech.2017.12.028
B. Zhang, J. Sun, H.E. Katz, F. Fang, R.L. Opila, Promising thermoelectric properties of commercial PEDOT:PSS materials and their Bi2Te3 powder composites. ACS Appl. Mater. Interfaces 2(11), 3170–3178 (2010). https://doi.org/10.1021/am100654p
Y. Du, K.F. Cai, S. Chen, P. Cizek, T. Lin, Facile preparation and thermoelectric Properties of Bi2Te3 based alloy nanosheet/PEDOT:PSS composite films. ACS Appl. Mater. Interfaces 6(8), 5735–5743 (2014). https://doi.org/10.1021/am5002772
F. Jiang, J. Xiong, W. Zhou, C. Liu, L. Wang, F. Zhao, H. Liu, J. Xu, Use of organic solvent-assisted exfoliated MoS2 for optimizing the thermoelectric performance of flexible PEDOT:PSS thin films. J. Mater. Chem. A 4(14), 5265–5273 (2016). https://doi.org/10.1039/c6ta00305b
E.J. Bae, Y.H. Kang, K.-S. Jang, C. Lee, S.Y. Cho, Solution synthesis of telluride-based nano-barbell structures coated with PEDOT:PSS for spray-printed thermoelectric generators. Nanoscale 8(21), 10885–10890 (2016). https://doi.org/10.1039/c5nr07032e
X. Li, C. Liu, T. Wang, W. Wang, X. Wang, Q. Jiang, F. Jiang, J. Xu, Preparation of 2D MoSe2/PEDOT:PSS composite and its thermoelectric properties. Mater. Res. Express 4(11), 116410 (2017). https://doi.org/10.1088/2053-1591/aa99f9
Y. Wang, J. Yang, L. Wang, K. Du, Q. Yin, Q. Yin, Polypyrrole/graphene/polyaniline ternary nanocomposite with high thermoelectric power factor. ACS Appl. Mater. Interfaces 9(23), 20124–20131 (2017). https://doi.org/10.1021/acsami.7b05357
L. Wang, Q. Yao, H. Bi, F. Huang, Q. Wang, L. Chen, PANI/graphene nanocomposite films with high thermoelectric properties by enhanced molecular ordering. J. Mater. Chem. A 3(13), 7086–7092 (2015). https://doi.org/10.1039/c4ta06422d
Z. Zhang, G. Chen, H. Wang, W. Zhai, Enhanced thermoelectric property by the construction of a nanocomposite 3D interconnected architecture consisting of graphene nanolayers sandwiched by polypyrrole nanowires. J. Mater. Chem. C 3(8), 1649–1654 (2015). https://doi.org/10.1039/c4tc02471k
K. Xu, G. Chen, D. Qiu, Convenient construction of poly(3,4-ethylenedioxythiophene)–graphene pie-like structure with enhanced thermoelectric performance. J. Mater. Chem. A 1(40), 12395–12399 (2013). https://doi.org/10.1039/c3ta12691a
L. Wang, Q. Yao, H. Bi, F. Huang, Q. Wang, L. Chen, Large thermoelectric power factor in polyaniline/graphene nanocomposite films prepared by solution-assistant dispersing method. J. Mater. Chem. A 2(29), 11107–11113 (2014). https://doi.org/10.1039/c4ta01541j
Y. Du, K.F. Cai, S.Z. Shen, P.S. Casey, Preparation and characterization of graphene nanosheets/poly(3-hexylthiophene) thermoelectric composite materials. Synth. Met. 162(23), 2102–2106 (2012). https://doi.org/10.1016/j.synthmet.2012.09.011
F. Li, K. Cai, S. Shen, S. Chen, Preparation and thermoelectric properties of reduced graphene oxide/PEDOT:PSS composite films. Synth. Met. 197, 58–61 (2014). https://doi.org/10.1016/j.synthmet.2014.08.014
Y. Jiang, Z. Wang, M. Shang, Z. Zhang, S. Zhang, Heat collection and supply of interconnected netlike graphene/polyethyleneglycol composites for thermoelectric devices. Nanoscale 7(25), 10950–10953 (2015). https://doi.org/10.1039/c5nr02051d
G. Qiu, S. Huang, M. Segovia, P.K. Venuthurumilli, Y. Wang, W. Wu, X. Xu, P.D. Ye, Thermoelectric performance of 2D tellurium with accumulation contacts. Nano Lett. 19(3), 1955–1962 (2019). https://doi.org/10.1021/acs.nanolett.8b05144
J.P. Heremans, M.S. Dresselhaus, L.E. Bell, D.T. Morelli, When thermoelectrics reached the nanoscale. Nat. Nanotechnol. 8(7), 471–473 (2013). https://doi.org/10.1038/nnano.2013.129
J. Zeng, X. He, S.-J. Liang, E. Liu, Y. Sun et al., Experimental identification of critical condition for drastically enhancing thermoelectric power factor of two-dimensional layered materials. Nano Lett. 18(12), 7538–7545 (2018). https://doi.org/10.1021/acs.nanolett.8b03026
J.P. Small, K.M. Perez, P. Kim, Modulation of thermoelectric power of individual carbon nanotubes. Phys. Rev. Lett. 91(25), 256801 (2003). https://doi.org/10.1103/PhysRevLett.91.256801
J. Lee, W. Lee, G. Wehmeyer, S. Dhuey, D.L. Olynick et al., Investigation of phonon coherence and backscattering using silicon nanomeshes. Nat. Commun. 8, 14054 (2017). https://doi.org/10.1038/ncomms14054
J.-K. Yu, S. Mitrovic, D. Tham, J. Varghese, J.R. Heath, Reduction of thermal conductivity in phononic nanomesh structures. Nat. Nanotechnol. 5(10), 718–721 (2010). https://doi.org/10.1038/nnano.2010.149
M.T. Pettes, J. Maassen, I. Jo, M.S. Lundstrom, L. Shi, Effects of surface band bending and scattering on thermoelectric transport in suspended bismuth telluride nanoplates. Nano Lett. 13(11), 5316–5322 (2013). https://doi.org/10.1021/nl402828s
A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard III, J.R. Heath, Silicon nanowires as efficient thermoelectric materials. Nature 451(7175), 168–171 (2008). https://doi.org/10.1038/nature06458
K. Hippalgaonkar, B. Huang, R. Chen, K. Sawyer, P. Ercius, A. Majumdar, Fabrication of microdevices with integrated nanowires for investigating low-dimensional phonon transport. Nano Lett. 10(11), 4341–4348 (2010). https://doi.org/10.1021/nl101671r
A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175), 163–167 (2008). https://doi.org/10.1038/nature06381
J. Lim, H.-T. Wang, J. Tang, S.C. Andrews, H. So, J. Lee, D.H. Lee, T.P. Russell, P. Yang, Simultaneous thermoelectric property measurement and incoherent phonon transport in holey silicon. ACS Nano 10(1), 124–132 (2016). https://doi.org/10.1021/acsnano.5b05385
J. Lee, J. Lim, P. Yang, Ballistic phonon transport in holey silicon. Nano Lett. 15(5), 3273–3279 (2015). https://doi.org/10.1021/acs.nanolett.5b00495
J. Tang, H.-T. Wang, D.H. Lee, M. Fardy, Z. Huo, T.P. Russell, P. Yang, Holey silicon as an efficient thermoelectric material. Nano Lett. 10(10), 4279–4283 (2010). https://doi.org/10.1021/nl102931z
G. Zeng, J.M.O. Zide, W. Kim, J.E. Bowers, A.C. Gossard, Cross-plane seebeck coefficient of ErAs:InGaAs∕InGaAlAs superlattices. J. Appl. Phys. 101(3), 035502 (2007). https://doi.org/10.1063/1.2433751
B. Yang, W.L. Liu, J.L. Liu, K.L. Wang, G. Chen, Measurements of anisotropic thermoelectric properties in superlattices. Appl. Phys. Lett. 81(19), 3588–3590 (2002). https://doi.org/10.1063/1.1515876
Z. Jia, C. Li, X. Li, J. Shi, Z. Liao, D. Yu, X. Wu, Thermoelectric signature of the chiral anomaly in Cd3As2. Nat. Commun. 7, 13013 (2016). https://doi.org/10.1038/ncomms13013
J. Shen, Y. Jung, A.S. Disa, F.J. Walker, C.H. Ahn, J.J. Cha, Synthesis of SnTe nanoplates with 100 and 111 surfaces. Nano Lett. 14(7), 4183–4188 (2014). https://doi.org/10.1021/nl501953s
Y.M. Zuev, J.S. Lee, C. Galloy, H. Park, P. Kim, Diameter ependence of the transport properties of antimony telluride nanowires. Nano Lett. 10(8), 3037–3040 (2010). https://doi.org/10.1021/nl101505q
H. Karamitaheri, M. Pourfath, R. Faez, H. Kosina, Geometrical effects on the thermoelectric properties of ballistic graphene antidot lattices. J. Appl. Phys. 110(5), 054506 (2011). https://doi.org/10.1063/1.3629990
J.Y. Kim, J.-H. Lee, J.C. Grossman, Thermal transport in functionalized graphene. ACS Nano 6(10), 9050–9057 (2012). https://doi.org/10.1021/nn3031595
N. Xiao, X. Dong, L. Song, D. Liu, Y. Tay et al., Enhanced thermopower of graphene films with oxygen plasma treatment. ACS Nano 5(4), 2749–2755 (2011). https://doi.org/10.1021/nn2001849
J. Oh, H. Yoo, J. Choi, J.Y. Kim, D.S. Lee et al., Significantly reduced thermal conductivity and enhanced thermoelectric properties of single- and bi-layer graphene nanomeshes with sub-10 nm neck-width. Nano Energy 35, 26–35 (2017). https://doi.org/10.1016/j.nanoen.2017.03.019
T. Pei, L. Bao, R. Ma, S. Song, B. Ge et al., Epitaxy of ultrathin SnSe single crystals on polydimethylsiloxane: in-plane electrical anisotropy and gate-tunable thermopower. Adv. Electron. Mater. 2(11), 1600292 (2016). https://doi.org/10.1002/aelm.201600292
M. Yoshida, T. Iizuka, Y. Saito, M. Onga, R. Suzuki, Y. Zhang, Y. Iwasa, S. Shimizu, Gate-optimized thermoelectric power factor in ultrathin WSe2 single crystals. Nano Lett. 16(3), 2061–2065 (2016). https://doi.org/10.1021/acs.nanolett.6b00075
Z. Li, S.R. Bauers, N. Poudel, D. Hamann, X. Wang et al., Cross-plane seebeck coefficient measurement of misfit layered compounds (SnSe)(n)(TiSe2)(n), (n = 1,3,4,5). Nano Lett. 17(3), 1978–1986 (2017). https://doi.org/10.1021/acs.nanolett.6b05402
J. Chen, D.M. Hamann, D. Choi, N. Poudel, L. Shen, L. Shi, D.C. Johnson, S. Cronin, Enhanced cross-plane thermoelectric transport of rotationally disordered SnSe2 via Se-vapor annealing. Nano Lett. 18(11), 6876–6881 (2018). https://doi.org/10.1021/acs.nanolett.8b02744
Z.-Y. Juang, C.-C. Tseng, Y. Shi, W.-P. Hsieh, S. Ryuzaki et al., Graphene-Au nanoparticle based vertical heterostructures: a novel route towards high-ZT Thermoelectric devices. Nano Energy 38, 385–391 (2017). https://doi.org/10.1016/j.nanoen.2017.06.004
C.-C. Chen, Z. Li, L. Shi, S.B. Cronin, Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures. Nano Res. 8(2), 666–672 (2014). https://doi.org/10.1007/s12274-014-0550-8
J.T. Robinson, S.M. Tabakman, Y. Liang, H. Wang, H.S. Casalongue, V. Daniel, H. Dai, Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc. 133(17), 6825–6831 (2011). https://doi.org/10.1021/ja2010175
J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun et al., Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 7, 12967 (2016). https://doi.org/10.1038/ncomms12967
K. Yang, S. Zhang, G. Zhang, X. Sun, S.T. Lee, Z. Liu, Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 10(9), 3318–3323 (2010). https://doi.org/10.1021/nl100996u
Z. Sun, H. Xie, S. Tang, X.-F. Yu, Z. Guo et al., Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angew. Chem. Int. Ed. 54(39), 11526–11530 (2015). https://doi.org/10.1002/anie.201506154
N.M. Gabor, J.C.W. Song, Q. Ma, N.L. Nair, T. Taychatanapat et al., Hot carrier-assisted intrinsic photoresponse in graphene. Science 334(6056), 648–652 (2011). https://doi.org/10.1126/science.1211384
Y. Yan, Z.-M. Liao, X. Ke, G. Van Tendeloo, Q. Wang et al., Topological surface state enhanced photothermoelectric effect in Bi2Se3 nanoribbons. Nano Lett. 14(8), 4389–4394 (2014). https://doi.org/10.1021/nl501276e
D.J. Groenendijk, M. Buscema, G.A. Steele, S.M. de Vasconcellos, R. Bratschitsch, H.S.J. van der Zant, A. Castellanos-gomez, Photovoltaic and photothermoelectric effect in a double-gated WSe2 device. Nano Lett. 14(10), 5846–5852 (2014). https://doi.org/10.1021/nl502741k
B.C. St-Antoine, D. Menard, R. Martel, Position sensitive photothermoelectric effect in suspended single-walled carbon nanotube films. Nano Lett. 9(10), 3503–3508 (2009). https://doi.org/10.1021/nl901696j
Y. Zhang, H. Li, L. Wang, H. Wang, X. Xie, S.-L. Zhang, R. Liu, Z.-J. Qiu, Photothermoelectric and photovoltaic effects both present in MoS2. Sci. Rep. 5, 7938 (2015). https://doi.org/10.1038/srep07938
D. Kraemer, B. Poudel, H.-P. Feng, J.C. Caylor, B. Yu et al., High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 10(7), 532–538 (2011). https://doi.org/10.1038/nmat3013
X. Cai, A.B. Sushkov, R.J. Suess, M.M. Jadidi, G.S. Jenkins et al., Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nat. Nanotechnol. 9(10), 814–819 (2014). https://doi.org/10.1038/nnano.2014.182
J.E. Muench, A. Ruocco, M.A. Giambra, V. Miseikis, D. Zhang et al., Waveguide-integrated, plasmonic enhanced graphene photodetectors. Nano Lett. 19(11), 7632–7644 (2019). https://doi.org/10.1021/acs.nanolett.9b02238
E. Leong, R.J. Suess, A.B. Sushkov, H.D. Drew, T.E. Murphy, M. Mittendorff, Terahertz photoresponse of black phosphorus. Opt. Express 25(11), 12666–12674 (2017). https://doi.org/10.1364/OE.25.012666