Highly Efficient Aligned Ion-Conducting Network and Interface Chemistries for Depolarized All-Solid-State Lithium Metal Batteries
Corresponding Author: Lin Zeng
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 86
Abstract
Improving the long-term cycling stability and energy density of all-solid-state lithium (Li)-metal batteries (ASSLMBs) at room temperature is a severe challenge because of the notorious solid–solid interfacial contact loss and sluggish ion transport. Solid electrolytes are generally studied as two-dimensional (2D) structures with planar interfaces, showing limited interfacial contact and further resulting in unstable Li/electrolyte and cathode/electrolyte interfaces. Herein, three-dimensional (3D) architecturally designed composite solid electrolytes are developed with independently controlled structural factors using 3D printing processing and post-curing treatment. Multiple-type electrolyte films with vertical-aligned micro-pillar (p-3DSE) and spiral (s-3DSE) structures are rationally designed and developed, which can be employed for both Li metal anode and cathode in terms of accelerating the Li+ transport within electrodes and reinforcing the interfacial adhesion. The printed p-3DSE delivers robust long-term cycle life of up to 2600 cycles and a high critical current density of 1.92 mA cm−2. The optimized electrolyte structure could lead to ASSLMBs with a superior full-cell areal capacity of 2.75 mAh cm−2 (LFP) and 3.92 mAh cm−2 (NCM811). This unique design provides enhancements for both anode and cathode electrodes, thereby alleviating interfacial degradation induced by dendrite growth and contact loss. The approach in this study opens a new design strategy for advanced composite solid polymer electrolytes in ASSLMBs operating under high rates/capacities and room temperature.
Highlights:
1 This study introduces an innovative 3D-printed electrolyte with vertically aligned ion transport network, which contains well-dispersed nanoscale Ta-doped Li7La3Zr2O12 in a poly(ethylene glycol) diacrylate matrix.
2 The 3DSE architecture enables efficient ion transport across the Li/electrolyte and electrolyte/cathode interfaces, which allows for increased active material mass loading and enhanced interfacial adhesion.
3 The p-3DSE Li symmetric cell displays an impressive critical current density value of 1.92 mA cm−2 and stable operation for 2600 h at room temperature. Full cells using p-3DSE achieve notable areal capacities.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Armand, J.-M. Tarascon, Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a
- Y. Tian, G. Zeng, A. Rutt, T. Shi, H. Kim et al., Promises and challenges of next-generation beyond Li-ion batteries for electric vehicles and grid decarbonization. Chem. Rev. 121, 1623–1669 (2021). https://doi.org/10.1021/acs.chemrev.0c00767
- M.S. Whittingham, Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004). https://doi.org/10.1021/cr020731c
- J.C. Bachman, S. Muy, A. Grimaud, H.H. Chang, N. Pour et al., Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016). https://doi.org/10.1021/acs.chemrev.5b00563
- M. Dirican, C. Yan, P. Zhu, X. Zhang, Composite solid electrolytes for all-solid-state lithium batteries. Mater. Sci. Eng. R. Rep. 136, 27–46 (2019). https://doi.org/10.1016/j.mser.2018.10.004
- X. Fan, C. Zhong, J. Liu, J. Ding, Y. Deng et al., Opportunities of flexible and portable electrochemical devices for energy storage: expanding the spotlight onto semi-solid/solid electrolytes. Chem. Rev. 122, 17155–17239 (2022). https://doi.org/10.1021/acs.chemrev.2c00196
- Z. Gao, H. Sun, L. Fu, F. Ye, Y. Zhang et al., Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 30, e1705702 (2018). https://doi.org/10.1002/adma.201705702
- J. Dai, C. Yang, C. Wang, G. Pastel, L. Hu, Interface engineering for garnet-based solid-state lithium-metal batteries: materials, structures, and characterization. Adv. Mater. 30, e1802068 (2018). https://doi.org/10.1002/adma.201802068
- J. Zheng, M.S. Kim, Z. Tu, S. Choudhury, T. Tang et al., Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries. Chem. Soc. Rev. 49, 2701–2750 (2020). https://doi.org/10.1039/C9CS00883G
- B. Liu, J.-G. Zhang, W. Xu, Advancing lithium metal batteries. Joule 2, 833–845 (2018). https://doi.org/10.1016/j.joule.2018.03.008
- A. Banerjee, X. Wang, C. Fang, E. Wu, Y.S. Meng, Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev. 120, 6878–6933 (2020). https://doi.org/10.1021/acs.chemrev.0c00101
- Y. Xiao, Y. Wang, S.-H. Bo, J.C. Kim, L.J. Miara et al., Understanding interface stability in solid-state batteries. Nat. Rev. Mater. 5, 105–126 (2020). https://doi.org/10.1038/s41578-019-0157-5
- X. Miao, S. Guan, C. Ma, L. Li, C.-W. Nan, Role of interfaces in solid-state batteries. Adv. Mater. 35(50), e2206402 (2022). https://doi.org/10.1002/adma.202206402
- M. Du, K. Liao, Q. Lu, Z. Shao, Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: challenges, materials, construction, and characterization. Energy Environ. Sci. 12, 1780–1804 (2019). https://doi.org/10.1039/C9EE00515C
- Y. He, S. Chen, L. Nie, Z. Sun, X. Wu et al., Stereolithography three-dimensional printing solid polymer electrolytes for all-solid-state lithium metal batteries. Nano Lett. 20, 7136–7143 (2020). https://doi.org/10.1021/acs.nanolett.0c02457
- X. Dong, A. Mayer, X. Liu, S. Passerini, D. Bresser, Single-ion conducting multi-block copolymer electrolyte for lithium-metal batteries with high mass loading NCM811 cathodes. ACS Energy Lett. 8, 1114–1121 (2023). https://doi.org/10.1021/acsenergylett.2c02806
- R. Xu, F. Liu, Y. Ye, H. Chen, R.R. Yang et al., A morphologically stable Li/electrolyte interface for all-solid-state batteries enabled by 3D-micropatterned garnet. Adv. Mater. 33, e2104009 (2021). https://doi.org/10.1002/adma.202104009
- Q. Xia, Q. Zhang, S. Sun, F. Hussain, C. Zhang et al., Tunnel intergrowth Lix MnO2 nanosheet arrays as 3D cathode for high-performance all-solid-state thin film lithium microbatteries. Adv. Mater. 33, e2003524 (2021). https://doi.org/10.1002/adma.202003524
- Y. Mu, Y. Chen, B. Wu, Q. Zhang, M. Lin et al., Dual vertically aligned electrode-inspired high-capacity lithium batteries. Adv. Sci. 9, e2203321 (2022). https://doi.org/10.1002/advs.202203321
- T.-T. Zuo, X.-W. Wu, C.-P. Yang, Y.-X. Yin, H. Ye et al., Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Adv. Mater. 29, 1700389 (2017). https://doi.org/10.1002/adma.201700389
- R. Zhang, S. Wen, N. Wang, K. Qin, E. Liu et al., N-doped graphene modified 3D porous Cu current collector toward microscale homogeneous Li deposition for Li metal anodes. Adv. Energy Mater. 8, 1800914 (2018). https://doi.org/10.1002/aenm.201800914
- Q. Yun, Y.-B. He, W. Lv, Y. Zhao, B. Li et al., Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater. 28, 6932–6939 (2016). https://doi.org/10.1002/adma.201601409
- T.S. Wei, B.Y. Ahn, J. Grotto, J.A. Lewis, 3D printing of customized Li-ion batteries with thick electrodes. Adv. Mater. 30, e1703027 (2018). https://doi.org/10.1002/adma.201703027
- S.-H. Park, P.J. King, R. Tian, C.S. Boland, J. Coelho et al., High areal capacity battery electrodes enabled by segregated nanotube networks. Nat. Energy 4, 560–567 (2019). https://doi.org/10.1038/s41560-019-0398-y
- C. Chen, Y. Zhang, Y. Li, Y. Kuang, J. Song et al., Highly conductive, lightweight, low-tortuosity carbon frameworks as ultrathick 3D current collectors. Adv. Energy Mater. 7, 1700595 (2017). https://doi.org/10.1002/aenm.201700595
- D.W. McOwen, S. Xu, Y. Gong, Y. Wen, G.L. Godbey et al., 3D-printing electrolytes for solid-state batteries. Adv. Mater. 30, e1707132 (2018). https://doi.org/10.1002/adma.201707132
- K. Lee, Y. Shang, V.A. Bobrin, R. Kuchel, D. Kundu et al., 3D printing nanostructured solid polymer electrolytes with high modulus and conductivity. Adv. Mater. 34, e2204816 (2022). https://doi.org/10.1002/adma.202204816
- R. Elango, A. Demortière, V. De Andrade, M. Morcrette, V. Seznec, Thick binder-free electrodes for Li–ion battery fabricated using templating approach and spark plasma sintering reveals high areal capacity. Adv. Energy Mater. 8, 1703031 (2018). https://doi.org/10.1002/aenm.201703031
- J. Kang, Z. Yan, L. Gao, Y. Zhang, W. Liu et al., Improved ionic conductivity and enhancedinterfacial stability of solid polymer electrolytes with porous ferroelectric ceramic nanofibers. Energy Storage Mater. 53, 192–203 (2022). https://doi.org/10.1016/j.ensm.2022.09.005
- J. Bae, Y. Li, J. Zhang, X. Zhou, F. Zhao et al., Cover picture: a 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew. Chem. Int. Ed. 57, 2007 (2018). https://doi.org/10.1002/anie.201800929
- H. Xie, C. Yang, K.K. Fu, Y. Yao, F. Jiang et al., Flexible, scalable, and highly conductive garnet-polymer solid electrolyte templated by bacterial cellulose. Adv. Energy Mater. 8, 1703474 (2018). https://doi.org/10.1002/aenm.201703474
- S. Zekoll, C. Marriner-Edwards, A.K. Ola Hekselman, J. Kasemchainan, C. Kuss et al., Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy Environ. Sci. 11, 185–201 (2018). https://doi.org/10.1039/c7ee02723k
- S. Tang, W. Guo, Y. Fu, Advances in composite polymer electrolytes for lithium batteries and beyond. Adv. Energy Mater. 11, 2000802 (2021). https://doi.org/10.1002/aenm.202000802
- J. Pan, P. Zhao, N. Wang, F. Huang, S. Dou, Research progress in stable interfacial constructions between composite polymer electrolytes and electrodes. Energy Environ. Sci. 15, 2753–2775 (2022). https://doi.org/10.1039/d1ee03466a
- X. Wang, H. Zhai, B. Qie, Q. Cheng, A. Li et al., Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanop/polymer composite electrolyte. Nano Energy 60, 205–212 (2019). https://doi.org/10.1016/j.nanoen.2019.03.051
- W. Tang, S. Tang, X. Guan, X. Zhang, Q. Xiang et al., High-performance solid polymer electrolytes filled with vertically aligned 2D materials. Adv. Funct. Mater. 29, 1900648 (2019). https://doi.org/10.1002/adfm.201900648
- J. Dai, K. Fu, Y. Gong, J. Song, C. Chen et al., Flexible solid-state electrolyte with aligned nanostructures derived from wood. ACS Mater. Lett. 1, 354–361 (2019). https://doi.org/10.1021/acsmaterialslett.9b00189
- X. Zhang, J. Xie, F. Shi, D. Lin, Y. Liu et al., Vertically aligned and continuous nanoscale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity. Nano Lett. 18, 3829–3838 (2018). https://doi.org/10.1021/acs.nanolett.8b01111
- H. Zhang, X. An, Y. Yang, Y. Long, S. Nie et al., Vertical aligned solid-state electrolyte templated by nanostructured “upright” cellulose film layers for advanced cell performance. EcoMat 5, e12317 (2023). https://doi.org/10.1002/eom2.12317
- Y. Nie, T. Yang, D. Luo, Y. Liu, Q. Ma et al., Tailoring vertically aligned inorganic-polymer nanocomposites with abundant lewis acid sites for ultra-stable solid-state lithium metal batteries. Adv. Energy Mater. 13, 2204218 (2023). https://doi.org/10.1002/aenm.202204218
- Z. Jiang, H. Xie, S. Wang, X. Song, X. Yao et al., Perovskite membranes with vertically aligned microchannels for all-solid-state lithium batteries. Adv. Energy Mater. 8, 1801433 (2018). https://doi.org/10.1002/aenm.201801433
- R. Fang, B. Xu, N.S. Grundish, Y. Xia, Y. Li et al., Li2S6-integrated PEO-based polymer electrolytes for all-solid-state lithium-metal batteries. Angew. Chem. Int. Ed. 60, 17701–17706 (2021). https://doi.org/10.1002/anie.202106039
- Y. Wei, T.-H. Liu, W. Zhou, H. Cheng, X. Liu et al., Enabling all-solid-state Li metal batteries operated at 30 ℃ by molecular regulation of polymer electrolyte. Adv. Energy Mater. 13, 2203547 (2023). https://doi.org/10.1002/aenm.202203547
- B. Xu, X. Li, C. Yang, Y. Li, N.S. Grundish et al., Interfacial chemistry enables stable cycling of all-solid-state Li metal batteries at high current densities. J. Am. Chem. Soc. 143, 6542–6550 (2021). https://doi.org/10.1021/jacs.1c00752
- J. Xu, J. Li, Y. Li, M. Yang, L. Chen et al., Long-life lithium-metal all-solid-state batteries and stable Li plating enabled by in situ formation of Li3 PS4 in the SEI layer. Adv. Mater. 34, e2203281 (2022). https://doi.org/10.1002/adma.202203281
- Z. Zhang, J. Wang, S. Zhang, H. Ying, Z. Zhuang et al., Stable all-solid-state lithium metal batteries with Li3N-LiF-enriched interface induced by lithium nitrate addition. Energy Storage Mater. 43, 229–237 (2021). https://doi.org/10.1016/j.ensm.2021.09.002
- V. Jabbari, V. Yurkiv, M.G. Rasul, A.H. Phakatkar, F. Mashayek et al., In situ formation of stable solid electrolyte interphase with high ionic conductivity for long lifespan all-solid-state lithium metal batteries. Energy Storage Mater. 57, 1–13 (2023). https://doi.org/10.1016/j.ensm.2023.02.009
References
M. Armand, J.-M. Tarascon, Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a
Y. Tian, G. Zeng, A. Rutt, T. Shi, H. Kim et al., Promises and challenges of next-generation beyond Li-ion batteries for electric vehicles and grid decarbonization. Chem. Rev. 121, 1623–1669 (2021). https://doi.org/10.1021/acs.chemrev.0c00767
M.S. Whittingham, Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004). https://doi.org/10.1021/cr020731c
J.C. Bachman, S. Muy, A. Grimaud, H.H. Chang, N. Pour et al., Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016). https://doi.org/10.1021/acs.chemrev.5b00563
M. Dirican, C. Yan, P. Zhu, X. Zhang, Composite solid electrolytes for all-solid-state lithium batteries. Mater. Sci. Eng. R. Rep. 136, 27–46 (2019). https://doi.org/10.1016/j.mser.2018.10.004
X. Fan, C. Zhong, J. Liu, J. Ding, Y. Deng et al., Opportunities of flexible and portable electrochemical devices for energy storage: expanding the spotlight onto semi-solid/solid electrolytes. Chem. Rev. 122, 17155–17239 (2022). https://doi.org/10.1021/acs.chemrev.2c00196
Z. Gao, H. Sun, L. Fu, F. Ye, Y. Zhang et al., Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 30, e1705702 (2018). https://doi.org/10.1002/adma.201705702
J. Dai, C. Yang, C. Wang, G. Pastel, L. Hu, Interface engineering for garnet-based solid-state lithium-metal batteries: materials, structures, and characterization. Adv. Mater. 30, e1802068 (2018). https://doi.org/10.1002/adma.201802068
J. Zheng, M.S. Kim, Z. Tu, S. Choudhury, T. Tang et al., Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries. Chem. Soc. Rev. 49, 2701–2750 (2020). https://doi.org/10.1039/C9CS00883G
B. Liu, J.-G. Zhang, W. Xu, Advancing lithium metal batteries. Joule 2, 833–845 (2018). https://doi.org/10.1016/j.joule.2018.03.008
A. Banerjee, X. Wang, C. Fang, E. Wu, Y.S. Meng, Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev. 120, 6878–6933 (2020). https://doi.org/10.1021/acs.chemrev.0c00101
Y. Xiao, Y. Wang, S.-H. Bo, J.C. Kim, L.J. Miara et al., Understanding interface stability in solid-state batteries. Nat. Rev. Mater. 5, 105–126 (2020). https://doi.org/10.1038/s41578-019-0157-5
X. Miao, S. Guan, C. Ma, L. Li, C.-W. Nan, Role of interfaces in solid-state batteries. Adv. Mater. 35(50), e2206402 (2022). https://doi.org/10.1002/adma.202206402
M. Du, K. Liao, Q. Lu, Z. Shao, Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: challenges, materials, construction, and characterization. Energy Environ. Sci. 12, 1780–1804 (2019). https://doi.org/10.1039/C9EE00515C
Y. He, S. Chen, L. Nie, Z. Sun, X. Wu et al., Stereolithography three-dimensional printing solid polymer electrolytes for all-solid-state lithium metal batteries. Nano Lett. 20, 7136–7143 (2020). https://doi.org/10.1021/acs.nanolett.0c02457
X. Dong, A. Mayer, X. Liu, S. Passerini, D. Bresser, Single-ion conducting multi-block copolymer electrolyte for lithium-metal batteries with high mass loading NCM811 cathodes. ACS Energy Lett. 8, 1114–1121 (2023). https://doi.org/10.1021/acsenergylett.2c02806
R. Xu, F. Liu, Y. Ye, H. Chen, R.R. Yang et al., A morphologically stable Li/electrolyte interface for all-solid-state batteries enabled by 3D-micropatterned garnet. Adv. Mater. 33, e2104009 (2021). https://doi.org/10.1002/adma.202104009
Q. Xia, Q. Zhang, S. Sun, F. Hussain, C. Zhang et al., Tunnel intergrowth Lix MnO2 nanosheet arrays as 3D cathode for high-performance all-solid-state thin film lithium microbatteries. Adv. Mater. 33, e2003524 (2021). https://doi.org/10.1002/adma.202003524
Y. Mu, Y. Chen, B. Wu, Q. Zhang, M. Lin et al., Dual vertically aligned electrode-inspired high-capacity lithium batteries. Adv. Sci. 9, e2203321 (2022). https://doi.org/10.1002/advs.202203321
T.-T. Zuo, X.-W. Wu, C.-P. Yang, Y.-X. Yin, H. Ye et al., Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Adv. Mater. 29, 1700389 (2017). https://doi.org/10.1002/adma.201700389
R. Zhang, S. Wen, N. Wang, K. Qin, E. Liu et al., N-doped graphene modified 3D porous Cu current collector toward microscale homogeneous Li deposition for Li metal anodes. Adv. Energy Mater. 8, 1800914 (2018). https://doi.org/10.1002/aenm.201800914
Q. Yun, Y.-B. He, W. Lv, Y. Zhao, B. Li et al., Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater. 28, 6932–6939 (2016). https://doi.org/10.1002/adma.201601409
T.S. Wei, B.Y. Ahn, J. Grotto, J.A. Lewis, 3D printing of customized Li-ion batteries with thick electrodes. Adv. Mater. 30, e1703027 (2018). https://doi.org/10.1002/adma.201703027
S.-H. Park, P.J. King, R. Tian, C.S. Boland, J. Coelho et al., High areal capacity battery electrodes enabled by segregated nanotube networks. Nat. Energy 4, 560–567 (2019). https://doi.org/10.1038/s41560-019-0398-y
C. Chen, Y. Zhang, Y. Li, Y. Kuang, J. Song et al., Highly conductive, lightweight, low-tortuosity carbon frameworks as ultrathick 3D current collectors. Adv. Energy Mater. 7, 1700595 (2017). https://doi.org/10.1002/aenm.201700595
D.W. McOwen, S. Xu, Y. Gong, Y. Wen, G.L. Godbey et al., 3D-printing electrolytes for solid-state batteries. Adv. Mater. 30, e1707132 (2018). https://doi.org/10.1002/adma.201707132
K. Lee, Y. Shang, V.A. Bobrin, R. Kuchel, D. Kundu et al., 3D printing nanostructured solid polymer electrolytes with high modulus and conductivity. Adv. Mater. 34, e2204816 (2022). https://doi.org/10.1002/adma.202204816
R. Elango, A. Demortière, V. De Andrade, M. Morcrette, V. Seznec, Thick binder-free electrodes for Li–ion battery fabricated using templating approach and spark plasma sintering reveals high areal capacity. Adv. Energy Mater. 8, 1703031 (2018). https://doi.org/10.1002/aenm.201703031
J. Kang, Z. Yan, L. Gao, Y. Zhang, W. Liu et al., Improved ionic conductivity and enhancedinterfacial stability of solid polymer electrolytes with porous ferroelectric ceramic nanofibers. Energy Storage Mater. 53, 192–203 (2022). https://doi.org/10.1016/j.ensm.2022.09.005
J. Bae, Y. Li, J. Zhang, X. Zhou, F. Zhao et al., Cover picture: a 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew. Chem. Int. Ed. 57, 2007 (2018). https://doi.org/10.1002/anie.201800929
H. Xie, C. Yang, K.K. Fu, Y. Yao, F. Jiang et al., Flexible, scalable, and highly conductive garnet-polymer solid electrolyte templated by bacterial cellulose. Adv. Energy Mater. 8, 1703474 (2018). https://doi.org/10.1002/aenm.201703474
S. Zekoll, C. Marriner-Edwards, A.K. Ola Hekselman, J. Kasemchainan, C. Kuss et al., Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy Environ. Sci. 11, 185–201 (2018). https://doi.org/10.1039/c7ee02723k
S. Tang, W. Guo, Y. Fu, Advances in composite polymer electrolytes for lithium batteries and beyond. Adv. Energy Mater. 11, 2000802 (2021). https://doi.org/10.1002/aenm.202000802
J. Pan, P. Zhao, N. Wang, F. Huang, S. Dou, Research progress in stable interfacial constructions between composite polymer electrolytes and electrodes. Energy Environ. Sci. 15, 2753–2775 (2022). https://doi.org/10.1039/d1ee03466a
X. Wang, H. Zhai, B. Qie, Q. Cheng, A. Li et al., Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanop/polymer composite electrolyte. Nano Energy 60, 205–212 (2019). https://doi.org/10.1016/j.nanoen.2019.03.051
W. Tang, S. Tang, X. Guan, X. Zhang, Q. Xiang et al., High-performance solid polymer electrolytes filled with vertically aligned 2D materials. Adv. Funct. Mater. 29, 1900648 (2019). https://doi.org/10.1002/adfm.201900648
J. Dai, K. Fu, Y. Gong, J. Song, C. Chen et al., Flexible solid-state electrolyte with aligned nanostructures derived from wood. ACS Mater. Lett. 1, 354–361 (2019). https://doi.org/10.1021/acsmaterialslett.9b00189
X. Zhang, J. Xie, F. Shi, D. Lin, Y. Liu et al., Vertically aligned and continuous nanoscale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity. Nano Lett. 18, 3829–3838 (2018). https://doi.org/10.1021/acs.nanolett.8b01111
H. Zhang, X. An, Y. Yang, Y. Long, S. Nie et al., Vertical aligned solid-state electrolyte templated by nanostructured “upright” cellulose film layers for advanced cell performance. EcoMat 5, e12317 (2023). https://doi.org/10.1002/eom2.12317
Y. Nie, T. Yang, D. Luo, Y. Liu, Q. Ma et al., Tailoring vertically aligned inorganic-polymer nanocomposites with abundant lewis acid sites for ultra-stable solid-state lithium metal batteries. Adv. Energy Mater. 13, 2204218 (2023). https://doi.org/10.1002/aenm.202204218
Z. Jiang, H. Xie, S. Wang, X. Song, X. Yao et al., Perovskite membranes with vertically aligned microchannels for all-solid-state lithium batteries. Adv. Energy Mater. 8, 1801433 (2018). https://doi.org/10.1002/aenm.201801433
R. Fang, B. Xu, N.S. Grundish, Y. Xia, Y. Li et al., Li2S6-integrated PEO-based polymer electrolytes for all-solid-state lithium-metal batteries. Angew. Chem. Int. Ed. 60, 17701–17706 (2021). https://doi.org/10.1002/anie.202106039
Y. Wei, T.-H. Liu, W. Zhou, H. Cheng, X. Liu et al., Enabling all-solid-state Li metal batteries operated at 30 ℃ by molecular regulation of polymer electrolyte. Adv. Energy Mater. 13, 2203547 (2023). https://doi.org/10.1002/aenm.202203547
B. Xu, X. Li, C. Yang, Y. Li, N.S. Grundish et al., Interfacial chemistry enables stable cycling of all-solid-state Li metal batteries at high current densities. J. Am. Chem. Soc. 143, 6542–6550 (2021). https://doi.org/10.1021/jacs.1c00752
J. Xu, J. Li, Y. Li, M. Yang, L. Chen et al., Long-life lithium-metal all-solid-state batteries and stable Li plating enabled by in situ formation of Li3 PS4 in the SEI layer. Adv. Mater. 34, e2203281 (2022). https://doi.org/10.1002/adma.202203281
Z. Zhang, J. Wang, S. Zhang, H. Ying, Z. Zhuang et al., Stable all-solid-state lithium metal batteries with Li3N-LiF-enriched interface induced by lithium nitrate addition. Energy Storage Mater. 43, 229–237 (2021). https://doi.org/10.1016/j.ensm.2021.09.002
V. Jabbari, V. Yurkiv, M.G. Rasul, A.H. Phakatkar, F. Mashayek et al., In situ formation of stable solid electrolyte interphase with high ionic conductivity for long lifespan all-solid-state lithium metal batteries. Energy Storage Mater. 57, 1–13 (2023). https://doi.org/10.1016/j.ensm.2023.02.009