A CuNi/C Nanosheet Array Based on a Metal–Organic Framework Derivate as a Supersensitive Non-Enzymatic Glucose Sensor
Corresponding Author: Yan Wang
Nano-Micro Letters,
Vol. 10 No. 2 (2018), Article Number: 28
Abstract
Bimetal catalysts are good alternatives for non-enzymatic glucose sensors owing to their low cost, high activity, good conductivity, and ease of fabrication. In the present study, a self-supported CuNi/C electrode prepared by electrodepositing Cu nanoparticles on a Ni-based metal–organic framework (MOF) derivate was used as a non-enzymatic glucose sensor. The porous construction and carbon scaffold inherited from the Ni-MOF guarantee good kinetics of the electrode process in electrochemical glucose detection. Furthermore, Cu nanoparticles disturb the array structure of MOF derived films and evidently enhance their electrochemical performances in glucose detection. Electrochemical measurements indicate that the CuNi/C electrode possesses a high sensitivity of 17.12 mA mM−1 cm−2, a low detection limit of 66.67 nM, and a wider linearity range from 0.20 to 2.72 mM. Additionally, the electrode exhibits good reusability, reproducibility, and stability, thereby catering to the practical use of glucose sensors. Similar values of glucose concentrations in human blood serum samples are detected with our electrode and with the method involving glucose-6-phosphate dehydrogenase; the results further demonstrate the practical feasibility of our electrode.
Highlights:
1 CuNi/C nanosheet arrays were prepared by pyrolyzing Ni-based metal organic framework and successive Cu electrodeposition.
2 The prepared arrays exhibited high sensitivity (17.12 mA mM−1 cm−2) and low detection limit (66.67 nM) as non-enzymatic glucose sensors.
3 The electrode exhibits good reusability, reproducibility, and stability and thereby caters to the practical use of glucose sensors.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X.M. Gao, X. Zhang, H. Peng, L. Wu, W.H. Bai, G.S. Jin, R.Q. Wu, P.K. Hang, Chu, In situ synthesis of Ni(OH)2/TiO2 composite film on NiTi alloy for non-enzymatic glucose sensing. Sens. Actuators B 232, 150–157 (2016). https://doi.org/10.1016/j.snb.2016.03.122
- F.J. Garcia-Garcia, P. Salazar, F. Yubero, A.R. González-Elipe, Non-enzymatic glucose electrochemical sensor made of porous NiO thin films prepared by reactive magnetron sputtering at oblique angles. Electrochim. Acta 201, 38–44 (2016). https://doi.org/10.1016/j.electacta.2016.03.193
- Y. Zhao, L.Z. Fan, B. Hong, J.L. Ren, M.S. Zhang, Q.M. Que, J.Y. Ji, Nonenzymatic detection of glucose using three-dimensional PtNi nanoclusters electrodeposited on the multiwalled carbon nanotubes. Sens. Actuators B 231, 800–810 (2016). https://doi.org/10.1016/j.snb.2016.03.115
- S.Q. Ci, T.Z. Huang, Z.H. Wen, S.M. Cui, S. Mao, D.A. Steeber, J.H. Chen, Nickel oxide hollow microsphere for non-enzyme glucose detection. Biosens. Bioelectron. 54, 251–257 (2014). https://doi.org/10.1016/j.bios.2013.11.006
- J. Zhao, L. Wei, C. Peng, Y. Su, Z. Yang, L. Zhang, H. Wei, Y. Zhang, A non-enzymatic glucose sensor based on the composite of cubic Cu nanops and arc-synthesized multi-walled carbon nanotubes. Biosens. Bioelectron. 47(17), 86–91 (2013). https://doi.org/10.1016/j.bios.2013.02.032
- G.F. Wang, X.P. He, L.L. Wang, A.X. Gu, Y. Huang, B. Fang, B.Y. Geng, X.J. Zhang, Non-enzymatic electrochemical sensing of glucose. Microchim. Acta 180(3), 161–186 (2013). https://doi.org/10.1007/s00604-012-0923-1
- K. Tian, M. Prestgard, A. Tiwari, A review of recent advances in nonenzymatic glucose sensors. Mater. Sci. Eng. C 41, 100–118 (2014). https://doi.org/10.1016/j.msec.2014.04.013
- S.A. Zaidi, J.H. Shin, Recent developments in nanostructure based electrochemical glucose sensors. Talanta 149, 30–42 (2016). https://doi.org/10.1016/j.talanta.2015.11.033
- S.P. Singh, S.K. Pandey, J. Singh, S. Srivastava, S. Sachan, S.K. Singh, Biomedical perspective of electrochemical nanobiosensor. Nano-Micro Lett. 8(3), 193–203 (2016). https://doi.org/10.1007/s40820-015-0077-x
- R.A. Soomro, A. Nafady, Z.H. Ibupoto, S.T.H. Sirajuddin, M. Sherazi, M.I.Abro Willander, Development of sensitive non-enzymatic glucose sensor using complex nanostructures of cobalt oxide. Mater. Sci. Semicond. Process. 34, 373–381 (2015). https://doi.org/10.1016/j.mssp.2015.02.055
- R.A. Soomro, Z.H. Ibupoto, M.I. Sirajuddin, M.Willander Abro, Electrochemical sensing of glucose based on novel hedgehog-like NiO nanostructures. Sens. Actuators B 209, 966–974 (2015). https://doi.org/10.1016/j.snb.2014.12.050
- H. Shekarchizadeh, M. Kadivar, A.A. Ensafi, Rapid nonenzymatic monitoring of glucose and fructose using a CuO/multiwalled carbon nanotube nanocomposite-modified glassy carbon electrode. Chin. J. Catal. 34(6), 1208–1215 (2013). https://doi.org/10.1016/S1872-2067(12)60586-5
- A.A. Ensafi, M.M. Abarghoui, B. Rezaei, A new non-enzymatic glucose sensor based on copper/porous silicon nanocomposite. Electrochim. Acta 123, 219–226 (2014). https://doi.org/10.1016/j.electacta.2014.01.031
- K.E. Toghill, L. Xiao, M.A. Phillips, R.G. Compton, The non-enzymatic determination of glucose using an electrolytically fabricated nickel microp modified boron-doped diamond electrode or nickel foil electrode. Sens. Actuators B 147, 642–652 (2010). https://doi.org/10.1016/j.snb.2010.03.091
- A.A. Ensafi, M. Jafari-Asl, N. Dorostkar, M. Ghiaci, M.V. Martínez-Huerta, J.L.G. Fierro, The fabrication and characterization of Cu-nanop immobilization on a hybrid Chitosan derivative-carbon support as a novel electrochemical sensor: application for the sensitive enzymeless oxidation of glucose and reduction of hydrogen peroxide. J. Mater. Chem. B 2(6), 706–717 (2014). https://doi.org/10.1039/C3TB21434F
- S.K. Annamalai, B. Palani, K.C. Pillai, Highly stable and redox active nano copper species stabilized functionalized-multiwalled carbon nanotube/chitosan modified electrode for efficient hydrogen peroxide detection. Colloids Surf. A 395, 207–216 (2012). https://doi.org/10.1016/j.colsurfa.2011.12.032
- A.A. Ensafi, Z. Ahmadi, M. Jafari-Asl, B. Rezaei, Graphene nanosheets functionalized with Nile blue as a stable support for the oxidation of glucose and reduction of oxygen based on redox replacement of Pd-nanops via nickel oxide. Electrochim. Acta 173, 619–629 (2015). https://doi.org/10.1016/j.electacta.2015.05.109
- Q. Yu, Z. Shi, X.Y. Liu, S.L. Luo, W.Z. Wei, A nonenzymatic hydrogen peroxide sensor based on chitosan-copper complexes modified multi-wall carbon nanotubes ionic liquid electrode. J. Electroanal. Chem. 655(1), 92–95 (2011). https://doi.org/10.1016/j.jelechem.2010.12.030
- A.A. Ensafi, N. Zandi-Atashbar, B. Rezaei, M. Ghiaci, M. Taghizadeh, Silver nanops decorated carboxylate functionalized SiO2, new nanocomposites for non-enzymatic detection of glucose and hydrogen peroxide. Electrochim. Acta 214, 208–216 (2016). https://doi.org/10.1016/j.electacta.2016.08.047
- H. Mei, W.Q. Wu, B.B. Yu, H.M. Wu, S.F. Wang, Q.H. Xia, Nonenzymatic electrochemical sensor based on Fe@Pt core-shell nanops for hydrogen peroxide, glucose and formaldehyde. Sens. Actuators B 223, 68–75 (2016). https://doi.org/10.1016/j.snb.2015.09.044
- M. Ghiaci, M. Tghizadeh, A.A. Ensafi, N. Zandi-Atashbar, B. Rezaei, Silver nanops decorated anchored type ligands as new electrochemical sensors for glucose detection. J. Taiwan Inst. Chem. Eng. 63, 39–45 (2016). https://doi.org/10.1016/j.jtice.2016.03.013
- V. Mania, R. Devasenathipathy, S.-M. Chen, S.-F. Wang, P. Devic, Y. Tai, Electrodeposition of copper nanops using pectin scaffold at graphene nanosheets for electrochemical sensing of glucose and hydrogen peroxide. Electrochim. Acta 176, 804–810 (2015). https://doi.org/10.1016/j.electacta.2015.07.098
- A.A. Ensafi, N. Zandi-Atashbar, B. Rezaei, M. Ghiaci, M.E. Chermahini, P. Moshiri, Non-enzymatic glucose electrochemical sensor based on silver nanop decorated organic functionalized multiwall carbon nanotubes. RSC Adv. 6(65), 60926–60932 (2016). https://doi.org/10.1039/C6RA10698F
- Y. Zhang, L. Su, D. Manuzzi, H.V.E. Monteros, W. Jia, D. Huo, C. Hou, Y. Lei, Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires. Biosens. Bioelectron. 31(1), 426–432 (2012). https://doi.org/10.1016/j.bios.2011.11.006
- J. Zhao, L. Wei, C. Peng, Y. Su, Z. Yang, L. Zhang, H. Wei, Y. Zhang, A non-enzymatic glucose sensor based on the composite of cubic Cu nanops and arc-synthesized multi-walled carbon nanotubes. Biosens. Bioelectron. 47(17), 86–91 (2013). https://doi.org/10.1016/j.bios.2013.02.032
- S.S. Mahshid, S. Mahshid, D. Abolghasem, M. Ghorbanib, L. Yang, S. Luo, Q. Cai, Template-based electrodeposition of Pt/Ni nanowires and its catalytic activity towards glucose oxidation. Electrochim. Acta 58, 551–555 (2011). https://doi.org/10.1016/j.electacta.2011.09.083
- S.S. Mahshid, S. Mahshid, D. Abolghasem, M. Ghorbanib, L. Yang, S. Luo, Q. Cai, Electrodeposition and electrocatalytic properties of Pt/Ni-Co nanowires for non-enzymatic glucose detection. J. Alloys Compd. 554, 169–176 (2013). https://doi.org/10.1016/j.jallcom.2012.10.186
- Y. Zhang, Y. Liu, L. Su, Z. Zhang, D. Huo, C. Hou, Y. Lei, CuO nanowires based sensitive and selective non-enzymatic glucose detection. Sens. Actuators B 191, 86–93 (2014). https://doi.org/10.1016/j.snb.2013.08.096
- G. Wang, X. Lu, T. Zhai, Y. Ling, H. Wang, Y. Tong, Y. Li, Free-standing nickel oxide nanoflake arrays: synthesis and application for highly sensitive non-enzymatic glucose sensors. Nanoscale 4(10), 3123–3127 (2012). https://doi.org/10.1039/c2nr30302g
- X. Guo, H. Zhang, C. Huo, X. Xu, Han, Co3O4 microspheres with free-standing nanofibers for high performance non-enzymatic glucose sensor. Analyst 138(22), 6727–6731 (2013). https://doi.org/10.1039/c3an01403g
- K.K. Lee, P.Y. Loh, C.H. Sow, W.S. Chin, CoOOH nanosheets on cobalt substrate as a non-enzymatic glucose sensor. Electrochem. Commun. 20(1), 128–132 (2012). https://doi.org/10.1016/j.elecom.2012.04.012
- Q. Hou, L. Xu, X. Yin, Hu, Metal-organic framework templated synthesis of Co3O4 nanops for direct glucose and H2O2 detection. Analyst 137(24), 2803–5808 (2012). https://doi.org/10.1039/c2an35954e
- C.W. Kung, C.Y. Lin, Y.H. Lai, R. Vittal, K.C. Ho, Cobalt oxide acicular nanorods with high sensitivity for the non-enzymatic detection of glucose. Biosens. Bioelectron. 27(1), 125–131 (2011). https://doi.org/10.1016/j.bios.2011.06.033
- Y. Ding, Y. Wang, L. Su, M. Bellagamba, H. Zhang, Y. Lei, Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosens. Bioelectron. 26(2), 542–548 (2010). https://doi.org/10.1016/j.bios.2010.07.050
- B. Wang, S. Li, J. Liu, M. Yu, Preparation of nickel nanop/graphene composites for non-enzymatic electrochemical glucose biosensor applications. Mater. Res. Bull. 49(1), 521–524 (2014). https://doi.org/10.1016/j.materresbull.2013.08.066
- M. Yuan, A. Liu, M. Zhao, W. Dong, T. Zhao, J. Wang, W. Tang, Bimetallic PdCu nanop decorated three-dimensional graphene hydrogel for non-enzymatic amperometric glucose sensor. Sens. Actuators B 190, 707–714 (2014). https://doi.org/10.1016/j.snb.2013.09.054
- Y. Guo, Y. Wang, C. Zhao, Xu, Non-enzymatic glucose sensor based on three dimensional nickel oxide for enhanced sensitivity. Anal. Methods 5(7), 1644–1647 (2013). https://doi.org/10.1039/c3ay00067b
- Z. Fan, B. Liu, X. Liu, Z. Li, H. Wang, S. Yang, J. Wang, A flexible and disposable hybrid electrode based on Cu nanowires modified graphene transparent electrode for non-enzymatic glucose sensor. Electrochim. Acta 109, 602–608 (2013). https://doi.org/10.1016/j.electacta.2013.07.153
- G.H. Wu, X.H. Song, Y.F. Wu, X.M. Chen, F. Luo, X. Chen, Non-enzymatic electrochemical glucose sensor based on platinum nanoflowers supported on graphene oxide. Talanta 105(4), 379–385 (2013). https://doi.org/10.1016/j.talanta.2012.10.066
- M. Liu, R. Liu, W. Chen, Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens. Bioelectron. 45, 206–212 (2013). https://doi.org/10.1016/j.bios.2013.02.010
- C. Karuppiah, S. Palanisamy, S.M. Chen, V. Veeramani, P. Periakaruppan, A novel enzymatic glucose biosensor and sensitive non-enzymatic hydrogen peroxide sensor based on graphene and cobalt oxide nanops composite modified glassy carbon electrode. Sens. Actuators B 196, 450–456 (2014). https://doi.org/10.1016/j.snb.2014.02.034
- K.E. Toghill, R.G. Compton, Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. Int. J. Electrochem. Sci. 5(9), 1246–1301 (2010). http://www.electrochemsci.org/papers/vol5/5091246.pdf
- L. Zhang, Y.R. Ding, R.R. Li, C. Ye, G.Y. Zhao, Y. Wang, Ni-Based metal-organic framework derived Ni@C nanosheets on a Ni foam substrate as a supersensitive non-enzymatic glucose sensor. J. Mater. Chem. B 5(28), 5549–5555 (2017). https://doi.org/10.1039/C7TB01363A
- S.Y. Tee, C.P. Teng, E. Ye, Metal nanostructures for non-enzymatic glucose sensing. Mater. Sci. Eng. C 70, 1018–1030 (2017). https://doi.org/10.1016/j.msec.2016.04.009
- P. Si, Y.J. Huang, T.H. Wang, Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Adv. 3(11), 3487–3502 (2013). https://doi.org/10.1039/c2ra22360k
- Z.H. Ibupoto, A. Nafady, R.A. Soomro, Glycine-assisted synthesis of NiO hollow cage-like nanostructures for sensitive non-enzymatic glucose sensing. RSC Adv. 5(24), 18773–18781 (2015). https://doi.org/10.1039/C4RA15858J
- S.F. Tong, Y.H. Xu, Z.X. Zhang, Dendritic bimetallic nanostructures supported on self-assembled titanate films for sensor application. J. Phys. Chem. 114(49), 20925–20931 (2010). https://doi.org/10.1021/jp1035772
- R.M. Ding, J.P. Liu, J. Jiang, Tailored Ni-Cu alloy hierarchical porous nanowire as a potential efficient catalyst for DMFCs. Catal. Sci. Technol. 1(8), 1406–1411 (2011). https://doi.org/10.1039/c1cy00164g
- L. Wang, Q.Y. Zhang, S.L. Chen, Electrochemical sensing and biosensing platform based on biomass-derived macroporous carbon materials. Anal. Chem. 86(3), 1414–1421 (2014). https://doi.org/10.1021/ac401563m
- X.L. Li, J.Y. Yao, F.L. Liu, Nickel/Copper nanops modified TiO2 nanotubes for non-enzymatic glucose biosensors. Sens. Actuators B 181, 501–508 (2013). https://doi.org/10.1016/j.snb.2013.02.035
- K.C. Lin, Y.C. Lin, S.M. Chen, A highly sensitive nonenzymatic glucose sensor based on multi-walled carbon nanotubes decorated with nickel and copper nanops. Electrochim. Acta 96, 164–172 (2013). https://doi.org/10.1016/j.electacta.2013.02.098
- W. Yi, J. Liu, H.B. Chen, Copper/nickel nanop decorated carbon nanotubes for nonenzymatic glucose biosensor. J. Solid State Electrochem. 19(5), 1511–1521 (2015). https://doi.org/10.1007/s10008-015-2766-2
- P. Druska, H.H. Strehblow, S. Golledge, A surface analytical examination of passive layers on Cu/Ni alloys. Alkaline solution. Corros. Sci. 38(6), 835–851 (1996). https://doi.org/10.1016/0010-938X(96)00170-9
- M. Jafarian, F. Forouzandeh, I. Danaee, Electrocatalytic oxidation of glucose on Ni and NiCu alloy modified glassy carbon electrode. J. Solid State Electrochem. 13(8), 1171–1179 (2008). https://doi.org/10.1007/s10008-008-0632-1
References
X.M. Gao, X. Zhang, H. Peng, L. Wu, W.H. Bai, G.S. Jin, R.Q. Wu, P.K. Hang, Chu, In situ synthesis of Ni(OH)2/TiO2 composite film on NiTi alloy for non-enzymatic glucose sensing. Sens. Actuators B 232, 150–157 (2016). https://doi.org/10.1016/j.snb.2016.03.122
F.J. Garcia-Garcia, P. Salazar, F. Yubero, A.R. González-Elipe, Non-enzymatic glucose electrochemical sensor made of porous NiO thin films prepared by reactive magnetron sputtering at oblique angles. Electrochim. Acta 201, 38–44 (2016). https://doi.org/10.1016/j.electacta.2016.03.193
Y. Zhao, L.Z. Fan, B. Hong, J.L. Ren, M.S. Zhang, Q.M. Que, J.Y. Ji, Nonenzymatic detection of glucose using three-dimensional PtNi nanoclusters electrodeposited on the multiwalled carbon nanotubes. Sens. Actuators B 231, 800–810 (2016). https://doi.org/10.1016/j.snb.2016.03.115
S.Q. Ci, T.Z. Huang, Z.H. Wen, S.M. Cui, S. Mao, D.A. Steeber, J.H. Chen, Nickel oxide hollow microsphere for non-enzyme glucose detection. Biosens. Bioelectron. 54, 251–257 (2014). https://doi.org/10.1016/j.bios.2013.11.006
J. Zhao, L. Wei, C. Peng, Y. Su, Z. Yang, L. Zhang, H. Wei, Y. Zhang, A non-enzymatic glucose sensor based on the composite of cubic Cu nanops and arc-synthesized multi-walled carbon nanotubes. Biosens. Bioelectron. 47(17), 86–91 (2013). https://doi.org/10.1016/j.bios.2013.02.032
G.F. Wang, X.P. He, L.L. Wang, A.X. Gu, Y. Huang, B. Fang, B.Y. Geng, X.J. Zhang, Non-enzymatic electrochemical sensing of glucose. Microchim. Acta 180(3), 161–186 (2013). https://doi.org/10.1007/s00604-012-0923-1
K. Tian, M. Prestgard, A. Tiwari, A review of recent advances in nonenzymatic glucose sensors. Mater. Sci. Eng. C 41, 100–118 (2014). https://doi.org/10.1016/j.msec.2014.04.013
S.A. Zaidi, J.H. Shin, Recent developments in nanostructure based electrochemical glucose sensors. Talanta 149, 30–42 (2016). https://doi.org/10.1016/j.talanta.2015.11.033
S.P. Singh, S.K. Pandey, J. Singh, S. Srivastava, S. Sachan, S.K. Singh, Biomedical perspective of electrochemical nanobiosensor. Nano-Micro Lett. 8(3), 193–203 (2016). https://doi.org/10.1007/s40820-015-0077-x
R.A. Soomro, A. Nafady, Z.H. Ibupoto, S.T.H. Sirajuddin, M. Sherazi, M.I.Abro Willander, Development of sensitive non-enzymatic glucose sensor using complex nanostructures of cobalt oxide. Mater. Sci. Semicond. Process. 34, 373–381 (2015). https://doi.org/10.1016/j.mssp.2015.02.055
R.A. Soomro, Z.H. Ibupoto, M.I. Sirajuddin, M.Willander Abro, Electrochemical sensing of glucose based on novel hedgehog-like NiO nanostructures. Sens. Actuators B 209, 966–974 (2015). https://doi.org/10.1016/j.snb.2014.12.050
H. Shekarchizadeh, M. Kadivar, A.A. Ensafi, Rapid nonenzymatic monitoring of glucose and fructose using a CuO/multiwalled carbon nanotube nanocomposite-modified glassy carbon electrode. Chin. J. Catal. 34(6), 1208–1215 (2013). https://doi.org/10.1016/S1872-2067(12)60586-5
A.A. Ensafi, M.M. Abarghoui, B. Rezaei, A new non-enzymatic glucose sensor based on copper/porous silicon nanocomposite. Electrochim. Acta 123, 219–226 (2014). https://doi.org/10.1016/j.electacta.2014.01.031
K.E. Toghill, L. Xiao, M.A. Phillips, R.G. Compton, The non-enzymatic determination of glucose using an electrolytically fabricated nickel microp modified boron-doped diamond electrode or nickel foil electrode. Sens. Actuators B 147, 642–652 (2010). https://doi.org/10.1016/j.snb.2010.03.091
A.A. Ensafi, M. Jafari-Asl, N. Dorostkar, M. Ghiaci, M.V. Martínez-Huerta, J.L.G. Fierro, The fabrication and characterization of Cu-nanop immobilization on a hybrid Chitosan derivative-carbon support as a novel electrochemical sensor: application for the sensitive enzymeless oxidation of glucose and reduction of hydrogen peroxide. J. Mater. Chem. B 2(6), 706–717 (2014). https://doi.org/10.1039/C3TB21434F
S.K. Annamalai, B. Palani, K.C. Pillai, Highly stable and redox active nano copper species stabilized functionalized-multiwalled carbon nanotube/chitosan modified electrode for efficient hydrogen peroxide detection. Colloids Surf. A 395, 207–216 (2012). https://doi.org/10.1016/j.colsurfa.2011.12.032
A.A. Ensafi, Z. Ahmadi, M. Jafari-Asl, B. Rezaei, Graphene nanosheets functionalized with Nile blue as a stable support for the oxidation of glucose and reduction of oxygen based on redox replacement of Pd-nanops via nickel oxide. Electrochim. Acta 173, 619–629 (2015). https://doi.org/10.1016/j.electacta.2015.05.109
Q. Yu, Z. Shi, X.Y. Liu, S.L. Luo, W.Z. Wei, A nonenzymatic hydrogen peroxide sensor based on chitosan-copper complexes modified multi-wall carbon nanotubes ionic liquid electrode. J. Electroanal. Chem. 655(1), 92–95 (2011). https://doi.org/10.1016/j.jelechem.2010.12.030
A.A. Ensafi, N. Zandi-Atashbar, B. Rezaei, M. Ghiaci, M. Taghizadeh, Silver nanops decorated carboxylate functionalized SiO2, new nanocomposites for non-enzymatic detection of glucose and hydrogen peroxide. Electrochim. Acta 214, 208–216 (2016). https://doi.org/10.1016/j.electacta.2016.08.047
H. Mei, W.Q. Wu, B.B. Yu, H.M. Wu, S.F. Wang, Q.H. Xia, Nonenzymatic electrochemical sensor based on Fe@Pt core-shell nanops for hydrogen peroxide, glucose and formaldehyde. Sens. Actuators B 223, 68–75 (2016). https://doi.org/10.1016/j.snb.2015.09.044
M. Ghiaci, M. Tghizadeh, A.A. Ensafi, N. Zandi-Atashbar, B. Rezaei, Silver nanops decorated anchored type ligands as new electrochemical sensors for glucose detection. J. Taiwan Inst. Chem. Eng. 63, 39–45 (2016). https://doi.org/10.1016/j.jtice.2016.03.013
V. Mania, R. Devasenathipathy, S.-M. Chen, S.-F. Wang, P. Devic, Y. Tai, Electrodeposition of copper nanops using pectin scaffold at graphene nanosheets for electrochemical sensing of glucose and hydrogen peroxide. Electrochim. Acta 176, 804–810 (2015). https://doi.org/10.1016/j.electacta.2015.07.098
A.A. Ensafi, N. Zandi-Atashbar, B. Rezaei, M. Ghiaci, M.E. Chermahini, P. Moshiri, Non-enzymatic glucose electrochemical sensor based on silver nanop decorated organic functionalized multiwall carbon nanotubes. RSC Adv. 6(65), 60926–60932 (2016). https://doi.org/10.1039/C6RA10698F
Y. Zhang, L. Su, D. Manuzzi, H.V.E. Monteros, W. Jia, D. Huo, C. Hou, Y. Lei, Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires. Biosens. Bioelectron. 31(1), 426–432 (2012). https://doi.org/10.1016/j.bios.2011.11.006
J. Zhao, L. Wei, C. Peng, Y. Su, Z. Yang, L. Zhang, H. Wei, Y. Zhang, A non-enzymatic glucose sensor based on the composite of cubic Cu nanops and arc-synthesized multi-walled carbon nanotubes. Biosens. Bioelectron. 47(17), 86–91 (2013). https://doi.org/10.1016/j.bios.2013.02.032
S.S. Mahshid, S. Mahshid, D. Abolghasem, M. Ghorbanib, L. Yang, S. Luo, Q. Cai, Template-based electrodeposition of Pt/Ni nanowires and its catalytic activity towards glucose oxidation. Electrochim. Acta 58, 551–555 (2011). https://doi.org/10.1016/j.electacta.2011.09.083
S.S. Mahshid, S. Mahshid, D. Abolghasem, M. Ghorbanib, L. Yang, S. Luo, Q. Cai, Electrodeposition and electrocatalytic properties of Pt/Ni-Co nanowires for non-enzymatic glucose detection. J. Alloys Compd. 554, 169–176 (2013). https://doi.org/10.1016/j.jallcom.2012.10.186
Y. Zhang, Y. Liu, L. Su, Z. Zhang, D. Huo, C. Hou, Y. Lei, CuO nanowires based sensitive and selective non-enzymatic glucose detection. Sens. Actuators B 191, 86–93 (2014). https://doi.org/10.1016/j.snb.2013.08.096
G. Wang, X. Lu, T. Zhai, Y. Ling, H. Wang, Y. Tong, Y. Li, Free-standing nickel oxide nanoflake arrays: synthesis and application for highly sensitive non-enzymatic glucose sensors. Nanoscale 4(10), 3123–3127 (2012). https://doi.org/10.1039/c2nr30302g
X. Guo, H. Zhang, C. Huo, X. Xu, Han, Co3O4 microspheres with free-standing nanofibers for high performance non-enzymatic glucose sensor. Analyst 138(22), 6727–6731 (2013). https://doi.org/10.1039/c3an01403g
K.K. Lee, P.Y. Loh, C.H. Sow, W.S. Chin, CoOOH nanosheets on cobalt substrate as a non-enzymatic glucose sensor. Electrochem. Commun. 20(1), 128–132 (2012). https://doi.org/10.1016/j.elecom.2012.04.012
Q. Hou, L. Xu, X. Yin, Hu, Metal-organic framework templated synthesis of Co3O4 nanops for direct glucose and H2O2 detection. Analyst 137(24), 2803–5808 (2012). https://doi.org/10.1039/c2an35954e
C.W. Kung, C.Y. Lin, Y.H. Lai, R. Vittal, K.C. Ho, Cobalt oxide acicular nanorods with high sensitivity for the non-enzymatic detection of glucose. Biosens. Bioelectron. 27(1), 125–131 (2011). https://doi.org/10.1016/j.bios.2011.06.033
Y. Ding, Y. Wang, L. Su, M. Bellagamba, H. Zhang, Y. Lei, Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosens. Bioelectron. 26(2), 542–548 (2010). https://doi.org/10.1016/j.bios.2010.07.050
B. Wang, S. Li, J. Liu, M. Yu, Preparation of nickel nanop/graphene composites for non-enzymatic electrochemical glucose biosensor applications. Mater. Res. Bull. 49(1), 521–524 (2014). https://doi.org/10.1016/j.materresbull.2013.08.066
M. Yuan, A. Liu, M. Zhao, W. Dong, T. Zhao, J. Wang, W. Tang, Bimetallic PdCu nanop decorated three-dimensional graphene hydrogel for non-enzymatic amperometric glucose sensor. Sens. Actuators B 190, 707–714 (2014). https://doi.org/10.1016/j.snb.2013.09.054
Y. Guo, Y. Wang, C. Zhao, Xu, Non-enzymatic glucose sensor based on three dimensional nickel oxide for enhanced sensitivity. Anal. Methods 5(7), 1644–1647 (2013). https://doi.org/10.1039/c3ay00067b
Z. Fan, B. Liu, X. Liu, Z. Li, H. Wang, S. Yang, J. Wang, A flexible and disposable hybrid electrode based on Cu nanowires modified graphene transparent electrode for non-enzymatic glucose sensor. Electrochim. Acta 109, 602–608 (2013). https://doi.org/10.1016/j.electacta.2013.07.153
G.H. Wu, X.H. Song, Y.F. Wu, X.M. Chen, F. Luo, X. Chen, Non-enzymatic electrochemical glucose sensor based on platinum nanoflowers supported on graphene oxide. Talanta 105(4), 379–385 (2013). https://doi.org/10.1016/j.talanta.2012.10.066
M. Liu, R. Liu, W. Chen, Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens. Bioelectron. 45, 206–212 (2013). https://doi.org/10.1016/j.bios.2013.02.010
C. Karuppiah, S. Palanisamy, S.M. Chen, V. Veeramani, P. Periakaruppan, A novel enzymatic glucose biosensor and sensitive non-enzymatic hydrogen peroxide sensor based on graphene and cobalt oxide nanops composite modified glassy carbon electrode. Sens. Actuators B 196, 450–456 (2014). https://doi.org/10.1016/j.snb.2014.02.034
K.E. Toghill, R.G. Compton, Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. Int. J. Electrochem. Sci. 5(9), 1246–1301 (2010). http://www.electrochemsci.org/papers/vol5/5091246.pdf
L. Zhang, Y.R. Ding, R.R. Li, C. Ye, G.Y. Zhao, Y. Wang, Ni-Based metal-organic framework derived Ni@C nanosheets on a Ni foam substrate as a supersensitive non-enzymatic glucose sensor. J. Mater. Chem. B 5(28), 5549–5555 (2017). https://doi.org/10.1039/C7TB01363A
S.Y. Tee, C.P. Teng, E. Ye, Metal nanostructures for non-enzymatic glucose sensing. Mater. Sci. Eng. C 70, 1018–1030 (2017). https://doi.org/10.1016/j.msec.2016.04.009
P. Si, Y.J. Huang, T.H. Wang, Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Adv. 3(11), 3487–3502 (2013). https://doi.org/10.1039/c2ra22360k
Z.H. Ibupoto, A. Nafady, R.A. Soomro, Glycine-assisted synthesis of NiO hollow cage-like nanostructures for sensitive non-enzymatic glucose sensing. RSC Adv. 5(24), 18773–18781 (2015). https://doi.org/10.1039/C4RA15858J
S.F. Tong, Y.H. Xu, Z.X. Zhang, Dendritic bimetallic nanostructures supported on self-assembled titanate films for sensor application. J. Phys. Chem. 114(49), 20925–20931 (2010). https://doi.org/10.1021/jp1035772
R.M. Ding, J.P. Liu, J. Jiang, Tailored Ni-Cu alloy hierarchical porous nanowire as a potential efficient catalyst for DMFCs. Catal. Sci. Technol. 1(8), 1406–1411 (2011). https://doi.org/10.1039/c1cy00164g
L. Wang, Q.Y. Zhang, S.L. Chen, Electrochemical sensing and biosensing platform based on biomass-derived macroporous carbon materials. Anal. Chem. 86(3), 1414–1421 (2014). https://doi.org/10.1021/ac401563m
X.L. Li, J.Y. Yao, F.L. Liu, Nickel/Copper nanops modified TiO2 nanotubes for non-enzymatic glucose biosensors. Sens. Actuators B 181, 501–508 (2013). https://doi.org/10.1016/j.snb.2013.02.035
K.C. Lin, Y.C. Lin, S.M. Chen, A highly sensitive nonenzymatic glucose sensor based on multi-walled carbon nanotubes decorated with nickel and copper nanops. Electrochim. Acta 96, 164–172 (2013). https://doi.org/10.1016/j.electacta.2013.02.098
W. Yi, J. Liu, H.B. Chen, Copper/nickel nanop decorated carbon nanotubes for nonenzymatic glucose biosensor. J. Solid State Electrochem. 19(5), 1511–1521 (2015). https://doi.org/10.1007/s10008-015-2766-2
P. Druska, H.H. Strehblow, S. Golledge, A surface analytical examination of passive layers on Cu/Ni alloys. Alkaline solution. Corros. Sci. 38(6), 835–851 (1996). https://doi.org/10.1016/0010-938X(96)00170-9
M. Jafarian, F. Forouzandeh, I. Danaee, Electrocatalytic oxidation of glucose on Ni and NiCu alloy modified glassy carbon electrode. J. Solid State Electrochem. 13(8), 1171–1179 (2008). https://doi.org/10.1007/s10008-008-0632-1