Fire Intumescent, High-Temperature Resistant, Mechanically Flexible Graphene Oxide Network for Exceptional Fire Shielding and Ultra-Fast Fire Warning
Corresponding Author: Hao Wang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 92
Abstract
Smart fire alarm sensor (FAS) materials with mechanically robust, excellent flame retardancy as well as ultra-sensitive temperature-responsive capability are highly attractive platforms for fire safety application. However, most reported FAS materials can hardly provide sensitive, continuous and reliable alarm signal output due to their undesirable temperature-responsive, flame-resistant and mechanical performances. To overcome these hurdles, herein, we utilize the multi-amino molecule, named HCPA, that can serve as triple-roles including cross-linker, fire retardant and reducing agent for decorating graphene oxide (GO) sheets and obtaining the GO/HCPA hybrid networks. Benefiting from the formation of multi-interactions in hybrid network, the optimized GO/HCPA network exhibits significant increment in mechanical strength, e.g., tensile strength and toughness increase of ~ 2.3 and ~ 5.7 times, respectively, compared to the control one. More importantly, based on P and N doping and promoting thermal reduction effect on GO network, the excellent flame retardancy (withstanding ~ 1200 °C flame attack), ultra-fast fire alarm response time (~ 0.6 s) and ultra-long alarming period (> 600 s) are obtained, representing the best comprehensive performance of GO-based FAS counterparts. Furthermore, based on GO/HCPA network, the fireproof coating is constructed and applied in polymer foam and exhibited exceptional fire shielding performance. This work provides a new idea for designing and fabricating desirable FAS materials and fireproof coatings.
Highlights:
1 Graphene oxide-based hybrid networks were fabricated via introducing multi-amino molecule with triple roles (i.e., cross-linker, fire retardant and reducing agent).
2 The optimized hybrid network with mechanically robust, exceptional intumescent effect and ultra-sensitive fire alarm response (~ 0.6 s) can be used as desirable smart fire alarm sensor materials.
3 Exceptional fire shielding performances, e.g., ~ 60% reduction in peak heat release rate and limiting oxygen index of ~ 36.5%, are achieved, when coated such hybrid network onto combustible polymer foam.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.M. Bowman, J.K. Balch, P. Artaxo, W.J. Bond, J.M. Carlson et al., Fire in the earth system. Science 324(5926), 481–484 (2009). https://doi.org/10.1126/science.1163886
- J.M. Fox, G.M. Whitesides, Warning signals for eruptive events in spreading fires. PNAS 112(8), 2378–2383 (2015). https://doi.org/10.1073/pnas.1417043112
- L. Liu, M. Zhu, Z. Ma, X. Xu, S.M. Seraji et al., A reactive copper-organophosphate-MXene heterostructure enabled antibacterial, self-extinguishing and mechanically robust polymer nanocomposites. Chem. Eng. J. 430, 132712 (2022). https://doi.org/10.1016/j.cej.2021.132712
- L. Liu, M. Zhu, Y. Shi, X. Xu, Z. Ma et al., Functionalizing MXene towards highly stretchable, ultratough, fatigue- and fire-resistant polymer nanocomposites. Chem. Eng. J. 424, 130338 (2021). https://doi.org/10.1016/j.cej.2021.130338
- Y. Shi, C. Liu, Z. Duan, B. Yu, M. Liu et al., Interface engineering of MXene towards super-tough and strong polymer nanocomposites with high ductility and excellent fire safety. Chem. Eng. J. 399, 125829 (2020). https://doi.org/10.1016/j.cej.2020.125829
- B. Yu, A.C.Y. Yuen, X. Xu, Z.C. Zhang, W. Yang et al., Engineering MXene surface with poss for reducing fire hazards of polystyrene with enhanced thermal stability. J. Hazard. Mater. 401, 123342 (2021). https://doi.org/10.1016/j.jhazmat.2020.123342
- W. Wu, W. Zhao, X. Gong, Q. Sun, X. Cao et al., Surface decoration of halloysite nanotubes with poss for fire-safe thermoplastic polyurethane nanocomposites. J. Mater. Sci. Technol. 101, 107–117 (2021). https://doi.org/10.1016/j.jmst.2021.05.060
- B. Miller, R. Turner, R. Turner, Studies on polymer ignition and development of a relative hazard ranking method. J. Appl. Polym. Sci. 28(1), 45–56 (1983). https://doi.org/10.1002/app.1983.070280105
- Z. Ma, X. Liu, X. Xu, L. Liu, B. Yu et al., Bioinspired, highly adhesive, nanostructured polymeric coatings for superhydrophobic fire-extinguishing thermal insulation foam. ACS Nano 15(7), 11667–11680 (2021). https://doi.org/10.1021/acsnano.1c02254
- F. Monie, B. Grignard, J.M. Thomassin, R. Mereau, T. Tassaing et al., Chemo- and regioselective additions of nucleophiles to cyclic carbonates for the preparation of self-blowing non-isocyanate polyurethane foams. Angew. Chem. Int. Ed. 59(39), 17033–17041 (2020). https://doi.org/10.1002/anie.202006267
- Y.S. Kim, Y.C. Li, W.M. Pitts, M. Werrel, R.D. Davis, Rapid growing clay coatings to reduce the fire threat of furniture. ACS Appl. Mater. Interf. 6(3), 2146–2152 (2014). https://doi.org/10.1021/am405259n
- Y. Huang, S. Jiang, R. Liang, P. Sun, Y. Hai et al., Thermal-triggered insulating fireproof layers: a novel fire-extinguishing MXene composites coating. Chem. Eng. J. 391, 123621 (2020). https://doi.org/10.1016/j.cej.2019.123621
- E. Guillaume, V. Dréan, B. Girardin, F. Benameur, M. Koohkan et al., Reconstruction of grenfell tower fire. Part 3–numerical simulation of the grenfell tower disaster: contribution to the understanding of the fire propagation and behaviour during the vertical fire spread. Fire Mater. 44(1), 35–57 (2019). https://doi.org/10.1002/fam.2763
- E. Guillaume, V. Dréan, B. Girardin, T. Fateh, Reconstruction of the grenfell tower fire–part 4: contribution to the understanding of fire propagation and behaviour during horizontal fire spread. Fire Mater. 44(8), 1072–1098 (2020). https://doi.org/10.1002/fam.2911
- Q. Wu, L.X. Gong, Y. Li, C.F. Cao, L.C. Tang et al., Efficient flame detection and early warning sensors on combustible materials using hierarchical graphene oxide/silicone coatings. ACS Nano 12(1), 416–424 (2017). https://doi.org/10.1021/acsnano.7b06590
- T. Fu, X. Zhao, L. Chen, W.S. Wu, Q. Zhao et al., Bioinspired color changing molecular sensor toward early fire detection based on transformation of phthalonitrile to phthalocyanine. Adv. Funct. Mater. 29(8), 1806586 (2019). https://doi.org/10.1002/adfm.201806586
- X. Zhao, L.M. Peng, Y. Chen, X.J. Zha, W.D. Li et al., Phase change mediated mechanically transformative dynamic gel for intelligent control of versatile devices. Mater. Horiz. 8(4), 1230–1241 (2021). https://doi.org/10.1039/d0mh02069a
- L. Zhang, Y. Huang, H. Dong, R. Xu, S. Jiang, Flame-retardant shape memory polyurethane/MXene paper and the application for early fire alarm sensor. Compos. B Eng. 223, 109149 (2021). https://doi.org/10.1016/j.compositesb.2021.109149
- X. Wu, N. Gao, X. Zheng, X. Tao, Y. He et al., Self-powered and green ionic-type thermoelectric paper chips for early fire alarming. ACS Appl. Mater. Interf. 12(24), 27691–27699 (2020). https://doi.org/10.1021/acsami.0c04798
- B. Wang, X. Lai, H. Li, C. Jiang, J. Gao et al., Multifunctional MXene/chitosan-coated cotton fabric for intelligent fire protection. ACS Appl. Mater. Interf. 13(19), 23020–23029 (2021). https://doi.org/10.1021/acsami.1c05222
- H. Xie, X. Lai, H. Li, J. Gao, X. Zeng, Skin-inspired thermoelectric nanocoating for temperature sensing and fire safety. J. Colloid Interf. Sci. 602, 756–766 (2021). https://doi.org/10.1016/j.jcis.2021.06.054
- J. Chen, H. Xie, X. Lai, H. Li, J. Gao et al., An ultrasensitive fire-warning chitosan/montmorillonite/carbon nanotube composite aerogel with high fire-resistance. Chem. Eng. J. 399, 125729 (2020). https://doi.org/10.1016/j.cej.2020.125729
- Z. Zhang, D. Yang, H. Yang, Y. Li, S. Lu et al., A hydrophobic sisal cellulose microcrystal film for fire alarm sensors. Nano Lett. 21(5), 2104–2110 (2021). https://doi.org/10.1021/acs.nanolett.0c04789
- L. Cao, Q. Liu, J. Ren, W. Chen, Y. Pei et al., Electro-blown spun silk/graphene nanoionotronic skin for multifunctional fire protection and alarm. Adv. Mater. 33(38), 2102500 (2021). https://doi.org/10.1002/adma.202102500
- M. Mao, K.X. Yu, C.F. Cao, L.X. Gong, G.D. Zhang et al., Facile and green fabrication of flame-retardant Ti3C2Tx MXene networks for ultrafast, reusable and weather-resistant fire warning. Chem. Eng. J. 427, 131615 (2022). https://doi.org/10.1016/j.cej.2021.131615
- J. Jia, N. Gao, R. Li, S. Liao, S. Lyu et al., An “off-to-on” shape memory polymer conductor for early fire disaster alarming. Chem. Eng. J. 431, 133258 (2022). https://doi.org/10.1016/j.cej.2021.133285
- Y. Wang, G. Chen, F. Yang, Z. Luo, B. Yuan et al., Serendipity discovery of fire early warning function of chitosan film. Carbohydr. Polym. 277, 118884 (2022). https://doi.org/10.1016/j.carbpol.2021.118884
- M. Mao, H. Xu, K.Y. Guo, J.W. Zhang, Q.Q. Xia et al., Mechanically flexible, super-hydrophobic and flame-retardant hybrid nano-silica/graphene oxide wide ribbon decorated sponges for efficient oil/water separation and fire warning response. Compos. A Appl. Sci. Manuf. 140, 106191 (2021). https://doi.org/10.1016/j.compositesa.2020.106191
- L. Xia, Y. Lv, Z. Miao, L. Luo, W. Luo et al., A flame retardant fabric nanocoating based on nanocarbon black ps@polymer composite and its fire-alarm application. Chem. Eng. J. 433, 133501 (2021). https://doi.org/10.1016/j.cej.2021.133501
- X. Li, J.S.R. Saez, X. Ao, A. Yusuf, D.Y. Wang, Highly-sensitive fire alarm system based on cellulose paper with low-temperature response and wireless signal conversion. Chem. Eng. J. 431, 134108 (2022). https://doi.org/10.1016/j.cej.2021.134108
- J. Milke, R. Zevotek, Analysis of the response of smoke detectors to smoldering fires and nuisance sources. Fire Technol. 52(5), 1235–1253 (2016). https://doi.org/10.1007/s10694-015-0465-2
- J.R. Qualey, Fire test comparisons of smoke detector response times. Fire Technol. 36(2), 89–108 (2000). https://doi.org/10.1023/a:1015498224060
- L. Dong, C. Hu, L. Song, X. Huang, N. Chen et al., A large-area, flexible, and flame-retardant graphene paper. Adv. Funct. Mater. 26(9), 1470–1476 (2016). https://doi.org/10.1002/adfm.201504470
- H. Xie, X. Lai, H. Li, J. Gao, X. Zeng et al., A sandwich-like flame retardant nanocoating for supersensitive fire-warning. Chem. Eng. J. 382, 122929 (2020). https://doi.org/10.1016/j.cej.2019.122929
- N.J. Huang, C.F. Cao, Y. Li, L. Zhao, G.D. Zhang et al., Silane grafted graphene oxide papers for improved flame resistance and fast fire alarm response. Compos. B Eng. 168, 413–420 (2019). https://doi.org/10.1016/j.compositesb.2019.03.053
- C. Cao, B. Yuan, Thermally induced fire early warning aerogel with efficient thermal isolation and flame-retardant properties. Polym. Adv. Technol. 32(5), 2159–2168 (2021). https://doi.org/10.1002/pat.5246
- F. Yang, B. Yuan, Y. Wang, X. Chen, L. Wang et al., Graphene oxide/chitosan nano-coating with ultrafast fire-alarm response and flame-retardant property. Polym. Adv. Technol. 33(3), 795–806 (2021). https://doi.org/10.1002/pat.5556
- C.F. Cao, P.H. Wang, J.W. Zhang, K.Y. Guo, Y. Li et al., One-step and green synthesis of lightweight, mechanically flexible and flame-retardant polydimethylsiloxane foam nanocomposites via surface-assembling ultralow content of graphene derivative. Chem. Eng. J. 393, 124724 (2020). https://doi.org/10.1016/j.cej.2020.124724
- C.F. Cao, G.D. Zhang, L. Zhao, L.X. Gong, J.F. Gao et al., Design of mechanically stable, electrically conductive and highly hydrophobic three-dimensional graphene nanoribbon composites by modulating the interconnected network on polymer foam skeleton. Compos. Sci. Technol. 171, 162–170 (2019). https://doi.org/10.1016/j.compscitech.2018.12.014
- C.F. Cao, W.J. Liu, H. Xu, K.X. Yu, L.X. Gong et al., Temperature-induced resistance transition behaviors of melamine sponge composites wrapped with different graphene oxide derivatives. J. Mater. Sci. Technol. 85, 194–204 (2021). https://doi.org/10.1016/j.jmst.2020.12.073
- L. Liu, M. Zhu, X. Xu, X. Li, Z. Ma et al., Dynamic nanoconfinement enabled highly stretchable and supratough polymeric materials with desirable healability and biocompatibility. Adv. Mater. 33(51), 2105829 (2021). https://doi.org/10.1002/adma.202105829
- K.Y. Guo, Q. Wu, M. Mao, H. Chen, G.D. Zhang et al., Water-based hybrid coatings toward mechanically flexible, super-hydrophobic and flame-retardant polyurethane foam nanocomposites with high-efficiency and reliable fire alarm response. Compos. B Eng. 193, 108017 (2020). https://doi.org/10.1016/j.compositesb.2020.108017
- H. Xu, Y. Li, N.J. Huang, Z.R. Yu, P.H. Wang et al., Temperature-triggered sensitive resistance transition of graphene oxide wide-ribbons wrapped sponge for fire ultrafast detecting and early warning. J. Hazard. Mater. 363, 286–294 (2019). https://doi.org/10.1016/j.jhazmat.2018.09.082
- Z. Qu, K. Wu, C. Xu, Y. Li, E. Jiao et al., Facile construction of a flexible film with ultrahigh thermal conductivity and excellent flame retardancy for a smart fire alarm. Chem. Mater. 33(9), 3228–3240 (2021). https://doi.org/10.1021/acs.chemmater.1c00113
- Y. Jin, G. Huang, D. Han, P. Song, W. Tang et al., Functionalizing graphene decorated with phosphorus-nitrogen containing dendrimer for high-performance polymer nanocomposites. Compos. A Appl. Sci. Manuf. 86, 9–18 (2016). https://doi.org/10.1016/j.compositesa.2016.03.030
- N.J. Huang, Q.Q. Xia, Z.H. Zhang, L. Zhao, G.D. Zhang et al., Simultaneous improvements in fire resistance and alarm response of GO paper via one-step 3-mercaptopropyltrimethoxysilane functionalization for efficient fire safety and prevention. Compos. A Appl. Sci. Manuf. 131, 105797 (2020). https://doi.org/10.1016/j.compositesa.2020.105797
- H. Peng, Y. Mao, D. Wang, S. Fu, B-N-P-linked covalent organic frameworks for efficient flame retarding and toxic smoke suppression of polyacrylonitrile composite fiber. Chem. Eng. J. 430, 133120 (2022). https://doi.org/10.1016/j.cej.2021.133120
- L. Dong, C. Hu, X. Huang, N. Chen, L. Qu, One-pot synthesis of nitrogen and phosphorus co-doped graphene and its use as high-performance electrocatalyst for oxygen reduction reaction. Chem. Asian J. 10(12), 2609–2614 (2015). https://doi.org/10.1002/asia.201500707
- P. Song, Z. Xu, Y. Wu, Q. Cheng, Q. Guo et al., Super-tough artificial nacre based on graphene oxide via synergistic interface interactions of π-π stacking and hydrogen bonding. Carbon 111, 807–812 (2017). https://doi.org/10.1016/j.carbon.2016.10.067
- W. Chen, P. Liu, L. Min, Y. Zhou, Y. Liu et al., Non-covalently functionalized graphene oxide-based coating to enhance thermal stability and flame retardancy of PVA film. Nano-Micro Lett. 10, 39 (2018). https://doi.org/10.1007/s40820-018-0190-8
- Z.H. Zhang, J.W. Zhang, C.F. Cao, K.Y. Guo, L. Zhao et al., Temperature-responsive resistance sensitivity controlled by L-ascorbic acid and silane co-functionalization in flame-retardant go network for efficient fire early-warning response. Chem. Eng. J. 386, 123894 (2020). https://doi.org/10.1016/j.cej.2019.123894
- Z. Wang, H. Kang, S. Zhao, W. Zhang, S. Zhang et al., Polyphenol-induced cellulose nanofibrils anchored graphene oxide as nanohybrids for strong yet tough soy protein nanocomposites. Carbohydr. Polym. 180, 354–364 (2018). https://doi.org/10.1016/j.carbpol.2017.09.102
- P. Ming, Z. Song, S. Gong, Y. Zhang, J. Duan et al., Nacre-inspired integrated nanocomposites with fire retardant properties by graphene oxide and montmorillonite. J. Mater. Chem. A 3(42), 21194–21200 (2015). https://doi.org/10.1039/c5ta05742f
- B. Yuan, Y. Wang, G. Chen, F. Yang, H. Zhang et al., Nacre-like graphene oxide paper bonded with boric acid for fire early-warning sensor. J. Hazard. Mater. 403, 123645 (2021). https://doi.org/10.1016/j.jhazmat.2020.123645
- T. Wang, M.C. Long, H.B. Zhao, W.L. An, S.M. Xu et al., Temperature-responsive intumescent chemistry toward fire resistance and super thermal insulation under extremely harsh conditions. Chem. Mater. 33(15), 6018–6028 (2021). https://doi.org/10.1021/acs.chemmater.1c01408
- Y. Li, C.F. Cao, S.N. Li, N.J. Huang, M. Mao et al., In situ reactive self-assembly of a graphene oxide nano-coating in polymer foam materials with synergistic fire shielding properties. J. Mater. Chem. A 7(47), 27032–27040 (2019). https://doi.org/10.1039/c9ta09372a
- C. Hu, J. Xue, L. Dong, Y. Jiang, X. Wang et al., Scalable preparation of multifunctional fire-retardant ultralight graphene foams. ACS Nano 10(1), 1325–1332 (2016). https://doi.org/10.1021/acsnano.5b06710
- Z.R. Yu, M. Mao, S.N. Li, Q.Q. Xia, C.F. Cao et al., Facile and green synthesis of mechanically flexible and flame-retardant clay/graphene oxide nanoribbon interconnected networks for fire safety and prevention. Chem. Eng. J. 405, 126620 (2021). https://doi.org/10.1016/j.cej.2020.126620
- W. Liu, X. Wang, Y. Song, R. Cao, L. Wang et al., Self-powered forest fire alarm system based on impedance matching effect between triboelectric nanogenerator and thermosensitive sensor. Nano Energy 73, 104843 (2020). https://doi.org/10.1016/j.nanoen.2020.104843
- F. Khan, S. Wang, Z. Ma, A. Ahmed, P. Song et al., A durable, flexible, large-area, flame-retardant, early fire warning sensor with built-in patterned electrodes. Small Methods 5(4), 2001040 (2021). https://doi.org/10.1002/smtd.202001040
- G. Chen, B. Yuan, Y. Wang, X. Chen, C. Huang et al., Nacre-biomimetic graphene oxide paper intercalated by phytic acid and its ultrafast fire-alarm application. J. Colloid Interf. Sci. 578, 412–421 (2020). https://doi.org/10.1016/j.jcis.2020.05.112
- G. Chen, B. Yuan, Y. Wang, S. Shang, X. Chen et al., Inhibited combustion of graphene paper by in situ phosphorus doping and its application for fire early-warning sensor. Sens. Actuat. A Phys. 312, 112111 (2020). https://doi.org/10.1016/j.sna.2020.112111
- S. Wang, X. Wang, X. Wang, H. Li, J. Sun et al., Surface coated rigid polyurethane foam with durable flame retardancy and improved mechanical property. Chem. Eng. J. 385, 123755 (2020). https://doi.org/10.1016/j.cej.2019.123755
- D.J. Brannum, E.J. Price, D. Villamil, S. Kozawa, M. Brannum et al., Flame-retardant polyurethane foams: one-pot, bioinspired silica nanop coating. ACS Appl. Polym. Mater. 1(8), 2015–2022 (2019). https://doi.org/10.1021/acsapm.9b00283
- D. Jia, J. Hu, J. He, R. Yang, Properties of a novel inherently flame-retardant rigid polyurethane foam composite bearing imide and oxazolidinone. J. Appl. Polym. Sci. 136(37), 47943 (2019). https://doi.org/10.1002/app.47943
- M.E. Farid, M.A. El-Sockary, A.M. El-Saeed, A.I. Hashem, O.M.A. Elenien et al., An eco-friendly non-isocyanate polyurethane treated by CO2 as flame retardant nanocomposite coating/ZrO2@SiO2. Mater. Res. Express 6(6), 065042 (2019). https://doi.org/10.1088/2053-1591/ab0da3
- S.X. Wang, H.B. Zhao, W.H. Rao, S.C. Huang, T. Wang et al., Inherently flame-retardant rigid polyurethane foams with excellent thermal insulation and mechanical properties. Polymer 153, 616–625 (2018). https://doi.org/10.1016/j.polymer.2018.08.068
- M. Gao, J. Li, X. Zhou, A flame retardant rigid polyurethane foam system including functionalized graphene oxide. Polym. Compos. 40(S2), E1274–E1282 (2018). https://doi.org/10.1002/pc.24965
- W. Xu, G. Wang, X. Zheng, Research on highly flame-retardant rigid PU foams by combination of nanostructured additives and phosphorus flame retardants. Polym. Degrad. Stab. 111, 142–150 (2015). https://doi.org/10.1016/j.polymdegradstab.2014.11.008
- P. Acuna, Z. Li, M. Santiago-Calvo, F. Villafane, M.A. Rodriguez-Perez et al., Influence of the characteristics of expandable graphite on the morphology, thermal properties, fire behaviour and compression performance of a rigid polyurethane foam. Polymers 11(1), 168 (2019). https://doi.org/10.3390/polym11010168
- H.B. Chen, P. Shen, M.J. Chen, H.B. Zhao, D.A. Schiraldi, Highly efficient flame retardant polyurethane foam with alginate/clay aerogel coating. ACS Appl. Mater. Interf. 8(47), 32557–32564 (2016). https://doi.org/10.1021/acsami.6b11659
- C.F. Cao, B. Yu, B.F. Guo, W.J. Hu, F.N. Sun et al., Bio-inspired, sustainable and mechanically robust graphene oxide-based hybrid networks for efficient fire protection and warning. Chem. Eng. J. 439, 134516 (2022). https://doi.org/10.1016/j.cej.2022.134516
References
D.M. Bowman, J.K. Balch, P. Artaxo, W.J. Bond, J.M. Carlson et al., Fire in the earth system. Science 324(5926), 481–484 (2009). https://doi.org/10.1126/science.1163886
J.M. Fox, G.M. Whitesides, Warning signals for eruptive events in spreading fires. PNAS 112(8), 2378–2383 (2015). https://doi.org/10.1073/pnas.1417043112
L. Liu, M. Zhu, Z. Ma, X. Xu, S.M. Seraji et al., A reactive copper-organophosphate-MXene heterostructure enabled antibacterial, self-extinguishing and mechanically robust polymer nanocomposites. Chem. Eng. J. 430, 132712 (2022). https://doi.org/10.1016/j.cej.2021.132712
L. Liu, M. Zhu, Y. Shi, X. Xu, Z. Ma et al., Functionalizing MXene towards highly stretchable, ultratough, fatigue- and fire-resistant polymer nanocomposites. Chem. Eng. J. 424, 130338 (2021). https://doi.org/10.1016/j.cej.2021.130338
Y. Shi, C. Liu, Z. Duan, B. Yu, M. Liu et al., Interface engineering of MXene towards super-tough and strong polymer nanocomposites with high ductility and excellent fire safety. Chem. Eng. J. 399, 125829 (2020). https://doi.org/10.1016/j.cej.2020.125829
B. Yu, A.C.Y. Yuen, X. Xu, Z.C. Zhang, W. Yang et al., Engineering MXene surface with poss for reducing fire hazards of polystyrene with enhanced thermal stability. J. Hazard. Mater. 401, 123342 (2021). https://doi.org/10.1016/j.jhazmat.2020.123342
W. Wu, W. Zhao, X. Gong, Q. Sun, X. Cao et al., Surface decoration of halloysite nanotubes with poss for fire-safe thermoplastic polyurethane nanocomposites. J. Mater. Sci. Technol. 101, 107–117 (2021). https://doi.org/10.1016/j.jmst.2021.05.060
B. Miller, R. Turner, R. Turner, Studies on polymer ignition and development of a relative hazard ranking method. J. Appl. Polym. Sci. 28(1), 45–56 (1983). https://doi.org/10.1002/app.1983.070280105
Z. Ma, X. Liu, X. Xu, L. Liu, B. Yu et al., Bioinspired, highly adhesive, nanostructured polymeric coatings for superhydrophobic fire-extinguishing thermal insulation foam. ACS Nano 15(7), 11667–11680 (2021). https://doi.org/10.1021/acsnano.1c02254
F. Monie, B. Grignard, J.M. Thomassin, R. Mereau, T. Tassaing et al., Chemo- and regioselective additions of nucleophiles to cyclic carbonates for the preparation of self-blowing non-isocyanate polyurethane foams. Angew. Chem. Int. Ed. 59(39), 17033–17041 (2020). https://doi.org/10.1002/anie.202006267
Y.S. Kim, Y.C. Li, W.M. Pitts, M. Werrel, R.D. Davis, Rapid growing clay coatings to reduce the fire threat of furniture. ACS Appl. Mater. Interf. 6(3), 2146–2152 (2014). https://doi.org/10.1021/am405259n
Y. Huang, S. Jiang, R. Liang, P. Sun, Y. Hai et al., Thermal-triggered insulating fireproof layers: a novel fire-extinguishing MXene composites coating. Chem. Eng. J. 391, 123621 (2020). https://doi.org/10.1016/j.cej.2019.123621
E. Guillaume, V. Dréan, B. Girardin, F. Benameur, M. Koohkan et al., Reconstruction of grenfell tower fire. Part 3–numerical simulation of the grenfell tower disaster: contribution to the understanding of the fire propagation and behaviour during the vertical fire spread. Fire Mater. 44(1), 35–57 (2019). https://doi.org/10.1002/fam.2763
E. Guillaume, V. Dréan, B. Girardin, T. Fateh, Reconstruction of the grenfell tower fire–part 4: contribution to the understanding of fire propagation and behaviour during horizontal fire spread. Fire Mater. 44(8), 1072–1098 (2020). https://doi.org/10.1002/fam.2911
Q. Wu, L.X. Gong, Y. Li, C.F. Cao, L.C. Tang et al., Efficient flame detection and early warning sensors on combustible materials using hierarchical graphene oxide/silicone coatings. ACS Nano 12(1), 416–424 (2017). https://doi.org/10.1021/acsnano.7b06590
T. Fu, X. Zhao, L. Chen, W.S. Wu, Q. Zhao et al., Bioinspired color changing molecular sensor toward early fire detection based on transformation of phthalonitrile to phthalocyanine. Adv. Funct. Mater. 29(8), 1806586 (2019). https://doi.org/10.1002/adfm.201806586
X. Zhao, L.M. Peng, Y. Chen, X.J. Zha, W.D. Li et al., Phase change mediated mechanically transformative dynamic gel for intelligent control of versatile devices. Mater. Horiz. 8(4), 1230–1241 (2021). https://doi.org/10.1039/d0mh02069a
L. Zhang, Y. Huang, H. Dong, R. Xu, S. Jiang, Flame-retardant shape memory polyurethane/MXene paper and the application for early fire alarm sensor. Compos. B Eng. 223, 109149 (2021). https://doi.org/10.1016/j.compositesb.2021.109149
X. Wu, N. Gao, X. Zheng, X. Tao, Y. He et al., Self-powered and green ionic-type thermoelectric paper chips for early fire alarming. ACS Appl. Mater. Interf. 12(24), 27691–27699 (2020). https://doi.org/10.1021/acsami.0c04798
B. Wang, X. Lai, H. Li, C. Jiang, J. Gao et al., Multifunctional MXene/chitosan-coated cotton fabric for intelligent fire protection. ACS Appl. Mater. Interf. 13(19), 23020–23029 (2021). https://doi.org/10.1021/acsami.1c05222
H. Xie, X. Lai, H. Li, J. Gao, X. Zeng, Skin-inspired thermoelectric nanocoating for temperature sensing and fire safety. J. Colloid Interf. Sci. 602, 756–766 (2021). https://doi.org/10.1016/j.jcis.2021.06.054
J. Chen, H. Xie, X. Lai, H. Li, J. Gao et al., An ultrasensitive fire-warning chitosan/montmorillonite/carbon nanotube composite aerogel with high fire-resistance. Chem. Eng. J. 399, 125729 (2020). https://doi.org/10.1016/j.cej.2020.125729
Z. Zhang, D. Yang, H. Yang, Y. Li, S. Lu et al., A hydrophobic sisal cellulose microcrystal film for fire alarm sensors. Nano Lett. 21(5), 2104–2110 (2021). https://doi.org/10.1021/acs.nanolett.0c04789
L. Cao, Q. Liu, J. Ren, W. Chen, Y. Pei et al., Electro-blown spun silk/graphene nanoionotronic skin for multifunctional fire protection and alarm. Adv. Mater. 33(38), 2102500 (2021). https://doi.org/10.1002/adma.202102500
M. Mao, K.X. Yu, C.F. Cao, L.X. Gong, G.D. Zhang et al., Facile and green fabrication of flame-retardant Ti3C2Tx MXene networks for ultrafast, reusable and weather-resistant fire warning. Chem. Eng. J. 427, 131615 (2022). https://doi.org/10.1016/j.cej.2021.131615
J. Jia, N. Gao, R. Li, S. Liao, S. Lyu et al., An “off-to-on” shape memory polymer conductor for early fire disaster alarming. Chem. Eng. J. 431, 133258 (2022). https://doi.org/10.1016/j.cej.2021.133285
Y. Wang, G. Chen, F. Yang, Z. Luo, B. Yuan et al., Serendipity discovery of fire early warning function of chitosan film. Carbohydr. Polym. 277, 118884 (2022). https://doi.org/10.1016/j.carbpol.2021.118884
M. Mao, H. Xu, K.Y. Guo, J.W. Zhang, Q.Q. Xia et al., Mechanically flexible, super-hydrophobic and flame-retardant hybrid nano-silica/graphene oxide wide ribbon decorated sponges for efficient oil/water separation and fire warning response. Compos. A Appl. Sci. Manuf. 140, 106191 (2021). https://doi.org/10.1016/j.compositesa.2020.106191
L. Xia, Y. Lv, Z. Miao, L. Luo, W. Luo et al., A flame retardant fabric nanocoating based on nanocarbon black ps@polymer composite and its fire-alarm application. Chem. Eng. J. 433, 133501 (2021). https://doi.org/10.1016/j.cej.2021.133501
X. Li, J.S.R. Saez, X. Ao, A. Yusuf, D.Y. Wang, Highly-sensitive fire alarm system based on cellulose paper with low-temperature response and wireless signal conversion. Chem. Eng. J. 431, 134108 (2022). https://doi.org/10.1016/j.cej.2021.134108
J. Milke, R. Zevotek, Analysis of the response of smoke detectors to smoldering fires and nuisance sources. Fire Technol. 52(5), 1235–1253 (2016). https://doi.org/10.1007/s10694-015-0465-2
J.R. Qualey, Fire test comparisons of smoke detector response times. Fire Technol. 36(2), 89–108 (2000). https://doi.org/10.1023/a:1015498224060
L. Dong, C. Hu, L. Song, X. Huang, N. Chen et al., A large-area, flexible, and flame-retardant graphene paper. Adv. Funct. Mater. 26(9), 1470–1476 (2016). https://doi.org/10.1002/adfm.201504470
H. Xie, X. Lai, H. Li, J. Gao, X. Zeng et al., A sandwich-like flame retardant nanocoating for supersensitive fire-warning. Chem. Eng. J. 382, 122929 (2020). https://doi.org/10.1016/j.cej.2019.122929
N.J. Huang, C.F. Cao, Y. Li, L. Zhao, G.D. Zhang et al., Silane grafted graphene oxide papers for improved flame resistance and fast fire alarm response. Compos. B Eng. 168, 413–420 (2019). https://doi.org/10.1016/j.compositesb.2019.03.053
C. Cao, B. Yuan, Thermally induced fire early warning aerogel with efficient thermal isolation and flame-retardant properties. Polym. Adv. Technol. 32(5), 2159–2168 (2021). https://doi.org/10.1002/pat.5246
F. Yang, B. Yuan, Y. Wang, X. Chen, L. Wang et al., Graphene oxide/chitosan nano-coating with ultrafast fire-alarm response and flame-retardant property. Polym. Adv. Technol. 33(3), 795–806 (2021). https://doi.org/10.1002/pat.5556
C.F. Cao, P.H. Wang, J.W. Zhang, K.Y. Guo, Y. Li et al., One-step and green synthesis of lightweight, mechanically flexible and flame-retardant polydimethylsiloxane foam nanocomposites via surface-assembling ultralow content of graphene derivative. Chem. Eng. J. 393, 124724 (2020). https://doi.org/10.1016/j.cej.2020.124724
C.F. Cao, G.D. Zhang, L. Zhao, L.X. Gong, J.F. Gao et al., Design of mechanically stable, electrically conductive and highly hydrophobic three-dimensional graphene nanoribbon composites by modulating the interconnected network on polymer foam skeleton. Compos. Sci. Technol. 171, 162–170 (2019). https://doi.org/10.1016/j.compscitech.2018.12.014
C.F. Cao, W.J. Liu, H. Xu, K.X. Yu, L.X. Gong et al., Temperature-induced resistance transition behaviors of melamine sponge composites wrapped with different graphene oxide derivatives. J. Mater. Sci. Technol. 85, 194–204 (2021). https://doi.org/10.1016/j.jmst.2020.12.073
L. Liu, M. Zhu, X. Xu, X. Li, Z. Ma et al., Dynamic nanoconfinement enabled highly stretchable and supratough polymeric materials with desirable healability and biocompatibility. Adv. Mater. 33(51), 2105829 (2021). https://doi.org/10.1002/adma.202105829
K.Y. Guo, Q. Wu, M. Mao, H. Chen, G.D. Zhang et al., Water-based hybrid coatings toward mechanically flexible, super-hydrophobic and flame-retardant polyurethane foam nanocomposites with high-efficiency and reliable fire alarm response. Compos. B Eng. 193, 108017 (2020). https://doi.org/10.1016/j.compositesb.2020.108017
H. Xu, Y. Li, N.J. Huang, Z.R. Yu, P.H. Wang et al., Temperature-triggered sensitive resistance transition of graphene oxide wide-ribbons wrapped sponge for fire ultrafast detecting and early warning. J. Hazard. Mater. 363, 286–294 (2019). https://doi.org/10.1016/j.jhazmat.2018.09.082
Z. Qu, K. Wu, C. Xu, Y. Li, E. Jiao et al., Facile construction of a flexible film with ultrahigh thermal conductivity and excellent flame retardancy for a smart fire alarm. Chem. Mater. 33(9), 3228–3240 (2021). https://doi.org/10.1021/acs.chemmater.1c00113
Y. Jin, G. Huang, D. Han, P. Song, W. Tang et al., Functionalizing graphene decorated with phosphorus-nitrogen containing dendrimer for high-performance polymer nanocomposites. Compos. A Appl. Sci. Manuf. 86, 9–18 (2016). https://doi.org/10.1016/j.compositesa.2016.03.030
N.J. Huang, Q.Q. Xia, Z.H. Zhang, L. Zhao, G.D. Zhang et al., Simultaneous improvements in fire resistance and alarm response of GO paper via one-step 3-mercaptopropyltrimethoxysilane functionalization for efficient fire safety and prevention. Compos. A Appl. Sci. Manuf. 131, 105797 (2020). https://doi.org/10.1016/j.compositesa.2020.105797
H. Peng, Y. Mao, D. Wang, S. Fu, B-N-P-linked covalent organic frameworks for efficient flame retarding and toxic smoke suppression of polyacrylonitrile composite fiber. Chem. Eng. J. 430, 133120 (2022). https://doi.org/10.1016/j.cej.2021.133120
L. Dong, C. Hu, X. Huang, N. Chen, L. Qu, One-pot synthesis of nitrogen and phosphorus co-doped graphene and its use as high-performance electrocatalyst for oxygen reduction reaction. Chem. Asian J. 10(12), 2609–2614 (2015). https://doi.org/10.1002/asia.201500707
P. Song, Z. Xu, Y. Wu, Q. Cheng, Q. Guo et al., Super-tough artificial nacre based on graphene oxide via synergistic interface interactions of π-π stacking and hydrogen bonding. Carbon 111, 807–812 (2017). https://doi.org/10.1016/j.carbon.2016.10.067
W. Chen, P. Liu, L. Min, Y. Zhou, Y. Liu et al., Non-covalently functionalized graphene oxide-based coating to enhance thermal stability and flame retardancy of PVA film. Nano-Micro Lett. 10, 39 (2018). https://doi.org/10.1007/s40820-018-0190-8
Z.H. Zhang, J.W. Zhang, C.F. Cao, K.Y. Guo, L. Zhao et al., Temperature-responsive resistance sensitivity controlled by L-ascorbic acid and silane co-functionalization in flame-retardant go network for efficient fire early-warning response. Chem. Eng. J. 386, 123894 (2020). https://doi.org/10.1016/j.cej.2019.123894
Z. Wang, H. Kang, S. Zhao, W. Zhang, S. Zhang et al., Polyphenol-induced cellulose nanofibrils anchored graphene oxide as nanohybrids for strong yet tough soy protein nanocomposites. Carbohydr. Polym. 180, 354–364 (2018). https://doi.org/10.1016/j.carbpol.2017.09.102
P. Ming, Z. Song, S. Gong, Y. Zhang, J. Duan et al., Nacre-inspired integrated nanocomposites with fire retardant properties by graphene oxide and montmorillonite. J. Mater. Chem. A 3(42), 21194–21200 (2015). https://doi.org/10.1039/c5ta05742f
B. Yuan, Y. Wang, G. Chen, F. Yang, H. Zhang et al., Nacre-like graphene oxide paper bonded with boric acid for fire early-warning sensor. J. Hazard. Mater. 403, 123645 (2021). https://doi.org/10.1016/j.jhazmat.2020.123645
T. Wang, M.C. Long, H.B. Zhao, W.L. An, S.M. Xu et al., Temperature-responsive intumescent chemistry toward fire resistance and super thermal insulation under extremely harsh conditions. Chem. Mater. 33(15), 6018–6028 (2021). https://doi.org/10.1021/acs.chemmater.1c01408
Y. Li, C.F. Cao, S.N. Li, N.J. Huang, M. Mao et al., In situ reactive self-assembly of a graphene oxide nano-coating in polymer foam materials with synergistic fire shielding properties. J. Mater. Chem. A 7(47), 27032–27040 (2019). https://doi.org/10.1039/c9ta09372a
C. Hu, J. Xue, L. Dong, Y. Jiang, X. Wang et al., Scalable preparation of multifunctional fire-retardant ultralight graphene foams. ACS Nano 10(1), 1325–1332 (2016). https://doi.org/10.1021/acsnano.5b06710
Z.R. Yu, M. Mao, S.N. Li, Q.Q. Xia, C.F. Cao et al., Facile and green synthesis of mechanically flexible and flame-retardant clay/graphene oxide nanoribbon interconnected networks for fire safety and prevention. Chem. Eng. J. 405, 126620 (2021). https://doi.org/10.1016/j.cej.2020.126620
W. Liu, X. Wang, Y. Song, R. Cao, L. Wang et al., Self-powered forest fire alarm system based on impedance matching effect between triboelectric nanogenerator and thermosensitive sensor. Nano Energy 73, 104843 (2020). https://doi.org/10.1016/j.nanoen.2020.104843
F. Khan, S. Wang, Z. Ma, A. Ahmed, P. Song et al., A durable, flexible, large-area, flame-retardant, early fire warning sensor with built-in patterned electrodes. Small Methods 5(4), 2001040 (2021). https://doi.org/10.1002/smtd.202001040
G. Chen, B. Yuan, Y. Wang, X. Chen, C. Huang et al., Nacre-biomimetic graphene oxide paper intercalated by phytic acid and its ultrafast fire-alarm application. J. Colloid Interf. Sci. 578, 412–421 (2020). https://doi.org/10.1016/j.jcis.2020.05.112
G. Chen, B. Yuan, Y. Wang, S. Shang, X. Chen et al., Inhibited combustion of graphene paper by in situ phosphorus doping and its application for fire early-warning sensor. Sens. Actuat. A Phys. 312, 112111 (2020). https://doi.org/10.1016/j.sna.2020.112111
S. Wang, X. Wang, X. Wang, H. Li, J. Sun et al., Surface coated rigid polyurethane foam with durable flame retardancy and improved mechanical property. Chem. Eng. J. 385, 123755 (2020). https://doi.org/10.1016/j.cej.2019.123755
D.J. Brannum, E.J. Price, D. Villamil, S. Kozawa, M. Brannum et al., Flame-retardant polyurethane foams: one-pot, bioinspired silica nanop coating. ACS Appl. Polym. Mater. 1(8), 2015–2022 (2019). https://doi.org/10.1021/acsapm.9b00283
D. Jia, J. Hu, J. He, R. Yang, Properties of a novel inherently flame-retardant rigid polyurethane foam composite bearing imide and oxazolidinone. J. Appl. Polym. Sci. 136(37), 47943 (2019). https://doi.org/10.1002/app.47943
M.E. Farid, M.A. El-Sockary, A.M. El-Saeed, A.I. Hashem, O.M.A. Elenien et al., An eco-friendly non-isocyanate polyurethane treated by CO2 as flame retardant nanocomposite coating/ZrO2@SiO2. Mater. Res. Express 6(6), 065042 (2019). https://doi.org/10.1088/2053-1591/ab0da3
S.X. Wang, H.B. Zhao, W.H. Rao, S.C. Huang, T. Wang et al., Inherently flame-retardant rigid polyurethane foams with excellent thermal insulation and mechanical properties. Polymer 153, 616–625 (2018). https://doi.org/10.1016/j.polymer.2018.08.068
M. Gao, J. Li, X. Zhou, A flame retardant rigid polyurethane foam system including functionalized graphene oxide. Polym. Compos. 40(S2), E1274–E1282 (2018). https://doi.org/10.1002/pc.24965
W. Xu, G. Wang, X. Zheng, Research on highly flame-retardant rigid PU foams by combination of nanostructured additives and phosphorus flame retardants. Polym. Degrad. Stab. 111, 142–150 (2015). https://doi.org/10.1016/j.polymdegradstab.2014.11.008
P. Acuna, Z. Li, M. Santiago-Calvo, F. Villafane, M.A. Rodriguez-Perez et al., Influence of the characteristics of expandable graphite on the morphology, thermal properties, fire behaviour and compression performance of a rigid polyurethane foam. Polymers 11(1), 168 (2019). https://doi.org/10.3390/polym11010168
H.B. Chen, P. Shen, M.J. Chen, H.B. Zhao, D.A. Schiraldi, Highly efficient flame retardant polyurethane foam with alginate/clay aerogel coating. ACS Appl. Mater. Interf. 8(47), 32557–32564 (2016). https://doi.org/10.1021/acsami.6b11659
C.F. Cao, B. Yu, B.F. Guo, W.J. Hu, F.N. Sun et al., Bio-inspired, sustainable and mechanically robust graphene oxide-based hybrid networks for efficient fire protection and warning. Chem. Eng. J. 439, 134516 (2022). https://doi.org/10.1016/j.cej.2022.134516