Perovskite-Inspired Lead-Free Ag2BiI5 for Self-Powered NIR-Blind Visible Light Photodetection
Corresponding Author: Vincenzo Pecunia
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 27
Abstract
In recent years, solution-processible semiconductors with perovskite or perovskite-inspired structures have been extensively investigated for optoelectronic applications. In particular, silver–bismuth–halides have been identified as especially promising because of their bulk properties and lack of heavily toxic elements. This study investigates the potential of Ag2BiI5 for near-infrared (NIR)-blind visible light photodetection, which is critical to emerging applications (e.g., wearable optoelectronics and the Internet of Things). Self-powered photodetectors were realized and provided a near-constant ≈ 100 mA W−1 responsivity through the visible, a NIR rejection ratio of > 250, a long-wavelength responsivity onset matching standard colorimetric functions, and a linear photoresponse of > 5 orders of magnitude. The optoelectronic characterization of Ag2BiI5 photodetectors additionally revealed consistency with one-center models and the role of the carrier collection distance in self-powered mode. This study provides a positive outlook of Ag2BiI5 toward emerging applications on low-cost and low-power NIR-blind visible light photodetector.
Highlights:
1 The photodetection capabilities of emerging perovskite-inspired lead-free Ag2BiI5 are investigated.
2 In self-powered mode, a near-constant photoresponse through the visible with a NIR rejection ratio of > 250 is obtained.
3 Optoelectronic characterization provides insight into the interplay among efficiency, collection distance, and film micro-/nano-structure.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Cai, X. Xu, W. Yang, J. Chen, X. Fang, Materials and designs for wearable photodetectors. Adv. Mater. 31, 1808138 (2019). https://doi.org/10.1002/adma.201808138
- Y. Fan, D. Dong, Q. Li, H. Si, H. Pei, L. Li, B. Tang, Fluorescent analysis of bioactive molecules in single cells based on microfluidic chips. Lab Chip 18, 1151–1173 (2018). https://doi.org/10.1039/C7LC01333G
- J. Hiltunen, C. Liedert, M. Hiltunen, O.-H. Huttunen, J. Hiitola-Keinänen et al., Roll-to-roll fabrication of integrated PDMS–paper microfluidics for nucleic acid amplification. Lab Chip 18, 1552–1559 (2018). https://doi.org/10.1039/C8LC00269J
- S.-T. Han, H. Peng, Q. Sun, S. Venkatesh, K.-S. Chung, S.C. Lau, Y. Zhou, V.A.L. Roy, An overview of the development of flexible sensors. Adv. Mater. 29, 1700375 (2017). https://doi.org/10.1002/adma.201700375
- J. Sun, J. Wu, X. Tong, F. Lin, Y. Wang, Z.M. Wang, Organic/inorganic metal halide perovskite optoelectronic devices beyond solar cells. Adv. Sci. 5, 1700780 (2018). https://doi.org/10.1002/advs.201700780
- X. Wang, T. Zhang, Y. Lou, Y. Zhao, All-inorganic lead-free perovskites for optoelectronic applications. Mater. Chem. Front. 3, 365–375 (2019). https://doi.org/10.1039/C8QM00611C
- H. Si, Q. Liao, Z. Zhang, Y. Li, X. Yang, G. Zhang, Z. Kang, Y. Zhang, An innovative design of perovskite solar cells with Al2O3 inserting at ZnO/perovskite interface for improving the performance and stability. Nano Energy 22, 223–231 (2016). https://doi.org/10.1016/j.nanoen.2016.02.025
- H. Si, Q. Liao, Z. Kang, Y. Ou, J. Meng, Y. Liu, Z. Zhang, Y. Zhang, Deciphering the NH4PbI3 intermediate phase for simultaneous improvement on nucleation and crystal growth of perovskite. Adv. Funct. Mater. 27, 1701804 (2017). https://doi.org/10.1002/adfm.201701804
- H. Wu, H. Si, Z. Zhang, Z. Kang, P. Wu et al., All-inorganic perovskite quantum dot-monolayer MoS2 mixed-dimensional van der waals heterostructure for ultrasensitive photodetector. Adv. Sci. 5, 1801219 (2018). https://doi.org/10.1002/advs.201801219
- K. Toyoda, in Image Sensors and Signal Processing for Digital Still Cameras, ed. by J. Nakamura (CRC Press, Boca Raton, 2005), pp. 1–19
- G. Agranov, V. Berezin, R.H. Tsai, Crosstalk and microlens study in a color CMOS image sensor. IEEE Trans. Electron. Dev. 50, 4–11 (2003). https://doi.org/10.1109/TED.2002.806473
- S. Yakunin, Y. Shynkarenko, D.N. Dirin, I. Cherniukh, M.V. Kovalenko, Non-dissipative internal optical filtering with solution-grown perovskite single crystals for full-colour imaging. NPG Asia Mater. 9, e431 (2017). https://doi.org/10.1038/am.2017.163
- V. Pecunia, Efficiency and spectral performance of narrowband organic and perovskite photodetectors: a cross-sectional review. J. Phys. Mater. 2, 042001 (2019). https://doi.org/10.1088/2515-7639/ab336a
- Q. Zhang, C. Wu, X. Qi, F. Lv, Z. Zhang et al., Photovoltage approaching 0.9 V for planar heterojunction silver bismuth iodide solar cells with Li-TFSI additive. ACS Appl. Energy Mater. 2, 3651–3656 (2019). https://doi.org/10.1021/acsaem.9b00366
- H. Wu, H. Zhu, A. Erbing, M.B. Johansson, S. Mukherjee et al., Bandgap tuning of silver bismuth iodide via controllable bromide substitution for improved photovoltaic performance. ACS Appl. Energy Mater. 2, 5356–5362 (2019). https://doi.org/10.1021/acsaem.9b00914
- A. Koedtruad, M. Goto, M. Amano Patino, Z. Tan, H. Guo et al., Structure–property relations in Ag–Bi–I compounds: potential Pb-free absorbers in solar cells. J. Mater. Chem. A 7, 5583–5588 (2019). https://doi.org/10.1039/C8TA11227D
- Z. Xiao, W. Meng, D.B. Mitzi, Y. Yan, Crystal structure of AgBi2I7 thin films. J. Phys. Chem. Lett. 7, 3903–3907 (2016). https://doi.org/10.1021/acs.jpclett.6b01834
- Y. Kim, Z. Yang, A. Jain, O. Voznyy, G.-H. Kim et al., Pure cubic-phase hybrid iodobismuthates AgBi2I7 for thin-film photovoltaics. Angew. Chem. Int. Ed. 55, 9586–9590 (2016). https://doi.org/10.1002/anie.201603608
- I. Turkevych, S. Kazaoui, E. Ito, T. Urano, K. Yamada et al., Photovoltaic rudorffites: lead-free silver bismuth halides alternative to hybrid lead halide perovskites. Chemsuschem 10, 3754–3759 (2017). https://doi.org/10.1002/cssc.201700980
- H. Zhu, M. Pan, M.B. Johansson, E.M.J. Johansson, High photon-to-current conversion in solar cells based on light-absorbing silver bismuth iodide. Chemsuschem 10, 2592–2596 (2017). https://doi.org/10.1002/cssc.201700634
- M. Khazaee, K. Sardashti, C.-C. Chung, J.-P. Sun, H. Zhou et al., Dual-source evaporation of silver bismuth iodide films for planar junction solar cells. J. Mater. Chem. A 7, 2095–2105 (2019). https://doi.org/10.1039/C8TA08679F
- K.W. Jung, M.R. Sohn, H.M. Lee, I.S. Yang, S. DoSung, J. Kim, E. Wei-GuangDiau, W.I. Lee, Silver bismuth iodides in various compositions as potential Pb-free light absorbers for hybrid solar cells. Sustain. Energy Fuels 2, 294–302 (2018). https://doi.org/10.1039/C7SE00477J
- B. Ghosh, B. Wu, X. Guo, P.C. Harikesh, R.A. John et al., Superior performance of silver bismuth iodide photovoltaics fabricated via dynamic hot-casting method under ambient conditions. Adv. Energy Mater. 8, 1802051 (2018). https://doi.org/10.1002/aenm.201802051
- Z. Hu, Z. Wang, G. Kapil, T. Ma, S. Iikubo et al., Solution-processed air-stable copper bismuth iodide for photovoltaics. Chemsuschem 11, 2930–2935 (2018). https://doi.org/10.1002/cssc.201800815
- T. Smith, J. Guild, The C.I.E. colorimetric standards and their use. Trans. Opt. Soc. 33, 73 (1931). https://doi.org/10.1088/1475-4878/33/3/301
- S.P. Senanayak, B. Yang, T.H. Thomas, N. Giesbrecht, W. Huang et al., Understanding charge transport in lead iodide perovskite thin-film field-effect transistors. Sci. Adv. 3, e1601935 (2017). https://doi.org/10.1126/sciadv.1601935
- O.G. Reid, M. Yang, N. Kopidakis, K. Zhu, G. Rumbles, Grain-size-limited mobility in methylammonium lead iodide perovskite thin films. ACS Energy Lett. 1, 561–565 (2016). https://doi.org/10.1021/acsenergylett.6b00288
- Z. Chu, M. Yang, P. Schulz, D. Wu, X. Ma et al., Impact of grain boundaries on efficiency and stability of organic-inorganic trihalide perovskites. Nat. Commun. 8, 2230 (2017). https://doi.org/10.1038/s41467-017-02331-4
- H. Li, G. Wu, W. Li, Y. Zhang, Z. Liu, D. Wang, S.F. Liu, Additive engineering to grow micron-sized grains for stable high efficiency perovskite solar cells. Adv. Sci. (2019). https://doi.org/10.1002/advs.201901241
- R.S. Crandall, in Semiconductors and Semimetals: Hydrogenated Amorphous Silicon—Optical Properties, ed. by J.J. Pankove (Academic Press Inc, London, 1984), pp. 245–298
- R.H. Bube, Photoconductivity of Solids (Wiley, New York, 1960), pp. 63–64
- A. Rose, An outline of some photoconductive processes. RCA Rev. 12, 362 (1951)
- A.M. Goodman, A. Rose, Double extraction of uniformly generated electron–hole pairs from insulators with noninjecting contacts. J. Appl. Phys. 42, 2823 (1971). https://doi.org/10.1063/1.1660633
- V.D. Mihailetchi, J. Wildeman, P.W.M. Blom, Space-charge limited photocurrent. Phys. Rev. Lett. 94, 126602 (2005). https://doi.org/10.1103/PhysRevLett.94.126602
- R.S. Sanchez, V. Gonzalez-Pedro, J.-W. Lee, N.-G. Park, Y.S. Kang, I. Mora-Sero, J. Bisquert, Slow dynamic processes in lead halide perovskite solar cells characteristic times and hysteresis. J. Phys. Chem. Lett. 5, 2357–2363 (2014). https://doi.org/10.1021/jz5011187
- O. Almora, M. García-Batlle, G. Garcia-Belmonte, Utilization of temperature-sweeping capacitive techniques to evaluate band gap defect densities in photovoltaic perovskites. J. Phys. Chem. Lett. 10, 3661–3669 (2019). https://doi.org/10.1021/acs.jpclett.9b00601
- A. Rose, Concepts in Photoconductivity and Allied Problems (Wiley, New York, 1963), p. 20
References
S. Cai, X. Xu, W. Yang, J. Chen, X. Fang, Materials and designs for wearable photodetectors. Adv. Mater. 31, 1808138 (2019). https://doi.org/10.1002/adma.201808138
Y. Fan, D. Dong, Q. Li, H. Si, H. Pei, L. Li, B. Tang, Fluorescent analysis of bioactive molecules in single cells based on microfluidic chips. Lab Chip 18, 1151–1173 (2018). https://doi.org/10.1039/C7LC01333G
J. Hiltunen, C. Liedert, M. Hiltunen, O.-H. Huttunen, J. Hiitola-Keinänen et al., Roll-to-roll fabrication of integrated PDMS–paper microfluidics for nucleic acid amplification. Lab Chip 18, 1552–1559 (2018). https://doi.org/10.1039/C8LC00269J
S.-T. Han, H. Peng, Q. Sun, S. Venkatesh, K.-S. Chung, S.C. Lau, Y. Zhou, V.A.L. Roy, An overview of the development of flexible sensors. Adv. Mater. 29, 1700375 (2017). https://doi.org/10.1002/adma.201700375
J. Sun, J. Wu, X. Tong, F. Lin, Y. Wang, Z.M. Wang, Organic/inorganic metal halide perovskite optoelectronic devices beyond solar cells. Adv. Sci. 5, 1700780 (2018). https://doi.org/10.1002/advs.201700780
X. Wang, T. Zhang, Y. Lou, Y. Zhao, All-inorganic lead-free perovskites for optoelectronic applications. Mater. Chem. Front. 3, 365–375 (2019). https://doi.org/10.1039/C8QM00611C
H. Si, Q. Liao, Z. Zhang, Y. Li, X. Yang, G. Zhang, Z. Kang, Y. Zhang, An innovative design of perovskite solar cells with Al2O3 inserting at ZnO/perovskite interface for improving the performance and stability. Nano Energy 22, 223–231 (2016). https://doi.org/10.1016/j.nanoen.2016.02.025
H. Si, Q. Liao, Z. Kang, Y. Ou, J. Meng, Y. Liu, Z. Zhang, Y. Zhang, Deciphering the NH4PbI3 intermediate phase for simultaneous improvement on nucleation and crystal growth of perovskite. Adv. Funct. Mater. 27, 1701804 (2017). https://doi.org/10.1002/adfm.201701804
H. Wu, H. Si, Z. Zhang, Z. Kang, P. Wu et al., All-inorganic perovskite quantum dot-monolayer MoS2 mixed-dimensional van der waals heterostructure for ultrasensitive photodetector. Adv. Sci. 5, 1801219 (2018). https://doi.org/10.1002/advs.201801219
K. Toyoda, in Image Sensors and Signal Processing for Digital Still Cameras, ed. by J. Nakamura (CRC Press, Boca Raton, 2005), pp. 1–19
G. Agranov, V. Berezin, R.H. Tsai, Crosstalk and microlens study in a color CMOS image sensor. IEEE Trans. Electron. Dev. 50, 4–11 (2003). https://doi.org/10.1109/TED.2002.806473
S. Yakunin, Y. Shynkarenko, D.N. Dirin, I. Cherniukh, M.V. Kovalenko, Non-dissipative internal optical filtering with solution-grown perovskite single crystals for full-colour imaging. NPG Asia Mater. 9, e431 (2017). https://doi.org/10.1038/am.2017.163
V. Pecunia, Efficiency and spectral performance of narrowband organic and perovskite photodetectors: a cross-sectional review. J. Phys. Mater. 2, 042001 (2019). https://doi.org/10.1088/2515-7639/ab336a
Q. Zhang, C. Wu, X. Qi, F. Lv, Z. Zhang et al., Photovoltage approaching 0.9 V for planar heterojunction silver bismuth iodide solar cells with Li-TFSI additive. ACS Appl. Energy Mater. 2, 3651–3656 (2019). https://doi.org/10.1021/acsaem.9b00366
H. Wu, H. Zhu, A. Erbing, M.B. Johansson, S. Mukherjee et al., Bandgap tuning of silver bismuth iodide via controllable bromide substitution for improved photovoltaic performance. ACS Appl. Energy Mater. 2, 5356–5362 (2019). https://doi.org/10.1021/acsaem.9b00914
A. Koedtruad, M. Goto, M. Amano Patino, Z. Tan, H. Guo et al., Structure–property relations in Ag–Bi–I compounds: potential Pb-free absorbers in solar cells. J. Mater. Chem. A 7, 5583–5588 (2019). https://doi.org/10.1039/C8TA11227D
Z. Xiao, W. Meng, D.B. Mitzi, Y. Yan, Crystal structure of AgBi2I7 thin films. J. Phys. Chem. Lett. 7, 3903–3907 (2016). https://doi.org/10.1021/acs.jpclett.6b01834
Y. Kim, Z. Yang, A. Jain, O. Voznyy, G.-H. Kim et al., Pure cubic-phase hybrid iodobismuthates AgBi2I7 for thin-film photovoltaics. Angew. Chem. Int. Ed. 55, 9586–9590 (2016). https://doi.org/10.1002/anie.201603608
I. Turkevych, S. Kazaoui, E. Ito, T. Urano, K. Yamada et al., Photovoltaic rudorffites: lead-free silver bismuth halides alternative to hybrid lead halide perovskites. Chemsuschem 10, 3754–3759 (2017). https://doi.org/10.1002/cssc.201700980
H. Zhu, M. Pan, M.B. Johansson, E.M.J. Johansson, High photon-to-current conversion in solar cells based on light-absorbing silver bismuth iodide. Chemsuschem 10, 2592–2596 (2017). https://doi.org/10.1002/cssc.201700634
M. Khazaee, K. Sardashti, C.-C. Chung, J.-P. Sun, H. Zhou et al., Dual-source evaporation of silver bismuth iodide films for planar junction solar cells. J. Mater. Chem. A 7, 2095–2105 (2019). https://doi.org/10.1039/C8TA08679F
K.W. Jung, M.R. Sohn, H.M. Lee, I.S. Yang, S. DoSung, J. Kim, E. Wei-GuangDiau, W.I. Lee, Silver bismuth iodides in various compositions as potential Pb-free light absorbers for hybrid solar cells. Sustain. Energy Fuels 2, 294–302 (2018). https://doi.org/10.1039/C7SE00477J
B. Ghosh, B. Wu, X. Guo, P.C. Harikesh, R.A. John et al., Superior performance of silver bismuth iodide photovoltaics fabricated via dynamic hot-casting method under ambient conditions. Adv. Energy Mater. 8, 1802051 (2018). https://doi.org/10.1002/aenm.201802051
Z. Hu, Z. Wang, G. Kapil, T. Ma, S. Iikubo et al., Solution-processed air-stable copper bismuth iodide for photovoltaics. Chemsuschem 11, 2930–2935 (2018). https://doi.org/10.1002/cssc.201800815
T. Smith, J. Guild, The C.I.E. colorimetric standards and their use. Trans. Opt. Soc. 33, 73 (1931). https://doi.org/10.1088/1475-4878/33/3/301
S.P. Senanayak, B. Yang, T.H. Thomas, N. Giesbrecht, W. Huang et al., Understanding charge transport in lead iodide perovskite thin-film field-effect transistors. Sci. Adv. 3, e1601935 (2017). https://doi.org/10.1126/sciadv.1601935
O.G. Reid, M. Yang, N. Kopidakis, K. Zhu, G. Rumbles, Grain-size-limited mobility in methylammonium lead iodide perovskite thin films. ACS Energy Lett. 1, 561–565 (2016). https://doi.org/10.1021/acsenergylett.6b00288
Z. Chu, M. Yang, P. Schulz, D. Wu, X. Ma et al., Impact of grain boundaries on efficiency and stability of organic-inorganic trihalide perovskites. Nat. Commun. 8, 2230 (2017). https://doi.org/10.1038/s41467-017-02331-4
H. Li, G. Wu, W. Li, Y. Zhang, Z. Liu, D. Wang, S.F. Liu, Additive engineering to grow micron-sized grains for stable high efficiency perovskite solar cells. Adv. Sci. (2019). https://doi.org/10.1002/advs.201901241
R.S. Crandall, in Semiconductors and Semimetals: Hydrogenated Amorphous Silicon—Optical Properties, ed. by J.J. Pankove (Academic Press Inc, London, 1984), pp. 245–298
R.H. Bube, Photoconductivity of Solids (Wiley, New York, 1960), pp. 63–64
A. Rose, An outline of some photoconductive processes. RCA Rev. 12, 362 (1951)
A.M. Goodman, A. Rose, Double extraction of uniformly generated electron–hole pairs from insulators with noninjecting contacts. J. Appl. Phys. 42, 2823 (1971). https://doi.org/10.1063/1.1660633
V.D. Mihailetchi, J. Wildeman, P.W.M. Blom, Space-charge limited photocurrent. Phys. Rev. Lett. 94, 126602 (2005). https://doi.org/10.1103/PhysRevLett.94.126602
R.S. Sanchez, V. Gonzalez-Pedro, J.-W. Lee, N.-G. Park, Y.S. Kang, I. Mora-Sero, J. Bisquert, Slow dynamic processes in lead halide perovskite solar cells characteristic times and hysteresis. J. Phys. Chem. Lett. 5, 2357–2363 (2014). https://doi.org/10.1021/jz5011187
O. Almora, M. García-Batlle, G. Garcia-Belmonte, Utilization of temperature-sweeping capacitive techniques to evaluate band gap defect densities in photovoltaic perovskites. J. Phys. Chem. Lett. 10, 3661–3669 (2019). https://doi.org/10.1021/acs.jpclett.9b00601
A. Rose, Concepts in Photoconductivity and Allied Problems (Wiley, New York, 1963), p. 20