Recent Advances in Strain-Induced Piezoelectric and Piezoresistive Effect-Engineered 2D Semiconductors for Adaptive Electronics and Optoelectronics
Corresponding Author: Han Zhang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 106
Abstract
The development of two-dimensional (2D) semiconductors has attracted widespread attentions in the scientific community and industry due to their ultra-thin thickness, unique structure, excellent optoelectronic properties and novel physics. The excellent flexibility and outstanding mechanical strength of 2D semiconductors provide opportunities for fabricated strain-sensitive devices and utilized strain tuning their electronic and optic–electric performance. The strain-engineered one-dimensional materials have been well investigated, while there is a long way to go for 2D semiconductors. In this review, starting with the fundamental theories of piezoelectric and piezoresistive effect resulted by strain, following we reviewed the recent simulation works of strain engineering in novel 2D semiconductors, such as Janus 2D and 2D-Xene structures. Moreover, recent advances in experimental observation of strain tuning PL spectra and transport behavior of 2D semiconductors are summarized. Furthermore, the applications of strain-engineered 2D semiconductors in sensors, photodetectors and nanogenerators are also highlighted. At last, we in-depth discussed future research directions of strain-engineered 2D semiconductor and related electronics and optoelectronics device applications.
Highlights:
1 A comprehensive review of strain-engineered 2D semiconductors in electronics and optoelectronics. The basic theories and simulation studies of strain introduced piezoelectric effect and piezoresistive effect have been summarized.
2 The various experimental methods for study strain-engineered 2D semiconductors have been highlighted.
3 The applications of strain sensor, strain tuning the performance of photodetector and piezoelectric nanogenerator have been reviewed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.A. Bissett, M. Tsuji, H. Ago, Strain engineering the properties of graphene and other two-dimensional crystals. Phys. Chem. Chem. Phys. 16(23), 11124–11138 (2014). https://doi.org/10.1039/C3CP55443K
- S. Deng, A.V. Sumant, V. Berry, Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today 22, 14–35 (2018). https://doi.org/10.1016/j.nantod.2018.07.001
- Z. Dai, L. Liu, Z. Zhang, Strain engineering of 2D materials: issues and opportunities at the interface. Adv. Mater. 31(45), 1805417 (2019). https://doi.org/10.1002/adma.201805417
- B. Jaffe, Piezoelectric Ceramics (Elsevier, Amsterdam, 2012)
- Y. Sun, S.E. Thompson, T. Nishida, Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 101(10), 104503 (2007). https://doi.org/10.1063/1.2730561
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666 (2004). https://doi.org/10.1126/science.1102896
- N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys et al., Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13(3), 246–252 (2018). https://doi.org/10.1038/s41565-017-0035-5
- P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu et al., On-nanowire axial heterojunction design for high-performance photodetectors. ACS Nano 10(9), 8474–8481 (2016). https://doi.org/10.1021/acsnano.6b03458
- X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, H. Zhang, Environmentally robust black phosphorus nanosheets in solution: application for self-powered photodetector. Adv. Funct. Mater. 27(18), 1606834 (2017). https://doi.org/10.1002/adfm.201606834
- Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu et al., Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv. Mater. 29(42), 1703811 (2017). https://doi.org/10.1002/adma.201703811
- Z. Huang, W. Han, H. Tang, L. Ren, D.S. Chander, X. Qi, H. Zhang, Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure. 2D Mater 2(3), 035011 (2015). https://doi.org/10.1088/2053-1583/2/3/035011
- F. Li, J. Qi, M. Xu, J. Xiao, Y. Xu, X. Zhang, S. Liu, Y. Zhang, Layer dependence and light tuning surface potential of 2D MoS2 on various substrates. Small 13(14), 1603103 (2017). https://doi.org/10.1002/smll.201603103
- F. Li, T.-D. Huang, Y. Lan, T.-H. Lu, B.S. Kristan, T. Shen, J. Qi, Anomalous lattice vibrations of CVD-grown monolayer MoS2 probed by linear polarized excitation light. Nanoscale 11(29), 13725–13730 (2019). https://doi.org/10.1039/C9NR03203G
- Y.F. Song, H. Zhang, D.Y. Tang, D.Y. Shen, Polarization rotation vector solitons in a graphene mode-locked fiber laser. Opt. Express 20(24), 27283–27289 (2012). https://doi.org/10.1364/OE.20.027283
- Y.F. Song, H. Zhang, L.M. Zhao, D.Y. Shen, D.Y. Tang, Coexistence and interaction of vector and bound vector solitons in a dispersion-managed fiber laser mode locked by graphene. Opt. Express 24(2), 1814–1822 (2016). https://doi.org/10.1364/OE.24.001814
- G. Zheng, Y. Chen, H. Huang, C. Zhao, S. Lu, S. Chen, H. Zhang, S. Wen, Improved transfer quality of CVD-grown graphene by ultrasonic processing of target substrates: applications for ultra-fast laser photonics. ACS Appl. Mater. Interfaces 5(20), 10288–10293 (2013). https://doi.org/10.1021/am403205v
- J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, H. Zhang, Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers. Sci. Rep. 7, 42357 (2017). https://doi.org/10.1038/srep42357
- X. Jiang, S. Liu, W. Liang, S. Luo, Z. He et al., Broadband nonlinear photonics in few-layer Mxene Ti3C2Tx (T = F, O, or OH). Laser Photonics Rev. 12(2), 1700229 (2018). https://doi.org/10.1002/lpor.201700229
- P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin et al., Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers. ACS Appl. Mater. Interfaces 9(14), 12759–12765 (2017). https://doi.org/10.1021/acsami.7b01709
- S. Bai, C. Sun, H. Yan, X. Sun, H. Zhang, L. Luo, X. Lei, P. Wan, X. Chen, Healable, transparent, room-temperature electronic sensors based on carbon nanotube network-coated polyelectrolyte multilayers. Small 11(43), 5807–5813 (2015). https://doi.org/10.1002/smll.201502169
- T. Wang, Y. Guo, P. Wan, X. Sun, H. Zhang, Z. Yu, X. Chen, A flexible transparent colorimetric wrist strap sensor. Nanoscale 9(2), 869–874 (2017). https://doi.org/10.1039/c6nr08265c
- P. Wan, X. Wen, C. Sun, B.K. Chandran, H. Zhang, X. Sun, X. Chen, Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing. Small 11(40), 5409–5415 (2015). https://doi.org/10.1002/smll.201501772
- M. Qiu, Z.T. Sun, D.K. Sang, X.G. Han, H. Zhang, C.M. Niu, Current progress in black phosphorus materials and their applications in electrochemical energy storage. Nanoscale 9(36), 13384–13403 (2017). https://doi.org/10.1039/c7nr03318d
- R. Wang, X. Li, Z. Wang, H. Zhang, Electrochemical analysis graphite/electrolyte interface in Lithium-ion batteries: p-toluenesulfonyl isocyanate as electrolyte additive. Nano Energy 34, 131–140 (2017). https://doi.org/10.1016/j.nanoen.2017.02.037
- X. Chen, G. Xu, X. Ren, Z. Li, X. Qi, K. Huang, H. Zhang, Z. Huang, J. Zhong, A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors. J. Mater. Chem. A 5(14), 6581–6588 (2017). https://doi.org/10.1039/c7ta00455a
- C. Wang, Y. Wang, X. Jiang, J. Xu, W. Huang et al., Mxene Ti3C2Tx: a promising photothermal conversion material and application in all-optical modulation and all-optical information loading. Adv. Opt. Mater. 7(8), 1900060 (2019). https://doi.org/10.1002/adom.201900060
- Q. Jiang, L. Xu, N. Chen, H. Zhang, L. Dai, S. Wang, Facile synthesis of black phosphorus: an efficient electrocatalyst for the oxygen evolving reaction. Angew. Chem. Int. Ed. 55(44), 13849–13853 (2016). https://doi.org/10.1002/anie.201607393
- X. Tang, W. Liang, J. Zhao, Z. Li, M. Qiu et al., Fluorinated phosphorene: electrochemical synthesis, atomistic fluorination, and enhanced stability. Small 13(47), 1702739 (2017). https://doi.org/10.1002/smll.201702739
- T. Fan, Y. Zhou, M. Qiu, H. Zhang, Black phosphorus: a novel nanoplatform with potential in the field of bio-photonic nanomedicine. J. Innov. Opt. Heal. Sci. 11(06), 1830003 (2018). https://doi.org/10.1142/s1793545818300033
- W. Tao, X. Ji, X. Xu, M.A. Islam, Z. Li et al., Antimonene quantum dots: synthesis and application as near-infrared photothermal agents for effective cancer therapy. Angew. Chem. Int. Ed. 56(39), 11896–11900 (2017). https://doi.org/10.1002/anie.201703657
- F. Yin, K. Hu, S. Chen, D. Wang, J. Zhang et al., Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells. J. Mater. Chem. B 5(27), 5433–5440 (2017). https://doi.org/10.1039/c7tb01068k
- M. Qiu, D. Wang, W. Liang, L. Liu, Y. Zhang et al., Novel concept of the smart nir-light-controlled drug release of black phosphorus nanostructure for cancer therapy. Proc. Natl. Acad. Sci. U.S.A. 115(3), 501–506 (2018). https://doi.org/10.1073/pnas.1714421115
- B. Hunt, J.D. Sanchez-Yamagishi, A.F. Young, M. Yankowitz, B.J. LeRoy et al., Massive Dirac fermions and Hofstadter butterfly in a van der Walls heterostructure. Science 340(6139), 1427 (2013). https://doi.org/10.1126/science.1237240
- J.M. Lu, O. Zheliuk, I. Leermakers, N.F.Q. Yuan, U. Zeitler, K.T. Law, J.T. Ye, Evidence for two-dimensional Ising superconductivity in gated MoS2. Science 350(6266), 1353 (2015). https://doi.org/10.1126/science.aab2277
- K.F. Mak, K.L. McGill, J. Park, P.L. McEuen, The valley hall effect in MoS2 transistors. Science 344(6191), 1489 (2014). https://doi.org/10.1126/science.1250140
- J.R. Schaibley, H. Yu, G. Clark, P. Rivera, J.S. Ross, K.L. Seyler, W. Yao, X. Xu, Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016). https://doi.org/10.1038/natrevmats.2016.55
- D. Akinwande, C.J. Brennan, J.S. Bunch, P. Egberts, J.R. Felts et al., A review on mechanics and mechanical properties of 2D materials—graphene and beyond. Extreme Mech. Lett. 13, 42–77 (2017). https://doi.org/10.1016/j.eml.2017.01.008
- P. Johari, V.B. Shenoy, Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano 6(6), 5449–5456 (2012). https://doi.org/10.1021/nn301320r
- W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin et al., Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470 (2014). https://doi.org/10.1038/nature13792
- H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund, S.T. Pantelides, K.I. Bolotin, Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13(8), 3626–3630 (2013). https://doi.org/10.1021/nl4014748
- C. Cui, F. Xue, W.-J. Hu, L.-J. Li, Two-dimensional materials with piezoelectric and ferroelectric functionalities. NPJ 2D Mater Appl. 2(1), 18 (2018). https://doi.org/10.1038/s41699-018-0063-5
- C. Rice, R.J. Young, R. Zan, U. Bangert, D. Wolverson, T. Georgiou, R. Jalil, K.S. Novoselov, Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2. Phys. Rev. B 87(8), 081307 (2013). https://doi.org/10.1103/PhysRevB.87.081307
- J. Curie, P.J.C.O. Curie, Développement, par pression, de l’électricité polaire dans les cristaux hémièdres à faces inclinées. Bulletin de la sociètè minèralogique de France. 91, 294–295 (1880)
- MATH
- J.W. Cookson, Theory of the piezo-resistive effect. Phys. Rev. 47(2), 194–195 (1935). https://doi.org/10.1103/PhysRev.47.194.2
- A.A. Barlian, W. Park, J.R. Mallon, A.J. Rastegar, B.L. Pruitt, Review: semiconductor piezoresistance for microsystems. Proc. IEEE 97(3), 513–552 (2009). https://doi.org/10.1109/JPROC.2009.2013612
- Z.L. Wang, Nanopiezotronics. Adv. Mater. 19(6), 889–892 (2007). https://doi.org/10.1002/adma.200602918
- Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242 (2006). https://doi.org/10.1126/science.1124005
- J. Song, J. Zhou, Z.L. Wang, Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire: a technology for harvesting electricity from the environment. Nano Lett. 6(8), 1656–1662 (2006). https://doi.org/10.1021/nl060820v
- Y. Hu, Y. Chang, P. Fei, R.L. Snyder, Z.L. Wang, Designing the electric transport characteristics of ZnO micro/nanowire devices by coupling piezoelectric and photoexcitation effects. ACS Nano 4(2), 1234–1240 (2010). https://doi.org/10.1021/nn901805g
- M. Birkholz, Crystal-field induced dipoles in heteropolar crystals ii: physical significance. Zeitschrift für Physik B Conden. Matter 96(3), 333–340 (1995). https://doi.org/10.1007/BF01313055
- V.V. Kochervinskii, Piezoelectricity in crystallizing ferroelectric polymers: poly(vinylidene fluoride) and its copolymers (a review). Crystallogr. Rep. 48(4), 649–675 (2003). https://doi.org/10.1134/1.1595194
- Y. Zhang, Y. Yang, Y. Gu, X. Yan, Q. Liao, P. Li, Z. Zhang, Z. Wang, Performance and service behavior in 1-D nanostructured energy conversion devices. Nano Energy 14, 30–48 (2015). https://doi.org/10.1016/j.nanoen.2014.12.039
- P. Lin, X. Yan, F. Li, J. Du, J. Meng, Y. Zhang, Polarity-dependent piezotronic effect and controllable transport modulation of ZnO with multifield coupled interface engineering. Adv. Mater. Interfaces 4(3), 1600842 (2017). https://doi.org/10.1002/admi.201600842
- P. Lin, C. Pan, Z.L. Wang, Two-dimensional nanomaterials for novel piezotronics and piezophototronics. Mater. Today Nano 4, 17–31 (2018). https://doi.org/10.1016/j.mtnano.2018.11.006
- W. Wu, Z.L. Wang, Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nat. Rev. Mater. 1, 16031 (2016). https://doi.org/10.1038/natrevmats.2016.31
- W. Thomson, Xix, On the electro-dynamic qualities of metals: effects of magnetization on the electric conductivity of nickel and of iron. Proc. R. Soc. Lond. 8, 546–550 (1857). https://doi.org/10.1098/rspl.1856.0144
- Y. Yang, W. Guo, J. Qi, Y. Zhang, Flexible piezoresistive strain sensor based on single sb-doped ZnO nanobelts. Appl. Phys. Lett. 97(22), 223107 (2010). https://doi.org/10.1063/1.3522885
- C.S. Smith, Piezoresistance effect in germanium and silicon. Phys. Rev. 94(1), 42–49 (1954). https://doi.org/10.1103/PhysRev.94.42
- R. He, P. Yang, Giant piezoresistance effect in silicon nanowires. Nat. Nanotechnol. 1(1), 42–46 (2006). https://doi.org/10.1038/nnano.2006.53
- MathSciNet
- C. Stampfer, A. Jungen, R. Linderman, D. Obergfell, S. Roth, C. Hierold, Nano-electromechanical displacement sensing based on single-walled carbon nanotubes. Nano Lett. 6(7), 1449–1453 (2006). https://doi.org/10.1021/nl0606527
- C. An, Z. Xu, W. Shen, R. Zhang, Z. Sun et al., The opposite anisotropic piezoresistive effect of ReS2. ACS Nano 13(3), 3310–3319 (2019). https://doi.org/10.1021/acsnano.8b09161
- A. Kumar, P. Ahluwalia, Tunable Electronic and Dielectric Properties of Molybdenum Disulfide (Springer, Berlin, 2014), pp. 53–76
- R.W. Keyes, Explaining strain [in silicon]. IEEE Circuits Devices Mag. 18(5), 36–39 (2002). https://doi.org/10.1109/MCD.2002.1035350
- W.P. Mason, R.N. Thurston, Use of piezoresistive materials in the measurement of displacement, force, and torque. J. Acoust. Soc. Am. 29(10), 1096–1101 (1957). https://doi.org/10.1121/1.1908710
- K. Rim, K. Chan, L. Shi, D. Boyd, J. Ott et al., Fabrication and mobility characteristics of ultra-thin strained Si directly on insulator (SSDOI) MOSFETs. IEEE International Electron Devices Meeting 2003. 3.1.1–3.1.4 (2003)
- B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147 (2011). https://doi.org/10.1038/nnano.2010.279
- S. Bertolazzi, J. Brivio, A. Kis, Stretching and breaking of ultrathin MoS2. ACS Nano 5(12), 9703–9709 (2011). https://doi.org/10.1021/nn203879f
- R. Gao, Y. Gao, Piezoelectricity in two-dimensional group III–V buckled honeycomb monolayers. Phys. Status Solidi-R 11(3), 1600412 (2017). https://doi.org/10.1002/pssr.201600412
- F.A. Rasmussen, K.S. Thygesen, Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. J. Phys. Chem. C 119(23), 13169–13183 (2015). https://doi.org/10.1021/acs.jpcc.5b02950
- G. Cheon, K.-A.N. Duerloo, A.D. Sendek, C. Porter, Y. Chen, E.J. Reed, Data mining for new two- and one-dimensional weakly bonded solids and lattice-commensurate heterostructures. Nano Lett. 17(3), 1915–1923 (2017). https://doi.org/10.1021/acs.nanolett.6b05229
- J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, Oxford, 1985)
- T. Hu, J. Dong, Two new phases of monolayer group-iv monochalcogenides and their piezoelectric properties. Phys. Chem. Chem. Phys. 18(47), 32514–32520 (2016). https://doi.org/10.1039/C6CP06734D
- K.-A.N. Duerloo, M.T. Ong, E.J. Reed, Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 3(19), 2871–2876 (2012). https://doi.org/10.1021/jz3012436
- Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S.J.N.N. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699 (2012). https://doi.org/10.1038/nnano.2012.193
- M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H.J.N.C. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263 (2013). https://doi.org/10.1038/nchem.1589
- R. Fei, W. Li, J. Li, L. Yang, Giant piezoelectricity of monolayer group IV monochalcogenides: snSe, SnS, GeSe, and GeS. Appl. Phys. Lett. 107(17), 173104 (2015). https://doi.org/10.1063/1.4934750
- L. Li, Z. Chen, Y. Hu, X. Wang, T. Zhang, W. Chen, Q. Wang, Single-layer single-crystalline SnSe nanosheets. J. Am. Chem. Soc. 135(4), 1213–1216 (2013). https://doi.org/10.1021/ja3108017
- L.C. Gomes, A. Carvalho, A.H.C. Neto, Enhanced piezoelectricity and modified dielectric screening of two-dimensional group-IV monochalcogenides. Phys. Rev. B 92(21), 214103 (2015). https://doi.org/10.1103/PhysRevB.92.214103
- C.G. Tan, P. Zhou, J.G. Lin, L.Z. Sun, Two-dimensional semiconductors XY2 (X = Ge, Sn; Y = S, Se) with promising piezoelectric properties. Comput. Conden. Matter 11, 33–39 (2017). https://doi.org/10.1016/j.cocom.2017.04.001
- G. Michael, G. Hu, D. Zheng, Y. Zhang, Piezo-phototronic solar cell based on 2D monochalcogenides materials. J. Phys. D Appl. Phys. 52(20), 204001 (2019). https://doi.org/10.1088/1361-6463/ab0ac4
- W. Li, J. Li, Piezoelectricity in two-dimensional group-iii monochalcogenides. Nano Res. 8(12), 3796–3802 (2015). https://doi.org/10.1007/s12274-015-0878-8
- H. Yin, J. Gao, G.-P. Zheng, Y. Wang, Y. Ma, Giant piezoelectric effects in monolayer group-v binary compounds with honeycomb phases: a first-principles prediction. J. Phys. Chem. C 121(45), 25576–25584 (2017). https://doi.org/10.1021/acs.jpcc.7b08822
- L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014). https://doi.org/10.1038/nnano.2014.35
- J. Qiao, X. Kong, Z.-X. Hu, F. Yang, W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5(1), 4475 (2014). https://doi.org/10.1038/ncomms5475
- F. Xia, H. Wang, Y. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5(1), 4458 (2014). https://doi.org/10.1038/ncomms5458
- J. Tao, W. Shen, S. Wu, L. Liu, Z. Feng et al., Mechanical and electrical anisotropy of few-layer black phosphorus. ACS Nano 9(11), 11362–11370 (2015). https://doi.org/10.1021/acsnano.5b05151
- L.B. Drissi, S. Sadki, K. Sadki, Phosphorene under strain:Electronic, mechanical and piezoelectric responses. J. Phys. Chem. Solids 112, 137–142 (2018). https://doi.org/10.1016/j.jpcs.2017.09.017
- J. Li, T. Zhao, C. He, K. Zhang, Surface oxidation: an effective way to induce piezoelectricity in 2d black phosphorus. J. Phys. D: Appl. Phys. 51(12), 12LT01 (2018). https://doi.org/10.1088/1361-6463/aaad98
- L. Huang, Y. Li, Z. Wei, J. Li, Strain induced piezoelectric effect in black phosphorus and MoS2 van der waals heterostructure. Sci. Rep. 5, 16448 (2015). https://doi.org/10.1038/srep16448
- H. Yin, G.-P. Zheng, J. Gao, Y. Wang, Y. Ma, Enhanced piezoelectricity of monolayer phosphorene oxides: a theoretical study. Phys. Chem. Chem. Phys. 19(40), 27508–27515 (2017). https://doi.org/10.1039/C7CP05669A
- M.N. Blonsky, H.L. Zhuang, A.K. Singh, R.G. Hennig, Ab initio prediction of piezoelectricity in two-dimensional materials. ACS Nano 9(10), 9885–9891 (2015). https://doi.org/10.1021/acsnano.5b03394
- F. Li, Y. Li, Band gap modulation of Janus graphene nanosheets by interlayer hydrogen bonding and the external electric field: a computational study. J. Mater. Chem. C 3(14), 3416–3421 (2015). https://doi.org/10.1039/C5TC00013K
- MathSciNet
- J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er et al., Janus monolayer transition-metal dichalcogenides. ACS Nano 11(8), 8192–8198 (2017). https://doi.org/10.1021/acsnano.7b03186
- A.-Y. Lu, H. Zhu, J. Xiao, C.-P. Chuu, Y. Han et al., Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12, 744 (2017). https://doi.org/10.1038/nnano.2017.100
- L. Dong, J. Lou, V.B. Shenoy, Large in-plane and vertical piezoelectricity in Janus transition metal dichalcogenides. ACS Nano 11(8), 8242–8248 (2017). https://doi.org/10.1021/acsnano.7b03313
- N. Dimple, A. Jena, R. Rawat, M.K. Ahammed, A.D. Mohanta, Sarkar, Emergence of high piezoelectricity along with robust electron mobility in Janus structures in semiconducting group IVB dichalcogenide monolayers. J. Mater. Chem. A 6(48), 24885–24898 (2018). https://doi.org/10.1039/C8TA08781D
- Y. Guo, S. Zhou, Y. Bai, J. Zhao, Enhanced piezoelectric effect in Janus group-III chalcogenide monolayers. Appl. Phys. Lett. 110(16), 163102 (2017). https://doi.org/10.1063/1.4981877
- H. Cai, Y. Guo, H. Gao, W. Guo, Tribo-piezoelectricity in Janus transition metal dichalcogenide bilayers: a first-principles study. Nano Energy 56, 33–39 (2019). https://doi.org/10.1016/j.nanoen.2018.11.027
- R. Li, Y. Cheng, W. Huang, Recent progress of Janus 2D transition metal chalcogenides: from theory to experiments. Small 14(45), 1802091 (2018). https://doi.org/10.1002/smll.201802091
- A. Kumar, P.K. Ahluwalia, Mechanical strain dependent electronic and dielectric properties of two-dimensional honeycomb structures of MoX2 (X = S, Se, Te). Phys. B 419, 66–75 (2013). https://doi.org/10.1016/j.physb.2013.03.029
- S. Horzum, H. Sahin, S. Cahangirov, P. Cudazzo, A. Rubio, T. Serin, F.M. Peeters, Phonon softening and direct to indirect band gap crossover in strained single-layer MoSe2. Phys. Rev. B 87(12), 125415 (2013). https://doi.org/10.1103/PhysRevB.87.125415
- S. Song, D.H. Keum, S. Cho, D. Perello, Y. Kim, Y.H. Lee, Room temperature semiconductor–metal transition of MoTe2 thin films engineered by strain. Nano Lett. 16(1), 188–193 (2016). https://doi.org/10.1021/acs.nanolett.5b03481
- Q. Yue, J. Kang, Z. Shao, X. Zhang, S. Chang, G. Wang, S. Qin, J. Li, Mechanical and electronic properties of monolayer MoS2 under elastic strain. Phys. Lett. A 376(12), 1166–1170 (2012). https://doi.org/10.1016/j.physleta.2012.02.029
- L. Dong, R.R. Namburu, T.P. O’Regan, M. Dubey, A.M. Dongare, Theoretical study on strain-induced variations in electronic properties of monolayer MoS2. J. Mater. Sci. 49(19), 6762–6771 (2014). https://doi.org/10.1007/s10853-014-8370-5
- E. Scalise, M. Houssa, G. Pourtois, V. Afanas’ev, A. Stesmans, Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res. 5(1), 43–48 (2012). https://doi.org/10.1007/s12274-011-0183-0
- M. Ghorbani-Asl, S. Borini, A. Kuc, T. Heine, Strain-dependent modulation of conductivity in single-layer transition-metal dichalcogenides. Phys. Rev. B 87(23), 235434 (2013). https://doi.org/10.1103/PhysRevB.87.235434
- C.-H. Chang, X. Fan, S.-H. Lin, J.-L. Kuo, Orbital analysis of electronic structure and phonon dispersion in MoS2, MoSe2, WS2, and WSe2 monolayers under strain. Phys. Rev. B 88(19), 195420 (2013). https://doi.org/10.1103/PhysRevB.88.195420
- H. Peelaers, C.G. Van de Walle, Effects of strain on band structure and effective masses in MoS2. Phys. Rev. B 86(24), 241401 (2012). https://doi.org/10.1103/PhysRevB.86.241401
- P. Lu, X. Wu, W. Guo, X.C. Zeng, Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes. Phys. Chem. Chem. Phys. 14(37), 13035–13040 (2012). https://doi.org/10.1039/C2CP42181J
- L. Wang, A. Kutana, B.I. Yakobson, Many-body and spin-orbit effects on direct-indirect band gap transition of strained monolayer MoS2 and WS2. Ann. Phys. 526(9–10), L7–L12 (2014). https://doi.org/10.1002/andp.201400098
- A. Kumar, P.K. Ahluwalia, Semiconductor to metal transition in bilayer transition metals dichalcogenides MX2 (M = Mo, W; X = S, Se, Te). Model. Simul. Mater. Sci. Eng. 21(6), 065015 (2013). https://doi.org/10.1088/0965-0393/21/6/065015
- L. Dong, A.M. Dongare, R.R. Namburu, T.P. O’Regan, M. Dubey, Theoretical study on strain induced variations in electronic properties of 2H- MoS2 bilayer sheets. Appl. Phys. Lett. 104(5), 053107 (2014). https://doi.org/10.1063/1.4863827
- S. Zhang, Z. Yan, Y. Li, Z. Chen, H. Zeng, Atomically thin arsenene and antimonene: semimetal–semiconductor and indirect–direct band-gap transitions. Angew. Chem. Int. Ed. 54(10), 3112–3115 (2015). https://doi.org/10.1002/anie.201411246
- H. Shu, Y. Li, X. Niu, J. Guo, Electronic structures and optical properties of arsenene and antimonene under strain and an electric field. J. Mater. Chem. C 6(1), 83–90 (2018). https://doi.org/10.1039/C7TC04072E
- D.R. Kripalani, A.A. Kistanov, Y. Cai, M. Xue, K. Zhou, Strain engineering of antimonene by a first-principles study: mechanical and electronic properties. Phys. Rev. B 98(8), 085410 (2018). https://doi.org/10.1103/PhysRevB.98.085410
- T.V. Vu, H.D. Tong, T.K. Nguyen, C.V. Nguyen, A.A. Lavrentyev et al., Enhancement of monolayer SnSe light absorption by strain engineering: a DFT calculation. Chem. Phys. 521, 5–13 (2019). https://doi.org/10.1016/j.chemphys.2019.01.017
- M. Zhou, X. Chen, M. Li, A. Du, Widely tunable and anisotropic charge carrier mobility in monolayer tin(II) selenide using biaxial strain: a first-principles study. J. Mater. Chem. C 5(5), 1247–1254 (2017). https://doi.org/10.1039/C6TC04692D
- J. Lee, J. Huang, B.G. Sumpter, M. Yoon, Strain-engineered optoelectronic properties of 2D transition metal dichalcogenide lateral heterostructures. 2D Mater. 4(2), 021016 (2017). https://doi.org/10.1088/2053-1583/aa5542
- W. Wei, Y. Dai, B. Huang, Straintronics in two-dimensional in-plane heterostructures of transition-metal dichalcogenides. Phys. Chem. Chem. Phys. 19(1), 663–672 (2017). https://doi.org/10.1039/C6CP07823K
- K. Gu, S. Yu, K. Eshun, H. Yuan, H. Ye et al., Two-dimensional hybrid layered materials: strain engineering on the band structure of MoS2/WSe2 hetero-multilayers. Nanotechnology 28(36), 365202 (2017). https://doi.org/10.1088/1361-6528/aa7a34
- Z. Xie, F. Sun, R. Yao, Y. Zhang, Y. Zhang, Z. Zhang, J. Fan, L. Ni, L. Duan, Tuning electronic properties of InSe/arsenene heterostructure by external electric field and uniaxial strain. Appl. Surf. Sci. 475, 839–846 (2019). https://doi.org/10.1016/j.apsusc.2018.12.135
- J. Liu, M. Xue, J. Wang, H. Sheng, G. Tang, J. Zhang, D. Bai, Tunable electronic and optical properties of arsenene/MoTe2 van der waals heterostructures. Vacuum 163, 128–134 (2019). https://doi.org/10.1016/j.vacuum.2019.01.051
- H. Zeng, J. Zhao, A.-Q. Cheng, L. Zhang, Z. He, R.-S. Chen, Tuning electronic and optical properties of arsenene/C3N van der waals heterostructure by vertical strain and external electric field. Nanotechnology 29(7), 075201 (2018). https://doi.org/10.1088/1361-6528/aaa2e8
- Z. Guo, N. Miao, J. Zhou, B. Sa, Z. Sun, Strain-mediated type-I/type-II transition in Mxene/blue phosphorene van der waals heterostructures for flexible optical/electronic devices. J. Mater. Chem. C 5(4), 978–984 (2017). https://doi.org/10.1039/C6TC04349F
- A. Ramasubramaniam, Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 86(11), 115409 (2012). https://doi.org/10.1103/PhysRevB.86.115409
- V. Tran, R. Soklaski, Y. Liang, L. Yang, Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89(23), 235319 (2014). https://doi.org/10.1103/PhysRevB.89.235319
- M.-Y. Tsai, A. Tarasov, Z.R. Hesabi, H. Taghinejad, P.M. Campbell, C.A. Joiner, A. Adibi, E.M. Vogel, Flexible MoS2 field-effect transistors for gate-tunable piezoresistive strain sensors. ACS Appl. Mater. Interfaces. 7(23), 12850–12855 (2015). https://doi.org/10.1021/acsami.5b02336
- G.-H. Lee, Y.-J. Yu, X. Cui, N. Petrone, C.-H. Lee et al., Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7(9), 7931–7936 (2013). https://doi.org/10.1021/nn402954e
- S. Das, R. Gulotty, A.V. Sumant, A. Roelofs, All two-dimensional, flexible, transparent, and thinnest thin film transistor. Nano Lett. 14(5), 2861–2866 (2014). https://doi.org/10.1021/nl5009037
- T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti, G. Savini et al., Uniaxial strain in graphene by Raman spectroscopy: g peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 79(20), 205433 (2009). https://doi.org/10.1103/PhysRevB.79.205433
- M. Huang, H. Yan, T.F. Heinz, J. Hone, Probing strain-induced electronic structure change in graphene by Raman spectroscopy. Nano Lett. 10(10), 4074–4079 (2010). https://doi.org/10.1021/nl102123c
- Z. Zhang, L. Li, J. Horng, N.Z. Wang, F. Yang et al., Strain-modulated bandgap and piezo-resistive effect in black phosphorus field-effect transistors. Nano Lett. 17(10), 6097–6103 (2017). https://doi.org/10.1021/acs.nanolett.7b02624
- L. Du, C. Wang, W. Xiong, B. Wei, F. Yang et al., Strain-induced band-gap tuning of 2D-SnSSe flakes for application in flexible sensors. Adv. Mater. Technol. 5(1), 1900853 (2020). https://doi.org/10.1002/admt.201900853
- K. He, C. Poole, K.F. Mak, J. Shan, Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 13(6), 2931–2936 (2013). https://doi.org/10.1021/nl4013166
- C.R. Zhu, G. Wang, B.L. Liu, X. Marie, X.F. Qiao et al., Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys. Rev. B 88(12), 121301 (2013). https://doi.org/10.1103/PhysRevB.88.121301
- A. Steinhoff, J.H. Kim, F. Jahnke, M. Rösner, D.S. Kim et al., Efficient excitonic photoluminescence in direct and indirect band gap monolayer MoS2. Nano Lett. 15(10), 6841–6847 (2015). https://doi.org/10.1021/acs.nanolett.5b02719
- Y. Wang, C. Cong, W. Yang, J. Shang, N. Peimyoo et al., Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res. 8(8), 2562–2572 (2015). https://doi.org/10.1007/s12274-015-0762-6
- J.O. Island, A. Kuc, E.H. Diependaal, R. Bratschitsch, H.S.J. van der Zant, T. Heine, A. Castellanos-Gomez, Precise and reversible band gap tuning in single-layer MoSe2 by uniaxial strain. Nanoscale 8(5), 2589–2593 (2016). https://doi.org/10.1039/C5NR08219F
- R. Schmidt, I. Niehues, R. Schneider, M. Drüppel, T. Deilmann et al., Reversible uniaxial strain tuning in atomically thin WSe2. 2D Mater. 3(2), 021011 (2016). https://doi.org/10.1088/2053-1583/3/2/021011
- S.B. Desai, G. Seol, J.S. Kang, H. Fang, C. Battaglia, R. Kapadia, J.W. Ager, J. Guo, A. Javey, Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett. 14(8), 4592–4597 (2014). https://doi.org/10.1021/nl501638a
- G. Zhang, S. Huang, A. Chaves, C. Song, V.O. Özçelik, T. Low, H. Yan, Infrared fingerprints of few-layer black phosphorus. Nat. Commun. 8, 14071 (2017). https://doi.org/10.1038/ncomms14071
- Y. Li, T. Wang, M. Wu, T. Cao, Y. Chen et al., Ultrasensitive tunability of the direct bandgap of 2D InSe flakes via strain engineering. 2D Mater. 5(2), 021002 (2018). https://doi.org/10.1088/2053-1583/aaa6eb
- Q. Jia, X. Kong, J. Qiao, W. Ji, Strain- and twist-engineered optical absorption of few-layer black phosphorus. Sci. China Phys. Mech. Astron. 59(9), 696811 (2016). https://doi.org/10.1007/s11433-016-0135-5
- S. Huang, G. Zhang, F. Fan, C. Song, F. Wang et al., Strain-tunable van der waals interactions in few-layer black phosphorus. Nat. Commun. 10(1), 1–7 (2019). https://doi.org/10.1038/s41467-019-10483-8
- G. Plechinger, A. Castellanos-Gomez, M. Buscema, H.S.J. van der Zant, G.A. Steele et al., Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate. 2D Mater. 2(1), 015006 (2015). https://doi.org/10.1088/2053-1583/2/1/015006
- R. Yang, J. Lee, S. Ghosh, H. Tang, R.M. Sankaran, C.A. Zorman, P.X.L. Feng, Tuning optical signatures of single- and few-layer MoS2 by blown-bubble bulge straining up to fracture. Nano Lett. 17(8), 4568–4575 (2017). https://doi.org/10.1021/acs.nanolett.7b00730
- D. Lloyd, X. Liu, J.W. Christopher, L. Cantley, A. Wadehra et al., Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2. Nano Lett. 16(9), 5836–5841 (2016). https://doi.org/10.1021/acs.nanolett.6b02615
- Y.Y. Hui, X. Liu, W. Jie, N.Y. Chan, J. Hao et al., Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano 7(8), 7126–7131 (2013). https://doi.org/10.1021/nn4024834
- H. Jiang, D.-Y. Khang, J. Song, Y. Sun, Y. Huang, J.A. Rogers, Finite deformation mechanics in buckled thin films on compliant supports. Proc. Natl. Acad. Sci. U.S.A. 104(40), 15607 (2007). https://doi.org/10.1073/pnas.0702927104
- H. Hattab, A.T. N’Diaye, D. Wall, C. Klein, G. Jnawali et al., Interplay of wrinkles, strain, and lattice parameter in graphene on iridium. Nano Lett. 12(2), 678–682 (2012). https://doi.org/10.1021/nl203530t
- L. Meng, Y. Su, D. Geng, G. Yu, Y. Liu, R.-F. Dou, J.-C. Nie, L. He, Hierarchy of graphene wrinkles induced by thermal strain engineering. Appl. Phys. Lett. 103(25), 251610 (2013). https://doi.org/10.1063/1.4857115
- A. Castellanos-Gomez, R. Roldán, E. Cappelluti, M. Buscema, F. Guinea, H.S.J. van der Zant, G.A. Steele, Local strain engineering in atomically thin MoS2. Nano Lett. 13(11), 5361–5366 (2013). https://doi.org/10.1021/nl402875m
- S. Yang, C. Wang, H. Sahin, H. Chen, Y. Li et al., Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 15(3), 1660–1666 (2015). https://doi.org/10.1021/nl504276u
- J. Quereda, P. San-Jose, V. Parente, L. Vaquero-Garzon, A.J. Molina-Mendoza et al., Strong modulation of optical properties in black phosphorus through strain-engineered rippling. Nano Lett. 16(5), 2931–2937 (2016). https://doi.org/10.1021/acs.nanolett.5b04670
- L. Du, C. Wang, W. Xiong, S. Zhang, C. Xia et al., Perseverance of direct bandgap in multilayer 2D PbI2 under an experimental strain up to 7.69%. 2D Mater. 6(2), 025014 (2019). https://doi.org/10.1088/2053-1583/ab01eb
- P.-Y. Chen, J. Sodhi, Y. Qiu, T.M. Valentin, R.S. Steinberg, Z. Wang, R.H. Hurt, I.Y. Wong, Multiscale graphene topographies programmed by sequential mechanical deformation. Adv. Mater. 28(18), 3564–3571 (2016). https://doi.org/10.1002/adma.201506194
- T.H. Ly, S.J. Yun, Q.H. Thi, J. Zhao, Edge delamination of monolayer transition metal dichalcogenides. ACS Nano 11(7), 7534–7541 (2017). https://doi.org/10.1021/acsnano.7b04287
- S. Lou, Y. Liu, F. Yang, S. Lin, R. Zhang et al., Three-dimensional architecture enabled by strained two-dimensional material heterojunction. Nano Lett. 18(3), 1819–1825 (2018). https://doi.org/10.1021/acs.nanolett.7b05074
- A. Kushima, X. Qian, P. Zhao, S. Zhang, J. Li, Ripplocations in van der waals layers. Nano Lett. 15(2), 1302–1308 (2015). https://doi.org/10.1021/nl5045082
- Q. Zhang, J. Yin, Spontaneous buckling-driven periodic delamination of thin films on soft substrates under large compression. J. Mech. Phys. Solids 118, 40–57 (2018). https://doi.org/10.1016/j.jmps.2018.05.009
- MathSciNet
- J. Choi, H.J. Kim, M.C. Wang, J. Leem, W.P. King, S. Nam, Three-dimensional integration of graphene via swelling, shrinking, and adaptation. Nano Lett. 15(7), 4525–4531 (2015). https://doi.org/10.1021/acs.nanolett.5b01036
- H. Li, A.W. Contryman, X. Qian, S.M. Ardakani, Y. Gong et al., Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat. Commun. 6, 7381 (2015). https://doi.org/10.1038/ncomms8381
- A. Branny, S. Kumar, R. Proux, B.D. Gerardot, Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 8, 15053 (2017). https://doi.org/10.1038/ncomms15053
- L. Sortino, M. Brooks, P.G. Zotev, A. Genco, J. Cambiasso et al., Dielectric nano-antennas for strain engineering in atomically thin two-dimensional semiconductors. arXiv:2002.04278 (2020)
- W.H. Chae, J.D. Cain, E.D. Hanson, A.A. Murthy, V.P. Dravid, Substrate-induced strain and charge doping in CVD-grown monolayer MoS2. Appl. Phys. Lett. 111(14), 143106 (2017). https://doi.org/10.1063/1.4998284
- G.H. Ahn, M. Amani, H. Rasool, D.-H. Lien, J.P. Mastandrea et al., Strain-engineered growth of two-dimensional materials. Nat. Commun. 8, 1–8 (2017). https://doi.org/10.1038/s41467-017-00516-5
- L. Oakes, R. Carter, T. Hanken, A.P. Cohn, K. Share, B. Schmidt, C.L.J.N. Pint, Interface strain in vertically stacked two-dimensional heterostructured carbon-MoS2 nanosheets controls electrochemical reactivity. Nat. Commun. 7, 11796 (2016). https://doi.org/10.1038/ncomms11796
- A. Hazarika, I. Fedin, L. Hong, J. Guo, V. Srivastava et al., Colloidal atomic layer deposition with stationary reactant phases enables precise synthesis of “digital” II-VI nano-heterostructures with exquisite control of confinement and strain. J. Am. Chem. Soc. 141(34), 13487–13496 (2019). https://doi.org/10.1021/jacs.9b04866
- H. Zhu, Y. Wang, J. Xiao, M. Liu, S. Xiong et al., Observation of piezoelectricity in free-standing monolayer MoS2. Nat. Nanotechnol. 10, 151 (2014). https://doi.org/10.1038/nnano.2014.309
- J. Qi, Y.-W. Lan, A.Z. Stieg, J.-H. Chen, Y.-L. Zhong, L.-J. Li, C.-D. Chen, Y. Zhang, K.L. Wang, Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics. Nat. Commun. 6, 7430 (2015). https://doi.org/10.1038/ncomms8430
- S. Manzeli, A. Allain, A. Ghadimi, A. Kis, Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2. Nano Lett. 15(8), 5330–5335 (2015). https://doi.org/10.1021/acs.nanolett.5b01689
- E. Soergel, Piezoresponse force microscopy (PFM). J. Phys. D Appl. Phys. 44(46), 464003 (2011). https://doi.org/10.1088/0022-3727/44/46/464003
- X. Wang, X. He, H. Zhu, L. Sun, W. Fu et al., Subatomic deformation driven by vertical piezoelectricity from cds ultrathin films. Sci. Adv. 2(7), e1600209 (2016). https://doi.org/10.1126/sciadv.1600209
- Y. Zhou, D. Wu, Y. Zhu, Y. Cho, Q. He et al., Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett. 17(9), 5508–5513 (2017). https://doi.org/10.1021/acs.nanolett.7b02198
- F. Liu, L. You, K.L. Seyler, X. Li, P. Yu et al., Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016). https://doi.org/10.1038/ncomms12357
- S.K. Kim, R. Bhatia, T.-H. Kim, D. Seol, J.H. Kim et al., Directional dependent piezoelectric effect in CVD grown monolayer MoS2 for flexible piezoelectric nanogenerators. Nano Energy 22, 483–489 (2016). https://doi.org/10.1016/j.nanoen.2016.02.046
- E.N. Esfahani, T. Li, B. Huang, X. Xu, J. Li, Piezoelectricity of atomically thin WSe2 via laterally excited scanning probe microscopy. Nano Energy 52, 117–122 (2018). https://doi.org/10.1016/j.nanoen.2018.07.050
- Y. Li, C.-Y. Xu, L. Zhen, Surface potential and interlayer screening effects of few-layer MoS2 nanoflakes. Appl. Phys. Lett. 102(14), 143110 (2013). https://doi.org/10.1063/1.4801844
- D. Fu, J. Zhou, S. Tongay, K. Liu, W. Fan, T.-J.K. Liu, J. Wu, Mechanically modulated tunneling resistance in monolayer MoS2. Appl. Phys. Lett. 103(18), 183105 (2013). https://doi.org/10.1063/1.4827301
- F. Li, Z. Lu, Y.-W. Lan, L. Jiao, M. Xu, X. Zhu, X. Zhang, H. Wu, J. Qi, Force and light tuning vertical tunneling current in the atomic layered MoS2. Nanotechnology 29(27), 275202 (2018). https://doi.org/10.1088/1361-6528/aabe1e
- J. Quereda, J.J. Palacios, N. Agräit, A. Castellanos-Gomez, G. Rubio-Bollinger, Strain engineering of Schottky barriers in single- and few-layer MoS2 vertical devices. 2D Mater. 4(2), 021006 (2017). https://doi.org/10.1088/2053-1583/aa5920
- A.R. Rezk, B. Carey, A.F. Chrimes, D.W.M. Lau, B.C. Gibson, C. Zheng, M.S. Fuhrer, L.Y. Yeo, K. Kalantar-zadeh, Acoustically-driven trion and exciton modulation in piezoelectric two-dimensional MoS2. Nano Lett. 16(2), 849–855 (2016). https://doi.org/10.1021/acs.nanolett.5b02826
- J. Guo, J. Zhao, D. Huang, Y. Wang, F. Zhang et al., Two-dimensional tellurium-polymer membrane for ultrafast photonics. Nanoscale 11(13), 6235–6242 (2019). https://doi.org/10.1039/c9nr00736a
- Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li et al., Few-layer antimonene decorated microfiber: Ultra-short pulse generation and all-optical thresholding with enhanced long term stability. 2D Mater. 4(4), 045010 (2017). https://doi.org/10.1088/2053-1583/aa87c1
- J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen et al., Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation. Adv. Opt. Mater. 5(9), 1700026 (2017). https://doi.org/10.1002/adom.201700026
- H. Zhang, D. Tang, L. Zhao, Q. Bao, K.P. Loh, Vector dissipative solitons in graphene mode locked fiber lasers. Opt. Commun. 283(17), 3334–3338 (2010). https://doi.org/10.1016/j.optcom.2010.04.064
- S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao et al., Few-layer topological insulator for all-optical signal processing using the nonlinear Kerr effect. Adv. Opt. Mater. 3(12), 1769–1778 (2015). https://doi.org/10.1002/adom.201500347
- J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen et al., Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability. ACS Photonics 4(6), 1466–1476 (2017). https://doi.org/10.1021/acsphotonics.7b00231
- T. Wang, Y. Guo, P. Wan, H. Zhang, X. Chen, X. Sun, Flexible transparent electronic gas sensors. Small 12(28), 3748–3756 (2016). https://doi.org/10.1002/smll.201601049
- Y. Xu, J. Yuan, K. Zhang, Y. Hou, Q. Sun et al., Field-induced n-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility. Adv. Funct. Mater. 27(38), 1702211 (2017). https://doi.org/10.1002/adfm.201702211
- H. Xie, Z. Li, Z. Sun, J. Shao, X.F. Yu et al., Metabolizable ultrathin Bi2Se3 nanosheets in imaging-guided photothermal therapy. Small 12(30), 4136–4145 (2016). https://doi.org/10.1002/smll.201601050
- Z. Sun, Y. Zhao, Z. Li, H. Cui, Y. Zhou et al., TiL4-coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer. Small 13(11), 1602896 (2017). https://doi.org/10.1002/smll.201602896
- Z. Huang, Z. Zhang, X. Qi, X. Ren, G. Xu, P. Wan, X. Sun, H. Zhang, Wall-like hierarchical metal oxide nanosheet arrays grown on carbon cloth for excellent supercapacitor electrodes. Nanoscale 8(27), 13273–13279 (2016). https://doi.org/10.1039/c6nr04020a
- Y.-L. Ding, B.M. Goh, H. Zhang, K.P. Loh, L. Lu, Single-crystalline nanotubes of spinel lithium nickel manganese oxide with lithium titanate anode for high-rate lithium ion batteries. J. Power Sour. 236, 1–9 (2013). https://doi.org/10.1016/j.jpowsour.2013.02.047
- X. Ren, J. Zhou, X. Qi, Y. Liu, Z. Huang et al., Few-layer black phosphorus nanosheets as electrocatalysts for highly efficient oxygen evolution reaction. Adv. Energy Mater. 7(19), 1700396 (2017). https://doi.org/10.1002/aenm.201700396
- M. Park, Y.J. Park, X. Chen, Y.-K. Park, M.-S. Kim, J.-H. Ahn, MoS2-based tactile sensor for electronic skin applications. Adv. Mater. 28(13), 2556–2562 (2016). https://doi.org/10.1002/adma.201505124
- I. Neri, M. López-Suárez, Electronic transport modulation on suspended few-layer MoS2 under strain. Phys. Rev. B 97(24), 241408 (2018). https://doi.org/10.1103/PhysRevB.97.241408
- M. Zhu, K. Sakamoto, J. Li, N. Inomata, M. Toda, T. Ono, Piezoresistive strain sensor based on monolayer molybdenum disulfide continuous film deposited by chemical vapor deposition. J. Micromech. Microeng. 29(5), 055002 (2019). https://doi.org/10.1088/1361-6439/ab0726
- W. Zheng, W. Huang, F. Gao, H. Yang, M. Dai et al., Kirigami-inspired highly stretchable nanoscale devices using multidimensional deformation of monolayer MoS2. Chem. Mater. 30(17), 6063–6070 (2018). https://doi.org/10.1021/acs.chemmater.8b02464
- W. Feng, W. Zheng, F. Gao, X. Chen, G. Liu, T. Hasan, W. Cao, P. Hu, Sensitive electronic-skin strain sensor array based on the patterned two-dimensional α-In2Se3. Chem. Mater. 28(12), 4278–4283 (2016). https://doi.org/10.1021/acs.chemmater.6b01073
- S. Wagner, C. Yim, N. McEvoy, S. Kataria, V. Yokaribas et al., Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films. Nano Lett. 18(6), 3738–3745 (2018). https://doi.org/10.1021/acs.nanolett.8b00928
- H. Song, I. Karakurt, M. Wei, N. Liu, Y. Chu, J. Zhong, L. Lin, Lead iodide nanosheets for piezoelectric energy conversion and strain sensing. Nano Energy 49, 7–13 (2018). https://doi.org/10.1016/j.nanoen.2018.04.029
- W. Wu, L. Wang, R. Yu, Y. Liu, S.-H. Wei, J. Hone, Z.L. Wang, Piezophototronic effect in single-atomic-layer MoS2 for strain-gated flexible optoelectronics. Adv. Mater. 28(38), 8463–8468 (2016). https://doi.org/10.1002/adma.201602854
- M. Dai, H. Chen, F. Wang, Y. Hu, S. Wei, J. Zhang, Z. Wang, T. Zhai, P. Hu, Robust piezo-phototronic effect in multilayer γ-InSe for high-performance self-powered flexible photodetectors. ACS Nano 13(6), 7291–7299 (2019). https://doi.org/10.1021/acsnano.9b03278
- K. Zhang, J. Zhai, Z.L. Wang, A monolayer MoS2 p-n homogenous photodiode with enhanced photoresponse by piezo-phototronic effect. 2D Mater. 5(3), 035038 (2018). https://doi.org/10.1088/2053-1583/aac96b
- K. Zhang, M. Peng, W. Wu, J. Guo, G. Gao et al., A flexible p-CuO/n- MoS2 heterojunction photodetector with enhanced photoresponse by the piezo-phototronic effect. Mater. Horiz. 4(2), 274–280 (2017). https://doi.org/10.1039/C6MH00568C
- J. Du, Q. Liao, M. Hong, B. Liu, X. Zhang et al., Piezotronic effect on interfacial charge modulation in mixed-dimensional van der waals heterostructure for ultrasensitive flexible photodetectors. Nano Energy 58, 85–93 (2019). https://doi.org/10.1016/j.nanoen.2019.01.024
- P. Lin, L. Zhu, D. Li, L. Xu, C. Pan, Z. Wang, Piezo-phototronic effect for enhanced flexible MoS2/WSe2 van der waals photodiodes. Adv. Funct. Mater. 28(35), 1802849 (2018). https://doi.org/10.1002/adfm.201802849
- F. Xue, L. Chen, J. Chen, J. Liu, L. Wang et al., P-type MoS2 and n-type ZnO diode and its performance enhancement by the piezophototronic effect. Adv. Mater. 28(17), 3391–3398 (2016). https://doi.org/10.1002/adma.201506472
- F. Xue, L. Yang, M. Chen, J. Chen, X. Yang et al., Enhanced photoresponsivity of the MoS2-GaN heterojunction diode via the piezo-phototronic effect. NPG Asia Mater. 9, e418 (2017). https://doi.org/10.1038/am.2017.142
- P. Lin, L. Zhu, D. Li, L. Xu, Z.L. Wang, Tunable WSe2–CdS mixed-dimensional van der Waals heterojunction with a piezo-phototronic effect for an enhanced flexible photodetector. Nanoscale 10(30), 14472–14479 (2018). https://doi.org/10.1039/C8NR04376K
- F. Li, T. Shen, L. Xu, C. Hu, J. Qi, Strain improving the performance of a flexible monolayer MoS2 photodetector. Adv. Electron. Mater. 5(12), 1900803 (2019). https://doi.org/10.1002/aelm.201900803
- P. Gant, P. Huang, D. Pérez de Lara, D. Guo, R. Frisenda, A. Castellanos-Gomez, A strain tunable single-layer MoS2 photodetector. Mater. Today 27, 8–13 (2019). https://doi.org/10.1016/j.mattod.2019.04.019
- W. Li, M. Dai, Y. Hu, H. Chen, X. Zhu, Q. Yang, P. Hu, Synchronous enhancement for responsivity and response speed in In2Se3 photodetector modulated by piezoresistive effect. ACS Appl. Mater. Interfaces. 11(50), 47098–47105 (2019). https://doi.org/10.1021/acsami.9b17448
- S.A. Han, J. Lee, J. Lin, S.-W. Kim, J.H. Kim, Piezo/triboelectric nanogenerators based on 2-dimensional layered structure materials. Nano Energy 57, 680–691 (2019). https://doi.org/10.1016/j.nanoen.2018.12.081
- Y. Zhou, W. Liu, X. Huang, A. Zhang, Y. Zhang, Z.L. Wang, Theoretical study on two-dimensional MoS2 piezoelectric nanogenerators. Nano Res. 9(3), 800–807 (2016). https://doi.org/10.1007/s12274-015-0959-8
- J.-H. Lee, J.Y. Park, E.B. Cho, T.Y. Kim, S.A. Han et al., Reliable piezoelectricity in bilayer WSe2 for piezoelectric nanogenerators. Adv. Mater. 29(29), 1606667 (2017). https://doi.org/10.1002/adma.201606667
- F. Xue, J. Zhang, W. Hu, W.-T. Hsu, A. Han et al., Multidirection piezoelectricity in mono- and multilayered hexagonal α-In2Se3. ACS Nano 12(5), 4976–4983 (2018). https://doi.org/10.1021/acsnano.8b02152
- W. Ma, J. Lu, B. Wan, D. Peng, Q. Xu, G. Hu, Y. Peng, C. Pan, Z.L. Wang, Piezoelectricity in multilayer black phosphorus for piezotronics and nanogenerators. Adv. Mater. 32(7), 1905795 (2020). https://doi.org/10.1002/adma.201905795
- S.A. Han, T.-H. Kim, S.K. Kim, K.H. Lee, H.-J. Park, J.-H. Lee, S.-W. Kim, Point-defect-passivated MoS2 nanosheet-based high performance piezoelectric nanogenerator. Adv. Mater. 30(21), 1800342 (2018). https://doi.org/10.1002/adma.201800342
- M. Dai, W. Zheng, X. Zhang, S. Wang, J. Lin et al., Enhanced piezoelectric effect derived from grain boundary in MoS2 monolayers. Nano Lett. 20(1), 201–207 (2020). https://doi.org/10.1021/acs.nanolett.9b03642
- Y. Peng, M. Que, J. Tao, X. Wang, J. Lu, G. Hu, B. Wan, Q. Xu, C. Pan, Progress in piezotronic and piezo-phototronic effect of 2D materials. 2D Mater 5(4), 042003 (2018). https://doi.org/10.1088/2053-1583/aadabb
- R.I. González, F.J. Valencia, J. Rogan, J.A. Valdivia, J. Sofo, M. Kiwi, F. Munoz, Bending energy of 2D materials: graphene, MoS2 and imogolite. RSC Adv. 8(9), 4577–4583 (2018). https://doi.org/10.1039/C7RA10983K
- S.G. Sarwat, M. Tweedie, B.F. Porter, Y. Zhou, Y. Sheng, J. Mol, J. Warner, H. Bhaskaran, Revealing strain-induced effects in ultrathin heterostructures at the nanoscale. Nano Lett. 18(4), 2467–2474 (2018). https://doi.org/10.1021/acs.nanolett.8b00036
- T. Shen, A.V. Penumatcha, J. Appenzeller, Strain engineering for transition metal dichalcogenides based field effect transistors. ACS Nano 10(4), 4712–4718 (2016). https://doi.org/10.1021/acsnano.6b01149
- S. Pak, J. Lee, Y.-W. Lee, A.R. Jang, S. Ahn et al., Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer. Nano Lett. 17(9), 5634–5640 (2017). https://doi.org/10.1021/acs.nanolett.7b02513
References
M.A. Bissett, M. Tsuji, H. Ago, Strain engineering the properties of graphene and other two-dimensional crystals. Phys. Chem. Chem. Phys. 16(23), 11124–11138 (2014). https://doi.org/10.1039/C3CP55443K
S. Deng, A.V. Sumant, V. Berry, Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today 22, 14–35 (2018). https://doi.org/10.1016/j.nantod.2018.07.001
Z. Dai, L. Liu, Z. Zhang, Strain engineering of 2D materials: issues and opportunities at the interface. Adv. Mater. 31(45), 1805417 (2019). https://doi.org/10.1002/adma.201805417
B. Jaffe, Piezoelectric Ceramics (Elsevier, Amsterdam, 2012)
Y. Sun, S.E. Thompson, T. Nishida, Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 101(10), 104503 (2007). https://doi.org/10.1063/1.2730561
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666 (2004). https://doi.org/10.1126/science.1102896
N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys et al., Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13(3), 246–252 (2018). https://doi.org/10.1038/s41565-017-0035-5
P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu et al., On-nanowire axial heterojunction design for high-performance photodetectors. ACS Nano 10(9), 8474–8481 (2016). https://doi.org/10.1021/acsnano.6b03458
X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, H. Zhang, Environmentally robust black phosphorus nanosheets in solution: application for self-powered photodetector. Adv. Funct. Mater. 27(18), 1606834 (2017). https://doi.org/10.1002/adfm.201606834
Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu et al., Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv. Mater. 29(42), 1703811 (2017). https://doi.org/10.1002/adma.201703811
Z. Huang, W. Han, H. Tang, L. Ren, D.S. Chander, X. Qi, H. Zhang, Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure. 2D Mater 2(3), 035011 (2015). https://doi.org/10.1088/2053-1583/2/3/035011
F. Li, J. Qi, M. Xu, J. Xiao, Y. Xu, X. Zhang, S. Liu, Y. Zhang, Layer dependence and light tuning surface potential of 2D MoS2 on various substrates. Small 13(14), 1603103 (2017). https://doi.org/10.1002/smll.201603103
F. Li, T.-D. Huang, Y. Lan, T.-H. Lu, B.S. Kristan, T. Shen, J. Qi, Anomalous lattice vibrations of CVD-grown monolayer MoS2 probed by linear polarized excitation light. Nanoscale 11(29), 13725–13730 (2019). https://doi.org/10.1039/C9NR03203G
Y.F. Song, H. Zhang, D.Y. Tang, D.Y. Shen, Polarization rotation vector solitons in a graphene mode-locked fiber laser. Opt. Express 20(24), 27283–27289 (2012). https://doi.org/10.1364/OE.20.027283
Y.F. Song, H. Zhang, L.M. Zhao, D.Y. Shen, D.Y. Tang, Coexistence and interaction of vector and bound vector solitons in a dispersion-managed fiber laser mode locked by graphene. Opt. Express 24(2), 1814–1822 (2016). https://doi.org/10.1364/OE.24.001814
G. Zheng, Y. Chen, H. Huang, C. Zhao, S. Lu, S. Chen, H. Zhang, S. Wen, Improved transfer quality of CVD-grown graphene by ultrasonic processing of target substrates: applications for ultra-fast laser photonics. ACS Appl. Mater. Interfaces 5(20), 10288–10293 (2013). https://doi.org/10.1021/am403205v
J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, H. Zhang, Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers. Sci. Rep. 7, 42357 (2017). https://doi.org/10.1038/srep42357
X. Jiang, S. Liu, W. Liang, S. Luo, Z. He et al., Broadband nonlinear photonics in few-layer Mxene Ti3C2Tx (T = F, O, or OH). Laser Photonics Rev. 12(2), 1700229 (2018). https://doi.org/10.1002/lpor.201700229
P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin et al., Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers. ACS Appl. Mater. Interfaces 9(14), 12759–12765 (2017). https://doi.org/10.1021/acsami.7b01709
S. Bai, C. Sun, H. Yan, X. Sun, H. Zhang, L. Luo, X. Lei, P. Wan, X. Chen, Healable, transparent, room-temperature electronic sensors based on carbon nanotube network-coated polyelectrolyte multilayers. Small 11(43), 5807–5813 (2015). https://doi.org/10.1002/smll.201502169
T. Wang, Y. Guo, P. Wan, X. Sun, H. Zhang, Z. Yu, X. Chen, A flexible transparent colorimetric wrist strap sensor. Nanoscale 9(2), 869–874 (2017). https://doi.org/10.1039/c6nr08265c
P. Wan, X. Wen, C. Sun, B.K. Chandran, H. Zhang, X. Sun, X. Chen, Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing. Small 11(40), 5409–5415 (2015). https://doi.org/10.1002/smll.201501772
M. Qiu, Z.T. Sun, D.K. Sang, X.G. Han, H. Zhang, C.M. Niu, Current progress in black phosphorus materials and their applications in electrochemical energy storage. Nanoscale 9(36), 13384–13403 (2017). https://doi.org/10.1039/c7nr03318d
R. Wang, X. Li, Z. Wang, H. Zhang, Electrochemical analysis graphite/electrolyte interface in Lithium-ion batteries: p-toluenesulfonyl isocyanate as electrolyte additive. Nano Energy 34, 131–140 (2017). https://doi.org/10.1016/j.nanoen.2017.02.037
X. Chen, G. Xu, X. Ren, Z. Li, X. Qi, K. Huang, H. Zhang, Z. Huang, J. Zhong, A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors. J. Mater. Chem. A 5(14), 6581–6588 (2017). https://doi.org/10.1039/c7ta00455a
C. Wang, Y. Wang, X. Jiang, J. Xu, W. Huang et al., Mxene Ti3C2Tx: a promising photothermal conversion material and application in all-optical modulation and all-optical information loading. Adv. Opt. Mater. 7(8), 1900060 (2019). https://doi.org/10.1002/adom.201900060
Q. Jiang, L. Xu, N. Chen, H. Zhang, L. Dai, S. Wang, Facile synthesis of black phosphorus: an efficient electrocatalyst for the oxygen evolving reaction. Angew. Chem. Int. Ed. 55(44), 13849–13853 (2016). https://doi.org/10.1002/anie.201607393
X. Tang, W. Liang, J. Zhao, Z. Li, M. Qiu et al., Fluorinated phosphorene: electrochemical synthesis, atomistic fluorination, and enhanced stability. Small 13(47), 1702739 (2017). https://doi.org/10.1002/smll.201702739
T. Fan, Y. Zhou, M. Qiu, H. Zhang, Black phosphorus: a novel nanoplatform with potential in the field of bio-photonic nanomedicine. J. Innov. Opt. Heal. Sci. 11(06), 1830003 (2018). https://doi.org/10.1142/s1793545818300033
W. Tao, X. Ji, X. Xu, M.A. Islam, Z. Li et al., Antimonene quantum dots: synthesis and application as near-infrared photothermal agents for effective cancer therapy. Angew. Chem. Int. Ed. 56(39), 11896–11900 (2017). https://doi.org/10.1002/anie.201703657
F. Yin, K. Hu, S. Chen, D. Wang, J. Zhang et al., Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells. J. Mater. Chem. B 5(27), 5433–5440 (2017). https://doi.org/10.1039/c7tb01068k
M. Qiu, D. Wang, W. Liang, L. Liu, Y. Zhang et al., Novel concept of the smart nir-light-controlled drug release of black phosphorus nanostructure for cancer therapy. Proc. Natl. Acad. Sci. U.S.A. 115(3), 501–506 (2018). https://doi.org/10.1073/pnas.1714421115
B. Hunt, J.D. Sanchez-Yamagishi, A.F. Young, M. Yankowitz, B.J. LeRoy et al., Massive Dirac fermions and Hofstadter butterfly in a van der Walls heterostructure. Science 340(6139), 1427 (2013). https://doi.org/10.1126/science.1237240
J.M. Lu, O. Zheliuk, I. Leermakers, N.F.Q. Yuan, U. Zeitler, K.T. Law, J.T. Ye, Evidence for two-dimensional Ising superconductivity in gated MoS2. Science 350(6266), 1353 (2015). https://doi.org/10.1126/science.aab2277
K.F. Mak, K.L. McGill, J. Park, P.L. McEuen, The valley hall effect in MoS2 transistors. Science 344(6191), 1489 (2014). https://doi.org/10.1126/science.1250140
J.R. Schaibley, H. Yu, G. Clark, P. Rivera, J.S. Ross, K.L. Seyler, W. Yao, X. Xu, Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016). https://doi.org/10.1038/natrevmats.2016.55
D. Akinwande, C.J. Brennan, J.S. Bunch, P. Egberts, J.R. Felts et al., A review on mechanics and mechanical properties of 2D materials—graphene and beyond. Extreme Mech. Lett. 13, 42–77 (2017). https://doi.org/10.1016/j.eml.2017.01.008
P. Johari, V.B. Shenoy, Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano 6(6), 5449–5456 (2012). https://doi.org/10.1021/nn301320r
W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin et al., Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470 (2014). https://doi.org/10.1038/nature13792
H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund, S.T. Pantelides, K.I. Bolotin, Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13(8), 3626–3630 (2013). https://doi.org/10.1021/nl4014748
C. Cui, F. Xue, W.-J. Hu, L.-J. Li, Two-dimensional materials with piezoelectric and ferroelectric functionalities. NPJ 2D Mater Appl. 2(1), 18 (2018). https://doi.org/10.1038/s41699-018-0063-5
C. Rice, R.J. Young, R. Zan, U. Bangert, D. Wolverson, T. Georgiou, R. Jalil, K.S. Novoselov, Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2. Phys. Rev. B 87(8), 081307 (2013). https://doi.org/10.1103/PhysRevB.87.081307
J. Curie, P.J.C.O. Curie, Développement, par pression, de l’électricité polaire dans les cristaux hémièdres à faces inclinées. Bulletin de la sociètè minèralogique de France. 91, 294–295 (1880)
MATH
J.W. Cookson, Theory of the piezo-resistive effect. Phys. Rev. 47(2), 194–195 (1935). https://doi.org/10.1103/PhysRev.47.194.2
A.A. Barlian, W. Park, J.R. Mallon, A.J. Rastegar, B.L. Pruitt, Review: semiconductor piezoresistance for microsystems. Proc. IEEE 97(3), 513–552 (2009). https://doi.org/10.1109/JPROC.2009.2013612
Z.L. Wang, Nanopiezotronics. Adv. Mater. 19(6), 889–892 (2007). https://doi.org/10.1002/adma.200602918
Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242 (2006). https://doi.org/10.1126/science.1124005
J. Song, J. Zhou, Z.L. Wang, Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire: a technology for harvesting electricity from the environment. Nano Lett. 6(8), 1656–1662 (2006). https://doi.org/10.1021/nl060820v
Y. Hu, Y. Chang, P. Fei, R.L. Snyder, Z.L. Wang, Designing the electric transport characteristics of ZnO micro/nanowire devices by coupling piezoelectric and photoexcitation effects. ACS Nano 4(2), 1234–1240 (2010). https://doi.org/10.1021/nn901805g
M. Birkholz, Crystal-field induced dipoles in heteropolar crystals ii: physical significance. Zeitschrift für Physik B Conden. Matter 96(3), 333–340 (1995). https://doi.org/10.1007/BF01313055
V.V. Kochervinskii, Piezoelectricity in crystallizing ferroelectric polymers: poly(vinylidene fluoride) and its copolymers (a review). Crystallogr. Rep. 48(4), 649–675 (2003). https://doi.org/10.1134/1.1595194
Y. Zhang, Y. Yang, Y. Gu, X. Yan, Q. Liao, P. Li, Z. Zhang, Z. Wang, Performance and service behavior in 1-D nanostructured energy conversion devices. Nano Energy 14, 30–48 (2015). https://doi.org/10.1016/j.nanoen.2014.12.039
P. Lin, X. Yan, F. Li, J. Du, J. Meng, Y. Zhang, Polarity-dependent piezotronic effect and controllable transport modulation of ZnO with multifield coupled interface engineering. Adv. Mater. Interfaces 4(3), 1600842 (2017). https://doi.org/10.1002/admi.201600842
P. Lin, C. Pan, Z.L. Wang, Two-dimensional nanomaterials for novel piezotronics and piezophototronics. Mater. Today Nano 4, 17–31 (2018). https://doi.org/10.1016/j.mtnano.2018.11.006
W. Wu, Z.L. Wang, Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nat. Rev. Mater. 1, 16031 (2016). https://doi.org/10.1038/natrevmats.2016.31
W. Thomson, Xix, On the electro-dynamic qualities of metals: effects of magnetization on the electric conductivity of nickel and of iron. Proc. R. Soc. Lond. 8, 546–550 (1857). https://doi.org/10.1098/rspl.1856.0144
Y. Yang, W. Guo, J. Qi, Y. Zhang, Flexible piezoresistive strain sensor based on single sb-doped ZnO nanobelts. Appl. Phys. Lett. 97(22), 223107 (2010). https://doi.org/10.1063/1.3522885
C.S. Smith, Piezoresistance effect in germanium and silicon. Phys. Rev. 94(1), 42–49 (1954). https://doi.org/10.1103/PhysRev.94.42
R. He, P. Yang, Giant piezoresistance effect in silicon nanowires. Nat. Nanotechnol. 1(1), 42–46 (2006). https://doi.org/10.1038/nnano.2006.53
MathSciNet
C. Stampfer, A. Jungen, R. Linderman, D. Obergfell, S. Roth, C. Hierold, Nano-electromechanical displacement sensing based on single-walled carbon nanotubes. Nano Lett. 6(7), 1449–1453 (2006). https://doi.org/10.1021/nl0606527
C. An, Z. Xu, W. Shen, R. Zhang, Z. Sun et al., The opposite anisotropic piezoresistive effect of ReS2. ACS Nano 13(3), 3310–3319 (2019). https://doi.org/10.1021/acsnano.8b09161
A. Kumar, P. Ahluwalia, Tunable Electronic and Dielectric Properties of Molybdenum Disulfide (Springer, Berlin, 2014), pp. 53–76
R.W. Keyes, Explaining strain [in silicon]. IEEE Circuits Devices Mag. 18(5), 36–39 (2002). https://doi.org/10.1109/MCD.2002.1035350
W.P. Mason, R.N. Thurston, Use of piezoresistive materials in the measurement of displacement, force, and torque. J. Acoust. Soc. Am. 29(10), 1096–1101 (1957). https://doi.org/10.1121/1.1908710
K. Rim, K. Chan, L. Shi, D. Boyd, J. Ott et al., Fabrication and mobility characteristics of ultra-thin strained Si directly on insulator (SSDOI) MOSFETs. IEEE International Electron Devices Meeting 2003. 3.1.1–3.1.4 (2003)
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147 (2011). https://doi.org/10.1038/nnano.2010.279
S. Bertolazzi, J. Brivio, A. Kis, Stretching and breaking of ultrathin MoS2. ACS Nano 5(12), 9703–9709 (2011). https://doi.org/10.1021/nn203879f
R. Gao, Y. Gao, Piezoelectricity in two-dimensional group III–V buckled honeycomb monolayers. Phys. Status Solidi-R 11(3), 1600412 (2017). https://doi.org/10.1002/pssr.201600412
F.A. Rasmussen, K.S. Thygesen, Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. J. Phys. Chem. C 119(23), 13169–13183 (2015). https://doi.org/10.1021/acs.jpcc.5b02950
G. Cheon, K.-A.N. Duerloo, A.D. Sendek, C. Porter, Y. Chen, E.J. Reed, Data mining for new two- and one-dimensional weakly bonded solids and lattice-commensurate heterostructures. Nano Lett. 17(3), 1915–1923 (2017). https://doi.org/10.1021/acs.nanolett.6b05229
J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, Oxford, 1985)
T. Hu, J. Dong, Two new phases of monolayer group-iv monochalcogenides and their piezoelectric properties. Phys. Chem. Chem. Phys. 18(47), 32514–32520 (2016). https://doi.org/10.1039/C6CP06734D
K.-A.N. Duerloo, M.T. Ong, E.J. Reed, Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 3(19), 2871–2876 (2012). https://doi.org/10.1021/jz3012436
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S.J.N.N. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699 (2012). https://doi.org/10.1038/nnano.2012.193
M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H.J.N.C. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263 (2013). https://doi.org/10.1038/nchem.1589
R. Fei, W. Li, J. Li, L. Yang, Giant piezoelectricity of monolayer group IV monochalcogenides: snSe, SnS, GeSe, and GeS. Appl. Phys. Lett. 107(17), 173104 (2015). https://doi.org/10.1063/1.4934750
L. Li, Z. Chen, Y. Hu, X. Wang, T. Zhang, W. Chen, Q. Wang, Single-layer single-crystalline SnSe nanosheets. J. Am. Chem. Soc. 135(4), 1213–1216 (2013). https://doi.org/10.1021/ja3108017
L.C. Gomes, A. Carvalho, A.H.C. Neto, Enhanced piezoelectricity and modified dielectric screening of two-dimensional group-IV monochalcogenides. Phys. Rev. B 92(21), 214103 (2015). https://doi.org/10.1103/PhysRevB.92.214103
C.G. Tan, P. Zhou, J.G. Lin, L.Z. Sun, Two-dimensional semiconductors XY2 (X = Ge, Sn; Y = S, Se) with promising piezoelectric properties. Comput. Conden. Matter 11, 33–39 (2017). https://doi.org/10.1016/j.cocom.2017.04.001
G. Michael, G. Hu, D. Zheng, Y. Zhang, Piezo-phototronic solar cell based on 2D monochalcogenides materials. J. Phys. D Appl. Phys. 52(20), 204001 (2019). https://doi.org/10.1088/1361-6463/ab0ac4
W. Li, J. Li, Piezoelectricity in two-dimensional group-iii monochalcogenides. Nano Res. 8(12), 3796–3802 (2015). https://doi.org/10.1007/s12274-015-0878-8
H. Yin, J. Gao, G.-P. Zheng, Y. Wang, Y. Ma, Giant piezoelectric effects in monolayer group-v binary compounds with honeycomb phases: a first-principles prediction. J. Phys. Chem. C 121(45), 25576–25584 (2017). https://doi.org/10.1021/acs.jpcc.7b08822
L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014). https://doi.org/10.1038/nnano.2014.35
J. Qiao, X. Kong, Z.-X. Hu, F. Yang, W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5(1), 4475 (2014). https://doi.org/10.1038/ncomms5475
F. Xia, H. Wang, Y. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5(1), 4458 (2014). https://doi.org/10.1038/ncomms5458
J. Tao, W. Shen, S. Wu, L. Liu, Z. Feng et al., Mechanical and electrical anisotropy of few-layer black phosphorus. ACS Nano 9(11), 11362–11370 (2015). https://doi.org/10.1021/acsnano.5b05151
L.B. Drissi, S. Sadki, K. Sadki, Phosphorene under strain:Electronic, mechanical and piezoelectric responses. J. Phys. Chem. Solids 112, 137–142 (2018). https://doi.org/10.1016/j.jpcs.2017.09.017
J. Li, T. Zhao, C. He, K. Zhang, Surface oxidation: an effective way to induce piezoelectricity in 2d black phosphorus. J. Phys. D: Appl. Phys. 51(12), 12LT01 (2018). https://doi.org/10.1088/1361-6463/aaad98
L. Huang, Y. Li, Z. Wei, J. Li, Strain induced piezoelectric effect in black phosphorus and MoS2 van der waals heterostructure. Sci. Rep. 5, 16448 (2015). https://doi.org/10.1038/srep16448
H. Yin, G.-P. Zheng, J. Gao, Y. Wang, Y. Ma, Enhanced piezoelectricity of monolayer phosphorene oxides: a theoretical study. Phys. Chem. Chem. Phys. 19(40), 27508–27515 (2017). https://doi.org/10.1039/C7CP05669A
M.N. Blonsky, H.L. Zhuang, A.K. Singh, R.G. Hennig, Ab initio prediction of piezoelectricity in two-dimensional materials. ACS Nano 9(10), 9885–9891 (2015). https://doi.org/10.1021/acsnano.5b03394
F. Li, Y. Li, Band gap modulation of Janus graphene nanosheets by interlayer hydrogen bonding and the external electric field: a computational study. J. Mater. Chem. C 3(14), 3416–3421 (2015). https://doi.org/10.1039/C5TC00013K
MathSciNet
J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er et al., Janus monolayer transition-metal dichalcogenides. ACS Nano 11(8), 8192–8198 (2017). https://doi.org/10.1021/acsnano.7b03186
A.-Y. Lu, H. Zhu, J. Xiao, C.-P. Chuu, Y. Han et al., Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12, 744 (2017). https://doi.org/10.1038/nnano.2017.100
L. Dong, J. Lou, V.B. Shenoy, Large in-plane and vertical piezoelectricity in Janus transition metal dichalcogenides. ACS Nano 11(8), 8242–8248 (2017). https://doi.org/10.1021/acsnano.7b03313
N. Dimple, A. Jena, R. Rawat, M.K. Ahammed, A.D. Mohanta, Sarkar, Emergence of high piezoelectricity along with robust electron mobility in Janus structures in semiconducting group IVB dichalcogenide monolayers. J. Mater. Chem. A 6(48), 24885–24898 (2018). https://doi.org/10.1039/C8TA08781D
Y. Guo, S. Zhou, Y. Bai, J. Zhao, Enhanced piezoelectric effect in Janus group-III chalcogenide monolayers. Appl. Phys. Lett. 110(16), 163102 (2017). https://doi.org/10.1063/1.4981877
H. Cai, Y. Guo, H. Gao, W. Guo, Tribo-piezoelectricity in Janus transition metal dichalcogenide bilayers: a first-principles study. Nano Energy 56, 33–39 (2019). https://doi.org/10.1016/j.nanoen.2018.11.027
R. Li, Y. Cheng, W. Huang, Recent progress of Janus 2D transition metal chalcogenides: from theory to experiments. Small 14(45), 1802091 (2018). https://doi.org/10.1002/smll.201802091
A. Kumar, P.K. Ahluwalia, Mechanical strain dependent electronic and dielectric properties of two-dimensional honeycomb structures of MoX2 (X = S, Se, Te). Phys. B 419, 66–75 (2013). https://doi.org/10.1016/j.physb.2013.03.029
S. Horzum, H. Sahin, S. Cahangirov, P. Cudazzo, A. Rubio, T. Serin, F.M. Peeters, Phonon softening and direct to indirect band gap crossover in strained single-layer MoSe2. Phys. Rev. B 87(12), 125415 (2013). https://doi.org/10.1103/PhysRevB.87.125415
S. Song, D.H. Keum, S. Cho, D. Perello, Y. Kim, Y.H. Lee, Room temperature semiconductor–metal transition of MoTe2 thin films engineered by strain. Nano Lett. 16(1), 188–193 (2016). https://doi.org/10.1021/acs.nanolett.5b03481
Q. Yue, J. Kang, Z. Shao, X. Zhang, S. Chang, G. Wang, S. Qin, J. Li, Mechanical and electronic properties of monolayer MoS2 under elastic strain. Phys. Lett. A 376(12), 1166–1170 (2012). https://doi.org/10.1016/j.physleta.2012.02.029
L. Dong, R.R. Namburu, T.P. O’Regan, M. Dubey, A.M. Dongare, Theoretical study on strain-induced variations in electronic properties of monolayer MoS2. J. Mater. Sci. 49(19), 6762–6771 (2014). https://doi.org/10.1007/s10853-014-8370-5
E. Scalise, M. Houssa, G. Pourtois, V. Afanas’ev, A. Stesmans, Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res. 5(1), 43–48 (2012). https://doi.org/10.1007/s12274-011-0183-0
M. Ghorbani-Asl, S. Borini, A. Kuc, T. Heine, Strain-dependent modulation of conductivity in single-layer transition-metal dichalcogenides. Phys. Rev. B 87(23), 235434 (2013). https://doi.org/10.1103/PhysRevB.87.235434
C.-H. Chang, X. Fan, S.-H. Lin, J.-L. Kuo, Orbital analysis of electronic structure and phonon dispersion in MoS2, MoSe2, WS2, and WSe2 monolayers under strain. Phys. Rev. B 88(19), 195420 (2013). https://doi.org/10.1103/PhysRevB.88.195420
H. Peelaers, C.G. Van de Walle, Effects of strain on band structure and effective masses in MoS2. Phys. Rev. B 86(24), 241401 (2012). https://doi.org/10.1103/PhysRevB.86.241401
P. Lu, X. Wu, W. Guo, X.C. Zeng, Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes. Phys. Chem. Chem. Phys. 14(37), 13035–13040 (2012). https://doi.org/10.1039/C2CP42181J
L. Wang, A. Kutana, B.I. Yakobson, Many-body and spin-orbit effects on direct-indirect band gap transition of strained monolayer MoS2 and WS2. Ann. Phys. 526(9–10), L7–L12 (2014). https://doi.org/10.1002/andp.201400098
A. Kumar, P.K. Ahluwalia, Semiconductor to metal transition in bilayer transition metals dichalcogenides MX2 (M = Mo, W; X = S, Se, Te). Model. Simul. Mater. Sci. Eng. 21(6), 065015 (2013). https://doi.org/10.1088/0965-0393/21/6/065015
L. Dong, A.M. Dongare, R.R. Namburu, T.P. O’Regan, M. Dubey, Theoretical study on strain induced variations in electronic properties of 2H- MoS2 bilayer sheets. Appl. Phys. Lett. 104(5), 053107 (2014). https://doi.org/10.1063/1.4863827
S. Zhang, Z. Yan, Y. Li, Z. Chen, H. Zeng, Atomically thin arsenene and antimonene: semimetal–semiconductor and indirect–direct band-gap transitions. Angew. Chem. Int. Ed. 54(10), 3112–3115 (2015). https://doi.org/10.1002/anie.201411246
H. Shu, Y. Li, X. Niu, J. Guo, Electronic structures and optical properties of arsenene and antimonene under strain and an electric field. J. Mater. Chem. C 6(1), 83–90 (2018). https://doi.org/10.1039/C7TC04072E
D.R. Kripalani, A.A. Kistanov, Y. Cai, M. Xue, K. Zhou, Strain engineering of antimonene by a first-principles study: mechanical and electronic properties. Phys. Rev. B 98(8), 085410 (2018). https://doi.org/10.1103/PhysRevB.98.085410
T.V. Vu, H.D. Tong, T.K. Nguyen, C.V. Nguyen, A.A. Lavrentyev et al., Enhancement of monolayer SnSe light absorption by strain engineering: a DFT calculation. Chem. Phys. 521, 5–13 (2019). https://doi.org/10.1016/j.chemphys.2019.01.017
M. Zhou, X. Chen, M. Li, A. Du, Widely tunable and anisotropic charge carrier mobility in monolayer tin(II) selenide using biaxial strain: a first-principles study. J. Mater. Chem. C 5(5), 1247–1254 (2017). https://doi.org/10.1039/C6TC04692D
J. Lee, J. Huang, B.G. Sumpter, M. Yoon, Strain-engineered optoelectronic properties of 2D transition metal dichalcogenide lateral heterostructures. 2D Mater. 4(2), 021016 (2017). https://doi.org/10.1088/2053-1583/aa5542
W. Wei, Y. Dai, B. Huang, Straintronics in two-dimensional in-plane heterostructures of transition-metal dichalcogenides. Phys. Chem. Chem. Phys. 19(1), 663–672 (2017). https://doi.org/10.1039/C6CP07823K
K. Gu, S. Yu, K. Eshun, H. Yuan, H. Ye et al., Two-dimensional hybrid layered materials: strain engineering on the band structure of MoS2/WSe2 hetero-multilayers. Nanotechnology 28(36), 365202 (2017). https://doi.org/10.1088/1361-6528/aa7a34
Z. Xie, F. Sun, R. Yao, Y. Zhang, Y. Zhang, Z. Zhang, J. Fan, L. Ni, L. Duan, Tuning electronic properties of InSe/arsenene heterostructure by external electric field and uniaxial strain. Appl. Surf. Sci. 475, 839–846 (2019). https://doi.org/10.1016/j.apsusc.2018.12.135
J. Liu, M. Xue, J. Wang, H. Sheng, G. Tang, J. Zhang, D. Bai, Tunable electronic and optical properties of arsenene/MoTe2 van der waals heterostructures. Vacuum 163, 128–134 (2019). https://doi.org/10.1016/j.vacuum.2019.01.051
H. Zeng, J. Zhao, A.-Q. Cheng, L. Zhang, Z. He, R.-S. Chen, Tuning electronic and optical properties of arsenene/C3N van der waals heterostructure by vertical strain and external electric field. Nanotechnology 29(7), 075201 (2018). https://doi.org/10.1088/1361-6528/aaa2e8
Z. Guo, N. Miao, J. Zhou, B. Sa, Z. Sun, Strain-mediated type-I/type-II transition in Mxene/blue phosphorene van der waals heterostructures for flexible optical/electronic devices. J. Mater. Chem. C 5(4), 978–984 (2017). https://doi.org/10.1039/C6TC04349F
A. Ramasubramaniam, Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 86(11), 115409 (2012). https://doi.org/10.1103/PhysRevB.86.115409
V. Tran, R. Soklaski, Y. Liang, L. Yang, Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89(23), 235319 (2014). https://doi.org/10.1103/PhysRevB.89.235319
M.-Y. Tsai, A. Tarasov, Z.R. Hesabi, H. Taghinejad, P.M. Campbell, C.A. Joiner, A. Adibi, E.M. Vogel, Flexible MoS2 field-effect transistors for gate-tunable piezoresistive strain sensors. ACS Appl. Mater. Interfaces. 7(23), 12850–12855 (2015). https://doi.org/10.1021/acsami.5b02336
G.-H. Lee, Y.-J. Yu, X. Cui, N. Petrone, C.-H. Lee et al., Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7(9), 7931–7936 (2013). https://doi.org/10.1021/nn402954e
S. Das, R. Gulotty, A.V. Sumant, A. Roelofs, All two-dimensional, flexible, transparent, and thinnest thin film transistor. Nano Lett. 14(5), 2861–2866 (2014). https://doi.org/10.1021/nl5009037
T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti, G. Savini et al., Uniaxial strain in graphene by Raman spectroscopy: g peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 79(20), 205433 (2009). https://doi.org/10.1103/PhysRevB.79.205433
M. Huang, H. Yan, T.F. Heinz, J. Hone, Probing strain-induced electronic structure change in graphene by Raman spectroscopy. Nano Lett. 10(10), 4074–4079 (2010). https://doi.org/10.1021/nl102123c
Z. Zhang, L. Li, J. Horng, N.Z. Wang, F. Yang et al., Strain-modulated bandgap and piezo-resistive effect in black phosphorus field-effect transistors. Nano Lett. 17(10), 6097–6103 (2017). https://doi.org/10.1021/acs.nanolett.7b02624
L. Du, C. Wang, W. Xiong, B. Wei, F. Yang et al., Strain-induced band-gap tuning of 2D-SnSSe flakes for application in flexible sensors. Adv. Mater. Technol. 5(1), 1900853 (2020). https://doi.org/10.1002/admt.201900853
K. He, C. Poole, K.F. Mak, J. Shan, Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 13(6), 2931–2936 (2013). https://doi.org/10.1021/nl4013166
C.R. Zhu, G. Wang, B.L. Liu, X. Marie, X.F. Qiao et al., Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys. Rev. B 88(12), 121301 (2013). https://doi.org/10.1103/PhysRevB.88.121301
A. Steinhoff, J.H. Kim, F. Jahnke, M. Rösner, D.S. Kim et al., Efficient excitonic photoluminescence in direct and indirect band gap monolayer MoS2. Nano Lett. 15(10), 6841–6847 (2015). https://doi.org/10.1021/acs.nanolett.5b02719
Y. Wang, C. Cong, W. Yang, J. Shang, N. Peimyoo et al., Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res. 8(8), 2562–2572 (2015). https://doi.org/10.1007/s12274-015-0762-6
J.O. Island, A. Kuc, E.H. Diependaal, R. Bratschitsch, H.S.J. van der Zant, T. Heine, A. Castellanos-Gomez, Precise and reversible band gap tuning in single-layer MoSe2 by uniaxial strain. Nanoscale 8(5), 2589–2593 (2016). https://doi.org/10.1039/C5NR08219F
R. Schmidt, I. Niehues, R. Schneider, M. Drüppel, T. Deilmann et al., Reversible uniaxial strain tuning in atomically thin WSe2. 2D Mater. 3(2), 021011 (2016). https://doi.org/10.1088/2053-1583/3/2/021011
S.B. Desai, G. Seol, J.S. Kang, H. Fang, C. Battaglia, R. Kapadia, J.W. Ager, J. Guo, A. Javey, Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett. 14(8), 4592–4597 (2014). https://doi.org/10.1021/nl501638a
G. Zhang, S. Huang, A. Chaves, C. Song, V.O. Özçelik, T. Low, H. Yan, Infrared fingerprints of few-layer black phosphorus. Nat. Commun. 8, 14071 (2017). https://doi.org/10.1038/ncomms14071
Y. Li, T. Wang, M. Wu, T. Cao, Y. Chen et al., Ultrasensitive tunability of the direct bandgap of 2D InSe flakes via strain engineering. 2D Mater. 5(2), 021002 (2018). https://doi.org/10.1088/2053-1583/aaa6eb
Q. Jia, X. Kong, J. Qiao, W. Ji, Strain- and twist-engineered optical absorption of few-layer black phosphorus. Sci. China Phys. Mech. Astron. 59(9), 696811 (2016). https://doi.org/10.1007/s11433-016-0135-5
S. Huang, G. Zhang, F. Fan, C. Song, F. Wang et al., Strain-tunable van der waals interactions in few-layer black phosphorus. Nat. Commun. 10(1), 1–7 (2019). https://doi.org/10.1038/s41467-019-10483-8
G. Plechinger, A. Castellanos-Gomez, M. Buscema, H.S.J. van der Zant, G.A. Steele et al., Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate. 2D Mater. 2(1), 015006 (2015). https://doi.org/10.1088/2053-1583/2/1/015006
R. Yang, J. Lee, S. Ghosh, H. Tang, R.M. Sankaran, C.A. Zorman, P.X.L. Feng, Tuning optical signatures of single- and few-layer MoS2 by blown-bubble bulge straining up to fracture. Nano Lett. 17(8), 4568–4575 (2017). https://doi.org/10.1021/acs.nanolett.7b00730
D. Lloyd, X. Liu, J.W. Christopher, L. Cantley, A. Wadehra et al., Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2. Nano Lett. 16(9), 5836–5841 (2016). https://doi.org/10.1021/acs.nanolett.6b02615
Y.Y. Hui, X. Liu, W. Jie, N.Y. Chan, J. Hao et al., Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano 7(8), 7126–7131 (2013). https://doi.org/10.1021/nn4024834
H. Jiang, D.-Y. Khang, J. Song, Y. Sun, Y. Huang, J.A. Rogers, Finite deformation mechanics in buckled thin films on compliant supports. Proc. Natl. Acad. Sci. U.S.A. 104(40), 15607 (2007). https://doi.org/10.1073/pnas.0702927104
H. Hattab, A.T. N’Diaye, D. Wall, C. Klein, G. Jnawali et al., Interplay of wrinkles, strain, and lattice parameter in graphene on iridium. Nano Lett. 12(2), 678–682 (2012). https://doi.org/10.1021/nl203530t
L. Meng, Y. Su, D. Geng, G. Yu, Y. Liu, R.-F. Dou, J.-C. Nie, L. He, Hierarchy of graphene wrinkles induced by thermal strain engineering. Appl. Phys. Lett. 103(25), 251610 (2013). https://doi.org/10.1063/1.4857115
A. Castellanos-Gomez, R. Roldán, E. Cappelluti, M. Buscema, F. Guinea, H.S.J. van der Zant, G.A. Steele, Local strain engineering in atomically thin MoS2. Nano Lett. 13(11), 5361–5366 (2013). https://doi.org/10.1021/nl402875m
S. Yang, C. Wang, H. Sahin, H. Chen, Y. Li et al., Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 15(3), 1660–1666 (2015). https://doi.org/10.1021/nl504276u
J. Quereda, P. San-Jose, V. Parente, L. Vaquero-Garzon, A.J. Molina-Mendoza et al., Strong modulation of optical properties in black phosphorus through strain-engineered rippling. Nano Lett. 16(5), 2931–2937 (2016). https://doi.org/10.1021/acs.nanolett.5b04670
L. Du, C. Wang, W. Xiong, S. Zhang, C. Xia et al., Perseverance of direct bandgap in multilayer 2D PbI2 under an experimental strain up to 7.69%. 2D Mater. 6(2), 025014 (2019). https://doi.org/10.1088/2053-1583/ab01eb
P.-Y. Chen, J. Sodhi, Y. Qiu, T.M. Valentin, R.S. Steinberg, Z. Wang, R.H. Hurt, I.Y. Wong, Multiscale graphene topographies programmed by sequential mechanical deformation. Adv. Mater. 28(18), 3564–3571 (2016). https://doi.org/10.1002/adma.201506194
T.H. Ly, S.J. Yun, Q.H. Thi, J. Zhao, Edge delamination of monolayer transition metal dichalcogenides. ACS Nano 11(7), 7534–7541 (2017). https://doi.org/10.1021/acsnano.7b04287
S. Lou, Y. Liu, F. Yang, S. Lin, R. Zhang et al., Three-dimensional architecture enabled by strained two-dimensional material heterojunction. Nano Lett. 18(3), 1819–1825 (2018). https://doi.org/10.1021/acs.nanolett.7b05074
A. Kushima, X. Qian, P. Zhao, S. Zhang, J. Li, Ripplocations in van der waals layers. Nano Lett. 15(2), 1302–1308 (2015). https://doi.org/10.1021/nl5045082
Q. Zhang, J. Yin, Spontaneous buckling-driven periodic delamination of thin films on soft substrates under large compression. J. Mech. Phys. Solids 118, 40–57 (2018). https://doi.org/10.1016/j.jmps.2018.05.009
MathSciNet
J. Choi, H.J. Kim, M.C. Wang, J. Leem, W.P. King, S. Nam, Three-dimensional integration of graphene via swelling, shrinking, and adaptation. Nano Lett. 15(7), 4525–4531 (2015). https://doi.org/10.1021/acs.nanolett.5b01036
H. Li, A.W. Contryman, X. Qian, S.M. Ardakani, Y. Gong et al., Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat. Commun. 6, 7381 (2015). https://doi.org/10.1038/ncomms8381
A. Branny, S. Kumar, R. Proux, B.D. Gerardot, Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 8, 15053 (2017). https://doi.org/10.1038/ncomms15053
L. Sortino, M. Brooks, P.G. Zotev, A. Genco, J. Cambiasso et al., Dielectric nano-antennas for strain engineering in atomically thin two-dimensional semiconductors. arXiv:2002.04278 (2020)
W.H. Chae, J.D. Cain, E.D. Hanson, A.A. Murthy, V.P. Dravid, Substrate-induced strain and charge doping in CVD-grown monolayer MoS2. Appl. Phys. Lett. 111(14), 143106 (2017). https://doi.org/10.1063/1.4998284
G.H. Ahn, M. Amani, H. Rasool, D.-H. Lien, J.P. Mastandrea et al., Strain-engineered growth of two-dimensional materials. Nat. Commun. 8, 1–8 (2017). https://doi.org/10.1038/s41467-017-00516-5
L. Oakes, R. Carter, T. Hanken, A.P. Cohn, K. Share, B. Schmidt, C.L.J.N. Pint, Interface strain in vertically stacked two-dimensional heterostructured carbon-MoS2 nanosheets controls electrochemical reactivity. Nat. Commun. 7, 11796 (2016). https://doi.org/10.1038/ncomms11796
A. Hazarika, I. Fedin, L. Hong, J. Guo, V. Srivastava et al., Colloidal atomic layer deposition with stationary reactant phases enables precise synthesis of “digital” II-VI nano-heterostructures with exquisite control of confinement and strain. J. Am. Chem. Soc. 141(34), 13487–13496 (2019). https://doi.org/10.1021/jacs.9b04866
H. Zhu, Y. Wang, J. Xiao, M. Liu, S. Xiong et al., Observation of piezoelectricity in free-standing monolayer MoS2. Nat. Nanotechnol. 10, 151 (2014). https://doi.org/10.1038/nnano.2014.309
J. Qi, Y.-W. Lan, A.Z. Stieg, J.-H. Chen, Y.-L. Zhong, L.-J. Li, C.-D. Chen, Y. Zhang, K.L. Wang, Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics. Nat. Commun. 6, 7430 (2015). https://doi.org/10.1038/ncomms8430
S. Manzeli, A. Allain, A. Ghadimi, A. Kis, Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2. Nano Lett. 15(8), 5330–5335 (2015). https://doi.org/10.1021/acs.nanolett.5b01689
E. Soergel, Piezoresponse force microscopy (PFM). J. Phys. D Appl. Phys. 44(46), 464003 (2011). https://doi.org/10.1088/0022-3727/44/46/464003
X. Wang, X. He, H. Zhu, L. Sun, W. Fu et al., Subatomic deformation driven by vertical piezoelectricity from cds ultrathin films. Sci. Adv. 2(7), e1600209 (2016). https://doi.org/10.1126/sciadv.1600209
Y. Zhou, D. Wu, Y. Zhu, Y. Cho, Q. He et al., Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett. 17(9), 5508–5513 (2017). https://doi.org/10.1021/acs.nanolett.7b02198
F. Liu, L. You, K.L. Seyler, X. Li, P. Yu et al., Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016). https://doi.org/10.1038/ncomms12357
S.K. Kim, R. Bhatia, T.-H. Kim, D. Seol, J.H. Kim et al., Directional dependent piezoelectric effect in CVD grown monolayer MoS2 for flexible piezoelectric nanogenerators. Nano Energy 22, 483–489 (2016). https://doi.org/10.1016/j.nanoen.2016.02.046
E.N. Esfahani, T. Li, B. Huang, X. Xu, J. Li, Piezoelectricity of atomically thin WSe2 via laterally excited scanning probe microscopy. Nano Energy 52, 117–122 (2018). https://doi.org/10.1016/j.nanoen.2018.07.050
Y. Li, C.-Y. Xu, L. Zhen, Surface potential and interlayer screening effects of few-layer MoS2 nanoflakes. Appl. Phys. Lett. 102(14), 143110 (2013). https://doi.org/10.1063/1.4801844
D. Fu, J. Zhou, S. Tongay, K. Liu, W. Fan, T.-J.K. Liu, J. Wu, Mechanically modulated tunneling resistance in monolayer MoS2. Appl. Phys. Lett. 103(18), 183105 (2013). https://doi.org/10.1063/1.4827301
F. Li, Z. Lu, Y.-W. Lan, L. Jiao, M. Xu, X. Zhu, X. Zhang, H. Wu, J. Qi, Force and light tuning vertical tunneling current in the atomic layered MoS2. Nanotechnology 29(27), 275202 (2018). https://doi.org/10.1088/1361-6528/aabe1e
J. Quereda, J.J. Palacios, N. Agräit, A. Castellanos-Gomez, G. Rubio-Bollinger, Strain engineering of Schottky barriers in single- and few-layer MoS2 vertical devices. 2D Mater. 4(2), 021006 (2017). https://doi.org/10.1088/2053-1583/aa5920
A.R. Rezk, B. Carey, A.F. Chrimes, D.W.M. Lau, B.C. Gibson, C. Zheng, M.S. Fuhrer, L.Y. Yeo, K. Kalantar-zadeh, Acoustically-driven trion and exciton modulation in piezoelectric two-dimensional MoS2. Nano Lett. 16(2), 849–855 (2016). https://doi.org/10.1021/acs.nanolett.5b02826
J. Guo, J. Zhao, D. Huang, Y. Wang, F. Zhang et al., Two-dimensional tellurium-polymer membrane for ultrafast photonics. Nanoscale 11(13), 6235–6242 (2019). https://doi.org/10.1039/c9nr00736a
Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li et al., Few-layer antimonene decorated microfiber: Ultra-short pulse generation and all-optical thresholding with enhanced long term stability. 2D Mater. 4(4), 045010 (2017). https://doi.org/10.1088/2053-1583/aa87c1
J. Zheng, X. Tang, Z. Yang, Z. Liang, Y. Chen et al., Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation. Adv. Opt. Mater. 5(9), 1700026 (2017). https://doi.org/10.1002/adom.201700026
H. Zhang, D. Tang, L. Zhao, Q. Bao, K.P. Loh, Vector dissipative solitons in graphene mode locked fiber lasers. Opt. Commun. 283(17), 3334–3338 (2010). https://doi.org/10.1016/j.optcom.2010.04.064
S. Chen, L. Miao, X. Chen, Y. Chen, C. Zhao et al., Few-layer topological insulator for all-optical signal processing using the nonlinear Kerr effect. Adv. Opt. Mater. 3(12), 1769–1778 (2015). https://doi.org/10.1002/adom.201500347
J. Zheng, Z. Yang, C. Si, Z. Liang, X. Chen et al., Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability. ACS Photonics 4(6), 1466–1476 (2017). https://doi.org/10.1021/acsphotonics.7b00231
T. Wang, Y. Guo, P. Wan, H. Zhang, X. Chen, X. Sun, Flexible transparent electronic gas sensors. Small 12(28), 3748–3756 (2016). https://doi.org/10.1002/smll.201601049
Y. Xu, J. Yuan, K. Zhang, Y. Hou, Q. Sun et al., Field-induced n-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility. Adv. Funct. Mater. 27(38), 1702211 (2017). https://doi.org/10.1002/adfm.201702211
H. Xie, Z. Li, Z. Sun, J. Shao, X.F. Yu et al., Metabolizable ultrathin Bi2Se3 nanosheets in imaging-guided photothermal therapy. Small 12(30), 4136–4145 (2016). https://doi.org/10.1002/smll.201601050
Z. Sun, Y. Zhao, Z. Li, H. Cui, Y. Zhou et al., TiL4-coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer. Small 13(11), 1602896 (2017). https://doi.org/10.1002/smll.201602896
Z. Huang, Z. Zhang, X. Qi, X. Ren, G. Xu, P. Wan, X. Sun, H. Zhang, Wall-like hierarchical metal oxide nanosheet arrays grown on carbon cloth for excellent supercapacitor electrodes. Nanoscale 8(27), 13273–13279 (2016). https://doi.org/10.1039/c6nr04020a
Y.-L. Ding, B.M. Goh, H. Zhang, K.P. Loh, L. Lu, Single-crystalline nanotubes of spinel lithium nickel manganese oxide with lithium titanate anode for high-rate lithium ion batteries. J. Power Sour. 236, 1–9 (2013). https://doi.org/10.1016/j.jpowsour.2013.02.047
X. Ren, J. Zhou, X. Qi, Y. Liu, Z. Huang et al., Few-layer black phosphorus nanosheets as electrocatalysts for highly efficient oxygen evolution reaction. Adv. Energy Mater. 7(19), 1700396 (2017). https://doi.org/10.1002/aenm.201700396
M. Park, Y.J. Park, X. Chen, Y.-K. Park, M.-S. Kim, J.-H. Ahn, MoS2-based tactile sensor for electronic skin applications. Adv. Mater. 28(13), 2556–2562 (2016). https://doi.org/10.1002/adma.201505124
I. Neri, M. López-Suárez, Electronic transport modulation on suspended few-layer MoS2 under strain. Phys. Rev. B 97(24), 241408 (2018). https://doi.org/10.1103/PhysRevB.97.241408
M. Zhu, K. Sakamoto, J. Li, N. Inomata, M. Toda, T. Ono, Piezoresistive strain sensor based on monolayer molybdenum disulfide continuous film deposited by chemical vapor deposition. J. Micromech. Microeng. 29(5), 055002 (2019). https://doi.org/10.1088/1361-6439/ab0726
W. Zheng, W. Huang, F. Gao, H. Yang, M. Dai et al., Kirigami-inspired highly stretchable nanoscale devices using multidimensional deformation of monolayer MoS2. Chem. Mater. 30(17), 6063–6070 (2018). https://doi.org/10.1021/acs.chemmater.8b02464
W. Feng, W. Zheng, F. Gao, X. Chen, G. Liu, T. Hasan, W. Cao, P. Hu, Sensitive electronic-skin strain sensor array based on the patterned two-dimensional α-In2Se3. Chem. Mater. 28(12), 4278–4283 (2016). https://doi.org/10.1021/acs.chemmater.6b01073
S. Wagner, C. Yim, N. McEvoy, S. Kataria, V. Yokaribas et al., Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films. Nano Lett. 18(6), 3738–3745 (2018). https://doi.org/10.1021/acs.nanolett.8b00928
H. Song, I. Karakurt, M. Wei, N. Liu, Y. Chu, J. Zhong, L. Lin, Lead iodide nanosheets for piezoelectric energy conversion and strain sensing. Nano Energy 49, 7–13 (2018). https://doi.org/10.1016/j.nanoen.2018.04.029
W. Wu, L. Wang, R. Yu, Y. Liu, S.-H. Wei, J. Hone, Z.L. Wang, Piezophototronic effect in single-atomic-layer MoS2 for strain-gated flexible optoelectronics. Adv. Mater. 28(38), 8463–8468 (2016). https://doi.org/10.1002/adma.201602854
M. Dai, H. Chen, F. Wang, Y. Hu, S. Wei, J. Zhang, Z. Wang, T. Zhai, P. Hu, Robust piezo-phototronic effect in multilayer γ-InSe for high-performance self-powered flexible photodetectors. ACS Nano 13(6), 7291–7299 (2019). https://doi.org/10.1021/acsnano.9b03278
K. Zhang, J. Zhai, Z.L. Wang, A monolayer MoS2 p-n homogenous photodiode with enhanced photoresponse by piezo-phototronic effect. 2D Mater. 5(3), 035038 (2018). https://doi.org/10.1088/2053-1583/aac96b
K. Zhang, M. Peng, W. Wu, J. Guo, G. Gao et al., A flexible p-CuO/n- MoS2 heterojunction photodetector with enhanced photoresponse by the piezo-phototronic effect. Mater. Horiz. 4(2), 274–280 (2017). https://doi.org/10.1039/C6MH00568C
J. Du, Q. Liao, M. Hong, B. Liu, X. Zhang et al., Piezotronic effect on interfacial charge modulation in mixed-dimensional van der waals heterostructure for ultrasensitive flexible photodetectors. Nano Energy 58, 85–93 (2019). https://doi.org/10.1016/j.nanoen.2019.01.024
P. Lin, L. Zhu, D. Li, L. Xu, C. Pan, Z. Wang, Piezo-phototronic effect for enhanced flexible MoS2/WSe2 van der waals photodiodes. Adv. Funct. Mater. 28(35), 1802849 (2018). https://doi.org/10.1002/adfm.201802849
F. Xue, L. Chen, J. Chen, J. Liu, L. Wang et al., P-type MoS2 and n-type ZnO diode and its performance enhancement by the piezophototronic effect. Adv. Mater. 28(17), 3391–3398 (2016). https://doi.org/10.1002/adma.201506472
F. Xue, L. Yang, M. Chen, J. Chen, X. Yang et al., Enhanced photoresponsivity of the MoS2-GaN heterojunction diode via the piezo-phototronic effect. NPG Asia Mater. 9, e418 (2017). https://doi.org/10.1038/am.2017.142
P. Lin, L. Zhu, D. Li, L. Xu, Z.L. Wang, Tunable WSe2–CdS mixed-dimensional van der Waals heterojunction with a piezo-phototronic effect for an enhanced flexible photodetector. Nanoscale 10(30), 14472–14479 (2018). https://doi.org/10.1039/C8NR04376K
F. Li, T. Shen, L. Xu, C. Hu, J. Qi, Strain improving the performance of a flexible monolayer MoS2 photodetector. Adv. Electron. Mater. 5(12), 1900803 (2019). https://doi.org/10.1002/aelm.201900803
P. Gant, P. Huang, D. Pérez de Lara, D. Guo, R. Frisenda, A. Castellanos-Gomez, A strain tunable single-layer MoS2 photodetector. Mater. Today 27, 8–13 (2019). https://doi.org/10.1016/j.mattod.2019.04.019
W. Li, M. Dai, Y. Hu, H. Chen, X. Zhu, Q. Yang, P. Hu, Synchronous enhancement for responsivity and response speed in In2Se3 photodetector modulated by piezoresistive effect. ACS Appl. Mater. Interfaces. 11(50), 47098–47105 (2019). https://doi.org/10.1021/acsami.9b17448
S.A. Han, J. Lee, J. Lin, S.-W. Kim, J.H. Kim, Piezo/triboelectric nanogenerators based on 2-dimensional layered structure materials. Nano Energy 57, 680–691 (2019). https://doi.org/10.1016/j.nanoen.2018.12.081
Y. Zhou, W. Liu, X. Huang, A. Zhang, Y. Zhang, Z.L. Wang, Theoretical study on two-dimensional MoS2 piezoelectric nanogenerators. Nano Res. 9(3), 800–807 (2016). https://doi.org/10.1007/s12274-015-0959-8
J.-H. Lee, J.Y. Park, E.B. Cho, T.Y. Kim, S.A. Han et al., Reliable piezoelectricity in bilayer WSe2 for piezoelectric nanogenerators. Adv. Mater. 29(29), 1606667 (2017). https://doi.org/10.1002/adma.201606667
F. Xue, J. Zhang, W. Hu, W.-T. Hsu, A. Han et al., Multidirection piezoelectricity in mono- and multilayered hexagonal α-In2Se3. ACS Nano 12(5), 4976–4983 (2018). https://doi.org/10.1021/acsnano.8b02152
W. Ma, J. Lu, B. Wan, D. Peng, Q. Xu, G. Hu, Y. Peng, C. Pan, Z.L. Wang, Piezoelectricity in multilayer black phosphorus for piezotronics and nanogenerators. Adv. Mater. 32(7), 1905795 (2020). https://doi.org/10.1002/adma.201905795
S.A. Han, T.-H. Kim, S.K. Kim, K.H. Lee, H.-J. Park, J.-H. Lee, S.-W. Kim, Point-defect-passivated MoS2 nanosheet-based high performance piezoelectric nanogenerator. Adv. Mater. 30(21), 1800342 (2018). https://doi.org/10.1002/adma.201800342
M. Dai, W. Zheng, X. Zhang, S. Wang, J. Lin et al., Enhanced piezoelectric effect derived from grain boundary in MoS2 monolayers. Nano Lett. 20(1), 201–207 (2020). https://doi.org/10.1021/acs.nanolett.9b03642
Y. Peng, M. Que, J. Tao, X. Wang, J. Lu, G. Hu, B. Wan, Q. Xu, C. Pan, Progress in piezotronic and piezo-phototronic effect of 2D materials. 2D Mater 5(4), 042003 (2018). https://doi.org/10.1088/2053-1583/aadabb
R.I. González, F.J. Valencia, J. Rogan, J.A. Valdivia, J. Sofo, M. Kiwi, F. Munoz, Bending energy of 2D materials: graphene, MoS2 and imogolite. RSC Adv. 8(9), 4577–4583 (2018). https://doi.org/10.1039/C7RA10983K
S.G. Sarwat, M. Tweedie, B.F. Porter, Y. Zhou, Y. Sheng, J. Mol, J. Warner, H. Bhaskaran, Revealing strain-induced effects in ultrathin heterostructures at the nanoscale. Nano Lett. 18(4), 2467–2474 (2018). https://doi.org/10.1021/acs.nanolett.8b00036
T. Shen, A.V. Penumatcha, J. Appenzeller, Strain engineering for transition metal dichalcogenides based field effect transistors. ACS Nano 10(4), 4712–4718 (2016). https://doi.org/10.1021/acsnano.6b01149
S. Pak, J. Lee, Y.-W. Lee, A.R. Jang, S. Ahn et al., Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer. Nano Lett. 17(9), 5634–5640 (2017). https://doi.org/10.1021/acs.nanolett.7b02513