Untethered Micro/Nanorobots for Remote Sensing: Toward Intelligent Platform
Corresponding Author: Li Zhang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 40
Abstract
Untethered micro/nanorobots that can wirelessly control their motion and deformation state have gained enormous interest in remote sensing applications due to their unique motion characteristics in various media and diverse functionalities. Researchers are developing micro/nanorobots as innovative tools to improve sensing performance and miniaturize sensing systems, enabling in situ detection of substances that traditional sensing methods struggle to achieve. Over the past decade of development, significant research progress has been made in designing sensing strategies based on micro/nanorobots, employing various coordinated control and sensing approaches. This review summarizes the latest developments on micro/nanorobots for remote sensing applications by utilizing the self-generated signals of the robots, robot behavior, microrobotic manipulation, and robot-environment interactions. Providing recent studies and relevant applications in remote sensing, we also discuss the challenges and future perspectives facing micro/nanorobots-based intelligent sensing platforms to achieve sensing in complex environments, translating lab research achievements into widespread real applications.
Highlights:
1 A systematic review of latest developments of untethered micro/nanorobots-based remote sensing systems with an emphasis on designing new coordinated control and sensing approaches.
2 The propulsion/motion control, functionalization of micro/nanorobots, sensing mechanisms, and applications are reviewed based on the up-to-date works.
3 The design and application of micro/nanorobot-based sensing platforms are discussed with the goal of building intelligent remote sensing systems.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Orooji, H. Sohrabi, N. Hemmat, F. Oroojalian, B. Baradaran et al., An overview on SARS-CoV-2 (COVID-19) and other human coronaviruses and their detection capability via amplification assay, chemical sensing, biosensing, immunosensing, and clinical assays. Nano-Micro Lett. 13, 18 (2021). https://doi.org/10.1007/s40820-020-00533-y
- L. Alder, K. Greulich, G. Kempe, B. Vieth, Residue analysis of 500 high priority pesticides: better by GC–MS or LC–MS/MS? Mass Spectrom. Rev. 25(6), 838–865 (2006). https://doi.org/10.1002/mas.20091
- A. Brakat, H. Zhu, Nanocellulose-graphene hybrids: advanced functional materials as multifunctional sensing platform. Nano-Micro Lett. 13, 94 (2021). https://doi.org/10.1007/s40820-021-00627-1
- W.T. Duan, W. Wang, S. Das, V. Yadav, T.E. Mallouk et al., Synthetic nano- and micromachines in analytical chemistry: sensing, migration, capture, delivery, and separation. Annu. Rev. Anal. Chem. 8, 311–333 (2015). https://doi.org/10.1146/annurev-anchem-071114-040125
- X. Fang, B.Y. Zong, S. Mao, Metal-organic framework-based sensors for environmental contaminant sensing. Nano-Micro Lett. 10, 64 (2018). https://doi.org/10.1007/s40820-018-0218-0
- H. Ye, Y. Wang, D.D. Xu, X.J. Liu, S.M. Liu et al., Design and fabrication of micro/nano-motors for environmental and sensing applications. Appl. Mater. Today 23, 101007 (2021). https://doi.org/10.1016/j.apmt.2021.101007
- J. Parmar, D. Vilela, K. Villa, J. Wang, S. Sánchez, Micro-and nanomotors as active environmental microcleaners and sensors. J. Am. Chem. Soc. 140(30), 9317–9331 (2018). https://doi.org/10.1021/jacs.8b05762
- L.J. Cai, D.Y. Xu, Z.Y. Zhang, N. Li, Y.J. Zhao, Tailoring functional micromotors for sensing. Research 6, 0044 (2023). https://doi.org/10.34133/research.0044
- L. Kong, J.G. Guan, M. Pumera, Micro-and nanorobots based sensing and biosensing. Curr. Opin. Electroche. 10, 174–182 (2018). https://doi.org/10.1016/j.coelec.2018.06.004
- H.S. Lin, W.Z. Yu, K.A. Sabet, M. Bogumil, Y.C. Zhao et al., Ferrobotic swarms enable accessible and adaptable automated viral testing. Nature 611, 570–577 (2022). https://doi.org/10.1038/s41586-022-05408-3
- J.J. Zhuang, J.X. Yin, S.W. Lv, B. Wang, Y. Mu, Advanced “lab-on-a-chip” to detect viruses–Current challenges and future perspectives. Biosens. Bioelectron. 163, 112291 (2020). https://doi.org/10.1016/j.bios.2020.112291
- J.Y. Cheong, H. Yu, C.Y. Lee, J.U. Lee, H.J. Choi et al., Fast detection of SARS-CoV-2 RNA via the integration of plasmonic thermocycling and fluorescence detection in a portable device. Nat. Biomed. Eng. 4(12), 1159–1167 (2020). https://doi.org/10.1038/s41551-020-00654-0
- Q.Q. Wang, J.C. Zhang, J.F. Yu, J. Lang, Z.Y. Lyu et al., Untethered small-scale machines for microrobotic manipulation: from individual and multiple to collective machines. ACS Nano 17(14), 13081–13109 (2023). https://doi.org/10.1021/acsnano.3c05328
- B. Wang, K. Kostarelos, B.J. Nelson, L. Zhang, Trends in micro-/nanorobotics: materials development, actuation, localization, and system integration for biomedical applications. Adv. Mater. 33(4), 2002047 (2021). https://doi.org/10.1002/adma.202002047
- Z.G. Wu, Y. Chen, D. Mukasa, O.S. Pak, W. Gao, Medical micro/nanorobots in complex media. Chem. Soc. Rev. 49(22), 8088–8112 (2020). https://doi.org/10.1039/D0CS00309C
- S. Sánchez, L. Soler, J. Katuri, Chemically powered micro-and nanomotors. Angew. Chem. Int. Ed. 54(5), 1414–1444 (2015). https://doi.org/10.1002/anie.201406096
- A.A. Solovev, Y.F. Mei, E. Bermúdez Ureña, G.S. Huang, O.G. Schmidt, Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 5(14), 1688–1692 (2009). https://doi.org/10.1002/smll.200900021
- M.E. Ibele, P.E. Lammert, V.H. Crespi, A. Sen, Emergent, collective oscillations of self-mobile ps and patterned surfaces under redox conditions. ACS Nano 4(8), 4845–4851 (2010). https://doi.org/10.1021/nn101289p
- W.F. Paxton, P.T. Baker, T.R. Kline, Y. Wang, T.E. Mallouk et al., Catalytically induced electrokinetics for motors and micropumps. J. Am. Chem. Soc. 128(46), 14881–14888 (2006). https://doi.org/10.1021/ja0643164
- D.K. Zhou, Y.C. Li, P.T. Xu, L.Q. Ren, G.Y. Zhang et al., Visible-light driven Si-Au micromotors in water and organic solvents. Nanoscale 9(32), 11434–11438 (2017). https://doi.org/10.1039/C7NR04161F
- H. Zhang, W.T. Duan, L. Liu, A. Sen, Depolymerization-powered autonomous motors using biocompatible fuel. J. Am. Chem. Soc. 135(42), 15734–15737 (2013). https://doi.org/10.1021/ja4089549
- H.R. Jiang, N. Yoshinaga, M. Sano, Active motion of a Janus p by self-thermophoresis in a defocused laser beam. Phys. Rev. Lett. 105(26), 268302 (2010). https://doi.org/10.1103/PhysRevLett.105.268302
- U. Bozuyuk, A. Aghakhani, Y. Alapan, M. Yunusa, P. Wrede et al., Reduced rotational flows enable the translation of surface-rolling microrobots in confined spaces. Nat. Commun. 13, 6289 (2022). https://doi.org/10.1038/s41467-022-34023-z
- C.Y. Huang, Z.Y. Lai, X.Y. Wu, T.T. Xu, Multimodal locomotion and cargo transportation of magnetically actuated quadruped soft microrobots. Cyborg. Bionic. Syst. 2022, 0004 (2022). https://doi.org/10.34133/cbsystems.0004
- A. Aghakhani, O. Yasa, P. Wrede, M. Sitti, Acoustically powered surface-slipping mobile microrobots. Proc. Natl. Acad. Sci. 117, 3469–3477 (2020). https://doi.org/10.1073/pnas.1920099117
- L.Q. Ren, N. Nama, J.M. McNeill, F. Soto, Z.F. Yan et al., 3D steerable, acoustically powered microswimmers for single-p manipulation. Sci. Adv. 5, eaax3084 (2019). https://doi.org/10.1126/sciadv.aax3084
- P. Calvo-Marzal, S. Sattayasamitsathit, S. Balasubramanian, J.R. Windmiller, C. Dao et al., Propulsion of nanowire diodes. Chem. Commun. 46(10), 1623–1624 (2010). https://doi.org/10.1039/B925568K
- J. Yan, M. Han, J. Zhang, C. Xu, E. Luijten et al., Reconfiguring active ps by electrostatic imbalance. Nat. Mater. 15(10), 1095–1099 (2016). https://doi.org/10.1038/nmat4696
- R.F. Dong, Y. Hu, Y.F. Wu, W. Gao, B.Y. Ren et al., Visible-light-driven BiOI-based Janus micromotor in pure water. J. Am. Chem. Soc. 139(5), 1722–1725 (2017). https://doi.org/10.1021/jacs.6b09863
- L.L. Xu, F.Z. Mou, H.T. Gong, M. Luo, J.G. Guan, Light-driven micro/nanomotors: from fundamentals to applications. Chem. Soc. Rev. 46(22), 6905–6926 (2017). https://doi.org/10.1039/C7CS00516D
- Q.Q. Wang, L. Zhang, External power-driven microrobotic swarm: from fundamental understanding to imaging-guided delivery. ACS Nano 15(1), 149–174 (2021). https://doi.org/10.1021/acsnano.0c07753
- H.J. Zhou, C.C. Mayorga-Martinez, S. Pané, L. Zhang, M. Pumera, Magnetically driven micro and nanorobots. Chem. Rev. 121(8), 4999–5041 (2021). https://doi.org/10.1021/acs.chemrev.0c01234
- H.Y. Zhang, Z.S. Li, C.Y. Gao, X.J. Fan, Y.X. Pang et al., Dual responsive biohybrid neutrobots for active target delivery. Sci. Robot 6(52), eaaz9519 (2021). https://doi.org/10.1126/scirobotics.aaz9519
- C.K. Schmidt, M. Medina-Sánchez, R.J. Edmondson, O.G. Schmidt, Engineering microrobots for targeted cancer therapies from a medical perspective. Nat. Commun. 11, 5618 (2020). https://doi.org/10.1038/s41467-020-19322-7
- J.H. Li, L. Dekanovsky, B. Khezri, B. Wu, H.J. Zhou et al., Biohybrid micro and nanorobots for intelligent drug delivery. Cyborg. Bionic. Syst. 2022, 9824057 (2022). https://doi.org/10.34133/2022/9824057
- D.K. Zhou, Y. Gao, J.J. Yang, Y.C. Li, G.B. Shao et al., Light-ultrasound driven collective “firework” behavior of nanomotors. Adv. Sci. 5(7), 1800122 (2018). https://doi.org/10.1002/advs.201800122
- B.J. Nelson, I.K. Kaliakatsos, J.J. Abbott, Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010). https://doi.org/10.1146/annurev-bioeng-010510-103409
- M. Sitti, H. Ceylan, W.Q. Hu, J. Giltinan, M. Turan et al., Biomedical applications of untethered mobile milli/microrobots. Proc. IEEE 103(2), 205–224 (2015). https://doi.org/10.1109/JPROC.2014.2385105
- T.L. Li, S.M. Yu, B. Sun, Y.L. Li, X.L. Wang et al., Bioinspired claw-engaged and biolubricated swimming microrobots creating active retention in blood vessels. Sci. Adv. 9(18), eadg4501 (2023). https://doi.org/10.1126/sciadv.adg4501
- M. Ye, Y. Zhou, H.Y. Zhao, X.P. Wang, Magnetic microrobots with folate targeting for drug delivery. Cyborg. Bionic. Syst. 4, 0019 (2023). https://doi.org/10.34133/cbsystems.0019
- S. Ghosh, A. Ghosh, Mobile nanotweezers for active colloidal manipulation. Sci. Robot. 3(14), eaaq0076 (2018). https://doi.org/10.1126/scirobotics.aaq0076
- D.D. Jin, Q.L. Wang, K.F. Chan, N. Xia, H.J. Yang et al., Swarming self-adhesive microgels enabled aneurysm on-demand embolization in physiological blood flow. Sci. Adv. 9(19), 9278 (2023). https://doi.org/10.1126/sciadv.adf9278
- J.J. Wang, R.F. Dong, H.Y. Wu, Y.P. Cai, B.Y. Ren, A review on artificial micro/nanomotors for cancer-targeted delivery, diagnosis, and therapy. Nano-Micro Lett. 12, 11 (2020). https://doi.org/10.1007/s40820-019-0350-5
- J.X. Li, B. Esteban-Fernández de Ávila, W. Gao, L.F. Zhang, J. Wang, Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci. Robot. 2(4), eaam6431 (2017). https://doi.org/10.1126/scirobotics.aam6431
- Q.Q. Wang, K.F. Chan, K. Schweizer, X.Z. Du, D.D. Jin et al., Ultrasound Doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery. Sci. Adv. 7(9), eabe5914 (2021). https://doi.org/10.1126/sciadv.abe5914
- J.B. Knight, A. Vishwanath, J.P. Brody, R.H. Austin, Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys. Rev. Lett. 80(17), 3863 (1998). https://doi.org/10.1103/PhysRevLett.80.3863
- L. Soler, V. Magdanz, V.M. Fomin, S. Sanchez, O.G. Schmidt, Self-propelled micromotors for cleaning polluted water. ACS Nano 7(11), 9611–9620 (2013). https://doi.org/10.1021/nn405075d
- J. Orozco, B. Jurado-Sanchez, G. Wagner, W. Gao, R. Vazquez-Duhalt et al., Bubble-propelled micromotors for enhanced transport of passive tracers. Langmuir 30(18), 5082–5087 (2014). https://doi.org/10.1021/la500819r
- F. Soto, E. Karshalev, F.Y. Zhang, B. Esteban Fernandez de Avila, A. Nourhani et al. (2021) Smart materials for microrobots. Chem. Rev. 122(5), 5365–5403. https://doi.org/10.1021/acs.chemrev.0c00999
- F. Peng, Y.F. Tu, D.A. Wilson, Micro/nanomotors towards in vivo application: cell, tissue and biofluid. Chem. Soc. Rev. 46(17), 5289–5310 (2017). https://doi.org/10.1039/C6CS00885B
- P.L. Venugopalan, B. Esteban-Fernandez de Ávila, M. Pal, A. Ghosh, J. Wang, Fantastic voyage of nanomotors into the cell. ACS Nano 14(8), 9423–9439 (2020). https://doi.org/10.1021/acsnano.0c05217
- A. Molinero-Fernández, M. Moreno-Guzmán, M.A. López, A. Escarpa, Biosensing strategy for simultaneous and accurate quantitative analysis of mycotoxins in food samples using unmodified graphene micromotors. Anal. Chem. 89(20), 10850–10857 (2017). https://doi.org/10.1021/acs.analchem.7b02440
- L. Kong, N. Rohaizad, M.Z.M. Nasir, J.G. Guan, M. Pumera, Micromotor-assisted human serum glucose biosensing. Anal. Chem. 91(9), 5660–5666 (2019). https://doi.org/10.1021/acs.analchem.8b05464
- J. Kim, C.C. Mayorga-Martinez, J. Vyskočil, D. Ruzek, M. Pumera, Plasmonic magnetic nanorobots for SARS-CoV-2 RNA detection through electronic readout. Appl. Mater. Today 27, 101402 (2022). https://doi.org/10.1016/j.apmt.2022.101402
- F. Serwane, A. Mongera, P. Rowghanian, D.A. Kealhofer, A.A. Lucio et al., In vivo quantification of spatially varying mechanical properties in developing tissues. Nat. Med. 14(2), 181–186 (2017). https://doi.org/10.1038/nmeth.4101
- V.d. la Asunción-Nadal, M. Pacheco, B. Jurado-Sánchez, A. Escarpa, Chalcogenides-based tubular micromotors in fluorescent assays. Anal. Chem. 92(13), 9188–9193 (2020). https://doi.org/10.1021/acs.analchem.0c01541
- Y.B. Zhang, L. Zhang, L.D. Yang, C.I. Vong, K.F. Chan et al., Real-time tracking of fluorescent magnetic spore–based microrobots for remote detection of C. diff toxins. Sci. Adv. 5(1), eaau9650 (2019). https://doi.org/10.1126/sciadv.aau9650
- M. Liu, Y.Y. Sun, T.P. Wang, Z.R. Ye, H. Zhang et al., A biodegradable, all-polymer micromotor for gas sensing applications. J. Mater. Chem. C 4(25), 5945–5952 (2016). https://doi.org/10.1039/C6TC00971A
- B. Esteban-Fernández de Ávila, A. Martín, F. Soto, M.A. Lopez-Ramirez, S. Campuzano et al., Single cell real-time miRNAs sensing based on nanomotors. ACS Nano 9(7), 6756–6764 (2015). https://doi.org/10.1021/acsnano.5b02807
- T. Patino, A. Porchetta, A. Jannasch, A. Lladó, T. Stumpp et al., Self-sensing enzyme-powered micromotors equipped with pH-responsive DNA nanoswitches. Nano Lett. 19(6), 3440–3447 (2019). https://doi.org/10.1021/acs.nanolett.8b04794
- B. Esteban-Fernandez de Ávila, M.A. Lopez-Ramirez, D.F. Báez, A. Jodra, V.V. Singh et al., Aptamer-modified graphene-based catalytic micromotors: off–on fluorescent detection of ricin. ACS Sens. 1(3), 217–221 (2016). https://doi.org/10.1021/acssensors.5b00300
- V.V. Singh, K. Kaufmann, J. Orozco, J. Li, M. Galarnyk et al., Micromotor-based on–off fluorescence detection of sarin and soman simulants. Chem. Commun. 51(56), 11190–11193 (2015). https://doi.org/10.1039/C5CC04120A
- B. Jurado-Sánchez, M. Pacheco, J. Rojo, A. Escarpa, Magnetocatalytic graphene quantum dots Janus micromotors for bacterial endotoxin detection. Angew. Chem. Int. Ed. 56(24), 6957–6961 (2017). https://doi.org/10.1002/anie.201701396
- Á. Molinero-Fernández, A. Jodra, M. Moreno-Guzmán, M.Á. López, A. Escarpa, Magnetic reduced graphene oxide/nickel/platinum nanops micromotors for mycotoxin analysis. Chem. Eur. J. 24(28), 7172–7176 (2018). https://doi.org/10.1002/chem.201706095
- M. Pacheco, B. Jurado-Sánchez, A. Escarpa, Sensitive monitoring of enterobacterial contamination of food using self-propelled Janus microsensors. Anal. Chem. 90(4), 2912–2917 (2018). https://doi.org/10.1021/acs.analchem.7b05209
- O. Ergeneman, G. Dogangil, M.P. Kummer, J.J. Abbott, M.K. Nazeeruddin et al., A magnetically controlled wireless optical oxygen sensor for intraocular measurements. IEEE Sens. J. 8(1), 29–37 (2008). https://doi.org/10.1109/JSEN.2007.912552
- O. Ergeneman, G. Chatzipirpiridis, J. Pokki, M. Marin-Suárez, G.A. Sotiriou et al., In vitro oxygen sensing using intraocular microrobots. IEEE Trans. Biomed. Eng. 59(11), 3104–3109 (2012). https://doi.org/10.1109/TBME.2012.2216264
- H.F. Dong, J.P. Lei, L. Ding, Y.Q. Wen, H.X. Ju et al., MicroRNA: function, detection, and bioanalysis. Chem. Rev. 113(8), 6207–6233 (2013). https://doi.org/10.1021/cr300362f
- S. Shi, J. Chen, X.W. Wang, M.S. Xiao, A.R. Chandrasekaran et al., Biointerface engineering with nucleic acid materials for biosensing applications. Adv. Funct. Mater. 32(37), 2201069 (2022). https://doi.org/10.1002/adfm.202201069
- T.H. Kim, D. Lee, J.W. Choi, Live cell biosensing platforms using graphene-based hybrid nanomaterials. Biosens. Bioelectron. 94, 485–499 (2017). https://doi.org/10.1016/j.bios.2017.03.032
- N. Rohaizad, C.C. Mayorga-Martinez, M. Fojt, N.M. Latiff, M. Pumera, Two-dimensional materials in biomedical, biosensing and sensing applications. Chem. Soc. Rev. 50(1), 619–657 (2021). https://doi.org/10.1039/D0CS00150C
- A. Bolotsky, D. Butler, C.Y. Dong, K. Gerace, N.R. Glavin et al., Two-dimensional materials in biosensing and healthcare: from in vitro diagnostics to optogenetics and beyond. ACS Nano 13(9), 9781–9810 (2019). https://doi.org/10.1021/acsnano.9b03632
- M. Sentic, S. Arbault, B. Goudeau, D. Manojlovic, A. Kuhn, L. Bouffier, N. Sojic, Electrochemiluminescent swimmers for dynamic enzymatic sensing. Chem. Commun. 50(71), 10202–10205 (2014). https://doi.org/10.1039/C4CC04105D
- A. Molinero-Fernandez, M. Moreno-Guzmán, L. Arruza, M.A. López, A. Escarpa, Polymer-based micromotor fluorescence immunoassay for on-the move sensitive procalcitonin determination in very low birth weight infants’ plasma. ACS Sens. 5(5), 1336–1344 (2020). https://doi.org/10.1021/acssensors.9b02515
- K. Wang, W.J. Wang, S.H. Pan, Y.M. Fu, B. Dong et al., Fluorescent self-propelled covalent organic framework as a microsensor for nitro explosive detection. Appl. Mater. Today 19, 100550 (2020). https://doi.org/10.1016/j.apmt.2019.100550
- D. Kagan, P. Calvo-Marzal, S. Balasubramanian, S. Sattayasamitsathit, K.M. Manesh et al., Chemical sensing based on catalytic nanomotors: motion-based detection of trace silver. J. Am. Chem. Soc. 131(34), 12082–12083 (2009). https://doi.org/10.1021/ja905142q
- B. Ezhilan, W. Gao, A. Pei, I. Rozen, R.F. Dong et al., Motion-based threat detection using microrods: experiments and numerical simulations. Nanoscale 7(17), 7833–7840 (2015). https://doi.org/10.1039/C4NR06208F
- J. Wu, S. Balasubramanian, D. Kagan, K.M. Manesh, S. Campuzano et al., Motion-based DNA detection using catalytic nanomotors. Nat. Commun. 1, 36 (2010). https://doi.org/10.1038/ncomms1035
- K. Van Nguyen, S.D. Minteer, DNA-functionalized pt nanops as catalysts for chemically powered micromotors: toward signal-on motion-based DNA biosensor. Chem. Commun. 51(23), 4782–4784 (2015). https://doi.org/10.1039/C4CC10250A
- [M.S. Draz, N.K. Lakshminaraasimulu, S. Krishnakumar, D. Battalapalli, A. Vasan et al., Motion-based immunological detection of Zika virus using Pt nanomotors and a cellphone. ACS Nano 12(6), 5709–5718 (2018). https://doi.org/10.1021/acsnano.8b01515
- Y.J. Su, Y. Ge, L.M. Liu, L.N. Zhang, M. Liu et al., Motion-based pH sensing based on the cartridge-case-like micromotor. ACS Appl. Mater. Interfaces 8(6), 4250–4257 (2016). https://doi.org/10.1021/acsami.6b00012
- M.T. Li, H. Zhang, M. Liu, B. Dong, Motion-based glucose sensing based on a fish-like enzymeless motor. J. Mater. Chem. C 5(18), 4400–4407 (2017). https://doi.org/10.1039/C7TC01122A
- J. Orozco, Victor García-Gradilla, M. D’Agostino, W. Gao, A. Cortés et al., Artificial enzyme-powered microfish for water-quality testing. ACS Nano 7(1), 818–824 (2013). https://doi.org/10.1021/nn305372n
- V.V. Singh, K. Kaufmann, B.E.F. de Ávila, M. Uygun, J. Wang, Nanomotors responsive to nerve-agent vapor plumes. Chem. Commun. 52(16), 3360–3363 (2016). https://doi.org/10.1039/C5CC10670B
- J.G.S. Moo, H. Wang, G.J. Zhao, M. Pumera, Biomimetic artificial inorganic enzyme-free self-propelled microfish robot for selective detection of Pb2+ in water. Chem. Eur. J. 20(15), 4292–4296 (2014). https://doi.org/10.1002/chem.201304804
- T. Maric, C.C. Mayorga-Martinez, M.Z.M. Nasir, M. Pumera, Platinum halloysite nanoclay nanojets as sensitive and selective mobile nanosensors for mercury detection. Adv. Mater. Technol. 4(2), 1800502 (2019). https://doi.org/10.1002/admt.201800502
- Y.Z. Xie, S.Z. Fu, J. Wu, J.P. Lei, H.X. Ju, Motor-based microprobe powered by bio-assembled catalase for motion detection of DNA. Biosens. Bioelectron. 87, 31–37 (2017). https://doi.org/10.1016/j.bios.2016.07.104
- S.Z. Fu, X.Q. Zhang, Y.Z. Xie, J. Wu, H.X. Ju, An efficient enzyme-powered micromotor device fabricated by cyclic alternate hybridization assembly for DNA detection. Nanoscale 9(26), 9026–9033 (2017). https://doi.org/10.1039/C7NR01168G
- X.Q. Zhang, C.T. Chen, J. Wu, H.X. Ju, Bubble-propelled jellyfish-like micromotors for DNA sensing. ACS Appl. Mater. Interfaces 11(14), 13581–13588 (2019). https://doi.org/10.1021/acsami.9b00605
- M.S. Draz, K.M. Kochehbyoki, A. Vasan, D. Battalapalli, A. Sreeram et al., DNA engineered micromotors powered by metal nanops for motion based cellphone diagnostics. Nat. Commun. 9, 4282 (2018). https://doi.org/10.1038/s41467-018-06727-8
- L. Wang, T.L. Li, L.Q. Li, J.Y. Wang, W.P. Song et al., Microrocket based viscometer. Ecs J. Solid State Sci. 4(10), S3020 (2015). https://doi.org/10.1149/2.0051510jss
- L. Shao, Z.J. Yang, D. Andrén, P. Johansson, M. Käll, Gold nanorod rotary motors driven by resonant light scattering. ACS Nano 9(12), 12542–12551 (2015). https://doi.org/10.1021/acsnano.5b06311
- S. Yuan, Q. Zheng, B.J. Yao, M.C. Wen, W.N. Zhang et al., Bio-compatible miniature viscosity sensor based on optical tweezers. Biomed. Opt. Express 13(3), 1152–1160 (2022). https://doi.org/10.1364/BOE.452615
- A. Ghosh, D. Dasgupta, M. Pal, K.I. Morozov, A.M. Leshansky, A. Ghosh, Helical nanomachines as mobile viscometers. Adv. Funct. Mater. 28(25), 1705687 (2018). https://doi.org/10.1002/adfm.201705687
- A. Barbot, D. Decanini, G. Hwang, Local flow sensing on helical microrobots for semi-automatic motion adaptation. Int. J. Rob. Res. 39(4), 476–489 (2020). https://doi.org/10.1177/0278364919894374
- H. Chen, Y.B. Wang, Y.Z. Liu, Q. Zou, J.F. Yu, Sensing of fluidic features using colloidal microswarms. ACS Nano 16(10), 16281–16291 (2022). https://doi.org/10.1021/acsnano.2c05281
- B. Jurado-Sánchez, A. Escarpa, J. Wang, Lighting up micromotors with quantum dots for smart chemical sensing. Chem. Commun. 51(74), 14088–14091 (2015). https://doi.org/10.1039/C5CC04726A
- K. Villa, C.L. Manzanares Palenzuela, Z. Sofer, S. Matějková, M. Pumera, Metal-free visible-light photoactivated C3N4 bubble-propelled tubular micromotors with inherent fluorescence and on/off capabilities. ACS Nano 12(12), 12482–12491 (2018). https://doi.org/10.1021/acsnano.8b06914
- Y. Yuan, C.Y. Gao, D.L. Wang, C. Zhou, B.H. Zhu et al., Janus-micromotor-based on–off luminescence sensor for active TNT detection. Beilstein J. Nanotech. 10(1), 1324–1331 (2019). https://doi.org/10.3762/bjnano.10.131
- Z.H. Wang, G.C. Fang, Z.H. Gao, Y.K. Liao, C.Y. Gong et al., Autonomous microlasers for profiling extracellular vesicles from cancer spheroids. Nano Lett. 23(7), 2502–2510 (2023). https://doi.org/10.1021/acs.nanolett.2c04123
- S. Campuzano, D. Kagan, J. Orozco, J. Wang, Motion-driven sensing and biosensing using electrochemically propelled nanomotors. Analyst 136(22), 4621–4630 (2011). https://doi.org/10.1039/C1AN15599G
- L.M. Liu, Y.G. Dong, Y.Y. Sun, M. Liu, Y.J. Su et al., Motion-based pH sensing using spindle-like micromotors. Nano Res. 9, 1310–1318 (2016). https://doi.org/10.1007/s12274-016-1026-9
- S. Solé, A. Merkoçi, S. Alegret, Determination of toxic substances based on enzyme inhibition. part I. electrochemical biosensors for the determination of pesticides using batch procedures. Crit. Rev. Anal. Chem. 33(2), 89–126 (2003). https://doi.org/10.1080/727072334
- S.H. Yang, Q.Q. Wang, D.D. Jin, X.Z. Du, L. Zhang, Probing fast transformation of magnetic colloidal microswarms in complex fluids. ACS Nano 16(11), 19025–19037 (2022). https://doi.org/10.1021/acsnano.2c07948
- M.M. Sun, B. Hao, S.H. Yang, X. Wang, C. Majidi et al., Exploiting ferrofluidic wetting for miniature soft machines. Nat. Commun. 13, 7919 (2022). https://doi.org/10.1038/s41467-022-35646-y
- J.F. Yu, L.D. Yang, X.Z. Du, H. Chen, T. Xu et al., Adaptive pattern and motion control of magnetic microrobotic swarms. IEEE Trans. Robot. 38(3), 1552–1570 (2021). https://doi.org/10.1109/TRO.2021.3130432
- W.M. Jing, D.J. Cappelleri, A magnetic microrobot with in situ force sensing capabilities. Robotics 3(2), 106–119 (2014). https://doi.org/10.3390/robotics3020106
- W.M. Jing, D.J. Cappelleri, Micro-force sensing mobile microrobots. Proc. SPIE 9494, 949405 (2015). https://doi.org/10.1117/12.2183259
- M. You, C.R. Chen, L.L. Xu, F.Z. Mou, J.G. Guan, Intelligent micro/nanomotors with taxis. Accounts. Chem. Res. 51(12), 3006–3014 (2018). https://doi.org/10.1021/acs.accounts.8b00291
- F.T. Ji, Y.L. Wu, M. Pumera, L. Zhang, Collective behaviors of active matter learning from natural taxes across scales. Adv. Mater. 35(8), 2203959 (2023). https://doi.org/10.1002/adma.202203959
- M.N. Popescu, W.E. Uspal, C. Bechinger, P. Fischer, Chemotaxis of active Janus nanops. Nano Lett. 18(9), 5345–5349 (2018). https://doi.org/10.1021/acs.nanolett.8b02572
- J.X. Li, W.J. Liu, J.Y. Wang, I. Rozen, S. He et al., Nanoconfined atomic layer deposition of TiO2/Pt nanotubes: toward ultrasmall highly efficient catalytic nanorockets. Adv. Funct. Mater. 27(24), 1700598 (2017). https://doi.org/10.1002/adfm.201700598
- Y.Y. Hong, N.M. Blackman, N.D. Kopp, A. Sen, D. Velegol, Chemotaxis of nonbiological colloidal rods. Phys. Rev. Lett. 99(17), 178103 (2007). https://doi.org/10.1103/PhysRevLett.99.178103
- K.K. Dey, S. Bhandari, D. Bandyopadhyay, S. Basu, A. Chattopadhyay, The pH taxis of an intelligent catalytic microbot. Small 9(11), 1916–1920 (2013). https://doi.org/10.1002/smll.201202312
- F.Z. Mou, Q. Xie, J.F. Liu, S.P. Che, L. Bahmane et al., ZnO-based micromotors fueled by CO2: the first example of self-reorientation-induced biomimetic chemotaxis. Natl. Sci. Rev. 8(11), nqab066 (2021). https://doi.org/10.1093/nsr/nwab066
- R.D. Vale, The molecular motor toolbox for intracellular transport. Cell 112(4), 467–480 (2003). https://doi.org/10.1016/s0092-8674(03)00111-9
- G.D. Bachand, H. Hess, B. Ratna, P. Satir, V. Vogel, “Smart dust” biosensors powered by biomolecular motors. Lab Chip 9(12), 1661–1666 (2009). https://doi.org/10.1039/B821055A
- C.T. Lin, M.T. Kao, K. Kurabayashi, E. Meyhofer, Self-contained, biomolecular motor-driven protein sorting and concentrating in an ultrasensitive microfluidic chip. Nano Lett. 8(4), 1041–1046 (2008). https://doi.org/10.1021/nl072742x
- T. Fischer, A. Agarwal, H. Hess, A smart dust biosensor powered by kinesin motors. Nat. Nanotechnol. 4(3), 162–166 (2009). https://doi.org/10.1038/nnano.2008.393
- C. Schmidt, V. Vogel, Molecular shuttles powered by motor proteins: loading and unloading stations for nanocargo integrated into one device. Lab Chip 10(17), 2195–2198 (2010). https://doi.org/10.1039/C005241H
- S. Hiyama, T. Inoue, T. Shima, Y. Moritani, T. Suda et al., Autonomous loading, transport, and unloading of specified cargoes by using DNA hybridization and biological motor-based motility. Small 4(4), 410–415 (2008). https://doi.org/10.1002/smll.200700528
- D. Kagan, S. Campuzano, S. Balasubramanian, F. Kuralay, G.U. Flechsig et al., Functionalized micromachines for selective and rapid isolation of nucleic acid targets from complex samples. Nano Lett. 11(5), 2083–2087 (2011). https://doi.org/10.1021/nl2005687
- S. Balasubramanian, D. Kagan, C.M. Jack Hu, S. Campuzano, M.J. Lobo-Castañon et al., Micromachine-enabled capture and isolation of cancer cells in complex media. Angew. Chem. Int. Ed. 50(18), 4161–4164 (2011). https://doi.org/10.1002/anie.201100115
- C.C. Mayorga-Martinez, J. Vyskočil, F. Novotný, P. Bednar, D. Ruzek et al., Collective behavior of magnetic microrobots through immuno-sandwich assay: On-the-fly COVID-19 sensing. Appl. Mater. Today 26, 101337 (2022). https://doi.org/10.1016/j.apmt.2021.101337
- V. Garcia-Gradilla, J. Orozco, S. Sattayasamitsathit, F. Soto, F. Kuralay et al., Functionalized ultrasound-propelled magnetically guided nanomotors: toward practical biomedical applications. ACS Nano 7(10), 9232–9240 (2013). https://doi.org/10.1021/nn403851v
- M. Urso, M. Ussia, F. Novotný, M. Pumera, Trapping and detecting nanoplastics by MXene-derived oxide microrobots. Nat. Commun. 13, 3573 (2022). https://doi.org/10.1038/s41467-022-31161-2
- J. Wang, Can man-made nanomachines compete with nature biomotors? ACS Nano 3(1), 4–9 (2009). https://doi.org/10.1021/nn800829k
- M. Zarei, M. Zarei, Self-propelled micro/nanomotors for sensing and environmental remediation. Small 14(30), 1800912 (2018). https://doi.org/10.1002/smll.201800912
- J. Simmchen, A. Baeza, D. Ruiz, M.J. Esplandiu, M. Vallet- Regí, Asymmetric hybrid silica nanomotors for capture and cargo transport: towards a novel motion-based DNA sensor. Small 8(13), 2053–2059 (2012). https://doi.org/10.1002/smll.201101593
- J. Orozco, S. Campuzano, D. Kagan, M. Zhou, W. Gao et al., Dynamic isolation and unloading of target proteins by aptamer-modified microtransporters. Anal. Chem. 83(20), 7962–7969 (2011). https://doi.org/10.1021/ac202029k
- J. Orozco, A. Cortés, G. Cheng, S. Sattayasamitsathit, W. Gao et al., Molecularly imprinted polymer-based catalytic micromotors for selective protein transport. J. Am. Chem. Soc. 135(14), 5336–5339 (2013). https://doi.org/10.1021/ja4018545
- E. Ma, K. Wang, H. Wang, An immunoassay based on nanomotor-assisted electrochemical response for the detection of immunoglobulin. Microchim. Acta 189(1), 47 (2022). https://doi.org/10.1007/s00604-021-05158-5
- C.C. Mayorga-Martinez, M. Pumera, Self-propelled tags for protein detection. Adv. Funct. Mater. 30(6), 1906449 (2020). https://doi.org/10.1002/adfm.201906449
- Á. Molinero- Fernández, L. Arruza, M.Á. López, A. Escarpa, On-the-fly rapid immunoassay for neonatal sepsis diagnosis: C-reactive protein accurate determination using magnetic graphene-based micromotors. Biosens. Bioelectron. 158, 112156 (2020). https://doi.org/10.1016/j.bios.2020.112156
- C.Y. Liang, C. Zhan, F.Y. Zeng, D.D. Xu, Y. Wang et al., Bilayer tubular micromotors for simultaneous environmental monitoring and remediation. ACS Appl. Mater. Interfaces 10(41), 35099–35107 (2018). https://doi.org/10.1021/acsami.8b10921
- V. Zieglschmid, C. Hollmann, O. Böcher, Detection of disseminated tumor cells in peripheral blood. Crit. Rev. Cl. Lab. Sci. 42(2), 155–196 (2005). https://doi.org/10.1080/10408360590913696
- F. Kuralay, S. Sattayasamitsathit, W. Gao, A. Uygun, A. Katzenberg et al., Self-propelled carbohydrate-sensitive microtransporters with built-in boronic acid recognition for isolating sugars and cells. J. Am. Chem. Soc. 134(37), 15217–15220 (2012). https://doi.org/10.1021/ja306080t
- H. Fang, G. Kaur, B.H. Wang, Progress in boronic acid-based fluorescent glucose sensors. J. Fluoresc. 14, 481–489 (2004). https://doi.org/10.1023/B:JOFL.0000039336.51399.3b
- S. Park, H. Boo, T.D. Chung, Electrochemical non-enzymatic glucose sensors. Anal. Chim. Acta 556(1), 46–57 (2006). https://doi.org/10.1016/j.aca.2005.05.080
- S. Campuzano, J. Orozco, D. Kagan, M. Guix, W. Gao et al., Bacterial isolation by lectin-modified microengines. Nano Lett. 12(1), 396–401 (2012). https://doi.org/10.1021/nl203717q
- O.A. Loaiza, P.J. Lamas-Ardisana, E. Jubete, E. Ochoteco, I. Loinaz et al., Nanostructured disposable impedimetric sensors as tools for specific biomolecular interactions: sensitive recognition of concanavalin A. Anal. Chem. 83(8), 2987–2995 (2011). https://doi.org/10.1021/ac103108m
- Y. Gogotsi, B. Anasori, The rise of MXenes. ACS Nano 13(8), 8491–8494 (2019). https://doi.org/10.1021/acsnano.9b06394
- K. Villa, F. Novotny, J. Zelenka, M.P. Browne, T. Ruml et al., Visible-light-driven single-component BiVO4 micromotors with the autonomous ability for capturing microorganisms. ACS Nano 13(7), 8135–8145 (2019). https://doi.org/10.1021/acsnano.9b03184
- S. Debata, N.A. Kherani, S.K. Panda, D.P. Singh, Light-driven microrobots: capture and transport of bacteria and microps in a fluid medium. J. Mater. Chem. B 10(40), 8235–8243 (2022). https://doi.org/10.1039/D2TB01367C
- Á. Molinero-Fernández, M.Á. López, A. Escarpa, Electrochemical microfluidic micromotors-based immunoassay for C-reactive protein determination in preterm neonatal samples with sepsis suspicion. Anal. Chem. 92(7), 5048–5054 (2020). https://doi.org/10.1021/acs.analchem.9b05384
- E. Morales-Narváez, M. Guix, M. Medina-Sánchez, C.C. Mayorga-Martinez, A. Merkoçi, Micromotor enhanced microarray technology for protein detection. Small 10(13), 2542–2548 (2014). https://doi.org/10.1002/smll.201303068
- Q.R. Xiong, A.E. Lim, Y. Lim, Y.C. Lam, H.W. Duan, Dynamic magnetic nanomixers for improved microarray assays by eliminating diffusion limitation. Adv. Healthc. Mater. 8(6), 1801022 (2019). https://doi.org/10.1002/adhm.201801022
- Y. Zhang, D.A. Gregory, Y. Zhang, P.J. Smith, S.J. Ebbens et al., Reactive inkjet printing of functional silk stirrers for enhanced mixing and sensing. Small 15(1), 1804213 (2019). https://doi.org/10.1002/smll.201804213
- S. Cinti, G. Valdés-Ramı́rez, W. Gao, J.X. Li, G. Palleschi et al., Microengine-assisted electrochemical measurements at printable sensor strips. Chem. Commun. 51(41), 8668–8671 (2015). https://doi.org/10.1039/C5CC02222C
- D. Rojas, B. Jurado-Sánchez, A. Escarpa, “Shoot and sense” Janus micromotors-based strategy for the simultaneous degradation and detection of persistent organic pollutants in food and biological samples. Anal. Chem. 88(7), 4153–4160 (2016). https://doi.org/10.1021/acs.analchem.6b00574
- C. Lu, X.J. Liu, Y.F. Li, F. Yu, L.H. Tang et al., Multifunctional Janus hematite–silica nanops: mimicking peroxidase-like activity and sensitive colorimetric detection of glucose. ACS Appl. Mater. Interfaces 7(28), 15395–15402 (2015). https://doi.org/10.1021/acsami.5b03423
- M. Moreno-Guzman, A. Jodra, M.A. López, A. Escarpa, Self-propelled enzyme-based motors for smart mobile electrochemical and optical biosensing. Anal. Chem. 87(24), 12380–12386 (2015). https://doi.org/10.1021/acs.analchem.5b03928
- B.E.F. de Ávila, M. Zhao, S. Campuzano, F. Ricci, J.M. Pingarrón et al., Rapid micromotor-based naked-eye immunoassay. Talanta 167, 651–657 (2017). https://doi.org/10.1016/j.talanta.2017.02.068
- R. María-Hormigos, B. Jurado- Sánchez, A. Escarpa, Self-propelled micromotors for naked-eye detection of phenylenediamines isomers. Anal. Chem. 90(16), 9830–9837 (2018). https://doi.org/10.1021/acs.analchem.8b01860
- M. Palacios-Corella, D. Rojas, M. Pumera, Photocatalytic Pt/Ag3VO4 micro-motors with inherent sensing capabilities for corroding environments. J. Colloid. Interf. Sci. 631, 125–134 (2023). https://doi.org/10.1016/j.jcis.2022.10.169
- B. Guven, N. Basaran-Akgul, E. Temur, U. Tamer, İH. Boyacı, SERS-based sandwich immunoassay using antibody coated magnetic nanops for Escherichia coli enumeration. Analyst 136(4), 740–748 (2011). https://doi.org/10.1039/C0AN00473A
- D. Han, Y.F. Fang, D.Y. Du, G.S. Huang, T. Qiu et al., Automatic molecular collection and detection by using fuel-powered microengines. Nanoscale 8(17), 9141–9145 (2016). https://doi.org/10.1039/C6NR00117C
- F. Novotnỳ, J. Plutnar, M. Pumera, Plasmonic self-propelled nanomotors for explosives detection via solution-based surface enhanced Raman scattering. Adv. Funct. Mater. 29(33), 1903041 (2019). https://doi.org/10.1002/adfm.201903041
- Y. Wang, C. Zhou, W. Wang, D.D. Xu, F.Y. Zeng et al., Photocatalytically powered matchlike nanomotor for light-guided active SERS sensing. Angew. Chem. Int. Ed. 130(40), 13294–13297 (2018). https://doi.org/10.1002/anie.201807033
- T.L. Xu, Y. Luo, C.H. Liu, X.J. Zhang, S.T. Wang, Integrated ultrasonic aggregation-induced enrichment with Raman enhancement for ultrasensitive and rapid biosensing. Anal. Chem. 92(11), 7816–7821 (2020). https://doi.org/10.1021/acs.analchem.0c01011
- X.C. Fan, Q. Hao, M.Z. Li, X.Y. Zhang, X.Z. Yang et al., Hotspots on the move: active molecular enrichment by hierarchically structured micromotors for ultrasensitive SERS sensing. ACS Appl. Mater. Interfaces 12(25), 28783–28791 (2020). https://doi.org/10.1021/acsami.0c05371
- Y. Wang, Y.H. Liu, Y. Li, D.D. Xu, X. Pan et al., Magnetic nanomotor-based maneuverable SERS probe. Research 2020, 7962024 (2020). https://doi.org/10.34133/2020/7962024
- K. Xiong, J.W. Lin, Q. Chen, T.Y. Gao, L.L. Xu et al., An axis-asymmetric self-driven micromotor that can perform precession multiplying “on-the-fly” mass transfer. Matter 6(3), 907–924 (2023). https://doi.org/10.1016/j.matt.2023.01.005
- E.F. Petricoin III., J.L. Hackett, L.J. Lesko, R.K. Puri, S.I. Gutman et al., Medical applications of microarray technologies: a regulatory science perspective. Nat. Genet. 32(Suppl 4), 474–479 (2002). https://doi.org/10.1038/ng1029
- T.J. Albert, M.N. Molla, D.M. Muzny, L. Nazareth, D. Wheeler et al., Direct selection of human genomic loci by microarray hybridization. Nat. Med. 4(11), 903–905 (2007). https://doi.org/10.1038/nmeth1111
- F.Z. Mou, C.R. Chen, Q. Zhong, Y.X. Yin, H.R. Ma et al., Autonomous motion and temperature-controlled drug delivery of Mg/Pt-poly (N-isopropylacrylamide) Janus micromotors driven by simulated body fluid and blood plasma. ACS Appl. Mater. Interfaces 6(12), 9897–9903 (2014). https://doi.org/10.1021/am502729y
- S.M. Nie, S.R. Emory, Probing single molecules and single nanops by surface-enhanced Raman scattering. Science 275(5303), 1102–1106 (1997). https://doi.org/10.1126/science.275.5303.1102
- S.Y. Ding, J. Yi, J.F. Li, B. Ren, D.Y. Wu et al., Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 1, 16021 (2016). https://doi.org/10.1038/natrevmats.2016.21
- J.F. Li, Y.F. Huang, Y. Ding, Z.L. Yang, S.B. Li et al., Shell-isolated nanop-enhanced Raman spectroscopy. Nature 464(7287), 392–395 (2010). https://doi.org/10.1038/nature08907
- E. Hutter, J.H. Fendler, Exploitation of localized surface plasmon resonance. Adv. Mater. 16(19), 1685–1706 (2004). https://doi.org/10.1002/adma.200400271
- F. Risso, Agitation, mixing, and transfers induced by bubbles. Annu. Rev. Fluid Mech. 50, 25–48 (2018). https://doi.org/10.1146/annurev-fluid-122316-045003
- Q.Q. Wang, D.D. Jin, B. Wang, N. Xia, H. Ko et al., Reconfigurable magnetic microswarm for accelerating tPA-mediated thrombolysis under ultrasound imaging. IEEE/ASME Trans. Mechatron. 27(4), 2267–2277 (2022). https://doi.org/10.1109/TMECH.2021.3103994
- W.W. Gao, B.E.F. de Ávila, L.F. Zhang, J. Wang, Targeting and isolation of cancer cells using micro/nanomotors. Adv. Drug. Deliver. Rev. 125, 94–101 (2018). https://doi.org/10.1016/j.addr.2017.09.002
- M. Pal, N. Somalwar, A. Singh, R. Bhat, S.M. Eswarappa et al., Maneuverability of magnetic nanomotors inside living cells. Adv. Mater. 30(22), 1800429 (2018). https://doi.org/10.1002/adma.201800429
- L.L. Li, Z. Yu, J.F. Liu, M.Y. Yang, G.P. Shi et al., Swarming responsive photonic nanorobots for motile-targeting microen-vironmental mapping and mapping-guided photothermal treatment. Nano-Micro Lett. 15(1), 141 (2023). https://doi.org/10.1007/s40820-023-01095-5
- Z. Yu, L.L. Li, F.Z. Mou, S.M. Yu, D. Zhang et al., Swarming magnetic photonic-crystal microrobots with on-the-fly visual pH detection and self-regulated drug delivery. InfoMat 5(10), e12464 (2023). https://doi.org/10.1002/inf2.12464
- Z.M. Li, X.Y. Yi, J.K. Yang, L. Bian, Z.H. Yu et al., Designing artificial vibration modes of piezoelectric devices using programmable, 3D ordered structure with piezoceramic strain units. Adv. Mater. 34(2), 2107236 (2022). https://doi.org/10.1002/adma.202107236
- K.S. Yuan, C. Cuntı́n-Abal, B. Jurado-Sánchez, A. Escarpa, Smartphone-based Janus micromotors strategy for motion-based detection of Glutathione. Anal. Chem. 93(49), 16385–16392 (2021). https://doi.org/10.1021/acs.analchem.1c02947
- Y.F. Zhang, F. Yang, W. Wei, Y.Y. Wang, S.S. Yang et al., Self-propelled Janus mesoporous micromotor for enhanced microRNA capture and amplified detection in complex biological samples. ACS Nano 16(4), 5587–5596 (2022). https://doi.org/10.1021/acsnano.1c10437
- L.J. Cai, D.Y. Xu, H.X. Chen, L. Wang, Y.J. Zhao, Designing bioactive micro-/nanomotors for engineered regeneration. Eng. Regen. 2, 109–115 (2021). https://doi.org/10.1016/j.engreg.2021.09.003
- X. Wang, T.C. Wang, X. Chen, J.H. Law, G.Q. Shan et al., Microrobotic swarms for intracellular measurement with enhanced signal-to-noise ratio. ACS Nano 16(7), 10824–10839 (2022). https://doi.org/10.1021/acsnano.2c02938
- Y.B. Wang, H. Chen, J.H. Law, X.Z. Du, J.F. Yu, Ultrafast miniature robotic swimmers with upstream motility. Cyborg. Bionic. Syst. 4, 0015 (2023). https://doi.org/10.34133/cbsystems.0015
- Q.Q. Wang, N. Xiang, J. Lang, B. Wang, D.D. Jin et al., Reconfigurable liquid-bodied miniature machines: Magnetic control and microrobotic applications. Adv. Intell. Syst. (2023). https://doi.org/10.1002/aisy.202300108
- Z.Y. Ren, R.J. Zhang, R.H. Soon, Z.M. Liu, W.Q. Hu et al., Soft-bodied adaptive multimodal locomotion strategies in fluid-filled confined spaces. Sci. Adv. 7(27), eabh2022 (2021). https://doi.org/10.1126/sciadv.abh2022
- J.C. Zhang, Z.Y. Ren, W.Q Hu, R.H. Soon, I.C. Yasa et al., Voxelated three-dimensional miniature magnetic soft machines via multimaterial heterogeneous assembly. Sci. Robot. 6(53) (2021). https://doi.org/10.1126/scirobotics.abf0112
- W.Z. Yu, H.S. Lin, Y.L. Wang, X. He, N. Chen et al., A ferrobotic system for automated microfluidic logistics. Sci. Robot. 5(39), eaba4411 (2020). https://doi.org/10.1126/scirobotics.aba4411
- M. García, J. Orozco, M. Guix, W. Gao, S. Sattayasamitsathit et al., Micromotor-based lab-on-chip immunoassays. Nanoscale 5(4), 1325–1331 (2013). https://doi.org/10.1039/C2NR32400H
- L. Restrepo-Pérez, L. Soler, C. Martínez-Cisneros, S. S´anchez, O.G. Schmidt, Biofunctionalized self-propelled micromotors as an alternative on-chip concen-trating system. Lab Chip 14(16), 2914–2917 (2014). https://doi.org/10.1039/C4LC00439F
- M.Y. Yang, X. Guo, F.Z. Mou, J.G. Guan, Lighting up micro-/nanorobots with fluorescence. Chem. Rev. 123(7), 3944–3975 (2022). https://doi.org/10.1021/acs.chemrev.2c00062
- Q.Q. Wang, X.Z. Du, D.D. Jin, L. Zhang, Real-time ultrasound doppler tracking and autonomous navigation of a miniature helical robot for accelerating thrombolysis in dynamic blood flow. ACS Nano 16(1), 604–616 (2022). https://doi.org/10.1021/acsnano.1c07830
- S. Jeon, S. Kim, S. Ha, S. Lee, E. Kim et al., Magnetically actuated microrobots as a platform for stem cell transplantation. Sci. Robot. 4(30), aav4317 (2019). https://doi.org/10.1126/scirobotics.aav4317
- D.F. Li, C. Liu, Y.Y. Yang, L.D. Wang, Y.J. Shen, Micro-rocket robot with all-optic actuating and tracking in blood. Light Sci. Appl. 9, 84 (2020). https://doi.org/10.1038/s41377-020-0323-y
- L.S. Xie, X. Pang, X.H. Yan, Q.X. Dai, H.R. Lin et al., Photoacoustic imaging-trackable magnetic microswimmers for pathogenic bacterial infection treatment. ACS Nano 14(3), 2880–2893 (2020). https://doi.org/10.1021/acsnano.9b06731
- Z.G. Wu, L. Li, Y.R, Yang, P. Hu, Y. Li et al., A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Sci. Robot. 4(32), eaax0613 (2019). https://doi.org/10.1126/scirobotics.aax0613
- Q.Q. Wang, L.D. Yang, J.F. Yu, P.W.Y. Chiu, Y.P. Zheng et al., Real-time magnetic navigation of a rotating colloidal microswarm under ultrasound guidance. IEEE Trans. Biomed. Eng. 67(12), 3403–3412 (2020). https://doi.org/10.1109/TBME.2020.2987045
- J. Llacer-Wintle, A. Rivas-Dapena, X.Z. Chen, E. Pellicer, B.J. Nelson et al., Biodegradable small-scale swimmers for biomedical applications. Adv. Mater. 33(42), 2102049 (2021). https://doi.org/10.1002/adma.202102049
References
Y. Orooji, H. Sohrabi, N. Hemmat, F. Oroojalian, B. Baradaran et al., An overview on SARS-CoV-2 (COVID-19) and other human coronaviruses and their detection capability via amplification assay, chemical sensing, biosensing, immunosensing, and clinical assays. Nano-Micro Lett. 13, 18 (2021). https://doi.org/10.1007/s40820-020-00533-y
L. Alder, K. Greulich, G. Kempe, B. Vieth, Residue analysis of 500 high priority pesticides: better by GC–MS or LC–MS/MS? Mass Spectrom. Rev. 25(6), 838–865 (2006). https://doi.org/10.1002/mas.20091
A. Brakat, H. Zhu, Nanocellulose-graphene hybrids: advanced functional materials as multifunctional sensing platform. Nano-Micro Lett. 13, 94 (2021). https://doi.org/10.1007/s40820-021-00627-1
W.T. Duan, W. Wang, S. Das, V. Yadav, T.E. Mallouk et al., Synthetic nano- and micromachines in analytical chemistry: sensing, migration, capture, delivery, and separation. Annu. Rev. Anal. Chem. 8, 311–333 (2015). https://doi.org/10.1146/annurev-anchem-071114-040125
X. Fang, B.Y. Zong, S. Mao, Metal-organic framework-based sensors for environmental contaminant sensing. Nano-Micro Lett. 10, 64 (2018). https://doi.org/10.1007/s40820-018-0218-0
H. Ye, Y. Wang, D.D. Xu, X.J. Liu, S.M. Liu et al., Design and fabrication of micro/nano-motors for environmental and sensing applications. Appl. Mater. Today 23, 101007 (2021). https://doi.org/10.1016/j.apmt.2021.101007
J. Parmar, D. Vilela, K. Villa, J. Wang, S. Sánchez, Micro-and nanomotors as active environmental microcleaners and sensors. J. Am. Chem. Soc. 140(30), 9317–9331 (2018). https://doi.org/10.1021/jacs.8b05762
L.J. Cai, D.Y. Xu, Z.Y. Zhang, N. Li, Y.J. Zhao, Tailoring functional micromotors for sensing. Research 6, 0044 (2023). https://doi.org/10.34133/research.0044
L. Kong, J.G. Guan, M. Pumera, Micro-and nanorobots based sensing and biosensing. Curr. Opin. Electroche. 10, 174–182 (2018). https://doi.org/10.1016/j.coelec.2018.06.004
H.S. Lin, W.Z. Yu, K.A. Sabet, M. Bogumil, Y.C. Zhao et al., Ferrobotic swarms enable accessible and adaptable automated viral testing. Nature 611, 570–577 (2022). https://doi.org/10.1038/s41586-022-05408-3
J.J. Zhuang, J.X. Yin, S.W. Lv, B. Wang, Y. Mu, Advanced “lab-on-a-chip” to detect viruses–Current challenges and future perspectives. Biosens. Bioelectron. 163, 112291 (2020). https://doi.org/10.1016/j.bios.2020.112291
J.Y. Cheong, H. Yu, C.Y. Lee, J.U. Lee, H.J. Choi et al., Fast detection of SARS-CoV-2 RNA via the integration of plasmonic thermocycling and fluorescence detection in a portable device. Nat. Biomed. Eng. 4(12), 1159–1167 (2020). https://doi.org/10.1038/s41551-020-00654-0
Q.Q. Wang, J.C. Zhang, J.F. Yu, J. Lang, Z.Y. Lyu et al., Untethered small-scale machines for microrobotic manipulation: from individual and multiple to collective machines. ACS Nano 17(14), 13081–13109 (2023). https://doi.org/10.1021/acsnano.3c05328
B. Wang, K. Kostarelos, B.J. Nelson, L. Zhang, Trends in micro-/nanorobotics: materials development, actuation, localization, and system integration for biomedical applications. Adv. Mater. 33(4), 2002047 (2021). https://doi.org/10.1002/adma.202002047
Z.G. Wu, Y. Chen, D. Mukasa, O.S. Pak, W. Gao, Medical micro/nanorobots in complex media. Chem. Soc. Rev. 49(22), 8088–8112 (2020). https://doi.org/10.1039/D0CS00309C
S. Sánchez, L. Soler, J. Katuri, Chemically powered micro-and nanomotors. Angew. Chem. Int. Ed. 54(5), 1414–1444 (2015). https://doi.org/10.1002/anie.201406096
A.A. Solovev, Y.F. Mei, E. Bermúdez Ureña, G.S. Huang, O.G. Schmidt, Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 5(14), 1688–1692 (2009). https://doi.org/10.1002/smll.200900021
M.E. Ibele, P.E. Lammert, V.H. Crespi, A. Sen, Emergent, collective oscillations of self-mobile ps and patterned surfaces under redox conditions. ACS Nano 4(8), 4845–4851 (2010). https://doi.org/10.1021/nn101289p
W.F. Paxton, P.T. Baker, T.R. Kline, Y. Wang, T.E. Mallouk et al., Catalytically induced electrokinetics for motors and micropumps. J. Am. Chem. Soc. 128(46), 14881–14888 (2006). https://doi.org/10.1021/ja0643164
D.K. Zhou, Y.C. Li, P.T. Xu, L.Q. Ren, G.Y. Zhang et al., Visible-light driven Si-Au micromotors in water and organic solvents. Nanoscale 9(32), 11434–11438 (2017). https://doi.org/10.1039/C7NR04161F
H. Zhang, W.T. Duan, L. Liu, A. Sen, Depolymerization-powered autonomous motors using biocompatible fuel. J. Am. Chem. Soc. 135(42), 15734–15737 (2013). https://doi.org/10.1021/ja4089549
H.R. Jiang, N. Yoshinaga, M. Sano, Active motion of a Janus p by self-thermophoresis in a defocused laser beam. Phys. Rev. Lett. 105(26), 268302 (2010). https://doi.org/10.1103/PhysRevLett.105.268302
U. Bozuyuk, A. Aghakhani, Y. Alapan, M. Yunusa, P. Wrede et al., Reduced rotational flows enable the translation of surface-rolling microrobots in confined spaces. Nat. Commun. 13, 6289 (2022). https://doi.org/10.1038/s41467-022-34023-z
C.Y. Huang, Z.Y. Lai, X.Y. Wu, T.T. Xu, Multimodal locomotion and cargo transportation of magnetically actuated quadruped soft microrobots. Cyborg. Bionic. Syst. 2022, 0004 (2022). https://doi.org/10.34133/cbsystems.0004
A. Aghakhani, O. Yasa, P. Wrede, M. Sitti, Acoustically powered surface-slipping mobile microrobots. Proc. Natl. Acad. Sci. 117, 3469–3477 (2020). https://doi.org/10.1073/pnas.1920099117
L.Q. Ren, N. Nama, J.M. McNeill, F. Soto, Z.F. Yan et al., 3D steerable, acoustically powered microswimmers for single-p manipulation. Sci. Adv. 5, eaax3084 (2019). https://doi.org/10.1126/sciadv.aax3084
P. Calvo-Marzal, S. Sattayasamitsathit, S. Balasubramanian, J.R. Windmiller, C. Dao et al., Propulsion of nanowire diodes. Chem. Commun. 46(10), 1623–1624 (2010). https://doi.org/10.1039/B925568K
J. Yan, M. Han, J. Zhang, C. Xu, E. Luijten et al., Reconfiguring active ps by electrostatic imbalance. Nat. Mater. 15(10), 1095–1099 (2016). https://doi.org/10.1038/nmat4696
R.F. Dong, Y. Hu, Y.F. Wu, W. Gao, B.Y. Ren et al., Visible-light-driven BiOI-based Janus micromotor in pure water. J. Am. Chem. Soc. 139(5), 1722–1725 (2017). https://doi.org/10.1021/jacs.6b09863
L.L. Xu, F.Z. Mou, H.T. Gong, M. Luo, J.G. Guan, Light-driven micro/nanomotors: from fundamentals to applications. Chem. Soc. Rev. 46(22), 6905–6926 (2017). https://doi.org/10.1039/C7CS00516D
Q.Q. Wang, L. Zhang, External power-driven microrobotic swarm: from fundamental understanding to imaging-guided delivery. ACS Nano 15(1), 149–174 (2021). https://doi.org/10.1021/acsnano.0c07753
H.J. Zhou, C.C. Mayorga-Martinez, S. Pané, L. Zhang, M. Pumera, Magnetically driven micro and nanorobots. Chem. Rev. 121(8), 4999–5041 (2021). https://doi.org/10.1021/acs.chemrev.0c01234
H.Y. Zhang, Z.S. Li, C.Y. Gao, X.J. Fan, Y.X. Pang et al., Dual responsive biohybrid neutrobots for active target delivery. Sci. Robot 6(52), eaaz9519 (2021). https://doi.org/10.1126/scirobotics.aaz9519
C.K. Schmidt, M. Medina-Sánchez, R.J. Edmondson, O.G. Schmidt, Engineering microrobots for targeted cancer therapies from a medical perspective. Nat. Commun. 11, 5618 (2020). https://doi.org/10.1038/s41467-020-19322-7
J.H. Li, L. Dekanovsky, B. Khezri, B. Wu, H.J. Zhou et al., Biohybrid micro and nanorobots for intelligent drug delivery. Cyborg. Bionic. Syst. 2022, 9824057 (2022). https://doi.org/10.34133/2022/9824057
D.K. Zhou, Y. Gao, J.J. Yang, Y.C. Li, G.B. Shao et al., Light-ultrasound driven collective “firework” behavior of nanomotors. Adv. Sci. 5(7), 1800122 (2018). https://doi.org/10.1002/advs.201800122
B.J. Nelson, I.K. Kaliakatsos, J.J. Abbott, Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010). https://doi.org/10.1146/annurev-bioeng-010510-103409
M. Sitti, H. Ceylan, W.Q. Hu, J. Giltinan, M. Turan et al., Biomedical applications of untethered mobile milli/microrobots. Proc. IEEE 103(2), 205–224 (2015). https://doi.org/10.1109/JPROC.2014.2385105
T.L. Li, S.M. Yu, B. Sun, Y.L. Li, X.L. Wang et al., Bioinspired claw-engaged and biolubricated swimming microrobots creating active retention in blood vessels. Sci. Adv. 9(18), eadg4501 (2023). https://doi.org/10.1126/sciadv.adg4501
M. Ye, Y. Zhou, H.Y. Zhao, X.P. Wang, Magnetic microrobots with folate targeting for drug delivery. Cyborg. Bionic. Syst. 4, 0019 (2023). https://doi.org/10.34133/cbsystems.0019
S. Ghosh, A. Ghosh, Mobile nanotweezers for active colloidal manipulation. Sci. Robot. 3(14), eaaq0076 (2018). https://doi.org/10.1126/scirobotics.aaq0076
D.D. Jin, Q.L. Wang, K.F. Chan, N. Xia, H.J. Yang et al., Swarming self-adhesive microgels enabled aneurysm on-demand embolization in physiological blood flow. Sci. Adv. 9(19), 9278 (2023). https://doi.org/10.1126/sciadv.adf9278
J.J. Wang, R.F. Dong, H.Y. Wu, Y.P. Cai, B.Y. Ren, A review on artificial micro/nanomotors for cancer-targeted delivery, diagnosis, and therapy. Nano-Micro Lett. 12, 11 (2020). https://doi.org/10.1007/s40820-019-0350-5
J.X. Li, B. Esteban-Fernández de Ávila, W. Gao, L.F. Zhang, J. Wang, Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci. Robot. 2(4), eaam6431 (2017). https://doi.org/10.1126/scirobotics.aam6431
Q.Q. Wang, K.F. Chan, K. Schweizer, X.Z. Du, D.D. Jin et al., Ultrasound Doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery. Sci. Adv. 7(9), eabe5914 (2021). https://doi.org/10.1126/sciadv.abe5914
J.B. Knight, A. Vishwanath, J.P. Brody, R.H. Austin, Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys. Rev. Lett. 80(17), 3863 (1998). https://doi.org/10.1103/PhysRevLett.80.3863
L. Soler, V. Magdanz, V.M. Fomin, S. Sanchez, O.G. Schmidt, Self-propelled micromotors for cleaning polluted water. ACS Nano 7(11), 9611–9620 (2013). https://doi.org/10.1021/nn405075d
J. Orozco, B. Jurado-Sanchez, G. Wagner, W. Gao, R. Vazquez-Duhalt et al., Bubble-propelled micromotors for enhanced transport of passive tracers. Langmuir 30(18), 5082–5087 (2014). https://doi.org/10.1021/la500819r
F. Soto, E. Karshalev, F.Y. Zhang, B. Esteban Fernandez de Avila, A. Nourhani et al. (2021) Smart materials for microrobots. Chem. Rev. 122(5), 5365–5403. https://doi.org/10.1021/acs.chemrev.0c00999
F. Peng, Y.F. Tu, D.A. Wilson, Micro/nanomotors towards in vivo application: cell, tissue and biofluid. Chem. Soc. Rev. 46(17), 5289–5310 (2017). https://doi.org/10.1039/C6CS00885B
P.L. Venugopalan, B. Esteban-Fernandez de Ávila, M. Pal, A. Ghosh, J. Wang, Fantastic voyage of nanomotors into the cell. ACS Nano 14(8), 9423–9439 (2020). https://doi.org/10.1021/acsnano.0c05217
A. Molinero-Fernández, M. Moreno-Guzmán, M.A. López, A. Escarpa, Biosensing strategy for simultaneous and accurate quantitative analysis of mycotoxins in food samples using unmodified graphene micromotors. Anal. Chem. 89(20), 10850–10857 (2017). https://doi.org/10.1021/acs.analchem.7b02440
L. Kong, N. Rohaizad, M.Z.M. Nasir, J.G. Guan, M. Pumera, Micromotor-assisted human serum glucose biosensing. Anal. Chem. 91(9), 5660–5666 (2019). https://doi.org/10.1021/acs.analchem.8b05464
J. Kim, C.C. Mayorga-Martinez, J. Vyskočil, D. Ruzek, M. Pumera, Plasmonic magnetic nanorobots for SARS-CoV-2 RNA detection through electronic readout. Appl. Mater. Today 27, 101402 (2022). https://doi.org/10.1016/j.apmt.2022.101402
F. Serwane, A. Mongera, P. Rowghanian, D.A. Kealhofer, A.A. Lucio et al., In vivo quantification of spatially varying mechanical properties in developing tissues. Nat. Med. 14(2), 181–186 (2017). https://doi.org/10.1038/nmeth.4101
V.d. la Asunción-Nadal, M. Pacheco, B. Jurado-Sánchez, A. Escarpa, Chalcogenides-based tubular micromotors in fluorescent assays. Anal. Chem. 92(13), 9188–9193 (2020). https://doi.org/10.1021/acs.analchem.0c01541
Y.B. Zhang, L. Zhang, L.D. Yang, C.I. Vong, K.F. Chan et al., Real-time tracking of fluorescent magnetic spore–based microrobots for remote detection of C. diff toxins. Sci. Adv. 5(1), eaau9650 (2019). https://doi.org/10.1126/sciadv.aau9650
M. Liu, Y.Y. Sun, T.P. Wang, Z.R. Ye, H. Zhang et al., A biodegradable, all-polymer micromotor for gas sensing applications. J. Mater. Chem. C 4(25), 5945–5952 (2016). https://doi.org/10.1039/C6TC00971A
B. Esteban-Fernández de Ávila, A. Martín, F. Soto, M.A. Lopez-Ramirez, S. Campuzano et al., Single cell real-time miRNAs sensing based on nanomotors. ACS Nano 9(7), 6756–6764 (2015). https://doi.org/10.1021/acsnano.5b02807
T. Patino, A. Porchetta, A. Jannasch, A. Lladó, T. Stumpp et al., Self-sensing enzyme-powered micromotors equipped with pH-responsive DNA nanoswitches. Nano Lett. 19(6), 3440–3447 (2019). https://doi.org/10.1021/acs.nanolett.8b04794
B. Esteban-Fernandez de Ávila, M.A. Lopez-Ramirez, D.F. Báez, A. Jodra, V.V. Singh et al., Aptamer-modified graphene-based catalytic micromotors: off–on fluorescent detection of ricin. ACS Sens. 1(3), 217–221 (2016). https://doi.org/10.1021/acssensors.5b00300
V.V. Singh, K. Kaufmann, J. Orozco, J. Li, M. Galarnyk et al., Micromotor-based on–off fluorescence detection of sarin and soman simulants. Chem. Commun. 51(56), 11190–11193 (2015). https://doi.org/10.1039/C5CC04120A
B. Jurado-Sánchez, M. Pacheco, J. Rojo, A. Escarpa, Magnetocatalytic graphene quantum dots Janus micromotors for bacterial endotoxin detection. Angew. Chem. Int. Ed. 56(24), 6957–6961 (2017). https://doi.org/10.1002/anie.201701396
Á. Molinero-Fernández, A. Jodra, M. Moreno-Guzmán, M.Á. López, A. Escarpa, Magnetic reduced graphene oxide/nickel/platinum nanops micromotors for mycotoxin analysis. Chem. Eur. J. 24(28), 7172–7176 (2018). https://doi.org/10.1002/chem.201706095
M. Pacheco, B. Jurado-Sánchez, A. Escarpa, Sensitive monitoring of enterobacterial contamination of food using self-propelled Janus microsensors. Anal. Chem. 90(4), 2912–2917 (2018). https://doi.org/10.1021/acs.analchem.7b05209
O. Ergeneman, G. Dogangil, M.P. Kummer, J.J. Abbott, M.K. Nazeeruddin et al., A magnetically controlled wireless optical oxygen sensor for intraocular measurements. IEEE Sens. J. 8(1), 29–37 (2008). https://doi.org/10.1109/JSEN.2007.912552
O. Ergeneman, G. Chatzipirpiridis, J. Pokki, M. Marin-Suárez, G.A. Sotiriou et al., In vitro oxygen sensing using intraocular microrobots. IEEE Trans. Biomed. Eng. 59(11), 3104–3109 (2012). https://doi.org/10.1109/TBME.2012.2216264
H.F. Dong, J.P. Lei, L. Ding, Y.Q. Wen, H.X. Ju et al., MicroRNA: function, detection, and bioanalysis. Chem. Rev. 113(8), 6207–6233 (2013). https://doi.org/10.1021/cr300362f
S. Shi, J. Chen, X.W. Wang, M.S. Xiao, A.R. Chandrasekaran et al., Biointerface engineering with nucleic acid materials for biosensing applications. Adv. Funct. Mater. 32(37), 2201069 (2022). https://doi.org/10.1002/adfm.202201069
T.H. Kim, D. Lee, J.W. Choi, Live cell biosensing platforms using graphene-based hybrid nanomaterials. Biosens. Bioelectron. 94, 485–499 (2017). https://doi.org/10.1016/j.bios.2017.03.032
N. Rohaizad, C.C. Mayorga-Martinez, M. Fojt, N.M. Latiff, M. Pumera, Two-dimensional materials in biomedical, biosensing and sensing applications. Chem. Soc. Rev. 50(1), 619–657 (2021). https://doi.org/10.1039/D0CS00150C
A. Bolotsky, D. Butler, C.Y. Dong, K. Gerace, N.R. Glavin et al., Two-dimensional materials in biosensing and healthcare: from in vitro diagnostics to optogenetics and beyond. ACS Nano 13(9), 9781–9810 (2019). https://doi.org/10.1021/acsnano.9b03632
M. Sentic, S. Arbault, B. Goudeau, D. Manojlovic, A. Kuhn, L. Bouffier, N. Sojic, Electrochemiluminescent swimmers for dynamic enzymatic sensing. Chem. Commun. 50(71), 10202–10205 (2014). https://doi.org/10.1039/C4CC04105D
A. Molinero-Fernandez, M. Moreno-Guzmán, L. Arruza, M.A. López, A. Escarpa, Polymer-based micromotor fluorescence immunoassay for on-the move sensitive procalcitonin determination in very low birth weight infants’ plasma. ACS Sens. 5(5), 1336–1344 (2020). https://doi.org/10.1021/acssensors.9b02515
K. Wang, W.J. Wang, S.H. Pan, Y.M. Fu, B. Dong et al., Fluorescent self-propelled covalent organic framework as a microsensor for nitro explosive detection. Appl. Mater. Today 19, 100550 (2020). https://doi.org/10.1016/j.apmt.2019.100550
D. Kagan, P. Calvo-Marzal, S. Balasubramanian, S. Sattayasamitsathit, K.M. Manesh et al., Chemical sensing based on catalytic nanomotors: motion-based detection of trace silver. J. Am. Chem. Soc. 131(34), 12082–12083 (2009). https://doi.org/10.1021/ja905142q
B. Ezhilan, W. Gao, A. Pei, I. Rozen, R.F. Dong et al., Motion-based threat detection using microrods: experiments and numerical simulations. Nanoscale 7(17), 7833–7840 (2015). https://doi.org/10.1039/C4NR06208F
J. Wu, S. Balasubramanian, D. Kagan, K.M. Manesh, S. Campuzano et al., Motion-based DNA detection using catalytic nanomotors. Nat. Commun. 1, 36 (2010). https://doi.org/10.1038/ncomms1035
K. Van Nguyen, S.D. Minteer, DNA-functionalized pt nanops as catalysts for chemically powered micromotors: toward signal-on motion-based DNA biosensor. Chem. Commun. 51(23), 4782–4784 (2015). https://doi.org/10.1039/C4CC10250A
[M.S. Draz, N.K. Lakshminaraasimulu, S. Krishnakumar, D. Battalapalli, A. Vasan et al., Motion-based immunological detection of Zika virus using Pt nanomotors and a cellphone. ACS Nano 12(6), 5709–5718 (2018). https://doi.org/10.1021/acsnano.8b01515
Y.J. Su, Y. Ge, L.M. Liu, L.N. Zhang, M. Liu et al., Motion-based pH sensing based on the cartridge-case-like micromotor. ACS Appl. Mater. Interfaces 8(6), 4250–4257 (2016). https://doi.org/10.1021/acsami.6b00012
M.T. Li, H. Zhang, M. Liu, B. Dong, Motion-based glucose sensing based on a fish-like enzymeless motor. J. Mater. Chem. C 5(18), 4400–4407 (2017). https://doi.org/10.1039/C7TC01122A
J. Orozco, Victor García-Gradilla, M. D’Agostino, W. Gao, A. Cortés et al., Artificial enzyme-powered microfish for water-quality testing. ACS Nano 7(1), 818–824 (2013). https://doi.org/10.1021/nn305372n
V.V. Singh, K. Kaufmann, B.E.F. de Ávila, M. Uygun, J. Wang, Nanomotors responsive to nerve-agent vapor plumes. Chem. Commun. 52(16), 3360–3363 (2016). https://doi.org/10.1039/C5CC10670B
J.G.S. Moo, H. Wang, G.J. Zhao, M. Pumera, Biomimetic artificial inorganic enzyme-free self-propelled microfish robot for selective detection of Pb2+ in water. Chem. Eur. J. 20(15), 4292–4296 (2014). https://doi.org/10.1002/chem.201304804
T. Maric, C.C. Mayorga-Martinez, M.Z.M. Nasir, M. Pumera, Platinum halloysite nanoclay nanojets as sensitive and selective mobile nanosensors for mercury detection. Adv. Mater. Technol. 4(2), 1800502 (2019). https://doi.org/10.1002/admt.201800502
Y.Z. Xie, S.Z. Fu, J. Wu, J.P. Lei, H.X. Ju, Motor-based microprobe powered by bio-assembled catalase for motion detection of DNA. Biosens. Bioelectron. 87, 31–37 (2017). https://doi.org/10.1016/j.bios.2016.07.104
S.Z. Fu, X.Q. Zhang, Y.Z. Xie, J. Wu, H.X. Ju, An efficient enzyme-powered micromotor device fabricated by cyclic alternate hybridization assembly for DNA detection. Nanoscale 9(26), 9026–9033 (2017). https://doi.org/10.1039/C7NR01168G
X.Q. Zhang, C.T. Chen, J. Wu, H.X. Ju, Bubble-propelled jellyfish-like micromotors for DNA sensing. ACS Appl. Mater. Interfaces 11(14), 13581–13588 (2019). https://doi.org/10.1021/acsami.9b00605
M.S. Draz, K.M. Kochehbyoki, A. Vasan, D. Battalapalli, A. Sreeram et al., DNA engineered micromotors powered by metal nanops for motion based cellphone diagnostics. Nat. Commun. 9, 4282 (2018). https://doi.org/10.1038/s41467-018-06727-8
L. Wang, T.L. Li, L.Q. Li, J.Y. Wang, W.P. Song et al., Microrocket based viscometer. Ecs J. Solid State Sci. 4(10), S3020 (2015). https://doi.org/10.1149/2.0051510jss
L. Shao, Z.J. Yang, D. Andrén, P. Johansson, M. Käll, Gold nanorod rotary motors driven by resonant light scattering. ACS Nano 9(12), 12542–12551 (2015). https://doi.org/10.1021/acsnano.5b06311
S. Yuan, Q. Zheng, B.J. Yao, M.C. Wen, W.N. Zhang et al., Bio-compatible miniature viscosity sensor based on optical tweezers. Biomed. Opt. Express 13(3), 1152–1160 (2022). https://doi.org/10.1364/BOE.452615
A. Ghosh, D. Dasgupta, M. Pal, K.I. Morozov, A.M. Leshansky, A. Ghosh, Helical nanomachines as mobile viscometers. Adv. Funct. Mater. 28(25), 1705687 (2018). https://doi.org/10.1002/adfm.201705687
A. Barbot, D. Decanini, G. Hwang, Local flow sensing on helical microrobots for semi-automatic motion adaptation. Int. J. Rob. Res. 39(4), 476–489 (2020). https://doi.org/10.1177/0278364919894374
H. Chen, Y.B. Wang, Y.Z. Liu, Q. Zou, J.F. Yu, Sensing of fluidic features using colloidal microswarms. ACS Nano 16(10), 16281–16291 (2022). https://doi.org/10.1021/acsnano.2c05281
B. Jurado-Sánchez, A. Escarpa, J. Wang, Lighting up micromotors with quantum dots for smart chemical sensing. Chem. Commun. 51(74), 14088–14091 (2015). https://doi.org/10.1039/C5CC04726A
K. Villa, C.L. Manzanares Palenzuela, Z. Sofer, S. Matějková, M. Pumera, Metal-free visible-light photoactivated C3N4 bubble-propelled tubular micromotors with inherent fluorescence and on/off capabilities. ACS Nano 12(12), 12482–12491 (2018). https://doi.org/10.1021/acsnano.8b06914
Y. Yuan, C.Y. Gao, D.L. Wang, C. Zhou, B.H. Zhu et al., Janus-micromotor-based on–off luminescence sensor for active TNT detection. Beilstein J. Nanotech. 10(1), 1324–1331 (2019). https://doi.org/10.3762/bjnano.10.131
Z.H. Wang, G.C. Fang, Z.H. Gao, Y.K. Liao, C.Y. Gong et al., Autonomous microlasers for profiling extracellular vesicles from cancer spheroids. Nano Lett. 23(7), 2502–2510 (2023). https://doi.org/10.1021/acs.nanolett.2c04123
S. Campuzano, D. Kagan, J. Orozco, J. Wang, Motion-driven sensing and biosensing using electrochemically propelled nanomotors. Analyst 136(22), 4621–4630 (2011). https://doi.org/10.1039/C1AN15599G
L.M. Liu, Y.G. Dong, Y.Y. Sun, M. Liu, Y.J. Su et al., Motion-based pH sensing using spindle-like micromotors. Nano Res. 9, 1310–1318 (2016). https://doi.org/10.1007/s12274-016-1026-9
S. Solé, A. Merkoçi, S. Alegret, Determination of toxic substances based on enzyme inhibition. part I. electrochemical biosensors for the determination of pesticides using batch procedures. Crit. Rev. Anal. Chem. 33(2), 89–126 (2003). https://doi.org/10.1080/727072334
S.H. Yang, Q.Q. Wang, D.D. Jin, X.Z. Du, L. Zhang, Probing fast transformation of magnetic colloidal microswarms in complex fluids. ACS Nano 16(11), 19025–19037 (2022). https://doi.org/10.1021/acsnano.2c07948
M.M. Sun, B. Hao, S.H. Yang, X. Wang, C. Majidi et al., Exploiting ferrofluidic wetting for miniature soft machines. Nat. Commun. 13, 7919 (2022). https://doi.org/10.1038/s41467-022-35646-y
J.F. Yu, L.D. Yang, X.Z. Du, H. Chen, T. Xu et al., Adaptive pattern and motion control of magnetic microrobotic swarms. IEEE Trans. Robot. 38(3), 1552–1570 (2021). https://doi.org/10.1109/TRO.2021.3130432
W.M. Jing, D.J. Cappelleri, A magnetic microrobot with in situ force sensing capabilities. Robotics 3(2), 106–119 (2014). https://doi.org/10.3390/robotics3020106
W.M. Jing, D.J. Cappelleri, Micro-force sensing mobile microrobots. Proc. SPIE 9494, 949405 (2015). https://doi.org/10.1117/12.2183259
M. You, C.R. Chen, L.L. Xu, F.Z. Mou, J.G. Guan, Intelligent micro/nanomotors with taxis. Accounts. Chem. Res. 51(12), 3006–3014 (2018). https://doi.org/10.1021/acs.accounts.8b00291
F.T. Ji, Y.L. Wu, M. Pumera, L. Zhang, Collective behaviors of active matter learning from natural taxes across scales. Adv. Mater. 35(8), 2203959 (2023). https://doi.org/10.1002/adma.202203959
M.N. Popescu, W.E. Uspal, C. Bechinger, P. Fischer, Chemotaxis of active Janus nanops. Nano Lett. 18(9), 5345–5349 (2018). https://doi.org/10.1021/acs.nanolett.8b02572
J.X. Li, W.J. Liu, J.Y. Wang, I. Rozen, S. He et al., Nanoconfined atomic layer deposition of TiO2/Pt nanotubes: toward ultrasmall highly efficient catalytic nanorockets. Adv. Funct. Mater. 27(24), 1700598 (2017). https://doi.org/10.1002/adfm.201700598
Y.Y. Hong, N.M. Blackman, N.D. Kopp, A. Sen, D. Velegol, Chemotaxis of nonbiological colloidal rods. Phys. Rev. Lett. 99(17), 178103 (2007). https://doi.org/10.1103/PhysRevLett.99.178103
K.K. Dey, S. Bhandari, D. Bandyopadhyay, S. Basu, A. Chattopadhyay, The pH taxis of an intelligent catalytic microbot. Small 9(11), 1916–1920 (2013). https://doi.org/10.1002/smll.201202312
F.Z. Mou, Q. Xie, J.F. Liu, S.P. Che, L. Bahmane et al., ZnO-based micromotors fueled by CO2: the first example of self-reorientation-induced biomimetic chemotaxis. Natl. Sci. Rev. 8(11), nqab066 (2021). https://doi.org/10.1093/nsr/nwab066
R.D. Vale, The molecular motor toolbox for intracellular transport. Cell 112(4), 467–480 (2003). https://doi.org/10.1016/s0092-8674(03)00111-9
G.D. Bachand, H. Hess, B. Ratna, P. Satir, V. Vogel, “Smart dust” biosensors powered by biomolecular motors. Lab Chip 9(12), 1661–1666 (2009). https://doi.org/10.1039/B821055A
C.T. Lin, M.T. Kao, K. Kurabayashi, E. Meyhofer, Self-contained, biomolecular motor-driven protein sorting and concentrating in an ultrasensitive microfluidic chip. Nano Lett. 8(4), 1041–1046 (2008). https://doi.org/10.1021/nl072742x
T. Fischer, A. Agarwal, H. Hess, A smart dust biosensor powered by kinesin motors. Nat. Nanotechnol. 4(3), 162–166 (2009). https://doi.org/10.1038/nnano.2008.393
C. Schmidt, V. Vogel, Molecular shuttles powered by motor proteins: loading and unloading stations for nanocargo integrated into one device. Lab Chip 10(17), 2195–2198 (2010). https://doi.org/10.1039/C005241H
S. Hiyama, T. Inoue, T. Shima, Y. Moritani, T. Suda et al., Autonomous loading, transport, and unloading of specified cargoes by using DNA hybridization and biological motor-based motility. Small 4(4), 410–415 (2008). https://doi.org/10.1002/smll.200700528
D. Kagan, S. Campuzano, S. Balasubramanian, F. Kuralay, G.U. Flechsig et al., Functionalized micromachines for selective and rapid isolation of nucleic acid targets from complex samples. Nano Lett. 11(5), 2083–2087 (2011). https://doi.org/10.1021/nl2005687
S. Balasubramanian, D. Kagan, C.M. Jack Hu, S. Campuzano, M.J. Lobo-Castañon et al., Micromachine-enabled capture and isolation of cancer cells in complex media. Angew. Chem. Int. Ed. 50(18), 4161–4164 (2011). https://doi.org/10.1002/anie.201100115
C.C. Mayorga-Martinez, J. Vyskočil, F. Novotný, P. Bednar, D. Ruzek et al., Collective behavior of magnetic microrobots through immuno-sandwich assay: On-the-fly COVID-19 sensing. Appl. Mater. Today 26, 101337 (2022). https://doi.org/10.1016/j.apmt.2021.101337
V. Garcia-Gradilla, J. Orozco, S. Sattayasamitsathit, F. Soto, F. Kuralay et al., Functionalized ultrasound-propelled magnetically guided nanomotors: toward practical biomedical applications. ACS Nano 7(10), 9232–9240 (2013). https://doi.org/10.1021/nn403851v
M. Urso, M. Ussia, F. Novotný, M. Pumera, Trapping and detecting nanoplastics by MXene-derived oxide microrobots. Nat. Commun. 13, 3573 (2022). https://doi.org/10.1038/s41467-022-31161-2
J. Wang, Can man-made nanomachines compete with nature biomotors? ACS Nano 3(1), 4–9 (2009). https://doi.org/10.1021/nn800829k
M. Zarei, M. Zarei, Self-propelled micro/nanomotors for sensing and environmental remediation. Small 14(30), 1800912 (2018). https://doi.org/10.1002/smll.201800912
J. Simmchen, A. Baeza, D. Ruiz, M.J. Esplandiu, M. Vallet- Regí, Asymmetric hybrid silica nanomotors for capture and cargo transport: towards a novel motion-based DNA sensor. Small 8(13), 2053–2059 (2012). https://doi.org/10.1002/smll.201101593
J. Orozco, S. Campuzano, D. Kagan, M. Zhou, W. Gao et al., Dynamic isolation and unloading of target proteins by aptamer-modified microtransporters. Anal. Chem. 83(20), 7962–7969 (2011). https://doi.org/10.1021/ac202029k
J. Orozco, A. Cortés, G. Cheng, S. Sattayasamitsathit, W. Gao et al., Molecularly imprinted polymer-based catalytic micromotors for selective protein transport. J. Am. Chem. Soc. 135(14), 5336–5339 (2013). https://doi.org/10.1021/ja4018545
E. Ma, K. Wang, H. Wang, An immunoassay based on nanomotor-assisted electrochemical response for the detection of immunoglobulin. Microchim. Acta 189(1), 47 (2022). https://doi.org/10.1007/s00604-021-05158-5
C.C. Mayorga-Martinez, M. Pumera, Self-propelled tags for protein detection. Adv. Funct. Mater. 30(6), 1906449 (2020). https://doi.org/10.1002/adfm.201906449
Á. Molinero- Fernández, L. Arruza, M.Á. López, A. Escarpa, On-the-fly rapid immunoassay for neonatal sepsis diagnosis: C-reactive protein accurate determination using magnetic graphene-based micromotors. Biosens. Bioelectron. 158, 112156 (2020). https://doi.org/10.1016/j.bios.2020.112156
C.Y. Liang, C. Zhan, F.Y. Zeng, D.D. Xu, Y. Wang et al., Bilayer tubular micromotors for simultaneous environmental monitoring and remediation. ACS Appl. Mater. Interfaces 10(41), 35099–35107 (2018). https://doi.org/10.1021/acsami.8b10921
V. Zieglschmid, C. Hollmann, O. Böcher, Detection of disseminated tumor cells in peripheral blood. Crit. Rev. Cl. Lab. Sci. 42(2), 155–196 (2005). https://doi.org/10.1080/10408360590913696
F. Kuralay, S. Sattayasamitsathit, W. Gao, A. Uygun, A. Katzenberg et al., Self-propelled carbohydrate-sensitive microtransporters with built-in boronic acid recognition for isolating sugars and cells. J. Am. Chem. Soc. 134(37), 15217–15220 (2012). https://doi.org/10.1021/ja306080t
H. Fang, G. Kaur, B.H. Wang, Progress in boronic acid-based fluorescent glucose sensors. J. Fluoresc. 14, 481–489 (2004). https://doi.org/10.1023/B:JOFL.0000039336.51399.3b
S. Park, H. Boo, T.D. Chung, Electrochemical non-enzymatic glucose sensors. Anal. Chim. Acta 556(1), 46–57 (2006). https://doi.org/10.1016/j.aca.2005.05.080
S. Campuzano, J. Orozco, D. Kagan, M. Guix, W. Gao et al., Bacterial isolation by lectin-modified microengines. Nano Lett. 12(1), 396–401 (2012). https://doi.org/10.1021/nl203717q
O.A. Loaiza, P.J. Lamas-Ardisana, E. Jubete, E. Ochoteco, I. Loinaz et al., Nanostructured disposable impedimetric sensors as tools for specific biomolecular interactions: sensitive recognition of concanavalin A. Anal. Chem. 83(8), 2987–2995 (2011). https://doi.org/10.1021/ac103108m
Y. Gogotsi, B. Anasori, The rise of MXenes. ACS Nano 13(8), 8491–8494 (2019). https://doi.org/10.1021/acsnano.9b06394
K. Villa, F. Novotny, J. Zelenka, M.P. Browne, T. Ruml et al., Visible-light-driven single-component BiVO4 micromotors with the autonomous ability for capturing microorganisms. ACS Nano 13(7), 8135–8145 (2019). https://doi.org/10.1021/acsnano.9b03184
S. Debata, N.A. Kherani, S.K. Panda, D.P. Singh, Light-driven microrobots: capture and transport of bacteria and microps in a fluid medium. J. Mater. Chem. B 10(40), 8235–8243 (2022). https://doi.org/10.1039/D2TB01367C
Á. Molinero-Fernández, M.Á. López, A. Escarpa, Electrochemical microfluidic micromotors-based immunoassay for C-reactive protein determination in preterm neonatal samples with sepsis suspicion. Anal. Chem. 92(7), 5048–5054 (2020). https://doi.org/10.1021/acs.analchem.9b05384
E. Morales-Narváez, M. Guix, M. Medina-Sánchez, C.C. Mayorga-Martinez, A. Merkoçi, Micromotor enhanced microarray technology for protein detection. Small 10(13), 2542–2548 (2014). https://doi.org/10.1002/smll.201303068
Q.R. Xiong, A.E. Lim, Y. Lim, Y.C. Lam, H.W. Duan, Dynamic magnetic nanomixers for improved microarray assays by eliminating diffusion limitation. Adv. Healthc. Mater. 8(6), 1801022 (2019). https://doi.org/10.1002/adhm.201801022
Y. Zhang, D.A. Gregory, Y. Zhang, P.J. Smith, S.J. Ebbens et al., Reactive inkjet printing of functional silk stirrers for enhanced mixing and sensing. Small 15(1), 1804213 (2019). https://doi.org/10.1002/smll.201804213
S. Cinti, G. Valdés-Ramı́rez, W. Gao, J.X. Li, G. Palleschi et al., Microengine-assisted electrochemical measurements at printable sensor strips. Chem. Commun. 51(41), 8668–8671 (2015). https://doi.org/10.1039/C5CC02222C
D. Rojas, B. Jurado-Sánchez, A. Escarpa, “Shoot and sense” Janus micromotors-based strategy for the simultaneous degradation and detection of persistent organic pollutants in food and biological samples. Anal. Chem. 88(7), 4153–4160 (2016). https://doi.org/10.1021/acs.analchem.6b00574
C. Lu, X.J. Liu, Y.F. Li, F. Yu, L.H. Tang et al., Multifunctional Janus hematite–silica nanops: mimicking peroxidase-like activity and sensitive colorimetric detection of glucose. ACS Appl. Mater. Interfaces 7(28), 15395–15402 (2015). https://doi.org/10.1021/acsami.5b03423
M. Moreno-Guzman, A. Jodra, M.A. López, A. Escarpa, Self-propelled enzyme-based motors for smart mobile electrochemical and optical biosensing. Anal. Chem. 87(24), 12380–12386 (2015). https://doi.org/10.1021/acs.analchem.5b03928
B.E.F. de Ávila, M. Zhao, S. Campuzano, F. Ricci, J.M. Pingarrón et al., Rapid micromotor-based naked-eye immunoassay. Talanta 167, 651–657 (2017). https://doi.org/10.1016/j.talanta.2017.02.068
R. María-Hormigos, B. Jurado- Sánchez, A. Escarpa, Self-propelled micromotors for naked-eye detection of phenylenediamines isomers. Anal. Chem. 90(16), 9830–9837 (2018). https://doi.org/10.1021/acs.analchem.8b01860
M. Palacios-Corella, D. Rojas, M. Pumera, Photocatalytic Pt/Ag3VO4 micro-motors with inherent sensing capabilities for corroding environments. J. Colloid. Interf. Sci. 631, 125–134 (2023). https://doi.org/10.1016/j.jcis.2022.10.169
B. Guven, N. Basaran-Akgul, E. Temur, U. Tamer, İH. Boyacı, SERS-based sandwich immunoassay using antibody coated magnetic nanops for Escherichia coli enumeration. Analyst 136(4), 740–748 (2011). https://doi.org/10.1039/C0AN00473A
D. Han, Y.F. Fang, D.Y. Du, G.S. Huang, T. Qiu et al., Automatic molecular collection and detection by using fuel-powered microengines. Nanoscale 8(17), 9141–9145 (2016). https://doi.org/10.1039/C6NR00117C
F. Novotnỳ, J. Plutnar, M. Pumera, Plasmonic self-propelled nanomotors for explosives detection via solution-based surface enhanced Raman scattering. Adv. Funct. Mater. 29(33), 1903041 (2019). https://doi.org/10.1002/adfm.201903041
Y. Wang, C. Zhou, W. Wang, D.D. Xu, F.Y. Zeng et al., Photocatalytically powered matchlike nanomotor for light-guided active SERS sensing. Angew. Chem. Int. Ed. 130(40), 13294–13297 (2018). https://doi.org/10.1002/anie.201807033
T.L. Xu, Y. Luo, C.H. Liu, X.J. Zhang, S.T. Wang, Integrated ultrasonic aggregation-induced enrichment with Raman enhancement for ultrasensitive and rapid biosensing. Anal. Chem. 92(11), 7816–7821 (2020). https://doi.org/10.1021/acs.analchem.0c01011
X.C. Fan, Q. Hao, M.Z. Li, X.Y. Zhang, X.Z. Yang et al., Hotspots on the move: active molecular enrichment by hierarchically structured micromotors for ultrasensitive SERS sensing. ACS Appl. Mater. Interfaces 12(25), 28783–28791 (2020). https://doi.org/10.1021/acsami.0c05371
Y. Wang, Y.H. Liu, Y. Li, D.D. Xu, X. Pan et al., Magnetic nanomotor-based maneuverable SERS probe. Research 2020, 7962024 (2020). https://doi.org/10.34133/2020/7962024
K. Xiong, J.W. Lin, Q. Chen, T.Y. Gao, L.L. Xu et al., An axis-asymmetric self-driven micromotor that can perform precession multiplying “on-the-fly” mass transfer. Matter 6(3), 907–924 (2023). https://doi.org/10.1016/j.matt.2023.01.005
E.F. Petricoin III., J.L. Hackett, L.J. Lesko, R.K. Puri, S.I. Gutman et al., Medical applications of microarray technologies: a regulatory science perspective. Nat. Genet. 32(Suppl 4), 474–479 (2002). https://doi.org/10.1038/ng1029
T.J. Albert, M.N. Molla, D.M. Muzny, L. Nazareth, D. Wheeler et al., Direct selection of human genomic loci by microarray hybridization. Nat. Med. 4(11), 903–905 (2007). https://doi.org/10.1038/nmeth1111
F.Z. Mou, C.R. Chen, Q. Zhong, Y.X. Yin, H.R. Ma et al., Autonomous motion and temperature-controlled drug delivery of Mg/Pt-poly (N-isopropylacrylamide) Janus micromotors driven by simulated body fluid and blood plasma. ACS Appl. Mater. Interfaces 6(12), 9897–9903 (2014). https://doi.org/10.1021/am502729y
S.M. Nie, S.R. Emory, Probing single molecules and single nanops by surface-enhanced Raman scattering. Science 275(5303), 1102–1106 (1997). https://doi.org/10.1126/science.275.5303.1102
S.Y. Ding, J. Yi, J.F. Li, B. Ren, D.Y. Wu et al., Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 1, 16021 (2016). https://doi.org/10.1038/natrevmats.2016.21
J.F. Li, Y.F. Huang, Y. Ding, Z.L. Yang, S.B. Li et al., Shell-isolated nanop-enhanced Raman spectroscopy. Nature 464(7287), 392–395 (2010). https://doi.org/10.1038/nature08907
E. Hutter, J.H. Fendler, Exploitation of localized surface plasmon resonance. Adv. Mater. 16(19), 1685–1706 (2004). https://doi.org/10.1002/adma.200400271
F. Risso, Agitation, mixing, and transfers induced by bubbles. Annu. Rev. Fluid Mech. 50, 25–48 (2018). https://doi.org/10.1146/annurev-fluid-122316-045003
Q.Q. Wang, D.D. Jin, B. Wang, N. Xia, H. Ko et al., Reconfigurable magnetic microswarm for accelerating tPA-mediated thrombolysis under ultrasound imaging. IEEE/ASME Trans. Mechatron. 27(4), 2267–2277 (2022). https://doi.org/10.1109/TMECH.2021.3103994
W.W. Gao, B.E.F. de Ávila, L.F. Zhang, J. Wang, Targeting and isolation of cancer cells using micro/nanomotors. Adv. Drug. Deliver. Rev. 125, 94–101 (2018). https://doi.org/10.1016/j.addr.2017.09.002
M. Pal, N. Somalwar, A. Singh, R. Bhat, S.M. Eswarappa et al., Maneuverability of magnetic nanomotors inside living cells. Adv. Mater. 30(22), 1800429 (2018). https://doi.org/10.1002/adma.201800429
L.L. Li, Z. Yu, J.F. Liu, M.Y. Yang, G.P. Shi et al., Swarming responsive photonic nanorobots for motile-targeting microen-vironmental mapping and mapping-guided photothermal treatment. Nano-Micro Lett. 15(1), 141 (2023). https://doi.org/10.1007/s40820-023-01095-5
Z. Yu, L.L. Li, F.Z. Mou, S.M. Yu, D. Zhang et al., Swarming magnetic photonic-crystal microrobots with on-the-fly visual pH detection and self-regulated drug delivery. InfoMat 5(10), e12464 (2023). https://doi.org/10.1002/inf2.12464
Z.M. Li, X.Y. Yi, J.K. Yang, L. Bian, Z.H. Yu et al., Designing artificial vibration modes of piezoelectric devices using programmable, 3D ordered structure with piezoceramic strain units. Adv. Mater. 34(2), 2107236 (2022). https://doi.org/10.1002/adma.202107236
K.S. Yuan, C. Cuntı́n-Abal, B. Jurado-Sánchez, A. Escarpa, Smartphone-based Janus micromotors strategy for motion-based detection of Glutathione. Anal. Chem. 93(49), 16385–16392 (2021). https://doi.org/10.1021/acs.analchem.1c02947
Y.F. Zhang, F. Yang, W. Wei, Y.Y. Wang, S.S. Yang et al., Self-propelled Janus mesoporous micromotor for enhanced microRNA capture and amplified detection in complex biological samples. ACS Nano 16(4), 5587–5596 (2022). https://doi.org/10.1021/acsnano.1c10437
L.J. Cai, D.Y. Xu, H.X. Chen, L. Wang, Y.J. Zhao, Designing bioactive micro-/nanomotors for engineered regeneration. Eng. Regen. 2, 109–115 (2021). https://doi.org/10.1016/j.engreg.2021.09.003
X. Wang, T.C. Wang, X. Chen, J.H. Law, G.Q. Shan et al., Microrobotic swarms for intracellular measurement with enhanced signal-to-noise ratio. ACS Nano 16(7), 10824–10839 (2022). https://doi.org/10.1021/acsnano.2c02938
Y.B. Wang, H. Chen, J.H. Law, X.Z. Du, J.F. Yu, Ultrafast miniature robotic swimmers with upstream motility. Cyborg. Bionic. Syst. 4, 0015 (2023). https://doi.org/10.34133/cbsystems.0015
Q.Q. Wang, N. Xiang, J. Lang, B. Wang, D.D. Jin et al., Reconfigurable liquid-bodied miniature machines: Magnetic control and microrobotic applications. Adv. Intell. Syst. (2023). https://doi.org/10.1002/aisy.202300108
Z.Y. Ren, R.J. Zhang, R.H. Soon, Z.M. Liu, W.Q. Hu et al., Soft-bodied adaptive multimodal locomotion strategies in fluid-filled confined spaces. Sci. Adv. 7(27), eabh2022 (2021). https://doi.org/10.1126/sciadv.abh2022
J.C. Zhang, Z.Y. Ren, W.Q Hu, R.H. Soon, I.C. Yasa et al., Voxelated three-dimensional miniature magnetic soft machines via multimaterial heterogeneous assembly. Sci. Robot. 6(53) (2021). https://doi.org/10.1126/scirobotics.abf0112
W.Z. Yu, H.S. Lin, Y.L. Wang, X. He, N. Chen et al., A ferrobotic system for automated microfluidic logistics. Sci. Robot. 5(39), eaba4411 (2020). https://doi.org/10.1126/scirobotics.aba4411
M. García, J. Orozco, M. Guix, W. Gao, S. Sattayasamitsathit et al., Micromotor-based lab-on-chip immunoassays. Nanoscale 5(4), 1325–1331 (2013). https://doi.org/10.1039/C2NR32400H
L. Restrepo-Pérez, L. Soler, C. Martínez-Cisneros, S. S´anchez, O.G. Schmidt, Biofunctionalized self-propelled micromotors as an alternative on-chip concen-trating system. Lab Chip 14(16), 2914–2917 (2014). https://doi.org/10.1039/C4LC00439F
M.Y. Yang, X. Guo, F.Z. Mou, J.G. Guan, Lighting up micro-/nanorobots with fluorescence. Chem. Rev. 123(7), 3944–3975 (2022). https://doi.org/10.1021/acs.chemrev.2c00062
Q.Q. Wang, X.Z. Du, D.D. Jin, L. Zhang, Real-time ultrasound doppler tracking and autonomous navigation of a miniature helical robot for accelerating thrombolysis in dynamic blood flow. ACS Nano 16(1), 604–616 (2022). https://doi.org/10.1021/acsnano.1c07830
S. Jeon, S. Kim, S. Ha, S. Lee, E. Kim et al., Magnetically actuated microrobots as a platform for stem cell transplantation. Sci. Robot. 4(30), aav4317 (2019). https://doi.org/10.1126/scirobotics.aav4317
D.F. Li, C. Liu, Y.Y. Yang, L.D. Wang, Y.J. Shen, Micro-rocket robot with all-optic actuating and tracking in blood. Light Sci. Appl. 9, 84 (2020). https://doi.org/10.1038/s41377-020-0323-y
L.S. Xie, X. Pang, X.H. Yan, Q.X. Dai, H.R. Lin et al., Photoacoustic imaging-trackable magnetic microswimmers for pathogenic bacterial infection treatment. ACS Nano 14(3), 2880–2893 (2020). https://doi.org/10.1021/acsnano.9b06731
Z.G. Wu, L. Li, Y.R, Yang, P. Hu, Y. Li et al., A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Sci. Robot. 4(32), eaax0613 (2019). https://doi.org/10.1126/scirobotics.aax0613
Q.Q. Wang, L.D. Yang, J.F. Yu, P.W.Y. Chiu, Y.P. Zheng et al., Real-time magnetic navigation of a rotating colloidal microswarm under ultrasound guidance. IEEE Trans. Biomed. Eng. 67(12), 3403–3412 (2020). https://doi.org/10.1109/TBME.2020.2987045
J. Llacer-Wintle, A. Rivas-Dapena, X.Z. Chen, E. Pellicer, B.J. Nelson et al., Biodegradable small-scale swimmers for biomedical applications. Adv. Mater. 33(42), 2102049 (2021). https://doi.org/10.1002/adma.202102049