Advanced Materials for NH3 Capture: Interaction Sites and Transport Pathways
Corresponding Author: Xiang‑Ping Zhang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 228
Abstract
Ammonia (NH3) is a carbon-free, hydrogen-rich chemical related to global food safety, clean energy, and environmental protection. As an essential technology for meeting the requirements raised by such issues, NH3 capture has been intensively explored by researchers in both fundamental and applied fields. The four typical methods used are (1) solvent absorption by ionic liquids and their derivatives, (2) adsorption by porous solids, (3) ab-adsorption by porous liquids, and (4) membrane separation. Rooted in the development of advanced materials for NH3 capture, we conducted a coherent review of the design of different materials, mainly in the past 5 years, their interactions with NH3 molecules and construction of transport pathways, as well as the structure–property relationship, with specific examples discussed. Finally, the challenges in current research and future worthwhile directions for NH3 capture materials are proposed.
Highlights:
1 An overview of advanced materials for NH3 capture from the aspects of interaction sites and transport pathways is presented.
2 The classifications, working principles, design ideas and structure–property relationships on materials for NH3 capture are discussed in detail.
3 The challenges and encouraging outlooks with worthwhile directions for NH3 capture are proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Feng, L. Zhou, T.J. White, A.K. Cheetham, T. Ma et al., Nanoengineering metal–organic frameworks and derivatives for electrosynthesis of ammonia. Nano-Micro Lett. 15, 203 (2023). https://doi.org/10.1007/s40820-023-01169-4
- S. Zhang, Y. Zha, Y. Ye, K. Li, Y. Lin et al., Oxygen-coordinated single Mn sites for efficient electrocatalytic nitrate reduction to ammonia. Nano-Micro Lett. 16, 9 (2023). https://doi.org/10.1007/s40820-023-01217-z
- Q. Hu, S. Qi, Q. Huo, Y. Zhao, J. Sun et al., Designing efficient nitrate reduction electrocatalysts by identifying and optimizing active sites of co-based spinels. J. Am. Chem. Soc. 146, 2967–2976 (2024). https://doi.org/10.1021/jacs.3c06904
- F.B. Juangsa, A.R. Irhamna, M. Aziz, Production of ammonia as potential hydrogen carrier: review on thermochemical and electrochemical processes. Int. J. Hydrog. Energy 46, 14455–14477 (2021). https://doi.org/10.1016/j.ijhydene.2021.01.214
- J. Li, S. Lai, D. Chen, R. Wu, N. Kobayashi et al., A review on combustion characteristics of ammonia as a carbon-free fuel. Front. Energy Res. 9, 760356 (2021). https://doi.org/10.3389/fenrg.2021.760356
- X. Li, C. Deng, Y. Kong, Q. Huo, L. Mi et al., Unlocking the transition of electrochemical water oxidation mechanism induced by heteroatom doping. Angew. Chem. Int. Ed. 62, 2309732 (2023). https://doi.org/10.1002/anie.202309732
- X. Li, H. Zhang, Q. Hu, W. Zhou, J. Shao et al., Amorphous NiFe oxide-based nanoreactors for efficient electrocatalytic water oxidation. Angew. Chem. Int. Ed. 62, 2300478 (2023). https://doi.org/10.1002/anie.202300478
- Q. Hu, K. Gao, X. Wang, H. Zheng, J. Cao et al., Subnanometric Ru clusters with upshifted D band center improve performance for alkaline hydrogen evolution reaction. Nat. Commun. 13, 3958 (2022). https://doi.org/10.1038/s41467-022-31660-2
- A.G. Bannov, M.V. Popov, A.E. Brester, P.B. Kurmashov, Recent advances in ammonia gas sensors based on carbon nanomaterials. Micromachines 12, 186 (2021). https://doi.org/10.3390/mi12020186
- R.B. Bist, S. Subedi, L. Chai, X. Yang, Ammonia emissions, impacts, and mitigation strategies for poultry production: a critical review. J. Environ. Manag. 328, 116919 (2023). https://doi.org/10.1016/j.jenvman.2022.116919
- K.E. Wyer, D.B. Kelleghan, V. Blanes-Vidal, G. Schauberger, T.P. Curran, Ammonia emissions from agriculture and their contribution to fine particulate matter: a review of implications for human health. J. Environ. Manag. 323, 116285 (2022). https://doi.org/10.1016/j.jenvman.2022.116285
- S.L. Nordahl, C.V. Preble, T.W. Kirchstetter, C.D. Scown, Greenhouse gas and air pollutant emissions from composting. Environ. Sci. Technol. 57, 2235–2247 (2023). https://doi.org/10.1021/acs.est.2c05846
- J. Tian, B. Liu, Ammonia capture with ionic liquid systems: a review. Crit. Rev. Environ. Sci. Technol. 52, 767–809 (2022). https://doi.org/10.1080/10643389.2020.1835437
- L. Zhang, H. Dong, S. Zeng, Z. Hu, S. Hussain et al., An overview of ammonia separation by ionic liquids. Ind. Eng. Chem. Res. 60, 6908–6924 (2021). https://doi.org/10.1021/acs.iecr.1c00780
- S. Zeng, Y. Cao, P. Li, X. Liu, X. Zhang, Ionic liquid–based green processes for ammonia separation and recovery. Curr. Opin. Green Sustain. Chem. 25, 100354 (2020). https://doi.org/10.1016/j.cogsc.2020.100354
- K. Vikrant, V. Kumar, K.-H. Kim, D. Kukkar, Metal–organic frameworks (MOFs): potential and challenges for capture and abatement of ammonia. J. Mater. Chem. A 5, 22877–22896 (2017). https://doi.org/10.1039/C7TA07847A
- T. Islamoglu, Z. Chen, M.C. Wasson, C.T. Buru, K.O. Kirlikovali et al., Metal–organic frameworks against toxic chemicals. Chem. Rev. 120, 8130–8160 (2020). https://doi.org/10.1021/acs.chemrev.9b00828
- Y. Zhang, X. Cui, H. Xing, Recent advances in the capture and abatement of toxic gases and vapors by metal–organic frameworks. Mater. Chem. Front. 5, 5970–6013 (2021). https://doi.org/10.1039/d1qm00516b
- X. Han, S. Yang, M. Schröder, Metal–organic framework materials for production and distribution of ammonia. J. Am. Chem. Soc. 145, 1998–2012 (2023). https://doi.org/10.1021/jacs.2c06216
- X. Sun, G. Li, S. Zeng, L. Yuan, L. Bai et al., Ultra-high NH3 absorption by triazole cation-functionalized ionic liquids through multiple hydrogen bonding. Sep. Purif. Technol. 307, 122825 (2023). https://doi.org/10.1016/j.seppur.2022.122825
- L. Yuan, X. Zhang, B. Ren, Y. Yang, Y. Bai et al., Dual-functionalized protic ionic liquids for efficient absorption of NH3 through synergistically physicochemical interaction. J. Chem. Technol. Biotechnol. 95, 1815–1824 (2020). https://doi.org/10.1002/jctb.6381
- A.J. Rieth, Y. Tulchinsky, M. Dincă, High and reversible ammonia uptake in mesoporous azolate metal–organic frameworks with open Mn Co, and Ni sites. J. Am. Chem. Soc. 138, 9401–9404 (2016). https://doi.org/10.1021/jacs.6b05723
- Y. Su, K.-I. Otake, J.-J. Zheng, S. Horike, S. Kitagawa et al., Separating water isotopologues using diffusion-regulatory porous materials. Nature 611, 289–294 (2022). https://doi.org/10.1038/s41586-022-05310-y
- A. Bavykina, A. Cadiau, J. Gascon, Porous liquids based on porous cages, metal organic frameworks and metal organic polyhedra. Coord. Chem. Rev. 386, 85–95 (2019). https://doi.org/10.1016/j.ccr.2019.01.015
- Z. Zhang, B. Yang, B. Zhang, M. Cui, J. Tang et al., Type II porous ionic liquid based on metal–organic cages that enables L-tryptophan identification. Nat. Commun. 13, 2353 (2022). https://doi.org/10.1038/s41467-022-30092-2
- H. Liu, B. Liu, L.-C. Lin, G. Chen, Y. Wu et al., A hybrid absorption-adsorption method to efficiently capture carbon. Nat. Commun. 5, 5147 (2014). https://doi.org/10.1038/ncomms6147
- M. Costa Gomes, L. Pison, C. Červinka, A. Padua, Porous ionic liquids or liquid metal–organic frameworks? Angew. Chem. Int. Ed. 57, 11909–11912 (2018). https://doi.org/10.1002/anie.201805495
- Z. Wang, A. Ozcan, G.A. Craig, F. Haase, T. Aoyama et al., Pore-networked gels: permanently porous ionic liquid gels with linked metal–organic polyhedra networks. J. Am. Chem. Soc. 145, 14456–14465 (2023). https://doi.org/10.1021/jacs.3c03778
- H. Dong, X. Yuan, Y. Wang, Y. Lu, H. He, Preparation of two-dimensional nanoconfined ionic liquid membrane and its molecular mechanism of CO2 separation. Chem. Eng. Sci. 283, 119393 (2024). https://doi.org/10.1016/j.ces.2023.119393
- B. Yang, H. Jiang, L. Bai, Y. Bai, T. Song et al., Application of ionic liquids in the mixed matrix membranes for CO2 separation: an overview. Int. J. Greenh. Gas Contr. 121, 103796 (2022). https://doi.org/10.1016/j.ijggc.2022.103796
- X. Zhang, X. Zhang, H. Dong, Z. Zhao, S. Zhang et al., Carbon capture with ionic liquids: overview and progress. Energy Environ. Sci. 5, 6668 (2012). https://doi.org/10.1039/c2ee21152a
- A. Yokozeki, M.B. Shiflett, Vapor–liquid equilibria of ammonia+ionic liquid mixtures. Appl. Energy 84, 1258–1273 (2007). https://doi.org/10.1016/j.apenergy.2007.02.005
- W. Shi, E.J. Maginn, Molecular simulation of ammonia absorption in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]). AlChE. J. 55, 2414–2421 (2009). https://doi.org/10.1002/aic.11910
- J. Palomar, M. Gonzalez-Miquel, J. Bedia, F. Rodriguez, J.J. Rodriguez, Task-specific ionic liquids for efficient ammonia absorption. Sep. Purif. Technol. 82, 43–52 (2011). https://doi.org/10.1016/j.seppur.2011.08.014
- J. Bedia, J. Palomar, M. Gonzalez-Miquel, F. Rodriguez, J.J. Rodriguez, Screening ionic liquids as suitable ammonia absorbents on the basis of thermodynamic and kinetic analysis. Sep. Purif. Technol. 95, 188–195 (2012). https://doi.org/10.1016/j.seppur.2012.05.006
- Z. Li, X. Zhang, H. Dong, X. Zhang, H. Gao et al., Efficient absorption of ammonia with hydroxyl-functionalized ionic liquids. RSC Adv. 5, 81362–81370 (2015). https://doi.org/10.1039/C5RA13730F
- M.S. Larrechi, A. Cera-Manjarres, D. Salavera, A. Coronas, Quantitative analysis of the interaction of ammonia with 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate ionic liquid. Understanding the volumetric and transport properties of their mixtures. J. Mol. Liq. 301, 112440 (2020). https://doi.org/10.1016/j.molliq.2020.112440
- D. Shang, X. Zhang, S. Zeng, K. Jiang, H. Gao et al., Protic ionic liquid[Bim][NTf2]with strong hydrogen bond donating ability for highly efficient ammonia absorption. Green Chem. 19, 937–945 (2017). https://doi.org/10.1039/c6gc03026b
- B. Yang, D. Shang, W. Tu, S. Zeng, L. Bai et al., Studies on the physical properties variations of protic ionic liquid during NH3 absorption. J. Mol. Liq. 296, 111791 (2019). https://doi.org/10.1016/j.molliq.2019.111791
- T. Zhao, S. Zeng, Y. Li, Y. Bai, L. Bai et al., Molecular insight into the effect of ion structure and interface behavior on the ammonia absorption by ionic liquids. AlChE. J. 68, e17860 (2022). https://doi.org/10.1002/aic.17860
- D. Shang, S. Zeng, X. Zhang, X. Zhang, L. Bai et al., Highly efficient and reversible absorption of NH3 by dual functionalised ionic liquids with protic and Lewis acidic sites. J. Mol. Liq. 312, 113411 (2020). https://doi.org/10.1016/j.molliq.2020.113411
- L. Yuan, H. Gao, H. Jiang, S. Zeng, T. Li et al., Experimental and thermodynamic analysis of NH3 absorption in dual-functionalized pyridinium-based ionic liquids. J. Mol. Liq. 323, 114601 (2021). https://doi.org/10.1016/j.molliq.2020.114601
- X. Luo, R. Qiu, X. Chen, B. Pei, J. Lin et al., Reversible construction of ionic networks through cooperative hydrogen bonds for efficient ammonia absorption. ACS Sustain. Chem. Eng. 7(11), 9888–9895 (2019). https://doi.org/10.1021/acssuschemeng.9b00554
- R. Qiu, X. Luo, L. Yang, J. Li, X. Chen et al., Regulated threshold pressure of reversibly sigmoidal NH3 absorption isotherm with ionic liquids. ACS Sustain. Chem. Eng. 8, 1637–1643 (2020). https://doi.org/10.1021/acssuschemeng.9b06555
- D. Deng, X. Deng, K. Li, H. Fang, Protic ionic liquid ethanolamine thiocyanate with multiple sites for highly efficient NH3 uptake and NH3/CO2 separation. Sep. Purif. Technol. 276, 119298 (2021). https://doi.org/10.1016/j.seppur.2021.119298
- T. Makino, M. Kanakubo, NH3 absorption in Brønsted acidic imidazolium- and ammonium-based ionic liquids. New J. Chem. 44, 20665–20675 (2020). https://doi.org/10.1039/d0nj04743k
- W. Chen, S. Liang, Y. Guo, X. Gui, D. Tang, Investigation on vapor–liquid equilibria for binary systems of metal ion-containing ionic liquid[bmim]Zn2Cl5/NH3 by experiment and modified UNIFAC model. Fluid Phase Equilib. 360, 1–6 (2013). https://doi.org/10.1016/j.fluid.2013.09.011
- F.T.U. Kohler, S. Popp, H. Klefer, I. Eckle, C. Schrage et al., Supported ionic liquid phase (SILP) materials for removal of hazardous gas compounds–efficient and irreversible NH3 adsorption. Green Chem. 16, 3560–3568 (2014). https://doi.org/10.1039/C3GC42275E
- S. Zeng, L. Liu, D. Shang, J. Feng, H. Dong et al., Efficient and reversible absorption of ammonia by cobalt ionic liquids through Lewis acid–base and cooperative hydrogen bond interactions. Green Chem. 20, 2075–2083 (2018). https://doi.org/10.1039/C8GC00215K
- J. Wang, S. Zeng, F. Huo, D. Shang, H. He et al., Metal chloride anion-based ionic liquids for efficient separation of NH3. J. Clean. Prod. 206, 661–669 (2019). https://doi.org/10.1016/j.jclepro.2018.09.192
- Z. Cai, J. Zhang, Y. Ma, W. Wu, Y. Cao et al., Chelation-activated multiple-site reversible chemical absorption of ammonia in ionic liquids. AlChE. J. 68, e17632 (2022). https://doi.org/10.1002/aic.17632
- L.L. Sze, S. Pandey, S. Ravula, S. Pandey, H. Zhao et al., Ternary deep eutectic solvents tasked for carbon dioxide capture. ACS Sustain. Chem. Eng. 2, 2117–2123 (2014). https://doi.org/10.1021/sc5001594
- Y. Li, M.C. Ali, Q. Yang, Z. Zhang, Z. Bao et al., Hybrid deep eutectic solvents with flexible hydrogen-bonded supramolecular networks for highly efficient uptake of NH3. ChemSusChem 10, 3368–3377 (2017). https://doi.org/10.1002/cssc.201701135
- F.-Y. Zhong, K. Huang, H.-L. Peng, Solubilities of ammonia in choline chloride plus urea at (298.2–353.2) K and (0–300) kPa. J. Chem. Thermodyn. 129, 5–11 (2019). https://doi.org/10.1016/j.jct.2018.09.020
- X. Deng, X. Duan, L. Gong, D. Deng, Ammonia solubility, density, and viscosity of choline chloride–dihydric alcohol deep eutectic solvents. J. Chem. Eng. Data 65, 4845–4854 (2020). https://doi.org/10.1021/acs.jced.0c00386
- X. Sun, Q. Wang, S. Wu, X. Zhao, L. Wei et al., Metal chlorides-promoted ammonia absorption of deep eutectic solvent. Int. J. Hydrogen Energy 47(36), 16121–16131 (2022). https://doi.org/10.1016/j.ijhydene.2022.03.101
- D. Deng, X. Duan, B. Gao, C. Zhang, X. Deng et al., Efficient and reversible absorption of NH3 by functional azole–glycerol deep eutectic solvents. New J. Chem. 43, 11636–11642 (2019). https://doi.org/10.1039/C9NJ01788G
- Y. Cao, J. Zhang, Y. Ma, W. Wu, K. Huang et al., Designing low-viscosity deep eutectic solvents with multiple weak–acidic groups for ammonia separation. ACS Sustain. Chem. Eng. 9, 7352–7360 (2021). https://doi.org/10.1021/acssuschemeng.1c01674
- W.-J. Jiang, J.-B. Zhang, Y.-T. Zou, H.-L. Peng, K. Huang, Manufacturing acidities of hydrogen-bond donors in deep eutectic solvents for effective and reversible NH3 capture. ACS Sustain. Chem. Eng. 8, 13408–13417 (2020). https://doi.org/10.1021/acssuschemeng.0c04215
- X. Duan, B. Gao, C. Zhang, D. Deng, Solubility and thermodynamic properties of NH3 in choline chloride-based deep eutectic solvents. J. Chem. Thermodyn. 133, 79–84 (2019). https://doi.org/10.1016/j.jct.2019.01.031
- F.-Y. Zhong, H.-L. Peng, D.-J. Tao, P.-K. Wu, J.-P. Fan et al., Phenol-based ternary deep eutectic solvents for highly efficient and reversible absorption of NH3. ACS Sustain. Chem. Eng. 7, 3258–3266 (2019). https://doi.org/10.1021/acssuschemeng.8b05221
- F.-Y. Zhong, L. Zhou, J. Shen, Y. Liu, J.-P. Fan et al., Rational design of azole-based deep eutectic solvents for highly efficient and reversible capture of ammonia. ACS Sustain. Chem. Eng. 7, 14170–14179 (2019). https://doi.org/10.1021/acssuschemeng.9b02845
- Z.-L. Li, F.-Y. Zhong, J.-Y. Huang, H.-L. Peng, K. Huang, Sugar-based natural deep eutectic solvents as potential absorbents for NH3 capture at elevated temperatures and reduced pressures. J. Mol. Liq. 317, 113992 (2020). https://doi.org/10.1016/j.molliq.2020.113992
- O.V. Kazarina, A.N. Petukhov, R.N. Nagrimanov, A.V. Vorotyntsev, M.E. Atlaskina et al., The role of HBA structure of deep eutectic solvents consisted of ethylene glycol and chlorides of a choline family for improving the ammonia capture performance. J. Mol. Liq. 373, 121216 (2023). https://doi.org/10.1016/j.molliq.2023.121216
- O.V. Kazarina, A.N. Petukhov, A.V. Vorotyntsev, M.E. Atlaskina, A.A. Atlaskin et al., The way for improving the efficiency of ammonia and carbon dioxide absorption of choline chloride: urea mixtures by modifying a choline cation. Fluid Phase Equilib. 568, 113736 (2023). https://doi.org/10.1016/j.fluid.2023.113736
- O.V. Kazarina, V.N. Agieienko, A.N. Petukhov, A.V. Vorotyntsev, M.E. Atlaskina et al., Deep eutectic solvents composed of urea and new salts of a choline family for efficient ammonia absorption. J. Chem. Eng. Data 67, 138–150 (2022). https://doi.org/10.1021/acs.jced.1c00684
- J.-Y. Zhang, K. Huang, Densities and viscosities of, and NH3 solubilities in deep eutectic solvents composed of ethylamine hydrochloride and acetamide. J. Chem. Thermodyn. 139, 105883 (2019). https://doi.org/10.1016/j.jct.2019.105883
- W.-J. Jiang, F.-Y. Zhong, Y. Liu, K. Huang, Effective and reversible capture of NH3 by ethylamine hydrochloride plus glycerol deep eutectic solvents. ACS Sustain. Chem. Eng. 7, 10552–10560 (2019). https://doi.org/10.1021/acssuschemeng.9b01102
- W.-J. Jiang, F.-Y. Zhong, L.-S. Zhou, H.-L. Peng, J.-P. Fan et al., Chemical dual-site capture of NH3 by unprecedentedly low-viscosity deep eutectic solvents. Chem. Commun. 56, 2399–2402 (2020). https://doi.org/10.1039/C9CC09043F
- N.-N. Cheng, Z.-L. Li, H.-C. Lan, W.-L. Xu, W.-J. Jiang et al., Deep eutectic solvents with multiple weak acid sites for highly efficient, reversible and selective absorption of ammonia. Sep. Purif. Technol. 269, 118791 (2021). https://doi.org/10.1016/j.seppur.2021.118791
- L. Zheng, X. Zhang, Q. Li, Y. Ma, Z. Cai et al., Effective ammonia separation by non-chloride deep eutectic solvents composed of dihydroxybenzoic acids and ethylene glycol through multiple-site interaction. Sep. Purif. Technol. 309, 123136 (2023). https://doi.org/10.1016/j.seppur.2023.123136
- A.I. Akhmetshina, A.N. Petukhov, A. Mechergui, A.V. Vorotyntsev, A.V. Nyuchev et al., Evaluation of methanesulfonate-based deep eutectic solvent for ammonia sorption. J. Chem. Eng. Data 63, 1896–1904 (2018). https://doi.org/10.1021/acs.jced.7b01004
- Y. Cao, X. Zhang, S. Zeng, Y. Liu, H. Dong et al., Protic ionic liquid-based deep eutectic solvents with multiple hydrogen bonding sites for efficient absorption of NH3. AIChE J. 66(8), e16253 (2020). https://doi.org/10.1002/aic.16253
- Z.-L. Li, F.-Y. Zhong, L.-S. Zhou, Z.-Q. Tian, K. Huang, Deep eutectic solvents formed by N-methylacetamide and heterocyclic weak acids for highly efficient and reversible chemical absorption of ammonia. Ind. Eng. Chem. Res. 59, 2060–2067 (2020). https://doi.org/10.1021/acs.iecr.9b04924
- D. Deng, B. Gao, C. Zhang, X. Duan, Y. Cui et al., Investigation of protic NH4SCN− based deep eutectic solvents as highly efficient and reversible NH3 absorbents. Chem. Eng. J. 358, 936–943 (2019). https://doi.org/10.1016/j.cej.2018.10.077
- D. Deng, X. Deng, X. Duan, L. Gong, Protic guanidine isothiocyanate plus acetamide deep eutectic solvents with low viscosity for efficient NH3 capture and NH3/CO2 separation. J. Mol. Liq. 324, 114719 (2021). https://doi.org/10.1016/j.molliq.2020.114719
- B. Han, C. Butterly, W. Zhang, J.-Z. He, D. Chen, Adsorbent materials for ammonium and ammonia removal: a review. J. Clean. Prod. 283, 124611 (2021). https://doi.org/10.1016/j.jclepro.2020.124611
- N.Z. Mohd Azmi, A. Buthiyappan, A.A. Abdul Raman, M.F. Abdul Patah, S. Sufian, Recent advances in biomass based activated carbon for carbon dioxide capture—a review. J. Ind. Eng. Chem. 116, 1–20 (2022). https://doi.org/10.1016/j.jiec.2022.08.021
- F. Zhu, Z. Wang, J. Huang, W. Hu, D. Xie et al., Efficient adsorption of ammonia on activated carbon from hydrochar of pomelo peel at room temperature: role of chemical components in feedstock. J. Clean. Prod. 406, 137076 (2023). https://doi.org/10.1016/j.jclepro.2023.137076
- C. Cardenas, L. Sigot, C. Vallières, S. Marsteau, M. Marchal et al., Ammonia capture by adsorption on doped and undoped activated carbon: isotherm and breakthrough curve measurements. Sep. Purif. Technol. 313, 123454 (2023). https://doi.org/10.1016/j.seppur.2023.123454
- T. Zhang, H. Miyaoka, H. Miyaoka, T. Ichikawa, Y. Kojima, Review on ammonia absorption materials: metal hydrides, halides, and borohydrides. ACS Appl. Energy Mater. 1, 232–242 (2018). https://doi.org/10.1021/acsaem.7b00111
- J. Kim, H. Lee, H.T. Vo, G. Lee, N. Kim et al., Bead-shaped mesoporous alumina adsorbents for adsorption of ammonia. Materials (Basel) 13, 1375 (2020). https://doi.org/10.3390/ma13061375
- W. Zheng, J. Hu, S. Rappeport, Z. Zheng, Z. Wang et al., Activated carbon fiber composites for gas phase ammonia adsorption. Microporous Mesoporous Mater. 234, 146–154 (2016). https://doi.org/10.1016/j.micromeso.2016.07.011
- C. Li, S. Zhao, M. Li, Z. Yao, Y. Li et al., The effect of the active carbonyl groups and residual acid on the ammonia adsorption over the acid-modified activated carbon. Front. Environ. Sci. 11, 976113 (2023). https://doi.org/10.3389/fenvs.2023.976113
- W. Zhang, F. Liu, X. Kan, Y. Zheng, A. Zheng et al., Developing ordered mesoporous silica superacids for high-precision adsorption and separation of ammonia. Chem. Eng. J. 457, 141263 (2023). https://doi.org/10.1016/j.cej.2022.141263
- I. Matito-Martos, A. Martin-Calvo, C.O. Ania, J.B. Parra, J.M. Vicent-Luna et al., Role of hydrogen bonding in the capture and storage of ammonia in zeolites. Chem. Eng. J. 387, 124062 (2020). https://doi.org/10.1016/j.cej.2020.124062
- W. Ouyang, S. Zheng, C. Wu, X. Hu, R. Chen et al., Dynamic ammonia adsorption by FAU zeolites to below 0.1 ppm for hydrogen energy applications. Int. J. Hydrog. Energy 46, 32559–32569 (2021). https://doi.org/10.1016/j.ijhydene.2021.07.107
- J.M. Lucero, J.M. Crawford, C.A. Wolden, M.A. Carreon, Tunability of ammonia adsorption over NaP zeolite. Microporous Mesoporous Mater. 324, 111288 (2021). https://doi.org/10.1016/j.micromeso.2021.111288
- B. Zhakisheva, J.J. Gutiérrez-Sevillano, S. Calero, Ammonia and water in zeolites: effect of aluminum distribution on the heat of adsorption. Sep. Purif. Technol. 306, 122564 (2023). https://doi.org/10.1016/j.seppur.2022.122564
- C. Shen, L. Shen, Cyclic NH3 adsorption–desorption characteristics of Cu-based metal halides as ammonia separation and storage procedure. J. Energy Inst. 109, 101250 (2023). https://doi.org/10.1016/j.joei.2023.101250
- Z. Cao, F. Akhtar, Porous strontium chloride scaffolded by graphene networks as ammonia carriers. Adv. Funct. Mater. 31, 2008505 (2021). https://doi.org/10.1002/adfm.202008505
- T. Zhu, B. Pei, T. Di, Y. Xia, T. Li et al., Thirty-minute preparation of microporous polyimides with large surface areas for ammonia adsorption. Green Chem. 22, 7003–7009 (2020). https://doi.org/10.1039/d0gc02794d
- Y.-S. Han, S. An, J. Dai, J. Hu, Q. Xu et al., Defect-engineering of anionic porous aromatic frameworks for ammonia capture. ACS Appl. Polym. Mater. 3, 4534–4542 (2021). https://doi.org/10.1021/acsapm.1c00589
- J.F. Van Humbeck, T.M. McDonald, X. Jing, B.M. Wiers, G. Zhu et al., Ammonia capture in porous organic polymers densely functionalized with Brønsted acid groups. J. Am. Chem. Soc. 136, 2432–2440 (2014). https://doi.org/10.1021/ja4105478
- J. Zhang, Y. Ma, W. Wu, Z. Cai, Y. Cao et al., Carboxylic functionalized mesoporous polymers for fast, highly efficient, selective and reversible adsorption of ammonia. Chem. Eng. J. 448, 137640 (2022). https://doi.org/10.1016/j.cej.2022.137640
- D. Jung, Z. Chen, S. Alayoglu, M.R. Mian, T.A. Goetjen et al., Postsynthetically modified polymers of intrinsic microporosity (PIMs) for capturing toxic gases. ACS Appl. Mater. Interfaces 13, 10409–10415 (2021). https://doi.org/10.1021/acsami.0c21741
- C.-C. Hsieh, J.-S. Tsai, J.-R. Chang, Effects of moisture on NH3 Capture using activated carbon and acidic porous polymer modified by impregnation with H3PO4: sorbent material characterized by synchrotron XRPD and FT-IR. Materials (Basel) 15, 784 (2022). https://doi.org/10.3390/ma15030784
- G. Barin, G.W. Peterson, V. Crocellà, J. Xu, K.A. Colwell et al., Highly effective ammonia removal in a series of Brønsted acidic porous polymers: investigation of chemical and structural variations. Chem. Sci. 8, 4399–4409 (2017). https://doi.org/10.1039/c6sc05079d
- Z. Han, Y. Mao, X. Pang, Y. Yan, Structure and functional group regulation of plastics for efficient ammonia capture. J. Hazard. Mater. 440, 129789 (2022). https://doi.org/10.1016/j.jhazmat.2022.129789
- J. Mi, W. Peng, Y. Luo, W. Chen, L. Lin et al., A cationic polymerization strategy to design sulfonated micro–mesoporous polymers as efficient adsorbents for ammonia capture and separation. Macromolecules 54, 7010–7020 (2021). https://doi.org/10.1021/acs.macromol.1c00376
- X. Kan, Z. Liu, F. Liu, F. Li, W. Chen et al., Sulfonated and ordered mesoporous polymers for reversible adsorption of ammonia: elucidation of sequential pore-space diffusion. Chem. Eng. J. 451, 139085 (2023). https://doi.org/10.1016/j.cej.2022.139085
- D.W. Kang, M. Kang, M. Moon, H. Kim, S. Eom et al., PDMS-coated hypercrosslinked porous organic polymers modified via double postsynthetic acidifications for ammonia capture. Chem. Sci. 9, 6871–6877 (2018). https://doi.org/10.1039/c8sc02640h
- D.W. Kang, M. Kang, D.W. Kim, H. Kim, Y.H. Lee et al., Engineered removal of trace NH3 by porous organic polymers modified via sequential post-sulfonation and post-alkylation. Adv. Sustain. Syst. 5, 2000161 (2021). https://doi.org/10.1002/adsu.202000161
- R.J.S. Lima, D.V. Okhrimenko, S. Rudić, M.T.F. Telling, V.G. Sakai et al., Ammonia storage in hydrogen bond-rich microporous polymers. ACS Appl. Mater. Interfaces 12, 58161–58169 (2020). https://doi.org/10.1021/acsami.0c18855
- J.-W. Lee, G. Barin, G.W. Peterson, J. Xu, K.A. Colwell et al., A microporous amic acid polymer for enhanced ammonia capture. ACS Appl. Mater. Interfaces 9, 33504–33510 (2017). https://doi.org/10.1021/acsami.7b02603
- L. Luo, J. Li, X. Chen, X. Cao, Y. Liu et al., Superhigh and reversible NH3 uptake of cobaltous thiocyanate functionalized porous poly ionic liquids through competitive and cooperative interactions. Chem. Eng. J. 427, 131638 (2022). https://doi.org/10.1016/j.cej.2021.131638
- L. Luo, Z. Wu, Z. Wu, Y. Liu, X. Huang et al., Role of structure in the ammonia uptake of porous polyionic liquids. ACS Sustain. Chem. Eng. 10, 4094–4104 (2022). https://doi.org/10.1021/acssuschemeng.1c06503
- D.W. Kang, S.E. Ju, D.W. Kim, M. Kang, H. Kim et al., Emerging porous materials and their composites for NH3 gas removal. Adv. Sci. 7, 2002142 (2020). https://doi.org/10.1002/advs.202002142
- M.-S. Yao, W.-H. Li, G. Xu, Metal–organic frameworks and their derivatives for electrically-transduced gas sensors. Coord. Chem. Rev. 426, 213479 (2021). https://doi.org/10.1016/j.ccr.2020.213479
- M.-S. Yao, K.-I. Otake, J. Zheng, M. Tsujimoto, Y.-F. Gu et al., Integrated soft porosity and electrical properties of conductive-on-insulating metal–organic framework nanocrystals. Angew. Chem. Int. Ed. 62, e202303903 (2023). https://doi.org/10.1002/anie.202303903
- Y. Gao, J. Wang, Y. Yang, J. Wang, C. Zhang et al., Engineering spin states of isolated copper species in a metal–organic framework improves urea electrosynthesis. Nano-Micro Lett. 15, 158 (2023). https://doi.org/10.1007/s40820-023-01127-0
- C. Li, Y. Ji, Y. Wang, C. Liu, Z. Chen et al., Applications of metal–organic frameworks and their derivatives in electrochemical CO2 reduction. Nano-Micro Lett. 15, 113 (2023). https://doi.org/10.1007/s40820-023-01092-8
- A. Takahashi, H. Tanaka, D. Parajuli, T. Nakamura, K. Minami et al., Historical pigment exhibiting ammonia gas capture beyond standard adsorbents with adsorption sites of two kinds. J. Am. Chem. Soc. 138, 6376–6379 (2016). https://doi.org/10.1021/jacs.6b02721
- A.J. Rieth, M. Dincă, Controlled gas uptake in metal–organic frameworks with record ammonia sorption. J. Am. Chem. Soc. 140, 3461–3466 (2018). https://doi.org/10.1021/jacs.8b00313
- A. Carné-Sánchez, J. Martínez-Esaín, T. Rookard, C.J. Flood, J. Faraudo et al., Ammonia capture in rhodium(II)-based metal–organic polyhedra via synergistic coordinative and H-bonding interactions. ACS Appl. Mater. Interfaces 15, 6747–6754 (2023). https://doi.org/10.1021/acsami.2c19206
- D. Zhang, Y. Shen, J. Ding, H. Zhou, Y. Zhang et al., Tunable ammonia adsorption within metal–organic frameworks with different unsaturated metal sites. Molecules 27, 7847 (2022). https://doi.org/10.3390/molecules27227847
- S. Moribe, Z. Chen, S. Alayoglu, Z.H. Syed, T. Islamoglu et al., Ammonia capture within isoreticular metal–organic frameworks with rod secondary building units. ACS Mater. Lett. 1, 476–480 (2019). https://doi.org/10.1021/acsmaterialslett.9b00307
- K.O. Kirlikovali, Z. Chen, X. Wang, M.R. Mian, S. Alayoglu et al., Investigating the influence of hexanuclear clusters in isostructural metal–organic frameworks on toxic gas adsorption. ACS Appl. Mater. Interfaces 14, 3048–3056 (2022). https://doi.org/10.1021/acsami.1c20518
- D.W. Kim, D.W. Kang, M. Kang, J.H. Lee, J.H. Choe et al., High ammonia uptake of a metal–organic framework adsorbent in a wide pressure range. Angew. Chem. Int. Ed. 59, 22531–22536 (2020). https://doi.org/10.1002/anie.202012552
- T.N. Nguyen, I.M. Harreschou, J.-H. Lee, K.C. Stylianou, D.W. Stephan, A recyclable metal–organic framework for ammonia vapour adsorption. Chem. Commun. 56, 9600–9603 (2020). https://doi.org/10.1039/d0cc00741b
- C. Marsh, X. Han, J. Li, Z. Lu, S.P. Argent et al., Exceptional packing density of ammonia in a dual-functionalized metal–organic framework. J. Am. Chem. Soc. 143, 6586–6592 (2021). https://doi.org/10.1021/jacs.1c01749
- Z. Fang, B. Bueken, D.E. De Vos, R.A. Fischer, Defect-engineered metal–organic frameworks. Angew. Chem. Int. Ed. 54, 7234–7254 (2015). https://doi.org/10.1002/anie.201411540
- J. Ren, M. Ledwaba, N.M. Musyoka, H.W. Langmi, M. Mathe et al., Structural defects in metal–organic frameworks (MOFs): formation, detection and control towards practices of interests. Coord. Chem. Rev. 349, 169–197 (2017). https://doi.org/10.1016/j.ccr.2017.08.017
- Q.-Y. Ju, J.-J. Zheng, L. Xu, H.-Y. Jiang, Z.-Q. Xue et al., Enhanced carbon capture with motif-rich amino acid loaded defective robust metal–organic frameworks. Nano Res. 17, 2004–2010 (2024). https://doi.org/10.1007/s12274-023-5961-y
- Y. Ma, W. Lu, X. Han, Y. Chen, I. da Silva et al., Direct observation of ammonia storage in UiO-66 incorporating Cu(II) binding sites. J. Am. Chem. Soc. 144, 8624–8632 (2022). https://doi.org/10.1021/jacs.2c00952
- G.W. Peterson, G.W. Wagner, A. Balboa, J. Mahle, T. Sewell et al., Ammonia vapor removal by Cu(3)(BTC)(2) and its characterization by MAS NMR. J. Phys. Chem. C Nanomater. Interfaces 113, 13906–13917 (2009). https://doi.org/10.1021/jp902736z
- C. Bae, M. Gu, Y. Jeon, D. Kim, J. Kim, Metal–organic frameworks for NH3 adsorption by different NH3 operating pressures. Bull. Korean Chem. Soc. 44(2), 112–124 (2022). https://doi.org/10.1002/bkcs.12640
- J.H. Carter, C.G. Morris, H.G.W. Godfrey, S.J. Day, J. Potter et al., Long-term stability of MFM-300(Al) toward toxic air pollutants. ACS Appl. Mater. Interfaces 12, 42949–42954 (2020). https://doi.org/10.1021/acsami.0c11134
- H.G.W. Godfrey, I. da Silva, L. Briggs, J.H. Carter, C.G. Morris et al., Ammonia storage by reversible host-guest site exchange in a robust metal–organic framework. Angew. Chem. Int. Ed. 57, 14778–14781 (2018). https://doi.org/10.1002/anie.201808316
- X. Han, W. Lu, Y. Chen, I. da Silva, J. Li et al., High ammonia adsorption in MFM-300 materials: dynamics and charge transfer in host-guest binding. J. Am. Chem. Soc. 143, 3153–3161 (2021). https://doi.org/10.1021/jacs.0c11930
- Z. Wang, Z. Li, H. Wang, Y. Zhao, Q. Xia et al., Regulating the pore microenvironment of microporous metal–organic frameworks for efficient adsorption of low-concentration ammonia. ACS Sustain. Chem. Eng. 10, 10945–10954 (2022). https://doi.org/10.1021/acssuschemeng.2c02944
- J.H. Lee, S. Jeoung, Y.G. Chung, H.R. Moon, Elucidation of flexible metal–organic frameworks: research progresses and recent developments. Coord. Chem. Rev. 389, 161–188 (2019). https://doi.org/10.1016/j.ccr.2019.03.008
- I. Senkovska, V. Bon, L. Abylgazina, M. Mendt, J. Berger et al., Understanding MOF flexibility: an analysis focused on pillared layer MOFs as a model system. Angew. Chem. Int. Ed. 62, e202218076 (2023). https://doi.org/10.1002/anie.202218076
- Y. Chen, B. Shan, C. Yang, J. Yang, J. Li et al., Environmentally friendly synthesis of flexible MOFs M(NA)2 (M = Zn Co, Cu, Cd) with large and regenerable ammonia capacity. J. Mater. Chem. A 6, 9922–9929 (2018). https://doi.org/10.1039/C8TA02845A
- D.W. Kang, M. Kang, H. Kim, J.H. Choe, D.W. Kim et al., A hydrogen-bonded organic framework (HOF) with type IV NH3 adsorption behavior. Angew. Chem. Int. Ed. 58, 16152–16155 (2019). https://doi.org/10.1002/anie.201911087
- X. Song, Y. Wang, C. Wang, X. Gao, Y. Zhou et al., Self-healing hydrogen-bonded organic frameworks for low-concentration ammonia capture. J. Am. Chem. Soc. 146, 627–634 (2024). https://doi.org/10.1021/jacs.3c10492
- J. Li, L. Luo, L. Yang, C. Zhao, Y. Liu et al., Ionic framework constructed with protic ionic liquid units for improving ammonia uptake. Chem. Commun. 57, 4384–4387 (2021). https://doi.org/10.1039/d1cc00441g
- C.J. Doonan, D.J. Tranchemontagne, T.G. Glover, J.R. Hunt, O.M. Yaghi, Exceptional ammonia uptake by a covalent organic framework. Nat. Chem. 2, 235–238 (2010). https://doi.org/10.1038/nchem.548
- Y. Cao, R. Wu, Y.-Y. Gao, Y. Zhou, J.-J. Zhu, Advances of electrochemical and electrochemiluminescent sensors based on covalent organic frameworks. Nano-Micro Lett. 16, 37 (2023). https://doi.org/10.1007/s40820-023-01249-5
- Y. Yang, M. Faheem, L. Wang, Q. Meng, H. Sha et al., Surface pore engineering of covalent organic frameworks for ammonia capture through synergistic multivariate and open metal site approaches. ACS Cent. Sci. 4, 748–754 (2018). https://doi.org/10.1021/acscentsci.8b00232
- Y. Zhao, S. Zhang, L. Wu, C. Guo, X. Song, Multiscale study on ammonia adsorption by Li-doped COF-10. Comput. Theor. Chem. 1175, 112744 (2020). https://doi.org/10.1016/j.comptc.2020.112744
- Z. Zhu, H. Wang, X.-Y. Wu, K. Luo, J. Fan, Computational screening of metal–organic frameworks for ammonia capture from H2/N2/NH3 mixtures. ACS Omega 7, 37640–37653 (2022). https://doi.org/10.1021/acsomega.2c04517
- Y. Khabzina, D. Farrusseng, Unravelling ammonia adsorption mechanisms of adsorbents in humid conditions. Microporous Mesoporous Mater. 265, 143–148 (2018). https://doi.org/10.1016/j.micromeso.2018.02.011
- R. Chen, J. Liu, Competitive coadsorption of ammonia with water and sulfur dioxide on metal–organic frameworks at low pressure. Build. Environ. 207, 108421 (2022). https://doi.org/10.1016/j.buildenv.2021.108421
- C. Shen, P. Wang, L. Shen, X. Yin, Z. Miao, NH3 adsorption performance of silicon-supported metal chlorides. Ind. Eng. Chem. Res. 61, 8616–8623 (2022). https://doi.org/10.1021/acs.iecr.2c00916
- C. Shen, L. Shen, XCl2/MWCNTs─Composites based on multi-walled carbon nanotubes and metal chlorides for NH3 capture and separation. Energy Fuels 37, 5995–6001 (2023). https://doi.org/10.1021/acs.energyfuels.3c00467
- X. Tian, J. Qiu, Z. Wang, Y. Chen, Z. Li et al., A record ammonia adsorption by calcium chloride confined in covalent organic frameworks. Chem. Commun. 58, 1151–1154 (2022). https://doi.org/10.1039/D1CC06308A
- Y. Jian, W. Hu, Z. Zhao, P. Cheng, H. Haick et al., Gas sensors based on chemi-resistive hybrid functional nanomaterials. Nano-Micro Lett. 12, 71 (2020). https://doi.org/10.1007/s40820-020-0407-5
- K.N. Ruckart, Y. Zhang, W.M. Reichert, G.W. Peterson, T.G. Glover, Sorption of ammonia in mesoporous-silica ionic liquid composites. Ind. Eng. Chem. Res. 55, 12191–12204 (2016). https://doi.org/10.1021/acs.iecr.6b02041
- A. Kaftan, H. Klefer, M. Haumann, M. Laurin, P. Wasserscheid et al., An operando DRIFTS-MS study of NH3 removal by supported ionic liquid phase (SILP) materials. Sep. Purif. Technol. 174, 245–250 (2017). https://doi.org/10.1016/j.seppur.2016.10.017
- M. Yu, S. Zeng, Z. Wang, Z. Hu, H. Dong et al., Protic ionic-liquid-supported activated carbon with hierarchical pores for efficient NH3 adsorption. ACS Sustain. Chem. Eng. 7, 11769–11777 (2019). https://doi.org/10.1021/acssuschemeng.9b02051
- Y. Li, S. Zeng, S. Zheng, T. Zhao, X. Sun et al., Mesoporous multiproton ionic liquid hybrid adsorbents for facilitating NH3 separation. Ind. Eng. Chem. Res. 62, 2829–2842 (2023). https://doi.org/10.1021/acs.iecr.2c03193
- S. Zheng, Q. Xu, S. Zeng, G. Li, H. Jiang et al., Porous multi-site ionic liquid composites for superior selective and reversible adsorption of ammonia. Sep. Purif. Technol. 310, 123161 (2023). https://doi.org/10.1016/j.seppur.2023.123161
- D. Cao, Z. Li, Z. Wang, H. Wang, S. Gao et al., Highly dispersed ionic liquids in mesoporous molecular sieves enable a record NH3 absorption. ACS Sustain. Chem. Eng. 9, 16363–16372 (2021). https://doi.org/10.1021/acssuschemeng.1c06151
- S. Zeng, J. Wang, P. Li, H. Dong, H. Wang et al., Efficient adsorption of ammonia by incorporation of metal ionic liquids into silica gels as mesoporous composites. Chem. Eng. J. 370, 81–88 (2019). https://doi.org/10.1016/j.cej.2019.03.180
- G. Han, C. Liu, Q. Yang, D. Liu, C. Zhong, Construction of stable IL@MOF composite with multiple adsorption sites for efficient ammonia capture from dry and humid conditions. Chem. Eng. J. 401, 126106 (2020). https://doi.org/10.1016/j.cej.2020.126106
- G. Han, F. Li, M. Guo, H. Fan, Q. Guo et al., MIL-101(Cr) loaded simple ILs for efficient ammonia capture and selective separation. Chem. Eng. J. 471, 144545 (2023). https://doi.org/10.1016/j.cej.2023.144545
- Y. Shi, Z. Wang, Z. Li, H. Wang, D. Xiong et al., Anchoring LiCl in the nanopores of metal–organic frameworks for ultra-high uptake and selective separation of ammonia. Angew. Chem. Int. Ed. 61, e202212032 (2022). https://doi.org/10.1002/anie.202212032
- Q. Luo, E. Pentzer, Encapsulation of ionic liquids for tailored applications. ACS Appl. Mater. Interfaces 12, 5169–5176 (2020). https://doi.org/10.1021/acsami.9b16546
- R. Santiago, J. Lemus, D. Moreno, C. Moya, M. Larriba et al., From kinetics to equilibrium control in CO2 capture columns using Encapsulated Ionic Liquids (ENILs). Chem. Eng. J. 348, 661–668 (2018). https://doi.org/10.1016/j.cej.2018.05.029
- S. Zheng, S. Zeng, Y. Li, L. Bai, Y. Bai et al., State of the art of ionic liquid-modified adsorbents for CO2 capture and separation. AlChE. J. 68, e17500 (2022). https://doi.org/10.1002/aic.17500
- J. Palomar, J. Lemus, N. Alonso-Morales, J. Bedia, M.A. Gilarranz et al., Encapsulated ionic liquids (ENILs): from continuous to discrete liquid phase. Chem. Commun. 48, 10046–10048 (2012). https://doi.org/10.1039/C2CC35291E
- J. Lemus, J. Bedia, C. Moya, N. Alonso-Morales, M.A. Gilarranz et al., Ammonia capture from the gas phase by encapsulated ionic liquids (ENILs). RSC Adv. 6, 61650–61660 (2016). https://doi.org/10.1039/C6RA11685J
- N. O’Reilly, N. Giri, S.L. James, Porous liquids. Chem. Eur. J. 13(11), 3020–3025 (2007). https://doi.org/10.1002/chem.200700090
- N. Giri, M.G. Del Pópolo, G. Melaugh, R.L. Greenaway, K. Rätzke et al., Liquids with permanent porosity. Nature 527, 216–220 (2015). https://doi.org/10.1038/nature16072
- K. Jie, Y. Zhou, H.P. Ryan, S. Dai, J.R. Nitschke, Engineering permanent porosity into liquids. Adv. Mater. 33, 2005745 (2021). https://doi.org/10.1002/adma.202005745
- J. Zhang, S.-H. Chai, Z.-A. Qiao, S.M. Mahurin, J. Chen et al., Porous liquids: a promising class of media for gas separation. Angew. Chem. Int. Ed. 54, 932–936 (2015). https://doi.org/10.1002/anie.201409420
- W. Shan, P.F. Fulvio, L. Kong, J.A. Schott, C.-L. Do-Thanh et al., New class of type III porous liquids: a promising platform for rational adjustment of gas sorption behavior. ACS Appl. Mater. Interfaces 10, 32–36 (2018). https://doi.org/10.1021/acsami.7b15873
- B.D. Egleston, K.V. Luzyanin, M.C. Brand, R. Clowes, M.E. Briggs et al., Controlling gas selectivity in molecular porous liquids by tuning the cage window size. Angew. Chem. Int. Ed. 59, 7362–7366 (2020). https://doi.org/10.1002/anie.201914037
- D.P. Erdosy, M.B. Wenny, J. Cho, C. DelRe, M.V. Walter et al., Microporous water with high gas solubilities. Nature 608, 712–718 (2022). https://doi.org/10.1038/s41586-022-05029-w
- N. Giri, C.E. Davidson, G. Melaugh, M.G. Del Pópolo, J.T.A. Jones et al., Alkylated organic cages: from porous crystals to neat liquids. Chem. Sci. 3, 2153 (2012). https://doi.org/10.1039/c2sc01007k
- T.D. Bennett, F.-X. Coudert, S.L. James, A.I. Cooper, The changing state of porous materials. Nat. Mater. 20, 1179–1187 (2021). https://doi.org/10.1038/s41563-021-00957-w
- R. Gaillac, P. Pullumbi, K.A. Beyer, K.W. Chapman, D.A. Keen et al., Liquid metal–organic frameworks. Nat. Mater. 16, 1149–1154 (2017). https://doi.org/10.1038/nmat4998
- S. Liu, J. Liu, X. Hou, T. Xu, J. Tong et al., Porous liquid: a stable ZIF-8 colloid in ionic liquid with permanent porosity. Langmuir 34, 3654–3660 (2018). https://doi.org/10.1021/acs.langmuir.7b04212
- D.S. Sholl, R.P. Lively, Seven chemical separations to change the world. Nature 532, 435–437 (2016). https://doi.org/10.1038/532435a
- D.L. Gin, R.D. Noble, Designing the next generation of chemical separation membranes. Science 332, 674–676 (2011). https://doi.org/10.1126/science.1203771
- H. Wang, J. Zhao, Y. Li, Y. Cao, Z. Zhu et al., Aqueous two-phase interfacial assembly of COF membranes for water desalination. Nano-Micro Lett. 14, 216 (2022). https://doi.org/10.1007/s40820-022-00968-5
- I.V. Vorotyntsev, P.N. Drozdov, N.V. Karyakin, Ammonia permeability of a cellulose acetate membrane. Inorg. Mater. 42, 231–235 (2006). https://doi.org/10.1134/S0020168506030034
- C. Makhloufi, D. Roizard, E. Favre, Reverse selective NH3/CO2 permeation in fluorinated polymers using membrane gas separation. J. Membr. Sci. 441, 63–72 (2013). https://doi.org/10.1016/j.memsci.2013.03.048
- A.V. Vorobiev, I.N. Beckman, Ammonia and carbon dioxide permeability through perfluorosulfonic membranes. Russ. Chem. Bull. 51, 275–281 (2002). https://doi.org/10.1023/A:1015403626398
- W.A. Phillip, E. Martono, L. Chen, M.A. Hillmyer, E.L. Cussler, Seeking an ammonia selective membrane based on nanostructured sulfonated block copolymers. J. Membr. Sci. 337, 39–46 (2009). https://doi.org/10.1016/j.memsci.2009.03.013
- L. Ansaloni, Z. Dai, J.J. Ryan, K.P. Mineart, Q. Yu et al., Solvent-templated Block ionomers for base- and acid-gas separations: effect of humidity on ammonia and carbon dioxide permeation. Adv. Mater. Interfaces 4, 1700854 (2017). https://doi.org/10.1002/admi.201700854
- K. Wakimoto, W.-W. Yan, N. Moriyama, H. Nagasawa, M. Kanezashi et al., Ammonia permeation of fluorinated sulfonic acid polymer/ceramic composite membranes. J. Membr. Sci. 658, 120718 (2022). https://doi.org/10.1016/j.memsci.2022.120718
- B. Yang, L. Bai, Z. Wang, H. Jiang, S. Zeng et al., Exploring NH3 transport properties by tailoring ionic liquids in pebax-based hybrid membranes. Ind. Eng. Chem. Res. 60, 9570–9577 (2021). https://doi.org/10.1021/acs.iecr.1c01408
- H. Jiang, L. Bai, K. Peng, L. Yuan, S. Zheng et al., Blended membranes with ionic liquids tailoring by hydroxyl group for efficient NH3 separation. J. Membr. Sci. 674, 121480 (2023). https://doi.org/10.1016/j.memsci.2023.121480
- B. Yang, L. Bai, T. Li, L. Deng, L. Liu et al., Super selective ammonia separation through multiple-site interaction with ionic liquid-based hybrid membranes. J. Membr. Sci. 628, 119264 (2021). https://doi.org/10.1016/j.memsci.2021.119264
- B. Yang, L. Bai, S. Zeng, S. Luo, L. Liu et al., NH3 separation membranes with self-assembled gas highways induced by protic ionic liquids. Chem. Eng. J. 421, 127876 (2021). https://doi.org/10.1016/j.cej.2020.127876
- Z. Wang, H. Dong, X. Yu, Y. Ji, T. Hou et al., Two-dimensional porous polyphthalocyanine (PPc) as an efficient gas-separation membrane for ammonia synthesis. Curr. Appl. Phys. 17, 1765–1770 (2017). https://doi.org/10.1016/j.cap.2017.08.019
- I.I. Zaripov, I.M. Davletbaeva, Z.Z. Faizulina, R.S. Davletbaev, A.T. Gubaidullin et al., Synthesis and characterization of novel nanoporous gl-POSS-branched polymeric gas separation membranes. Membranes 10, 110 (2020). https://doi.org/10.3390/membranes10050110
- M. Kanezashi, A. Yamamoto, T. Yoshioka, T. Tsuru, Characteristics of ammonia permeation through porous silica membranes. AlChE. J. 56, 1204–1212 (2010). https://doi.org/10.1002/aic.12059
- O. Camus, S. Perera, B. Crittenden, Y.C. van Delft, D.F. Meyer et al., Ceramic membranes for ammonia recovery. AlChE. J. 52, 2055–2065 (2006). https://doi.org/10.1002/aic.10800
- H. Inami, C. Abe, Y. Hasegawa, Development of ammonia selectively permeable zeolite membrane for sensor in sewer system. Membranes 11, 348 (2021). https://doi.org/10.3390/membranes11050348
- D.I. Petukhov, A.S. Kan, A.P. Chumakov, O.V. Konovalov, R.G. Valeev et al., MXene-based gas separation membranes with sorption type selectivity. J. Membr. Sci. 621, 118994 (2021). https://doi.org/10.1016/j.memsci.2020.118994
- M.A. Komkova, I.S. Sadilov, V.A. Brotsman, D.I. Petukhov, A.A. Eliseev, Facilitated transport of ammonia in ultra-thin Prussian Blue membranes with potential-tuned selectivity. J. Membr. Sci. 639, 119714 (2021). https://doi.org/10.1016/j.memsci.2021.119714
- Q. Wei, J.M. Lucero, J.M. Crawford, J.D. Way, C.A. Wolden et al., Ammonia separation from N2 and H2 over LTA zeolitic imidazolate framework membranes. J. Membr. Sci. 623, 119078 (2021). https://doi.org/10.1016/j.memsci.2021.119078
- S. Padinjarekutt, H. Li, S. Ren, P. Ramesh, F. Zhou et al., Na+-gated nanochannel membrane for highly selective ammonia (NH3) separation in the Haber-Bosch process. Chem. Eng. J. 454, 139998 (2023). https://doi.org/10.1016/j.cej.2022.139998
- S. Padinjarekutt, B. Sengupta, H. Li, K. Friedman, D. Behera et al., Synthesis of Na+-gated nanochannel membranes for the ammonia (NH3) separation. J. Membr. Sci. 674, 121512 (2023). https://doi.org/10.1016/j.memsci.2023.121512
- L. Yu, L. Hao, Y. Feng, J. Pang, M. Guo et al., Assembling ionic liquid into porous molecular filler of mixed matrix membrane to trigger high gas permeability, selectivity, and stability for CO2/CH4 separation. Nano Res. 17, 4535–4543 (2024). https://doi.org/10.1007/s12274-023-6329-z
- Y. Wang, Y. Ren, Y. Cao, X. Liang, G. He et al., Engineering HOF-based mixed-matrix membranes for efficient CO2 separation. Nano-Micro Lett. 15, 50 (2023). https://doi.org/10.1007/s40820-023-01020-w
- Y. Yang, B. Pang, W. Zeng, B. Ma, P. Yin et al., Enhance gas-separation efficiency of mixed matrix membranes by lamellarly arranged metal–organic polyhedron. Nano Res. 16, 11450–11454 (2023). https://doi.org/10.1007/s12274-023-5874-9
- A. Raza, S. Farrukh, A. Hussain, Synthesis, characterization and NH3/N2 gas permeation study of nanocomposite membranes. J. Polym. Environ. 25, 46–55 (2017). https://doi.org/10.1007/s10924-016-0783-6
- J.B. DeCoste, M.S. Denny Jr., G.W. Peterson, J.J. Mahle, S.M. Cohen, Enhanced aging properties of HKUST-1 in hydrophobic mixed-matrix membranes for ammonia adsorption. Chem. Sci. 7, 2711–2716 (2016). https://doi.org/10.1039/c5sc04368a
- H. Jiang, L. Bai, Z. Wang, W. Zheng, B. Yang et al., Mixed matrix membranes containing Cu-based metal organic framework and functionalized ionic liquid for efficient NH3 separation. J. Membr. Sci. 659, 120780 (2022). https://doi.org/10.1016/j.memsci.2022.120780
- M.-S. Yao, K.-I. Otake, T. Koganezawa, M. Ogasawara, H. Asakawa et al., Growth mechanisms and anisotropic softness–dependent conductivity of orientation-controllable metal–organic framework nanofilms. Proc. Natl. Acad. Sci. U.S.A. 120, e2305125120 (2023). https://doi.org/10.1073/pnas.2305125120
- M.-S. Yao, K.-I. Otake, S. Kitagawa, Interface chemistry of conductive crystalline porous thin films. Trends Chem. 5, 588–604 (2023). https://doi.org/10.1016/j.trechm.2023.03.002
References
D. Feng, L. Zhou, T.J. White, A.K. Cheetham, T. Ma et al., Nanoengineering metal–organic frameworks and derivatives for electrosynthesis of ammonia. Nano-Micro Lett. 15, 203 (2023). https://doi.org/10.1007/s40820-023-01169-4
S. Zhang, Y. Zha, Y. Ye, K. Li, Y. Lin et al., Oxygen-coordinated single Mn sites for efficient electrocatalytic nitrate reduction to ammonia. Nano-Micro Lett. 16, 9 (2023). https://doi.org/10.1007/s40820-023-01217-z
Q. Hu, S. Qi, Q. Huo, Y. Zhao, J. Sun et al., Designing efficient nitrate reduction electrocatalysts by identifying and optimizing active sites of co-based spinels. J. Am. Chem. Soc. 146, 2967–2976 (2024). https://doi.org/10.1021/jacs.3c06904
F.B. Juangsa, A.R. Irhamna, M. Aziz, Production of ammonia as potential hydrogen carrier: review on thermochemical and electrochemical processes. Int. J. Hydrog. Energy 46, 14455–14477 (2021). https://doi.org/10.1016/j.ijhydene.2021.01.214
J. Li, S. Lai, D. Chen, R. Wu, N. Kobayashi et al., A review on combustion characteristics of ammonia as a carbon-free fuel. Front. Energy Res. 9, 760356 (2021). https://doi.org/10.3389/fenrg.2021.760356
X. Li, C. Deng, Y. Kong, Q. Huo, L. Mi et al., Unlocking the transition of electrochemical water oxidation mechanism induced by heteroatom doping. Angew. Chem. Int. Ed. 62, 2309732 (2023). https://doi.org/10.1002/anie.202309732
X. Li, H. Zhang, Q. Hu, W. Zhou, J. Shao et al., Amorphous NiFe oxide-based nanoreactors for efficient electrocatalytic water oxidation. Angew. Chem. Int. Ed. 62, 2300478 (2023). https://doi.org/10.1002/anie.202300478
Q. Hu, K. Gao, X. Wang, H. Zheng, J. Cao et al., Subnanometric Ru clusters with upshifted D band center improve performance for alkaline hydrogen evolution reaction. Nat. Commun. 13, 3958 (2022). https://doi.org/10.1038/s41467-022-31660-2
A.G. Bannov, M.V. Popov, A.E. Brester, P.B. Kurmashov, Recent advances in ammonia gas sensors based on carbon nanomaterials. Micromachines 12, 186 (2021). https://doi.org/10.3390/mi12020186
R.B. Bist, S. Subedi, L. Chai, X. Yang, Ammonia emissions, impacts, and mitigation strategies for poultry production: a critical review. J. Environ. Manag. 328, 116919 (2023). https://doi.org/10.1016/j.jenvman.2022.116919
K.E. Wyer, D.B. Kelleghan, V. Blanes-Vidal, G. Schauberger, T.P. Curran, Ammonia emissions from agriculture and their contribution to fine particulate matter: a review of implications for human health. J. Environ. Manag. 323, 116285 (2022). https://doi.org/10.1016/j.jenvman.2022.116285
S.L. Nordahl, C.V. Preble, T.W. Kirchstetter, C.D. Scown, Greenhouse gas and air pollutant emissions from composting. Environ. Sci. Technol. 57, 2235–2247 (2023). https://doi.org/10.1021/acs.est.2c05846
J. Tian, B. Liu, Ammonia capture with ionic liquid systems: a review. Crit. Rev. Environ. Sci. Technol. 52, 767–809 (2022). https://doi.org/10.1080/10643389.2020.1835437
L. Zhang, H. Dong, S. Zeng, Z. Hu, S. Hussain et al., An overview of ammonia separation by ionic liquids. Ind. Eng. Chem. Res. 60, 6908–6924 (2021). https://doi.org/10.1021/acs.iecr.1c00780
S. Zeng, Y. Cao, P. Li, X. Liu, X. Zhang, Ionic liquid–based green processes for ammonia separation and recovery. Curr. Opin. Green Sustain. Chem. 25, 100354 (2020). https://doi.org/10.1016/j.cogsc.2020.100354
K. Vikrant, V. Kumar, K.-H. Kim, D. Kukkar, Metal–organic frameworks (MOFs): potential and challenges for capture and abatement of ammonia. J. Mater. Chem. A 5, 22877–22896 (2017). https://doi.org/10.1039/C7TA07847A
T. Islamoglu, Z. Chen, M.C. Wasson, C.T. Buru, K.O. Kirlikovali et al., Metal–organic frameworks against toxic chemicals. Chem. Rev. 120, 8130–8160 (2020). https://doi.org/10.1021/acs.chemrev.9b00828
Y. Zhang, X. Cui, H. Xing, Recent advances in the capture and abatement of toxic gases and vapors by metal–organic frameworks. Mater. Chem. Front. 5, 5970–6013 (2021). https://doi.org/10.1039/d1qm00516b
X. Han, S. Yang, M. Schröder, Metal–organic framework materials for production and distribution of ammonia. J. Am. Chem. Soc. 145, 1998–2012 (2023). https://doi.org/10.1021/jacs.2c06216
X. Sun, G. Li, S. Zeng, L. Yuan, L. Bai et al., Ultra-high NH3 absorption by triazole cation-functionalized ionic liquids through multiple hydrogen bonding. Sep. Purif. Technol. 307, 122825 (2023). https://doi.org/10.1016/j.seppur.2022.122825
L. Yuan, X. Zhang, B. Ren, Y. Yang, Y. Bai et al., Dual-functionalized protic ionic liquids for efficient absorption of NH3 through synergistically physicochemical interaction. J. Chem. Technol. Biotechnol. 95, 1815–1824 (2020). https://doi.org/10.1002/jctb.6381
A.J. Rieth, Y. Tulchinsky, M. Dincă, High and reversible ammonia uptake in mesoporous azolate metal–organic frameworks with open Mn Co, and Ni sites. J. Am. Chem. Soc. 138, 9401–9404 (2016). https://doi.org/10.1021/jacs.6b05723
Y. Su, K.-I. Otake, J.-J. Zheng, S. Horike, S. Kitagawa et al., Separating water isotopologues using diffusion-regulatory porous materials. Nature 611, 289–294 (2022). https://doi.org/10.1038/s41586-022-05310-y
A. Bavykina, A. Cadiau, J. Gascon, Porous liquids based on porous cages, metal organic frameworks and metal organic polyhedra. Coord. Chem. Rev. 386, 85–95 (2019). https://doi.org/10.1016/j.ccr.2019.01.015
Z. Zhang, B. Yang, B. Zhang, M. Cui, J. Tang et al., Type II porous ionic liquid based on metal–organic cages that enables L-tryptophan identification. Nat. Commun. 13, 2353 (2022). https://doi.org/10.1038/s41467-022-30092-2
H. Liu, B. Liu, L.-C. Lin, G. Chen, Y. Wu et al., A hybrid absorption-adsorption method to efficiently capture carbon. Nat. Commun. 5, 5147 (2014). https://doi.org/10.1038/ncomms6147
M. Costa Gomes, L. Pison, C. Červinka, A. Padua, Porous ionic liquids or liquid metal–organic frameworks? Angew. Chem. Int. Ed. 57, 11909–11912 (2018). https://doi.org/10.1002/anie.201805495
Z. Wang, A. Ozcan, G.A. Craig, F. Haase, T. Aoyama et al., Pore-networked gels: permanently porous ionic liquid gels with linked metal–organic polyhedra networks. J. Am. Chem. Soc. 145, 14456–14465 (2023). https://doi.org/10.1021/jacs.3c03778
H. Dong, X. Yuan, Y. Wang, Y. Lu, H. He, Preparation of two-dimensional nanoconfined ionic liquid membrane and its molecular mechanism of CO2 separation. Chem. Eng. Sci. 283, 119393 (2024). https://doi.org/10.1016/j.ces.2023.119393
B. Yang, H. Jiang, L. Bai, Y. Bai, T. Song et al., Application of ionic liquids in the mixed matrix membranes for CO2 separation: an overview. Int. J. Greenh. Gas Contr. 121, 103796 (2022). https://doi.org/10.1016/j.ijggc.2022.103796
X. Zhang, X. Zhang, H. Dong, Z. Zhao, S. Zhang et al., Carbon capture with ionic liquids: overview and progress. Energy Environ. Sci. 5, 6668 (2012). https://doi.org/10.1039/c2ee21152a
A. Yokozeki, M.B. Shiflett, Vapor–liquid equilibria of ammonia+ionic liquid mixtures. Appl. Energy 84, 1258–1273 (2007). https://doi.org/10.1016/j.apenergy.2007.02.005
W. Shi, E.J. Maginn, Molecular simulation of ammonia absorption in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]). AlChE. J. 55, 2414–2421 (2009). https://doi.org/10.1002/aic.11910
J. Palomar, M. Gonzalez-Miquel, J. Bedia, F. Rodriguez, J.J. Rodriguez, Task-specific ionic liquids for efficient ammonia absorption. Sep. Purif. Technol. 82, 43–52 (2011). https://doi.org/10.1016/j.seppur.2011.08.014
J. Bedia, J. Palomar, M. Gonzalez-Miquel, F. Rodriguez, J.J. Rodriguez, Screening ionic liquids as suitable ammonia absorbents on the basis of thermodynamic and kinetic analysis. Sep. Purif. Technol. 95, 188–195 (2012). https://doi.org/10.1016/j.seppur.2012.05.006
Z. Li, X. Zhang, H. Dong, X. Zhang, H. Gao et al., Efficient absorption of ammonia with hydroxyl-functionalized ionic liquids. RSC Adv. 5, 81362–81370 (2015). https://doi.org/10.1039/C5RA13730F
M.S. Larrechi, A. Cera-Manjarres, D. Salavera, A. Coronas, Quantitative analysis of the interaction of ammonia with 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate ionic liquid. Understanding the volumetric and transport properties of their mixtures. J. Mol. Liq. 301, 112440 (2020). https://doi.org/10.1016/j.molliq.2020.112440
D. Shang, X. Zhang, S. Zeng, K. Jiang, H. Gao et al., Protic ionic liquid[Bim][NTf2]with strong hydrogen bond donating ability for highly efficient ammonia absorption. Green Chem. 19, 937–945 (2017). https://doi.org/10.1039/c6gc03026b
B. Yang, D. Shang, W. Tu, S. Zeng, L. Bai et al., Studies on the physical properties variations of protic ionic liquid during NH3 absorption. J. Mol. Liq. 296, 111791 (2019). https://doi.org/10.1016/j.molliq.2019.111791
T. Zhao, S. Zeng, Y. Li, Y. Bai, L. Bai et al., Molecular insight into the effect of ion structure and interface behavior on the ammonia absorption by ionic liquids. AlChE. J. 68, e17860 (2022). https://doi.org/10.1002/aic.17860
D. Shang, S. Zeng, X. Zhang, X. Zhang, L. Bai et al., Highly efficient and reversible absorption of NH3 by dual functionalised ionic liquids with protic and Lewis acidic sites. J. Mol. Liq. 312, 113411 (2020). https://doi.org/10.1016/j.molliq.2020.113411
L. Yuan, H. Gao, H. Jiang, S. Zeng, T. Li et al., Experimental and thermodynamic analysis of NH3 absorption in dual-functionalized pyridinium-based ionic liquids. J. Mol. Liq. 323, 114601 (2021). https://doi.org/10.1016/j.molliq.2020.114601
X. Luo, R. Qiu, X. Chen, B. Pei, J. Lin et al., Reversible construction of ionic networks through cooperative hydrogen bonds for efficient ammonia absorption. ACS Sustain. Chem. Eng. 7(11), 9888–9895 (2019). https://doi.org/10.1021/acssuschemeng.9b00554
R. Qiu, X. Luo, L. Yang, J. Li, X. Chen et al., Regulated threshold pressure of reversibly sigmoidal NH3 absorption isotherm with ionic liquids. ACS Sustain. Chem. Eng. 8, 1637–1643 (2020). https://doi.org/10.1021/acssuschemeng.9b06555
D. Deng, X. Deng, K. Li, H. Fang, Protic ionic liquid ethanolamine thiocyanate with multiple sites for highly efficient NH3 uptake and NH3/CO2 separation. Sep. Purif. Technol. 276, 119298 (2021). https://doi.org/10.1016/j.seppur.2021.119298
T. Makino, M. Kanakubo, NH3 absorption in Brønsted acidic imidazolium- and ammonium-based ionic liquids. New J. Chem. 44, 20665–20675 (2020). https://doi.org/10.1039/d0nj04743k
W. Chen, S. Liang, Y. Guo, X. Gui, D. Tang, Investigation on vapor–liquid equilibria for binary systems of metal ion-containing ionic liquid[bmim]Zn2Cl5/NH3 by experiment and modified UNIFAC model. Fluid Phase Equilib. 360, 1–6 (2013). https://doi.org/10.1016/j.fluid.2013.09.011
F.T.U. Kohler, S. Popp, H. Klefer, I. Eckle, C. Schrage et al., Supported ionic liquid phase (SILP) materials for removal of hazardous gas compounds–efficient and irreversible NH3 adsorption. Green Chem. 16, 3560–3568 (2014). https://doi.org/10.1039/C3GC42275E
S. Zeng, L. Liu, D. Shang, J. Feng, H. Dong et al., Efficient and reversible absorption of ammonia by cobalt ionic liquids through Lewis acid–base and cooperative hydrogen bond interactions. Green Chem. 20, 2075–2083 (2018). https://doi.org/10.1039/C8GC00215K
J. Wang, S. Zeng, F. Huo, D. Shang, H. He et al., Metal chloride anion-based ionic liquids for efficient separation of NH3. J. Clean. Prod. 206, 661–669 (2019). https://doi.org/10.1016/j.jclepro.2018.09.192
Z. Cai, J. Zhang, Y. Ma, W. Wu, Y. Cao et al., Chelation-activated multiple-site reversible chemical absorption of ammonia in ionic liquids. AlChE. J. 68, e17632 (2022). https://doi.org/10.1002/aic.17632
L.L. Sze, S. Pandey, S. Ravula, S. Pandey, H. Zhao et al., Ternary deep eutectic solvents tasked for carbon dioxide capture. ACS Sustain. Chem. Eng. 2, 2117–2123 (2014). https://doi.org/10.1021/sc5001594
Y. Li, M.C. Ali, Q. Yang, Z. Zhang, Z. Bao et al., Hybrid deep eutectic solvents with flexible hydrogen-bonded supramolecular networks for highly efficient uptake of NH3. ChemSusChem 10, 3368–3377 (2017). https://doi.org/10.1002/cssc.201701135
F.-Y. Zhong, K. Huang, H.-L. Peng, Solubilities of ammonia in choline chloride plus urea at (298.2–353.2) K and (0–300) kPa. J. Chem. Thermodyn. 129, 5–11 (2019). https://doi.org/10.1016/j.jct.2018.09.020
X. Deng, X. Duan, L. Gong, D. Deng, Ammonia solubility, density, and viscosity of choline chloride–dihydric alcohol deep eutectic solvents. J. Chem. Eng. Data 65, 4845–4854 (2020). https://doi.org/10.1021/acs.jced.0c00386
X. Sun, Q. Wang, S. Wu, X. Zhao, L. Wei et al., Metal chlorides-promoted ammonia absorption of deep eutectic solvent. Int. J. Hydrogen Energy 47(36), 16121–16131 (2022). https://doi.org/10.1016/j.ijhydene.2022.03.101
D. Deng, X. Duan, B. Gao, C. Zhang, X. Deng et al., Efficient and reversible absorption of NH3 by functional azole–glycerol deep eutectic solvents. New J. Chem. 43, 11636–11642 (2019). https://doi.org/10.1039/C9NJ01788G
Y. Cao, J. Zhang, Y. Ma, W. Wu, K. Huang et al., Designing low-viscosity deep eutectic solvents with multiple weak–acidic groups for ammonia separation. ACS Sustain. Chem. Eng. 9, 7352–7360 (2021). https://doi.org/10.1021/acssuschemeng.1c01674
W.-J. Jiang, J.-B. Zhang, Y.-T. Zou, H.-L. Peng, K. Huang, Manufacturing acidities of hydrogen-bond donors in deep eutectic solvents for effective and reversible NH3 capture. ACS Sustain. Chem. Eng. 8, 13408–13417 (2020). https://doi.org/10.1021/acssuschemeng.0c04215
X. Duan, B. Gao, C. Zhang, D. Deng, Solubility and thermodynamic properties of NH3 in choline chloride-based deep eutectic solvents. J. Chem. Thermodyn. 133, 79–84 (2019). https://doi.org/10.1016/j.jct.2019.01.031
F.-Y. Zhong, H.-L. Peng, D.-J. Tao, P.-K. Wu, J.-P. Fan et al., Phenol-based ternary deep eutectic solvents for highly efficient and reversible absorption of NH3. ACS Sustain. Chem. Eng. 7, 3258–3266 (2019). https://doi.org/10.1021/acssuschemeng.8b05221
F.-Y. Zhong, L. Zhou, J. Shen, Y. Liu, J.-P. Fan et al., Rational design of azole-based deep eutectic solvents for highly efficient and reversible capture of ammonia. ACS Sustain. Chem. Eng. 7, 14170–14179 (2019). https://doi.org/10.1021/acssuschemeng.9b02845
Z.-L. Li, F.-Y. Zhong, J.-Y. Huang, H.-L. Peng, K. Huang, Sugar-based natural deep eutectic solvents as potential absorbents for NH3 capture at elevated temperatures and reduced pressures. J. Mol. Liq. 317, 113992 (2020). https://doi.org/10.1016/j.molliq.2020.113992
O.V. Kazarina, A.N. Petukhov, R.N. Nagrimanov, A.V. Vorotyntsev, M.E. Atlaskina et al., The role of HBA structure of deep eutectic solvents consisted of ethylene glycol and chlorides of a choline family for improving the ammonia capture performance. J. Mol. Liq. 373, 121216 (2023). https://doi.org/10.1016/j.molliq.2023.121216
O.V. Kazarina, A.N. Petukhov, A.V. Vorotyntsev, M.E. Atlaskina, A.A. Atlaskin et al., The way for improving the efficiency of ammonia and carbon dioxide absorption of choline chloride: urea mixtures by modifying a choline cation. Fluid Phase Equilib. 568, 113736 (2023). https://doi.org/10.1016/j.fluid.2023.113736
O.V. Kazarina, V.N. Agieienko, A.N. Petukhov, A.V. Vorotyntsev, M.E. Atlaskina et al., Deep eutectic solvents composed of urea and new salts of a choline family for efficient ammonia absorption. J. Chem. Eng. Data 67, 138–150 (2022). https://doi.org/10.1021/acs.jced.1c00684
J.-Y. Zhang, K. Huang, Densities and viscosities of, and NH3 solubilities in deep eutectic solvents composed of ethylamine hydrochloride and acetamide. J. Chem. Thermodyn. 139, 105883 (2019). https://doi.org/10.1016/j.jct.2019.105883
W.-J. Jiang, F.-Y. Zhong, Y. Liu, K. Huang, Effective and reversible capture of NH3 by ethylamine hydrochloride plus glycerol deep eutectic solvents. ACS Sustain. Chem. Eng. 7, 10552–10560 (2019). https://doi.org/10.1021/acssuschemeng.9b01102
W.-J. Jiang, F.-Y. Zhong, L.-S. Zhou, H.-L. Peng, J.-P. Fan et al., Chemical dual-site capture of NH3 by unprecedentedly low-viscosity deep eutectic solvents. Chem. Commun. 56, 2399–2402 (2020). https://doi.org/10.1039/C9CC09043F
N.-N. Cheng, Z.-L. Li, H.-C. Lan, W.-L. Xu, W.-J. Jiang et al., Deep eutectic solvents with multiple weak acid sites for highly efficient, reversible and selective absorption of ammonia. Sep. Purif. Technol. 269, 118791 (2021). https://doi.org/10.1016/j.seppur.2021.118791
L. Zheng, X. Zhang, Q. Li, Y. Ma, Z. Cai et al., Effective ammonia separation by non-chloride deep eutectic solvents composed of dihydroxybenzoic acids and ethylene glycol through multiple-site interaction. Sep. Purif. Technol. 309, 123136 (2023). https://doi.org/10.1016/j.seppur.2023.123136
A.I. Akhmetshina, A.N. Petukhov, A. Mechergui, A.V. Vorotyntsev, A.V. Nyuchev et al., Evaluation of methanesulfonate-based deep eutectic solvent for ammonia sorption. J. Chem. Eng. Data 63, 1896–1904 (2018). https://doi.org/10.1021/acs.jced.7b01004
Y. Cao, X. Zhang, S. Zeng, Y. Liu, H. Dong et al., Protic ionic liquid-based deep eutectic solvents with multiple hydrogen bonding sites for efficient absorption of NH3. AIChE J. 66(8), e16253 (2020). https://doi.org/10.1002/aic.16253
Z.-L. Li, F.-Y. Zhong, L.-S. Zhou, Z.-Q. Tian, K. Huang, Deep eutectic solvents formed by N-methylacetamide and heterocyclic weak acids for highly efficient and reversible chemical absorption of ammonia. Ind. Eng. Chem. Res. 59, 2060–2067 (2020). https://doi.org/10.1021/acs.iecr.9b04924
D. Deng, B. Gao, C. Zhang, X. Duan, Y. Cui et al., Investigation of protic NH4SCN− based deep eutectic solvents as highly efficient and reversible NH3 absorbents. Chem. Eng. J. 358, 936–943 (2019). https://doi.org/10.1016/j.cej.2018.10.077
D. Deng, X. Deng, X. Duan, L. Gong, Protic guanidine isothiocyanate plus acetamide deep eutectic solvents with low viscosity for efficient NH3 capture and NH3/CO2 separation. J. Mol. Liq. 324, 114719 (2021). https://doi.org/10.1016/j.molliq.2020.114719
B. Han, C. Butterly, W. Zhang, J.-Z. He, D. Chen, Adsorbent materials for ammonium and ammonia removal: a review. J. Clean. Prod. 283, 124611 (2021). https://doi.org/10.1016/j.jclepro.2020.124611
N.Z. Mohd Azmi, A. Buthiyappan, A.A. Abdul Raman, M.F. Abdul Patah, S. Sufian, Recent advances in biomass based activated carbon for carbon dioxide capture—a review. J. Ind. Eng. Chem. 116, 1–20 (2022). https://doi.org/10.1016/j.jiec.2022.08.021
F. Zhu, Z. Wang, J. Huang, W. Hu, D. Xie et al., Efficient adsorption of ammonia on activated carbon from hydrochar of pomelo peel at room temperature: role of chemical components in feedstock. J. Clean. Prod. 406, 137076 (2023). https://doi.org/10.1016/j.jclepro.2023.137076
C. Cardenas, L. Sigot, C. Vallières, S. Marsteau, M. Marchal et al., Ammonia capture by adsorption on doped and undoped activated carbon: isotherm and breakthrough curve measurements. Sep. Purif. Technol. 313, 123454 (2023). https://doi.org/10.1016/j.seppur.2023.123454
T. Zhang, H. Miyaoka, H. Miyaoka, T. Ichikawa, Y. Kojima, Review on ammonia absorption materials: metal hydrides, halides, and borohydrides. ACS Appl. Energy Mater. 1, 232–242 (2018). https://doi.org/10.1021/acsaem.7b00111
J. Kim, H. Lee, H.T. Vo, G. Lee, N. Kim et al., Bead-shaped mesoporous alumina adsorbents for adsorption of ammonia. Materials (Basel) 13, 1375 (2020). https://doi.org/10.3390/ma13061375
W. Zheng, J. Hu, S. Rappeport, Z. Zheng, Z. Wang et al., Activated carbon fiber composites for gas phase ammonia adsorption. Microporous Mesoporous Mater. 234, 146–154 (2016). https://doi.org/10.1016/j.micromeso.2016.07.011
C. Li, S. Zhao, M. Li, Z. Yao, Y. Li et al., The effect of the active carbonyl groups and residual acid on the ammonia adsorption over the acid-modified activated carbon. Front. Environ. Sci. 11, 976113 (2023). https://doi.org/10.3389/fenvs.2023.976113
W. Zhang, F. Liu, X. Kan, Y. Zheng, A. Zheng et al., Developing ordered mesoporous silica superacids for high-precision adsorption and separation of ammonia. Chem. Eng. J. 457, 141263 (2023). https://doi.org/10.1016/j.cej.2022.141263
I. Matito-Martos, A. Martin-Calvo, C.O. Ania, J.B. Parra, J.M. Vicent-Luna et al., Role of hydrogen bonding in the capture and storage of ammonia in zeolites. Chem. Eng. J. 387, 124062 (2020). https://doi.org/10.1016/j.cej.2020.124062
W. Ouyang, S. Zheng, C. Wu, X. Hu, R. Chen et al., Dynamic ammonia adsorption by FAU zeolites to below 0.1 ppm for hydrogen energy applications. Int. J. Hydrog. Energy 46, 32559–32569 (2021). https://doi.org/10.1016/j.ijhydene.2021.07.107
J.M. Lucero, J.M. Crawford, C.A. Wolden, M.A. Carreon, Tunability of ammonia adsorption over NaP zeolite. Microporous Mesoporous Mater. 324, 111288 (2021). https://doi.org/10.1016/j.micromeso.2021.111288
B. Zhakisheva, J.J. Gutiérrez-Sevillano, S. Calero, Ammonia and water in zeolites: effect of aluminum distribution on the heat of adsorption. Sep. Purif. Technol. 306, 122564 (2023). https://doi.org/10.1016/j.seppur.2022.122564
C. Shen, L. Shen, Cyclic NH3 adsorption–desorption characteristics of Cu-based metal halides as ammonia separation and storage procedure. J. Energy Inst. 109, 101250 (2023). https://doi.org/10.1016/j.joei.2023.101250
Z. Cao, F. Akhtar, Porous strontium chloride scaffolded by graphene networks as ammonia carriers. Adv. Funct. Mater. 31, 2008505 (2021). https://doi.org/10.1002/adfm.202008505
T. Zhu, B. Pei, T. Di, Y. Xia, T. Li et al., Thirty-minute preparation of microporous polyimides with large surface areas for ammonia adsorption. Green Chem. 22, 7003–7009 (2020). https://doi.org/10.1039/d0gc02794d
Y.-S. Han, S. An, J. Dai, J. Hu, Q. Xu et al., Defect-engineering of anionic porous aromatic frameworks for ammonia capture. ACS Appl. Polym. Mater. 3, 4534–4542 (2021). https://doi.org/10.1021/acsapm.1c00589
J.F. Van Humbeck, T.M. McDonald, X. Jing, B.M. Wiers, G. Zhu et al., Ammonia capture in porous organic polymers densely functionalized with Brønsted acid groups. J. Am. Chem. Soc. 136, 2432–2440 (2014). https://doi.org/10.1021/ja4105478
J. Zhang, Y. Ma, W. Wu, Z. Cai, Y. Cao et al., Carboxylic functionalized mesoporous polymers for fast, highly efficient, selective and reversible adsorption of ammonia. Chem. Eng. J. 448, 137640 (2022). https://doi.org/10.1016/j.cej.2022.137640
D. Jung, Z. Chen, S. Alayoglu, M.R. Mian, T.A. Goetjen et al., Postsynthetically modified polymers of intrinsic microporosity (PIMs) for capturing toxic gases. ACS Appl. Mater. Interfaces 13, 10409–10415 (2021). https://doi.org/10.1021/acsami.0c21741
C.-C. Hsieh, J.-S. Tsai, J.-R. Chang, Effects of moisture on NH3 Capture using activated carbon and acidic porous polymer modified by impregnation with H3PO4: sorbent material characterized by synchrotron XRPD and FT-IR. Materials (Basel) 15, 784 (2022). https://doi.org/10.3390/ma15030784
G. Barin, G.W. Peterson, V. Crocellà, J. Xu, K.A. Colwell et al., Highly effective ammonia removal in a series of Brønsted acidic porous polymers: investigation of chemical and structural variations. Chem. Sci. 8, 4399–4409 (2017). https://doi.org/10.1039/c6sc05079d
Z. Han, Y. Mao, X. Pang, Y. Yan, Structure and functional group regulation of plastics for efficient ammonia capture. J. Hazard. Mater. 440, 129789 (2022). https://doi.org/10.1016/j.jhazmat.2022.129789
J. Mi, W. Peng, Y. Luo, W. Chen, L. Lin et al., A cationic polymerization strategy to design sulfonated micro–mesoporous polymers as efficient adsorbents for ammonia capture and separation. Macromolecules 54, 7010–7020 (2021). https://doi.org/10.1021/acs.macromol.1c00376
X. Kan, Z. Liu, F. Liu, F. Li, W. Chen et al., Sulfonated and ordered mesoporous polymers for reversible adsorption of ammonia: elucidation of sequential pore-space diffusion. Chem. Eng. J. 451, 139085 (2023). https://doi.org/10.1016/j.cej.2022.139085
D.W. Kang, M. Kang, M. Moon, H. Kim, S. Eom et al., PDMS-coated hypercrosslinked porous organic polymers modified via double postsynthetic acidifications for ammonia capture. Chem. Sci. 9, 6871–6877 (2018). https://doi.org/10.1039/c8sc02640h
D.W. Kang, M. Kang, D.W. Kim, H. Kim, Y.H. Lee et al., Engineered removal of trace NH3 by porous organic polymers modified via sequential post-sulfonation and post-alkylation. Adv. Sustain. Syst. 5, 2000161 (2021). https://doi.org/10.1002/adsu.202000161
R.J.S. Lima, D.V. Okhrimenko, S. Rudić, M.T.F. Telling, V.G. Sakai et al., Ammonia storage in hydrogen bond-rich microporous polymers. ACS Appl. Mater. Interfaces 12, 58161–58169 (2020). https://doi.org/10.1021/acsami.0c18855
J.-W. Lee, G. Barin, G.W. Peterson, J. Xu, K.A. Colwell et al., A microporous amic acid polymer for enhanced ammonia capture. ACS Appl. Mater. Interfaces 9, 33504–33510 (2017). https://doi.org/10.1021/acsami.7b02603
L. Luo, J. Li, X. Chen, X. Cao, Y. Liu et al., Superhigh and reversible NH3 uptake of cobaltous thiocyanate functionalized porous poly ionic liquids through competitive and cooperative interactions. Chem. Eng. J. 427, 131638 (2022). https://doi.org/10.1016/j.cej.2021.131638
L. Luo, Z. Wu, Z. Wu, Y. Liu, X. Huang et al., Role of structure in the ammonia uptake of porous polyionic liquids. ACS Sustain. Chem. Eng. 10, 4094–4104 (2022). https://doi.org/10.1021/acssuschemeng.1c06503
D.W. Kang, S.E. Ju, D.W. Kim, M. Kang, H. Kim et al., Emerging porous materials and their composites for NH3 gas removal. Adv. Sci. 7, 2002142 (2020). https://doi.org/10.1002/advs.202002142
M.-S. Yao, W.-H. Li, G. Xu, Metal–organic frameworks and their derivatives for electrically-transduced gas sensors. Coord. Chem. Rev. 426, 213479 (2021). https://doi.org/10.1016/j.ccr.2020.213479
M.-S. Yao, K.-I. Otake, J. Zheng, M. Tsujimoto, Y.-F. Gu et al., Integrated soft porosity and electrical properties of conductive-on-insulating metal–organic framework nanocrystals. Angew. Chem. Int. Ed. 62, e202303903 (2023). https://doi.org/10.1002/anie.202303903
Y. Gao, J. Wang, Y. Yang, J. Wang, C. Zhang et al., Engineering spin states of isolated copper species in a metal–organic framework improves urea electrosynthesis. Nano-Micro Lett. 15, 158 (2023). https://doi.org/10.1007/s40820-023-01127-0
C. Li, Y. Ji, Y. Wang, C. Liu, Z. Chen et al., Applications of metal–organic frameworks and their derivatives in electrochemical CO2 reduction. Nano-Micro Lett. 15, 113 (2023). https://doi.org/10.1007/s40820-023-01092-8
A. Takahashi, H. Tanaka, D. Parajuli, T. Nakamura, K. Minami et al., Historical pigment exhibiting ammonia gas capture beyond standard adsorbents with adsorption sites of two kinds. J. Am. Chem. Soc. 138, 6376–6379 (2016). https://doi.org/10.1021/jacs.6b02721
A.J. Rieth, M. Dincă, Controlled gas uptake in metal–organic frameworks with record ammonia sorption. J. Am. Chem. Soc. 140, 3461–3466 (2018). https://doi.org/10.1021/jacs.8b00313
A. Carné-Sánchez, J. Martínez-Esaín, T. Rookard, C.J. Flood, J. Faraudo et al., Ammonia capture in rhodium(II)-based metal–organic polyhedra via synergistic coordinative and H-bonding interactions. ACS Appl. Mater. Interfaces 15, 6747–6754 (2023). https://doi.org/10.1021/acsami.2c19206
D. Zhang, Y. Shen, J. Ding, H. Zhou, Y. Zhang et al., Tunable ammonia adsorption within metal–organic frameworks with different unsaturated metal sites. Molecules 27, 7847 (2022). https://doi.org/10.3390/molecules27227847
S. Moribe, Z. Chen, S. Alayoglu, Z.H. Syed, T. Islamoglu et al., Ammonia capture within isoreticular metal–organic frameworks with rod secondary building units. ACS Mater. Lett. 1, 476–480 (2019). https://doi.org/10.1021/acsmaterialslett.9b00307
K.O. Kirlikovali, Z. Chen, X. Wang, M.R. Mian, S. Alayoglu et al., Investigating the influence of hexanuclear clusters in isostructural metal–organic frameworks on toxic gas adsorption. ACS Appl. Mater. Interfaces 14, 3048–3056 (2022). https://doi.org/10.1021/acsami.1c20518
D.W. Kim, D.W. Kang, M. Kang, J.H. Lee, J.H. Choe et al., High ammonia uptake of a metal–organic framework adsorbent in a wide pressure range. Angew. Chem. Int. Ed. 59, 22531–22536 (2020). https://doi.org/10.1002/anie.202012552
T.N. Nguyen, I.M. Harreschou, J.-H. Lee, K.C. Stylianou, D.W. Stephan, A recyclable metal–organic framework for ammonia vapour adsorption. Chem. Commun. 56, 9600–9603 (2020). https://doi.org/10.1039/d0cc00741b
C. Marsh, X. Han, J. Li, Z. Lu, S.P. Argent et al., Exceptional packing density of ammonia in a dual-functionalized metal–organic framework. J. Am. Chem. Soc. 143, 6586–6592 (2021). https://doi.org/10.1021/jacs.1c01749
Z. Fang, B. Bueken, D.E. De Vos, R.A. Fischer, Defect-engineered metal–organic frameworks. Angew. Chem. Int. Ed. 54, 7234–7254 (2015). https://doi.org/10.1002/anie.201411540
J. Ren, M. Ledwaba, N.M. Musyoka, H.W. Langmi, M. Mathe et al., Structural defects in metal–organic frameworks (MOFs): formation, detection and control towards practices of interests. Coord. Chem. Rev. 349, 169–197 (2017). https://doi.org/10.1016/j.ccr.2017.08.017
Q.-Y. Ju, J.-J. Zheng, L. Xu, H.-Y. Jiang, Z.-Q. Xue et al., Enhanced carbon capture with motif-rich amino acid loaded defective robust metal–organic frameworks. Nano Res. 17, 2004–2010 (2024). https://doi.org/10.1007/s12274-023-5961-y
Y. Ma, W. Lu, X. Han, Y. Chen, I. da Silva et al., Direct observation of ammonia storage in UiO-66 incorporating Cu(II) binding sites. J. Am. Chem. Soc. 144, 8624–8632 (2022). https://doi.org/10.1021/jacs.2c00952
G.W. Peterson, G.W. Wagner, A. Balboa, J. Mahle, T. Sewell et al., Ammonia vapor removal by Cu(3)(BTC)(2) and its characterization by MAS NMR. J. Phys. Chem. C Nanomater. Interfaces 113, 13906–13917 (2009). https://doi.org/10.1021/jp902736z
C. Bae, M. Gu, Y. Jeon, D. Kim, J. Kim, Metal–organic frameworks for NH3 adsorption by different NH3 operating pressures. Bull. Korean Chem. Soc. 44(2), 112–124 (2022). https://doi.org/10.1002/bkcs.12640
J.H. Carter, C.G. Morris, H.G.W. Godfrey, S.J. Day, J. Potter et al., Long-term stability of MFM-300(Al) toward toxic air pollutants. ACS Appl. Mater. Interfaces 12, 42949–42954 (2020). https://doi.org/10.1021/acsami.0c11134
H.G.W. Godfrey, I. da Silva, L. Briggs, J.H. Carter, C.G. Morris et al., Ammonia storage by reversible host-guest site exchange in a robust metal–organic framework. Angew. Chem. Int. Ed. 57, 14778–14781 (2018). https://doi.org/10.1002/anie.201808316
X. Han, W. Lu, Y. Chen, I. da Silva, J. Li et al., High ammonia adsorption in MFM-300 materials: dynamics and charge transfer in host-guest binding. J. Am. Chem. Soc. 143, 3153–3161 (2021). https://doi.org/10.1021/jacs.0c11930
Z. Wang, Z. Li, H. Wang, Y. Zhao, Q. Xia et al., Regulating the pore microenvironment of microporous metal–organic frameworks for efficient adsorption of low-concentration ammonia. ACS Sustain. Chem. Eng. 10, 10945–10954 (2022). https://doi.org/10.1021/acssuschemeng.2c02944
J.H. Lee, S. Jeoung, Y.G. Chung, H.R. Moon, Elucidation of flexible metal–organic frameworks: research progresses and recent developments. Coord. Chem. Rev. 389, 161–188 (2019). https://doi.org/10.1016/j.ccr.2019.03.008
I. Senkovska, V. Bon, L. Abylgazina, M. Mendt, J. Berger et al., Understanding MOF flexibility: an analysis focused on pillared layer MOFs as a model system. Angew. Chem. Int. Ed. 62, e202218076 (2023). https://doi.org/10.1002/anie.202218076
Y. Chen, B. Shan, C. Yang, J. Yang, J. Li et al., Environmentally friendly synthesis of flexible MOFs M(NA)2 (M = Zn Co, Cu, Cd) with large and regenerable ammonia capacity. J. Mater. Chem. A 6, 9922–9929 (2018). https://doi.org/10.1039/C8TA02845A
D.W. Kang, M. Kang, H. Kim, J.H. Choe, D.W. Kim et al., A hydrogen-bonded organic framework (HOF) with type IV NH3 adsorption behavior. Angew. Chem. Int. Ed. 58, 16152–16155 (2019). https://doi.org/10.1002/anie.201911087
X. Song, Y. Wang, C. Wang, X. Gao, Y. Zhou et al., Self-healing hydrogen-bonded organic frameworks for low-concentration ammonia capture. J. Am. Chem. Soc. 146, 627–634 (2024). https://doi.org/10.1021/jacs.3c10492
J. Li, L. Luo, L. Yang, C. Zhao, Y. Liu et al., Ionic framework constructed with protic ionic liquid units for improving ammonia uptake. Chem. Commun. 57, 4384–4387 (2021). https://doi.org/10.1039/d1cc00441g
C.J. Doonan, D.J. Tranchemontagne, T.G. Glover, J.R. Hunt, O.M. Yaghi, Exceptional ammonia uptake by a covalent organic framework. Nat. Chem. 2, 235–238 (2010). https://doi.org/10.1038/nchem.548
Y. Cao, R. Wu, Y.-Y. Gao, Y. Zhou, J.-J. Zhu, Advances of electrochemical and electrochemiluminescent sensors based on covalent organic frameworks. Nano-Micro Lett. 16, 37 (2023). https://doi.org/10.1007/s40820-023-01249-5
Y. Yang, M. Faheem, L. Wang, Q. Meng, H. Sha et al., Surface pore engineering of covalent organic frameworks for ammonia capture through synergistic multivariate and open metal site approaches. ACS Cent. Sci. 4, 748–754 (2018). https://doi.org/10.1021/acscentsci.8b00232
Y. Zhao, S. Zhang, L. Wu, C. Guo, X. Song, Multiscale study on ammonia adsorption by Li-doped COF-10. Comput. Theor. Chem. 1175, 112744 (2020). https://doi.org/10.1016/j.comptc.2020.112744
Z. Zhu, H. Wang, X.-Y. Wu, K. Luo, J. Fan, Computational screening of metal–organic frameworks for ammonia capture from H2/N2/NH3 mixtures. ACS Omega 7, 37640–37653 (2022). https://doi.org/10.1021/acsomega.2c04517
Y. Khabzina, D. Farrusseng, Unravelling ammonia adsorption mechanisms of adsorbents in humid conditions. Microporous Mesoporous Mater. 265, 143–148 (2018). https://doi.org/10.1016/j.micromeso.2018.02.011
R. Chen, J. Liu, Competitive coadsorption of ammonia with water and sulfur dioxide on metal–organic frameworks at low pressure. Build. Environ. 207, 108421 (2022). https://doi.org/10.1016/j.buildenv.2021.108421
C. Shen, P. Wang, L. Shen, X. Yin, Z. Miao, NH3 adsorption performance of silicon-supported metal chlorides. Ind. Eng. Chem. Res. 61, 8616–8623 (2022). https://doi.org/10.1021/acs.iecr.2c00916
C. Shen, L. Shen, XCl2/MWCNTs─Composites based on multi-walled carbon nanotubes and metal chlorides for NH3 capture and separation. Energy Fuels 37, 5995–6001 (2023). https://doi.org/10.1021/acs.energyfuels.3c00467
X. Tian, J. Qiu, Z. Wang, Y. Chen, Z. Li et al., A record ammonia adsorption by calcium chloride confined in covalent organic frameworks. Chem. Commun. 58, 1151–1154 (2022). https://doi.org/10.1039/D1CC06308A
Y. Jian, W. Hu, Z. Zhao, P. Cheng, H. Haick et al., Gas sensors based on chemi-resistive hybrid functional nanomaterials. Nano-Micro Lett. 12, 71 (2020). https://doi.org/10.1007/s40820-020-0407-5
K.N. Ruckart, Y. Zhang, W.M. Reichert, G.W. Peterson, T.G. Glover, Sorption of ammonia in mesoporous-silica ionic liquid composites. Ind. Eng. Chem. Res. 55, 12191–12204 (2016). https://doi.org/10.1021/acs.iecr.6b02041
A. Kaftan, H. Klefer, M. Haumann, M. Laurin, P. Wasserscheid et al., An operando DRIFTS-MS study of NH3 removal by supported ionic liquid phase (SILP) materials. Sep. Purif. Technol. 174, 245–250 (2017). https://doi.org/10.1016/j.seppur.2016.10.017
M. Yu, S. Zeng, Z. Wang, Z. Hu, H. Dong et al., Protic ionic-liquid-supported activated carbon with hierarchical pores for efficient NH3 adsorption. ACS Sustain. Chem. Eng. 7, 11769–11777 (2019). https://doi.org/10.1021/acssuschemeng.9b02051
Y. Li, S. Zeng, S. Zheng, T. Zhao, X. Sun et al., Mesoporous multiproton ionic liquid hybrid adsorbents for facilitating NH3 separation. Ind. Eng. Chem. Res. 62, 2829–2842 (2023). https://doi.org/10.1021/acs.iecr.2c03193
S. Zheng, Q. Xu, S. Zeng, G. Li, H. Jiang et al., Porous multi-site ionic liquid composites for superior selective and reversible adsorption of ammonia. Sep. Purif. Technol. 310, 123161 (2023). https://doi.org/10.1016/j.seppur.2023.123161
D. Cao, Z. Li, Z. Wang, H. Wang, S. Gao et al., Highly dispersed ionic liquids in mesoporous molecular sieves enable a record NH3 absorption. ACS Sustain. Chem. Eng. 9, 16363–16372 (2021). https://doi.org/10.1021/acssuschemeng.1c06151
S. Zeng, J. Wang, P. Li, H. Dong, H. Wang et al., Efficient adsorption of ammonia by incorporation of metal ionic liquids into silica gels as mesoporous composites. Chem. Eng. J. 370, 81–88 (2019). https://doi.org/10.1016/j.cej.2019.03.180
G. Han, C. Liu, Q. Yang, D. Liu, C. Zhong, Construction of stable IL@MOF composite with multiple adsorption sites for efficient ammonia capture from dry and humid conditions. Chem. Eng. J. 401, 126106 (2020). https://doi.org/10.1016/j.cej.2020.126106
G. Han, F. Li, M. Guo, H. Fan, Q. Guo et al., MIL-101(Cr) loaded simple ILs for efficient ammonia capture and selective separation. Chem. Eng. J. 471, 144545 (2023). https://doi.org/10.1016/j.cej.2023.144545
Y. Shi, Z. Wang, Z. Li, H. Wang, D. Xiong et al., Anchoring LiCl in the nanopores of metal–organic frameworks for ultra-high uptake and selective separation of ammonia. Angew. Chem. Int. Ed. 61, e202212032 (2022). https://doi.org/10.1002/anie.202212032
Q. Luo, E. Pentzer, Encapsulation of ionic liquids for tailored applications. ACS Appl. Mater. Interfaces 12, 5169–5176 (2020). https://doi.org/10.1021/acsami.9b16546
R. Santiago, J. Lemus, D. Moreno, C. Moya, M. Larriba et al., From kinetics to equilibrium control in CO2 capture columns using Encapsulated Ionic Liquids (ENILs). Chem. Eng. J. 348, 661–668 (2018). https://doi.org/10.1016/j.cej.2018.05.029
S. Zheng, S. Zeng, Y. Li, L. Bai, Y. Bai et al., State of the art of ionic liquid-modified adsorbents for CO2 capture and separation. AlChE. J. 68, e17500 (2022). https://doi.org/10.1002/aic.17500
J. Palomar, J. Lemus, N. Alonso-Morales, J. Bedia, M.A. Gilarranz et al., Encapsulated ionic liquids (ENILs): from continuous to discrete liquid phase. Chem. Commun. 48, 10046–10048 (2012). https://doi.org/10.1039/C2CC35291E
J. Lemus, J. Bedia, C. Moya, N. Alonso-Morales, M.A. Gilarranz et al., Ammonia capture from the gas phase by encapsulated ionic liquids (ENILs). RSC Adv. 6, 61650–61660 (2016). https://doi.org/10.1039/C6RA11685J
N. O’Reilly, N. Giri, S.L. James, Porous liquids. Chem. Eur. J. 13(11), 3020–3025 (2007). https://doi.org/10.1002/chem.200700090
N. Giri, M.G. Del Pópolo, G. Melaugh, R.L. Greenaway, K. Rätzke et al., Liquids with permanent porosity. Nature 527, 216–220 (2015). https://doi.org/10.1038/nature16072
K. Jie, Y. Zhou, H.P. Ryan, S. Dai, J.R. Nitschke, Engineering permanent porosity into liquids. Adv. Mater. 33, 2005745 (2021). https://doi.org/10.1002/adma.202005745
J. Zhang, S.-H. Chai, Z.-A. Qiao, S.M. Mahurin, J. Chen et al., Porous liquids: a promising class of media for gas separation. Angew. Chem. Int. Ed. 54, 932–936 (2015). https://doi.org/10.1002/anie.201409420
W. Shan, P.F. Fulvio, L. Kong, J.A. Schott, C.-L. Do-Thanh et al., New class of type III porous liquids: a promising platform for rational adjustment of gas sorption behavior. ACS Appl. Mater. Interfaces 10, 32–36 (2018). https://doi.org/10.1021/acsami.7b15873
B.D. Egleston, K.V. Luzyanin, M.C. Brand, R. Clowes, M.E. Briggs et al., Controlling gas selectivity in molecular porous liquids by tuning the cage window size. Angew. Chem. Int. Ed. 59, 7362–7366 (2020). https://doi.org/10.1002/anie.201914037
D.P. Erdosy, M.B. Wenny, J. Cho, C. DelRe, M.V. Walter et al., Microporous water with high gas solubilities. Nature 608, 712–718 (2022). https://doi.org/10.1038/s41586-022-05029-w
N. Giri, C.E. Davidson, G. Melaugh, M.G. Del Pópolo, J.T.A. Jones et al., Alkylated organic cages: from porous crystals to neat liquids. Chem. Sci. 3, 2153 (2012). https://doi.org/10.1039/c2sc01007k
T.D. Bennett, F.-X. Coudert, S.L. James, A.I. Cooper, The changing state of porous materials. Nat. Mater. 20, 1179–1187 (2021). https://doi.org/10.1038/s41563-021-00957-w
R. Gaillac, P. Pullumbi, K.A. Beyer, K.W. Chapman, D.A. Keen et al., Liquid metal–organic frameworks. Nat. Mater. 16, 1149–1154 (2017). https://doi.org/10.1038/nmat4998
S. Liu, J. Liu, X. Hou, T. Xu, J. Tong et al., Porous liquid: a stable ZIF-8 colloid in ionic liquid with permanent porosity. Langmuir 34, 3654–3660 (2018). https://doi.org/10.1021/acs.langmuir.7b04212
D.S. Sholl, R.P. Lively, Seven chemical separations to change the world. Nature 532, 435–437 (2016). https://doi.org/10.1038/532435a
D.L. Gin, R.D. Noble, Designing the next generation of chemical separation membranes. Science 332, 674–676 (2011). https://doi.org/10.1126/science.1203771
H. Wang, J. Zhao, Y. Li, Y. Cao, Z. Zhu et al., Aqueous two-phase interfacial assembly of COF membranes for water desalination. Nano-Micro Lett. 14, 216 (2022). https://doi.org/10.1007/s40820-022-00968-5
I.V. Vorotyntsev, P.N. Drozdov, N.V. Karyakin, Ammonia permeability of a cellulose acetate membrane. Inorg. Mater. 42, 231–235 (2006). https://doi.org/10.1134/S0020168506030034
C. Makhloufi, D. Roizard, E. Favre, Reverse selective NH3/CO2 permeation in fluorinated polymers using membrane gas separation. J. Membr. Sci. 441, 63–72 (2013). https://doi.org/10.1016/j.memsci.2013.03.048
A.V. Vorobiev, I.N. Beckman, Ammonia and carbon dioxide permeability through perfluorosulfonic membranes. Russ. Chem. Bull. 51, 275–281 (2002). https://doi.org/10.1023/A:1015403626398
W.A. Phillip, E. Martono, L. Chen, M.A. Hillmyer, E.L. Cussler, Seeking an ammonia selective membrane based on nanostructured sulfonated block copolymers. J. Membr. Sci. 337, 39–46 (2009). https://doi.org/10.1016/j.memsci.2009.03.013
L. Ansaloni, Z. Dai, J.J. Ryan, K.P. Mineart, Q. Yu et al., Solvent-templated Block ionomers for base- and acid-gas separations: effect of humidity on ammonia and carbon dioxide permeation. Adv. Mater. Interfaces 4, 1700854 (2017). https://doi.org/10.1002/admi.201700854
K. Wakimoto, W.-W. Yan, N. Moriyama, H. Nagasawa, M. Kanezashi et al., Ammonia permeation of fluorinated sulfonic acid polymer/ceramic composite membranes. J. Membr. Sci. 658, 120718 (2022). https://doi.org/10.1016/j.memsci.2022.120718
B. Yang, L. Bai, Z. Wang, H. Jiang, S. Zeng et al., Exploring NH3 transport properties by tailoring ionic liquids in pebax-based hybrid membranes. Ind. Eng. Chem. Res. 60, 9570–9577 (2021). https://doi.org/10.1021/acs.iecr.1c01408
H. Jiang, L. Bai, K. Peng, L. Yuan, S. Zheng et al., Blended membranes with ionic liquids tailoring by hydroxyl group for efficient NH3 separation. J. Membr. Sci. 674, 121480 (2023). https://doi.org/10.1016/j.memsci.2023.121480
B. Yang, L. Bai, T. Li, L. Deng, L. Liu et al., Super selective ammonia separation through multiple-site interaction with ionic liquid-based hybrid membranes. J. Membr. Sci. 628, 119264 (2021). https://doi.org/10.1016/j.memsci.2021.119264
B. Yang, L. Bai, S. Zeng, S. Luo, L. Liu et al., NH3 separation membranes with self-assembled gas highways induced by protic ionic liquids. Chem. Eng. J. 421, 127876 (2021). https://doi.org/10.1016/j.cej.2020.127876
Z. Wang, H. Dong, X. Yu, Y. Ji, T. Hou et al., Two-dimensional porous polyphthalocyanine (PPc) as an efficient gas-separation membrane for ammonia synthesis. Curr. Appl. Phys. 17, 1765–1770 (2017). https://doi.org/10.1016/j.cap.2017.08.019
I.I. Zaripov, I.M. Davletbaeva, Z.Z. Faizulina, R.S. Davletbaev, A.T. Gubaidullin et al., Synthesis and characterization of novel nanoporous gl-POSS-branched polymeric gas separation membranes. Membranes 10, 110 (2020). https://doi.org/10.3390/membranes10050110
M. Kanezashi, A. Yamamoto, T. Yoshioka, T. Tsuru, Characteristics of ammonia permeation through porous silica membranes. AlChE. J. 56, 1204–1212 (2010). https://doi.org/10.1002/aic.12059
O. Camus, S. Perera, B. Crittenden, Y.C. van Delft, D.F. Meyer et al., Ceramic membranes for ammonia recovery. AlChE. J. 52, 2055–2065 (2006). https://doi.org/10.1002/aic.10800
H. Inami, C. Abe, Y. Hasegawa, Development of ammonia selectively permeable zeolite membrane for sensor in sewer system. Membranes 11, 348 (2021). https://doi.org/10.3390/membranes11050348
D.I. Petukhov, A.S. Kan, A.P. Chumakov, O.V. Konovalov, R.G. Valeev et al., MXene-based gas separation membranes with sorption type selectivity. J. Membr. Sci. 621, 118994 (2021). https://doi.org/10.1016/j.memsci.2020.118994
M.A. Komkova, I.S. Sadilov, V.A. Brotsman, D.I. Petukhov, A.A. Eliseev, Facilitated transport of ammonia in ultra-thin Prussian Blue membranes with potential-tuned selectivity. J. Membr. Sci. 639, 119714 (2021). https://doi.org/10.1016/j.memsci.2021.119714
Q. Wei, J.M. Lucero, J.M. Crawford, J.D. Way, C.A. Wolden et al., Ammonia separation from N2 and H2 over LTA zeolitic imidazolate framework membranes. J. Membr. Sci. 623, 119078 (2021). https://doi.org/10.1016/j.memsci.2021.119078
S. Padinjarekutt, H. Li, S. Ren, P. Ramesh, F. Zhou et al., Na+-gated nanochannel membrane for highly selective ammonia (NH3) separation in the Haber-Bosch process. Chem. Eng. J. 454, 139998 (2023). https://doi.org/10.1016/j.cej.2022.139998
S. Padinjarekutt, B. Sengupta, H. Li, K. Friedman, D. Behera et al., Synthesis of Na+-gated nanochannel membranes for the ammonia (NH3) separation. J. Membr. Sci. 674, 121512 (2023). https://doi.org/10.1016/j.memsci.2023.121512
L. Yu, L. Hao, Y. Feng, J. Pang, M. Guo et al., Assembling ionic liquid into porous molecular filler of mixed matrix membrane to trigger high gas permeability, selectivity, and stability for CO2/CH4 separation. Nano Res. 17, 4535–4543 (2024). https://doi.org/10.1007/s12274-023-6329-z
Y. Wang, Y. Ren, Y. Cao, X. Liang, G. He et al., Engineering HOF-based mixed-matrix membranes for efficient CO2 separation. Nano-Micro Lett. 15, 50 (2023). https://doi.org/10.1007/s40820-023-01020-w
Y. Yang, B. Pang, W. Zeng, B. Ma, P. Yin et al., Enhance gas-separation efficiency of mixed matrix membranes by lamellarly arranged metal–organic polyhedron. Nano Res. 16, 11450–11454 (2023). https://doi.org/10.1007/s12274-023-5874-9
A. Raza, S. Farrukh, A. Hussain, Synthesis, characterization and NH3/N2 gas permeation study of nanocomposite membranes. J. Polym. Environ. 25, 46–55 (2017). https://doi.org/10.1007/s10924-016-0783-6
J.B. DeCoste, M.S. Denny Jr., G.W. Peterson, J.J. Mahle, S.M. Cohen, Enhanced aging properties of HKUST-1 in hydrophobic mixed-matrix membranes for ammonia adsorption. Chem. Sci. 7, 2711–2716 (2016). https://doi.org/10.1039/c5sc04368a
H. Jiang, L. Bai, Z. Wang, W. Zheng, B. Yang et al., Mixed matrix membranes containing Cu-based metal organic framework and functionalized ionic liquid for efficient NH3 separation. J. Membr. Sci. 659, 120780 (2022). https://doi.org/10.1016/j.memsci.2022.120780
M.-S. Yao, K.-I. Otake, T. Koganezawa, M. Ogasawara, H. Asakawa et al., Growth mechanisms and anisotropic softness–dependent conductivity of orientation-controllable metal–organic framework nanofilms. Proc. Natl. Acad. Sci. U.S.A. 120, e2305125120 (2023). https://doi.org/10.1073/pnas.2305125120
M.-S. Yao, K.-I. Otake, S. Kitagawa, Interface chemistry of conductive crystalline porous thin films. Trends Chem. 5, 588–604 (2023). https://doi.org/10.1016/j.trechm.2023.03.002