A Bi-layer Composite Film Based on TiO2 Hollow Spheres, P25, and Multi-walled Carbon Nanotubes for Efficient Photoanode of Dye-sensitized Solar Cell
Corresponding Author: Jinmin Wang
Nano-Micro Letters,
Vol. 8 No. 3 (2016), Article Number: 232-239
Abstract
A bi-layer photoanode for dye-sensitized solar cell (DSSC) was fabricated, in which TiO2 hollow spheres (THSs) were designed as a scattering layer and P25/multi-walled carbon nanotubes (MWNTs) as an under-layer. The THSs were synthesized by a sacrifice template method and showed good light scattering ability as an over-layer of the photoanode. MWNTs were mixed with P25 to form an under-layer of the photoanode to improve the electron transmission ability of the photoanode. The power conversion efficiency of this kind of DSSC with bi-layer was enhanced to 5.13 %, which is 14.25 % higher than that of pure P25 DSSC.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. O’regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 film. Nature 353(6346), 737–740 (1991). doi:10.1038/353737a0
- M. Grätzel, Photoelectrochemical cells. Nature 414(6861), 338–344 (2001). doi:10.1038/35104607
- K.J. Hwang, D.W. Park, S. Jin, S.O. Kang, D.W. Cho, Influence of dye-concentration on the light-scattering effect in dye-sensitized solar cell. Mater. Chem. Phys. 149, 594–600 (2015). doi:10.1016/j.matchemphys.2014.11.013
- M.Y. Gao, Y.C. Rui, H.Z. Wang, Y.G. Li, Q.H. Zhang, Submicrometer@nano bimodal TiO2 particles as easily sintered, crack-free, and current-contributed scattering layers for dye-sensitized solar cells. J. Phys. Chem. C 118(30), 16951–16958 (2014). doi:10.1021/jp500466s
- J.M. Wang, X.W. Sun, Z.H. Jiao, E. Khoo, P.S. Lee, J. Ma, H.V. Demir, Tailoring insoluble nanobelts into soluble anti-UV nanopotpourris. Nanoscale 3(11), 4742–4745 (2011). doi:10.1039/c1nr10979k
- E. Guo, L. Yin, Nitrogen doped TiO2-CuxO core-shell mesoporous spherical hybrids for high-performance dye-sensitized solar cell. Phys. Chem. Chem. Phys. 17(1), 563–574 (2014). doi:10.1039/c4cp03132f
- A.G. Vega-Poot, M. Macías-Montero, J. Idígoras, A. Borrás, A. Barranco, A.R. Gonzalez-Elipe, F.I. Lizama-Tzec, G. Oskam, J.A. Anta, Mechanisms of electron transport and recombination in ZnO nanostructures for dye-sensitized solar cells. Chem. Phys. Chem. 15(6), 1088–1097 (2014). doi:10.1002/cphc.201301068
- J.B. Chang, C.H. Liu, J. Liu, Y.Y. Zhou, X. Gao, S.D. Wang, Green-chemistry compatible approach to TiO2-supported PdAu bimetallic nanoparticles for solvent-free 1-Phenylethanol oxidation under mild conditions. Nano-Micro Lett. 7(3), 307–315 (2015). doi:10.1007/s40820-015-0044-6
- J. Huang, C. Xia, L. Cao, X. Zeng, Facile microwave hydrothermal synthesis of zinc oxide one-dimensional nanostructure with three-dimensional morphology. Mater. Sci. Eng. B 150(3), 187–193 (2008). doi:10.1016/j.mseb.2008.05.014
- K. Kakiage, T. Tokutome, S. Iwamoto, S. Kyomen, M. Hanya, Fabrication of a dye-sensitized solar cell containing a Mg-doped TiO2 electrode and a Br 3−/Br−redox mediator with a high open-circuit photovoltage of 1.21 V. Chem. Commun. 49(2), 179–180 (2013). doi:10.1039/C2CC36873K
- P.Z. Yang, Q.W. Tang, B.L. He, Toward elevated light harvesting: efficient dye-sensitized solar cells with titanium dioxide/silica photoanodes. RSC Adv. 5(57), 46260–46266 (2015). doi:10.1039/C5RA06584D
- Y. Wang, J. Zhai, Y. Song, Feather-like Ag@TiO2 nanostructures as plasmonic antenna to enhance optoelectronic performance. Phys. Chem. Chem. Phys. 7(17), 5051–5056 (2015). doi:10.1039/C4CP05398B
- X.W. Li, Y.Q. Jiang, W.J. Cheng, Y.D. Li, X.Z. Xu, K.F. Lin, Mesoporous TiO2/carbon beads: one-pot preparation and their application in visible-light-induced photodegradation. Nano-Micro Lett. 7(3), 243–254 (2015). doi:10.1007/s40820-015-0029-5
- J.M. Wang, L. Zhang, L. Yu, Z.H. Jiao, H.Q. Xie, X.W. Lou, X.W. Sun, A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications. Nat. Commun. 5, 4921 (2014). doi:10.1038/ncomms5921
- Y.J. Kim, M.H. Lee, H.J. Kim, G. Lim, Y.S. Choi, N.G. Park, K.K. Kim, W.I. Lee, Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres. Adv. Mater. 21(36), 3668–3673 (2009). doi:10.1002/adma.200900294
- C.S. Chou, M.G. Guo, K.H. Liu, Y.S. Chen, Preparation of TiO2 particles and their applications in the light scattering layer of a dye-sensitized solar cell. Appl. Energ. 92(4), 224–233 (2012). doi:10.1016/j.apenergy.2011.10.038
- W.Q. Wu, Y.F. Xu, H.S. Rao, C.Y. Su, D.B. Kuang, A double layered TiO2 photoanode consisting of hierarchical flowers and nanoparticles for high-efficiency dye-sensitized solar cells. Nanoscale 5(10), 4362–4369 (2013). doi:10.1039/c3nr00508a
- B. Wang, P. Sun, F. Liu, Bilayered photoanode from rutile TiO2 nanorods and hierarchical anatase TiO2 hollow spheres: a candidate for enhanced efficiency dye sensitized solar cells. RSC Adv. 4(110), 64737–64743 (2014). doi:10.1039/C4RA11895B
- G.T. Dai, L. Zhao, J. Li, L. Wan, F. Hu et al., A novel photoanode architecture of dye-sensitized solar cells based on TiO2 hollow sphere/nanorod array double-layer film. J. Colloid Interf. Sci. 365(1), 46–52 (2012). doi:10.1016/j.jcis.2011.08.073
- C.L. Wang, J.Y. Liao, Y. Zhao, A. Manthiram, Template-free TiO2 hollow submicrospheres embedded with SnO2 nanobeans as a versatile scattering layer for dye-sensitized solar cells. Chem. Commun. 51(14), 2848–2850 (2015). doi:10.1039/C4CC07700H
- Y. Xiong, D. He, Y. Jin, P.J. Cameron, K.J. Edler, Ordered mesoporous particles in titania films with hierarchical structure as scattering layers in dye-sensitized solar cells. J. Phys. Chem. C 119(39), 22552–22559 (2015). doi:10.1021/acs.jpcc.5b06977
- J. Feng, Y. Hong, J. Zhang, P. Wang, Z. Hu, Q. Wang, L. Hanb, Y. Zhu, Novel core-shell TiO2 microsphere scattering layer for dye-sensitized solar cells. J. Mater. Chem. A 2(5), 1502–1508 (2014). doi:10.1039/C3TA13523C
- B. Liu, E.S. Aydil, Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131(11), 3985–3990 (2009). doi:10.1021/ja8078972
- B.H. Lee, M.Y. Song, S.Y. Jang, S.M. Jo, S.Y. Kwak, D.Y. Kim, Charge transport characteristics of high efficiency dye-sensitized solar cells based on electrospun TiO2 nanorod photoelectrodes. J. Phys. Chem. C 113(51), 21453–21457 (2009). doi:10.1021/jp907855x
- W.Q. Wu, B.X. Lei, H.S. Rao, Y.F. Xu, Y.F. Wang, C.Y. Su, D.B. Kuang, Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO Glass for dye-sensitized solar cells. Sci. Rep. 3(13), 1352–1358 (2013). doi:10.1038/srep01352
- M. Yu, Y.Z. Long, B. Sun, Z.Y. Fan, Recent advances in solar cells based on one-dimensional nanostructure arrays. Nanoscale 4(9), 2783–2796 (2012). doi:10.1039/c2nr30437f
- M.D. Ye, X.K. Xin, C.J. Lin, Z.Q. Lin, High efficiency dye-sensitized solar cells based on hierarchically structured nanotubes. Nano Lett. 11(8), 3214–3220 (2011). doi:10.1021/nl2014845
- J.M. Wang, E. Khoo, P.S. Lee, J. Ma, Synthesis, assembly and electrochromic properties of uniform crystalline WO3 nanorods. J. Phys. Chem. C 112(37), 14306–14312 (2008). doi:10.1021/jp804035r
- F.D.S. Fonzo, A.L. Bassi, C.S. Casari, V. Russo, G. Divitini, C. Ducati, E.C. Bottani, P. Comte, M. Grätzel, Hierarchical TiO2 photoanode for dye-sensitized solar cells. Nano Lett. 10(7), 2562–2567 (2010). doi:10.1021/nl101198b
- X.T.E. Ashalley, F. Lin, H.D. Li, Z.M. Wang, Advances in MoS2-based field effect transistors (FETs). Nano-Micro Lett. 7(3), 203–218 (2015). doi:10.1007/s40820-015-0034-8
- C. Chen, Z.G. Zhu, W.H. Shi, Q.Q. Ge, M.J. Liu, X.R. Zhu, Facile preparation and self-assembly of monodisperse polystyrene nanospheres for photonic crystals. J. Nanosci. Nanotechnol. 15(4), 3239–3243 (2015). doi:10.1166/jnn.2015.9631
- J.G. Yu, J.J. Fan, B. Cheng, Dye-sensitized solar cells based on anatase TiO2 hollow spheres/carbon nanotube composite films. J. Power Sour. 196(18), 7891–7898 (2011). doi:10.1016/j.jpowsour.2011.05.014
- S.W. Zhang, H.H. Niu, Y. Lan, C. Cheng, J.Z. Xu, X.K. Wang, Synthesis of TiO2 nanoparticles on plasma-treated carbon nanotubes and its application in photoanodes of dye-sensitized solar cells. J. Phys. Chem. C 115(44), 22025–22034 (2011). doi:10.1021/jp206267x
- X.X. Yu, J.G. Yu, B. Cheng, B.B. Huang, One-pot template-free synthesis of monodisperse zinc sulfide hollow spheres and their photocatalytic properties. Chem. Eur. J. 15(27), 6731–6739 (2009). doi:10.1002/chem.200900204
- J.G. Yu, Q.L. Li, Z. Shu, Dye-sensitized solar cells based on double-layered TiO2 composite films and enhanced photovoltaic performance. Electrochim. Acta 56(18), 6293–6298 (2011). doi:10.1016/j.electacta.2011.05.045
- L. Yang, Y. Lin, J. Jia, X. Xiao, X. Li, X. Zhou, Light harvesting enhancement for dye-sensitized solar cells by novel anode containing cauliflower-like TiO2 spheres. J. Power Sour. 182(1), 370–376 (2008). doi:10.1016/j.jpowsour.2008.03.013
- I. Jang, T. Kang, W. Cho, Y.S. Kang, S.-G. Oh, S.S. Im, Preparation of silver nanowires coated with TiO2 using chemical binder and their applications as photoanodes in dye sensitized solar cell. J. Phys. Chem. Solids 86(7), 122–130 (2015). doi:10.1016/j.jpcs.2015.07.005
- K.T. Dembele, R. Nechache, L. Nikolova, A. Vomiero, C. Santato, S. Licoccia, F. Rosei, Effect of multi-walled carbon nanotubes on the stability of dye sensitized solar cells. J. Power Sour. 233(1), 93–97 (2013). doi:10.1016/j.jpowsour.2013.01.075
- Y.M. Feng, J.H. Zhu, J. Jiang, W.W. Wang, G.X. M, F. Wu, Building smart TiO2 nanorod networks in/on the film of P25 nanoparticles for high-efficiency dye sensitized solar cells. RSC Adv. 4(25), 12944–12949 (2014). doi:10.1039/c3ra47869f
- L. Zhao, J. Li, Y. Shi, S. Wang, J. Hu, B. Dong, P. Wang, Double light-scattering layer film based on TiO2 hollow spheres and TiO2 nanosheets: improved efficiency in dye-sensitized solar cells. J. Alloy. Compd. 575(28), 168–173 (2013). doi:10.1016/j.jallcom.2013.02.045
References
B. O’regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 film. Nature 353(6346), 737–740 (1991). doi:10.1038/353737a0
M. Grätzel, Photoelectrochemical cells. Nature 414(6861), 338–344 (2001). doi:10.1038/35104607
K.J. Hwang, D.W. Park, S. Jin, S.O. Kang, D.W. Cho, Influence of dye-concentration on the light-scattering effect in dye-sensitized solar cell. Mater. Chem. Phys. 149, 594–600 (2015). doi:10.1016/j.matchemphys.2014.11.013
M.Y. Gao, Y.C. Rui, H.Z. Wang, Y.G. Li, Q.H. Zhang, Submicrometer@nano bimodal TiO2 particles as easily sintered, crack-free, and current-contributed scattering layers for dye-sensitized solar cells. J. Phys. Chem. C 118(30), 16951–16958 (2014). doi:10.1021/jp500466s
J.M. Wang, X.W. Sun, Z.H. Jiao, E. Khoo, P.S. Lee, J. Ma, H.V. Demir, Tailoring insoluble nanobelts into soluble anti-UV nanopotpourris. Nanoscale 3(11), 4742–4745 (2011). doi:10.1039/c1nr10979k
E. Guo, L. Yin, Nitrogen doped TiO2-CuxO core-shell mesoporous spherical hybrids for high-performance dye-sensitized solar cell. Phys. Chem. Chem. Phys. 17(1), 563–574 (2014). doi:10.1039/c4cp03132f
A.G. Vega-Poot, M. Macías-Montero, J. Idígoras, A. Borrás, A. Barranco, A.R. Gonzalez-Elipe, F.I. Lizama-Tzec, G. Oskam, J.A. Anta, Mechanisms of electron transport and recombination in ZnO nanostructures for dye-sensitized solar cells. Chem. Phys. Chem. 15(6), 1088–1097 (2014). doi:10.1002/cphc.201301068
J.B. Chang, C.H. Liu, J. Liu, Y.Y. Zhou, X. Gao, S.D. Wang, Green-chemistry compatible approach to TiO2-supported PdAu bimetallic nanoparticles for solvent-free 1-Phenylethanol oxidation under mild conditions. Nano-Micro Lett. 7(3), 307–315 (2015). doi:10.1007/s40820-015-0044-6
J. Huang, C. Xia, L. Cao, X. Zeng, Facile microwave hydrothermal synthesis of zinc oxide one-dimensional nanostructure with three-dimensional morphology. Mater. Sci. Eng. B 150(3), 187–193 (2008). doi:10.1016/j.mseb.2008.05.014
K. Kakiage, T. Tokutome, S. Iwamoto, S. Kyomen, M. Hanya, Fabrication of a dye-sensitized solar cell containing a Mg-doped TiO2 electrode and a Br 3−/Br−redox mediator with a high open-circuit photovoltage of 1.21 V. Chem. Commun. 49(2), 179–180 (2013). doi:10.1039/C2CC36873K
P.Z. Yang, Q.W. Tang, B.L. He, Toward elevated light harvesting: efficient dye-sensitized solar cells with titanium dioxide/silica photoanodes. RSC Adv. 5(57), 46260–46266 (2015). doi:10.1039/C5RA06584D
Y. Wang, J. Zhai, Y. Song, Feather-like Ag@TiO2 nanostructures as plasmonic antenna to enhance optoelectronic performance. Phys. Chem. Chem. Phys. 7(17), 5051–5056 (2015). doi:10.1039/C4CP05398B
X.W. Li, Y.Q. Jiang, W.J. Cheng, Y.D. Li, X.Z. Xu, K.F. Lin, Mesoporous TiO2/carbon beads: one-pot preparation and their application in visible-light-induced photodegradation. Nano-Micro Lett. 7(3), 243–254 (2015). doi:10.1007/s40820-015-0029-5
J.M. Wang, L. Zhang, L. Yu, Z.H. Jiao, H.Q. Xie, X.W. Lou, X.W. Sun, A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications. Nat. Commun. 5, 4921 (2014). doi:10.1038/ncomms5921
Y.J. Kim, M.H. Lee, H.J. Kim, G. Lim, Y.S. Choi, N.G. Park, K.K. Kim, W.I. Lee, Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres. Adv. Mater. 21(36), 3668–3673 (2009). doi:10.1002/adma.200900294
C.S. Chou, M.G. Guo, K.H. Liu, Y.S. Chen, Preparation of TiO2 particles and their applications in the light scattering layer of a dye-sensitized solar cell. Appl. Energ. 92(4), 224–233 (2012). doi:10.1016/j.apenergy.2011.10.038
W.Q. Wu, Y.F. Xu, H.S. Rao, C.Y. Su, D.B. Kuang, A double layered TiO2 photoanode consisting of hierarchical flowers and nanoparticles for high-efficiency dye-sensitized solar cells. Nanoscale 5(10), 4362–4369 (2013). doi:10.1039/c3nr00508a
B. Wang, P. Sun, F. Liu, Bilayered photoanode from rutile TiO2 nanorods and hierarchical anatase TiO2 hollow spheres: a candidate for enhanced efficiency dye sensitized solar cells. RSC Adv. 4(110), 64737–64743 (2014). doi:10.1039/C4RA11895B
G.T. Dai, L. Zhao, J. Li, L. Wan, F. Hu et al., A novel photoanode architecture of dye-sensitized solar cells based on TiO2 hollow sphere/nanorod array double-layer film. J. Colloid Interf. Sci. 365(1), 46–52 (2012). doi:10.1016/j.jcis.2011.08.073
C.L. Wang, J.Y. Liao, Y. Zhao, A. Manthiram, Template-free TiO2 hollow submicrospheres embedded with SnO2 nanobeans as a versatile scattering layer for dye-sensitized solar cells. Chem. Commun. 51(14), 2848–2850 (2015). doi:10.1039/C4CC07700H
Y. Xiong, D. He, Y. Jin, P.J. Cameron, K.J. Edler, Ordered mesoporous particles in titania films with hierarchical structure as scattering layers in dye-sensitized solar cells. J. Phys. Chem. C 119(39), 22552–22559 (2015). doi:10.1021/acs.jpcc.5b06977
J. Feng, Y. Hong, J. Zhang, P. Wang, Z. Hu, Q. Wang, L. Hanb, Y. Zhu, Novel core-shell TiO2 microsphere scattering layer for dye-sensitized solar cells. J. Mater. Chem. A 2(5), 1502–1508 (2014). doi:10.1039/C3TA13523C
B. Liu, E.S. Aydil, Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131(11), 3985–3990 (2009). doi:10.1021/ja8078972
B.H. Lee, M.Y. Song, S.Y. Jang, S.M. Jo, S.Y. Kwak, D.Y. Kim, Charge transport characteristics of high efficiency dye-sensitized solar cells based on electrospun TiO2 nanorod photoelectrodes. J. Phys. Chem. C 113(51), 21453–21457 (2009). doi:10.1021/jp907855x
W.Q. Wu, B.X. Lei, H.S. Rao, Y.F. Xu, Y.F. Wang, C.Y. Su, D.B. Kuang, Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO Glass for dye-sensitized solar cells. Sci. Rep. 3(13), 1352–1358 (2013). doi:10.1038/srep01352
M. Yu, Y.Z. Long, B. Sun, Z.Y. Fan, Recent advances in solar cells based on one-dimensional nanostructure arrays. Nanoscale 4(9), 2783–2796 (2012). doi:10.1039/c2nr30437f
M.D. Ye, X.K. Xin, C.J. Lin, Z.Q. Lin, High efficiency dye-sensitized solar cells based on hierarchically structured nanotubes. Nano Lett. 11(8), 3214–3220 (2011). doi:10.1021/nl2014845
J.M. Wang, E. Khoo, P.S. Lee, J. Ma, Synthesis, assembly and electrochromic properties of uniform crystalline WO3 nanorods. J. Phys. Chem. C 112(37), 14306–14312 (2008). doi:10.1021/jp804035r
F.D.S. Fonzo, A.L. Bassi, C.S. Casari, V. Russo, G. Divitini, C. Ducati, E.C. Bottani, P. Comte, M. Grätzel, Hierarchical TiO2 photoanode for dye-sensitized solar cells. Nano Lett. 10(7), 2562–2567 (2010). doi:10.1021/nl101198b
X.T.E. Ashalley, F. Lin, H.D. Li, Z.M. Wang, Advances in MoS2-based field effect transistors (FETs). Nano-Micro Lett. 7(3), 203–218 (2015). doi:10.1007/s40820-015-0034-8
C. Chen, Z.G. Zhu, W.H. Shi, Q.Q. Ge, M.J. Liu, X.R. Zhu, Facile preparation and self-assembly of monodisperse polystyrene nanospheres for photonic crystals. J. Nanosci. Nanotechnol. 15(4), 3239–3243 (2015). doi:10.1166/jnn.2015.9631
J.G. Yu, J.J. Fan, B. Cheng, Dye-sensitized solar cells based on anatase TiO2 hollow spheres/carbon nanotube composite films. J. Power Sour. 196(18), 7891–7898 (2011). doi:10.1016/j.jpowsour.2011.05.014
S.W. Zhang, H.H. Niu, Y. Lan, C. Cheng, J.Z. Xu, X.K. Wang, Synthesis of TiO2 nanoparticles on plasma-treated carbon nanotubes and its application in photoanodes of dye-sensitized solar cells. J. Phys. Chem. C 115(44), 22025–22034 (2011). doi:10.1021/jp206267x
X.X. Yu, J.G. Yu, B. Cheng, B.B. Huang, One-pot template-free synthesis of monodisperse zinc sulfide hollow spheres and their photocatalytic properties. Chem. Eur. J. 15(27), 6731–6739 (2009). doi:10.1002/chem.200900204
J.G. Yu, Q.L. Li, Z. Shu, Dye-sensitized solar cells based on double-layered TiO2 composite films and enhanced photovoltaic performance. Electrochim. Acta 56(18), 6293–6298 (2011). doi:10.1016/j.electacta.2011.05.045
L. Yang, Y. Lin, J. Jia, X. Xiao, X. Li, X. Zhou, Light harvesting enhancement for dye-sensitized solar cells by novel anode containing cauliflower-like TiO2 spheres. J. Power Sour. 182(1), 370–376 (2008). doi:10.1016/j.jpowsour.2008.03.013
I. Jang, T. Kang, W. Cho, Y.S. Kang, S.-G. Oh, S.S. Im, Preparation of silver nanowires coated with TiO2 using chemical binder and their applications as photoanodes in dye sensitized solar cell. J. Phys. Chem. Solids 86(7), 122–130 (2015). doi:10.1016/j.jpcs.2015.07.005
K.T. Dembele, R. Nechache, L. Nikolova, A. Vomiero, C. Santato, S. Licoccia, F. Rosei, Effect of multi-walled carbon nanotubes on the stability of dye sensitized solar cells. J. Power Sour. 233(1), 93–97 (2013). doi:10.1016/j.jpowsour.2013.01.075
Y.M. Feng, J.H. Zhu, J. Jiang, W.W. Wang, G.X. M, F. Wu, Building smart TiO2 nanorod networks in/on the film of P25 nanoparticles for high-efficiency dye sensitized solar cells. RSC Adv. 4(25), 12944–12949 (2014). doi:10.1039/c3ra47869f
L. Zhao, J. Li, Y. Shi, S. Wang, J. Hu, B. Dong, P. Wang, Double light-scattering layer film based on TiO2 hollow spheres and TiO2 nanosheets: improved efficiency in dye-sensitized solar cells. J. Alloy. Compd. 575(28), 168–173 (2013). doi:10.1016/j.jallcom.2013.02.045