Oxygen-Defect Enhanced Anion Adsorption Energy Toward Super-Rate and Durable Cathode for Ni–Zn Batteries
Corresponding Author: Hao Wang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 167
Abstract
The alkaline zinc-based batteries with high energy density are becoming a research hotspot. However, the poor cycle stability and low-rate performance limit their wide application. Herein, ultra-thin CoNiO2 nanosheet with rich oxygen defects anchored on the vertically arranged Ni nanotube arrays (Od-CNO@Ni NTs) is used as a positive material for rechargeable alkaline Ni–Zn batteries. As the highly uniform Ni nanotube arrays provide a fast electron/ion transport path and abundant active sites, the Od-CNO@Ni NTs electrode delivers excellent capacity (432.7 mAh g−1) and rate capability (218.3 mAh g−1 at 60 A g−1). Moreover, our Od-CNO@Ni NTs//Zn battery is capable of an ultra-long lifespan (93.0% of initial capacity after 5000 cycles), extremely high energy density of 547.5 Wh kg−1 and power density of 92.9 kW kg−1 (based on the mass of cathode active substance). Meanwhile, the theoretical calculations reveal that the oxygen defects can enhance the interaction between electrode surface and electrolyte ions, contributing to higher capacity. This work opens a reasonable idea for the development of ultra-durable, ultra-fast, and high-energy Ni–Zn battery.
Highlights:
1 Ultra-thin CoNiO2 nanosheet with rich oxygen defects anchored on the vertically arranged Ni nanotube arrays (Od-CNO@Ni NTs) is successfully constructed.
2 The Od-CNO@Ni NTs electrode delivers extraordinary electrochemical performance.
3 The theoretical calculations reveal that oxygen defects effectively improve the electrochemical kinetics and the surface electronic state structure of Od-CNO @ Ni NTs, thus exhibiting strong OH − adsorption capacity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011). https://doi.org/10.1126/science.1212741
- Z.P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu et al., Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3, 279–289 (2018). https://doi.org/10.1038/s41560-018-0108-1
- L. Shan, S. Liang, B. Tang, J. Zhou, Development and challenges of aqueous rechargeable zinc batteries. Sci. Bull. 65, 3562–3584 (2020). https://doi.org/10.1360/TB-2020-0352
- D. Chao, W. Zhou, F. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Adv. Sci. 6, eaba4098 (2020). https://doi.org/10.1126/sciadv.aba4098
- H. Li, D. Chao, B. Chen, X. Chen, C. Chuah et al., Revealing principles for design of lean-electrolyte lithium metal anode via in situ spectroscopy. J. Am. Chem. Soc. 142, 2012–2022 (2020). https://doi.org/10.1021/jacs.9b11774
- C. Ye, Y. Jiao, D. Chao, T. Ling, J. Shan et al., Electron-state confinement of polysulfides for highly stable sodium-sulfur batteries. Adv. Mater. 32, 1907557–1907564 (2020). https://doi.org/10.1002/adma.201907557
- J. Huang, J. Zhou, S. Liang, Guest pre-intercalation strategy to boost the electrochemical performance of aqueous zinc-ion battery cathodes. Acta Phys. Chim. Sin. 37, 2005020 (2021). https://doi.org/10.3866/PKU.WHXB202005020
- J. Gao, X. Xie, S. Liang, B. Lu, J. Zhou, Inorganic colloidal electrolyte for highly robust zinc-ion batteries. Nano-Micro Lett. 13, 1 (2021). https://doi.org/10.1007/s40820-020-00525-y
- G.G. Yadav, J.W. Gallaway, D.E. Turney, M. Nyce, J. Huang et al., Regenerable Cu-intercalated MnO2 layered cathode for highly cyclable energy dense batteries. Nat. Commun. 8, 14424 (2017). https://doi.org/10.1038/ncomms14424
- C. Li, Q. Zhang, J. Sun, T. Li, S. Eagan et al., High-performance quasi-solid-state flexible aqueous rechargeable Ag–Zn battery based on metal–organic framework-derived Ag nanowires. ACS Energy Lett. 3, 2761–2768 (2018). https://doi.org/10.1021/acsenergylett.8b01675
- Y. Jian, D. Wang, M. Huang, H.-L. Jia, J. Sun et al., Facile synthesis of Ni(OH)2/carbon nanofiber composites for improving nizn battery cycling life. ACS Sustain. Chem. Eng. 5, 6827–6834 (2017). https://doi.org/10.1021/acssuschemeng.7b01048
- C. Xu, J. Liao, C. Yang, R. Wang, D. Wu et al., An ultrafast, high capacity and superior longevity Ni/Zn battery constructed on nickel nanowire array film. Nano Energy 30, 900–908 (2016). https://doi.org/10.1016/j.nanoen.2016.07.035
- X. Wang, M. Li, Y. Wang, B. Chen, Y. Zhu et al., A Zn–NiO rechargeable battery with long lifespan and high energy density. J. Mater. Chem. A 3, 8280–8283 (2015). https://doi.org/10.1039/C5TA01947H
- W. Zhou, J. He, D. Zhu, J. Li, Y. Chen, Hierarchical NiSe2 nanosheet arrays as a robust cathode toward superdurable and ultrafast Ni-Zn aqueous batteries. ACS Appl. Mater. Interfaces 12, 34931–34940 (2020). https://doi.org/10.1021/acsami.0c08205
- P. Hu, T. Wang, J. Zhao, C. Zhang, J. Ma et al., Ultrafast alkaline Ni/Zn battery based on Ni-foam-supported Ni3S2 nanosheets. ACS Appl. Mater. Interfaces 7, 26396–26399 (2015). https://doi.org/10.1021/acsami.5b09728
- L. Zhou, X. Zhang, D. Zheng, W. Xu, J. Liu et al., Ni3S2@PANI core–shell nanosheets as a durable and high-energy binder-free cathode for aqueous rechargeable nickel–zinc batteries. J. Mater. Chem. A 7, 10629–10635 (2019). https://doi.org/10.1039/C9TA00681H
- Z. Lu, X. Wu, X. Lei, Y. Li, X. Sun, Hierarchical nanoarray materials for advanced nickel–zinc batteries. Inorg. Chem. Front. 2, 184–187 (2015). https://doi.org/10.1039/C4QI00143E
- X. Wang, F. Wang, L. Wang, M. Li, Y. Wang et al., An aqueous rechargeable Zn//Co3O4 battery with high energy density and good cycling behavior. Adv. Mater. 28, 4904–4911 (2016). https://doi.org/10.1002/adma.201505370
- C. Teng, F. Yang, M. Sun, K. Yin, Q. Huang et al., Structural and defect engineering of cobaltosic oxide nanoarchitectures as an ultrahigh energy density and super durable cathode for Zn-based batteries. Chem. Sci. 10, 7600–7609 (2019). https://doi.org/10.1039/C9SC01902B
- S. Zhang, B. Yin, Y. Luo, L. Shen, B. Tang et al., Fabrication and theoretical investigation of cobaltosic sulfide nanosheets for flexible aqueous Zn/Co batteries. Nano Energy 68, 104314 (2019). https://doi.org/10.1016/j.nanoen.2019.104314
- H. Chen, Z. Shen, Z. Pan, Z. Kou, X. Liu et al., Hierarchical micro-nano sheet arrays of nickel-cobalt double hydroxides for high-rate Ni-Zn batteries. Adv. Sci. 6, 1802002 (2019). https://doi.org/10.1002/advs.201802002
- W. He, S. Wang, Y. Shao, Z. Kong, H. Tu et al., Water invoking interface corrosion: an energy density booster for Ni//Zn battery. Adv. Energy Mater. 11, 2003268 (2021). https://doi.org/10.1002/aenm.202003268
- Y. Zeng, Z. Lai, Y. Han, H. Zhang, S. Xie et al., Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries. Adv. Mater. 30, 1802396 (2018). https://doi.org/10.1002/adma.201802396
- W. Shang, W. Yu, P. Tan, B. Chen, H. Xu et al., A high-performance Zn battery based on self-assembled nanostructured NiCo2O4 electrode. J. Power Sources 421, 6–13 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.097
- H. Zhang, X. Zhang, H. Li, Y. Zhang, Y. Zeng et al., Flexible rechargeable Ni//Zn battery based on self-supported NiCo2O4 nanosheets with high power density and good cycling stability. Green Energy Environ. 3, 56–62 (2018). https://doi.org/10.1016/j.gee.2017.09.003
- J.F. Parker, C.N. Chervin, I.R. Pala, M. Machler, M.F. Burz et al., Rechargeable nickel–3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356, 415–418 (2017). https://doi.org/10.1126/science.aak9991
- H. Li, L. Ma, C. Han, Z. Wang, Z. Liu et al., Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy 62, 550–587 (2019). https://doi.org/10.1016/j.nanoen.2019.05.059
- M. Huang, M. Li, C. Niu, Q. Li, L. Mai, Recent advances in rational electrode designs for high-performance alkaline rechargeable batteries. Adv. Funct. Mater. 29, 1807847 (2019). https://doi.org/10.1002/adfm.201807847
- Q.N. Zhu, Z.Y. Wang, J.W. Wang, X.Y. Liu, D. Yang et al., Challenges and strategies for ultrafast aqueous zinc-ion batteries. Rare Met. 40, 309–328 (2020). https://doi.org/10.1007/s12598-020-01588-x
- W. Zhou, D. Zhu, J. He, J. Li, H. Chen et al., A scalable top-down strategy toward practical metrics of Ni–Zn aqueous batteries with total energy densities of 165 wh kg−1 and 506 wh L−1. Energy Environ. Sci. 13, 4157–4167 (2020). https://doi.org/10.1039/D0EE01221A
- J. Ji, H. Wan, B. Zhang, C. Wang, Y. Gan et al., Co2+/3+/4+-regulated electron state of Mn–O for superb aqueous zinc-manganese oxide batteries. Adv. Energy Mater. 11, 2003203 (2020). https://doi.org/10.1002/aenm.202003203
- Y. Zhang, L. Tao, C. Xie, D. Wang, Y. Zou et al., Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 32, 1905923 (2020). https://doi.org/10.1002/adma.201905923
- W. Liu, Y. Chen, Y. Wang, Q. Zhao, L. Chen et al., Influence of anion substitution on 3D-architectured Ni-Co-A (A = H, O, P) as efficient cathode materials towards rechargeable Zn-based battery. Energy Storage Mater. 37, 336–344 (2021). https://doi.org/10.1016/j.ensm.2021.02.026
- G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid–metal–amorphous–semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994). https://doi.org/10.1103/PhysRevB.49.14251
- P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964). https://doi.org/10.1103/PhysRev.136.B864
- W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965). https://doi.org/10.1103/PhysRev.140.A1133
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1998). https://doi.org/10.1103/PhysRevLett.77.3865
- A.I. Liechtenstein, V.V. Anisimov, J. Zaanen, Density-functional theory and strong interactions: orbital ordering in mott-hubbard insulators. Phys. Rev. B 52, R5467–R5470 (1995). https://doi.org/10.1103/PhysRevB.52.R5467
- S.L. Dudarev, A.I. Liechtenstein, M.R. Castell, G. Briggs, A.P. Sutton, Surface states on NiO(100) and the origin of the contrast reversal in atomically resolved scanning tunneling microscope images. Phys. Rev. B 56, 4900 (1997). https://doi.org/10.1103/PhysRevB.56.4900
- A. Jain, G. Hautier, C.J. Moore, S. Ping Ong, C.C. Fischer et al., A high-throughput infrastructure for density functional theory calculations. Comput. Mater. Sci. 50, 2295–2310 (2011). https://doi.org/10.1016/j.commatsci.2011.02.023
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344
- H.J. Monkhorst, J.D. Pack, Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188
- K. Momma, F. Izumi, Vesta: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653–658 (2008). https://doi.org/10.1107/S0021889808012016
- S.H. Kim, J.M. Kim, D.B. Ahn, S.Y. Lee, Cellulose nanofiber/carbon nanotube-based bicontinuous ion/electron conduction networks for high-performance aqueous Zn-ion batteries. Small 16, 2002837 (2020). https://doi.org/10.1002/smll.202002837
- C. Hu, L. Miao, Q. Yang, X. Yu, L. Song et al., Self-assembly of CNTs on Ni foam for enhanced performance of NiCoO2@CNT@NF supercapacitor electrode. Chem. Eng. J. 410, 128317 (2020). https://doi.org/10.1016/j.cej.2020.128317
- L. Kang, M. Zhang, J. Zhang, S. Liu, N. Zhang et al., Dual-defect surface engineering of bimetallic sulfide nanotubes towards flexible asymmetric solid-state supercapacitors. J. Mater. Chem. A 8, 24053–24064 (2020). https://doi.org/10.1039/D0TA08979F
- C. Wang, Z. Song, H. Wan, X. Chen, Q. Tan et al., Ni–Co selenide nanowires supported on conductive wearable textile as cathode for flexible battery-supercapacitor hybrid devices. Chem. Eng. J. 400, 125955 (2020). https://doi.org/10.1016/j.cej.2020.125955
- X. Zhang, F. Yang, H. Chen, K. Wang, J. Chen et al., In situ growth of 2D ultrathin NiCo2O4 nanosheet arrays on Ni foam for high performance and flexible solid-state supercapacitors. Small 16, 2004188 (2020). https://doi.org/10.1002/smll.202004188
- Q. Tan, X. Li, B. Zhang, X. Chen, Y. Tian et al., Valence engineering via in situ carbon reduction on octahedron sites Mn3O4 for ultra-long cycle life aqueous Zn-ion battery. Adv. Energy Mater. 10, 2001050 (2020). https://doi.org/10.1002/aenm.202001050
- R.F.W. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, Oxford, 1990)
- X. Zhao, H. Wan, P. Liang, N. Wang, C. Wang et al., Favorable anion adsorption/desorption of high rate NiSe2 nanosheets/hollow mesoporous carbon for battery-supercapacitor hybrid devices. Nano Res. 66, 1–10 (2020). https://doi.org/10.1007/s12274-020-3257-z
- Y. Gan, C. Wang, X. Chen, P. Liang, H. Wang, High conductivity Ni12P5 nanowires as high-rate electrode material for battery-supercapacitor hybrid devices. Chem. Eng. J. 392, 123661 (2019). https://doi.org/10.1016/j.cej.2019.123661
- M. Gong, Y. Li, H. Zhang, B. Zhang, W. Zhou et al., Ultrafast high-capacity NiZn battery with NiAlCo-layered double hydroxide. Energy Environ. Sci. 7, 2025–2032 (2014). https://doi.org/10.1039/C4EE00317A
- Y. Zeng, Z. Lin, Y. Meng, Y. Wang, M. Yu et al., Flexible ultrafast aqueous rechargeable Ni//Bi battery based on highly durable single-crystalline bismuth nanostructured anode. Adv. Mater. 28, 9188–9195 (2016). https://doi.org/10.1002/adma.201603304
- J. Liu, M. Chen, L. Zhang, J. Jiang, J. Yan et al., A flexible alkaline rechargeable Ni/Fe battery based on graphene foam/carbon nanotubes hybrid film. Nano Lett. 14, 7180–7187 (2014). https://doi.org/10.1021/nl503852m
- H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 1–7 (2016). https://doi.org/10.1038/nenergy.2016.39
- S. Liu, H. Zhu, B. Zhang, G. Li, H. Zhu et al., Tuning the kinetics of zinc-ion insertion/extraction in V2O5 by in situ polyaniline intercalation enables improved aqueous zinc-ion storage performance. Adv. Mater. 32, 2001113 (2020). https://doi.org/10.1002/adma.202001113
- X. Jiang, Z. Li, G. Lu, N. Hu, G. Ji et al., Pores enriched CoNiO2 nanosheets on graphene hollow fibers for high performance supercapacitor-battery hybrid energy storage. Electrochim. Acta 358, 136857 (2020). https://doi.org/10.1016/j.electacta.2020.136857
References
B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011). https://doi.org/10.1126/science.1212741
Z.P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu et al., Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3, 279–289 (2018). https://doi.org/10.1038/s41560-018-0108-1
L. Shan, S. Liang, B. Tang, J. Zhou, Development and challenges of aqueous rechargeable zinc batteries. Sci. Bull. 65, 3562–3584 (2020). https://doi.org/10.1360/TB-2020-0352
D. Chao, W. Zhou, F. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Adv. Sci. 6, eaba4098 (2020). https://doi.org/10.1126/sciadv.aba4098
H. Li, D. Chao, B. Chen, X. Chen, C. Chuah et al., Revealing principles for design of lean-electrolyte lithium metal anode via in situ spectroscopy. J. Am. Chem. Soc. 142, 2012–2022 (2020). https://doi.org/10.1021/jacs.9b11774
C. Ye, Y. Jiao, D. Chao, T. Ling, J. Shan et al., Electron-state confinement of polysulfides for highly stable sodium-sulfur batteries. Adv. Mater. 32, 1907557–1907564 (2020). https://doi.org/10.1002/adma.201907557
J. Huang, J. Zhou, S. Liang, Guest pre-intercalation strategy to boost the electrochemical performance of aqueous zinc-ion battery cathodes. Acta Phys. Chim. Sin. 37, 2005020 (2021). https://doi.org/10.3866/PKU.WHXB202005020
J. Gao, X. Xie, S. Liang, B. Lu, J. Zhou, Inorganic colloidal electrolyte for highly robust zinc-ion batteries. Nano-Micro Lett. 13, 1 (2021). https://doi.org/10.1007/s40820-020-00525-y
G.G. Yadav, J.W. Gallaway, D.E. Turney, M. Nyce, J. Huang et al., Regenerable Cu-intercalated MnO2 layered cathode for highly cyclable energy dense batteries. Nat. Commun. 8, 14424 (2017). https://doi.org/10.1038/ncomms14424
C. Li, Q. Zhang, J. Sun, T. Li, S. Eagan et al., High-performance quasi-solid-state flexible aqueous rechargeable Ag–Zn battery based on metal–organic framework-derived Ag nanowires. ACS Energy Lett. 3, 2761–2768 (2018). https://doi.org/10.1021/acsenergylett.8b01675
Y. Jian, D. Wang, M. Huang, H.-L. Jia, J. Sun et al., Facile synthesis of Ni(OH)2/carbon nanofiber composites for improving nizn battery cycling life. ACS Sustain. Chem. Eng. 5, 6827–6834 (2017). https://doi.org/10.1021/acssuschemeng.7b01048
C. Xu, J. Liao, C. Yang, R. Wang, D. Wu et al., An ultrafast, high capacity and superior longevity Ni/Zn battery constructed on nickel nanowire array film. Nano Energy 30, 900–908 (2016). https://doi.org/10.1016/j.nanoen.2016.07.035
X. Wang, M. Li, Y. Wang, B. Chen, Y. Zhu et al., A Zn–NiO rechargeable battery with long lifespan and high energy density. J. Mater. Chem. A 3, 8280–8283 (2015). https://doi.org/10.1039/C5TA01947H
W. Zhou, J. He, D. Zhu, J. Li, Y. Chen, Hierarchical NiSe2 nanosheet arrays as a robust cathode toward superdurable and ultrafast Ni-Zn aqueous batteries. ACS Appl. Mater. Interfaces 12, 34931–34940 (2020). https://doi.org/10.1021/acsami.0c08205
P. Hu, T. Wang, J. Zhao, C. Zhang, J. Ma et al., Ultrafast alkaline Ni/Zn battery based on Ni-foam-supported Ni3S2 nanosheets. ACS Appl. Mater. Interfaces 7, 26396–26399 (2015). https://doi.org/10.1021/acsami.5b09728
L. Zhou, X. Zhang, D. Zheng, W. Xu, J. Liu et al., Ni3S2@PANI core–shell nanosheets as a durable and high-energy binder-free cathode for aqueous rechargeable nickel–zinc batteries. J. Mater. Chem. A 7, 10629–10635 (2019). https://doi.org/10.1039/C9TA00681H
Z. Lu, X. Wu, X. Lei, Y. Li, X. Sun, Hierarchical nanoarray materials for advanced nickel–zinc batteries. Inorg. Chem. Front. 2, 184–187 (2015). https://doi.org/10.1039/C4QI00143E
X. Wang, F. Wang, L. Wang, M. Li, Y. Wang et al., An aqueous rechargeable Zn//Co3O4 battery with high energy density and good cycling behavior. Adv. Mater. 28, 4904–4911 (2016). https://doi.org/10.1002/adma.201505370
C. Teng, F. Yang, M. Sun, K. Yin, Q. Huang et al., Structural and defect engineering of cobaltosic oxide nanoarchitectures as an ultrahigh energy density and super durable cathode for Zn-based batteries. Chem. Sci. 10, 7600–7609 (2019). https://doi.org/10.1039/C9SC01902B
S. Zhang, B. Yin, Y. Luo, L. Shen, B. Tang et al., Fabrication and theoretical investigation of cobaltosic sulfide nanosheets for flexible aqueous Zn/Co batteries. Nano Energy 68, 104314 (2019). https://doi.org/10.1016/j.nanoen.2019.104314
H. Chen, Z. Shen, Z. Pan, Z. Kou, X. Liu et al., Hierarchical micro-nano sheet arrays of nickel-cobalt double hydroxides for high-rate Ni-Zn batteries. Adv. Sci. 6, 1802002 (2019). https://doi.org/10.1002/advs.201802002
W. He, S. Wang, Y. Shao, Z. Kong, H. Tu et al., Water invoking interface corrosion: an energy density booster for Ni//Zn battery. Adv. Energy Mater. 11, 2003268 (2021). https://doi.org/10.1002/aenm.202003268
Y. Zeng, Z. Lai, Y. Han, H. Zhang, S. Xie et al., Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries. Adv. Mater. 30, 1802396 (2018). https://doi.org/10.1002/adma.201802396
W. Shang, W. Yu, P. Tan, B. Chen, H. Xu et al., A high-performance Zn battery based on self-assembled nanostructured NiCo2O4 electrode. J. Power Sources 421, 6–13 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.097
H. Zhang, X. Zhang, H. Li, Y. Zhang, Y. Zeng et al., Flexible rechargeable Ni//Zn battery based on self-supported NiCo2O4 nanosheets with high power density and good cycling stability. Green Energy Environ. 3, 56–62 (2018). https://doi.org/10.1016/j.gee.2017.09.003
J.F. Parker, C.N. Chervin, I.R. Pala, M. Machler, M.F. Burz et al., Rechargeable nickel–3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356, 415–418 (2017). https://doi.org/10.1126/science.aak9991
H. Li, L. Ma, C. Han, Z. Wang, Z. Liu et al., Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy 62, 550–587 (2019). https://doi.org/10.1016/j.nanoen.2019.05.059
M. Huang, M. Li, C. Niu, Q. Li, L. Mai, Recent advances in rational electrode designs for high-performance alkaline rechargeable batteries. Adv. Funct. Mater. 29, 1807847 (2019). https://doi.org/10.1002/adfm.201807847
Q.N. Zhu, Z.Y. Wang, J.W. Wang, X.Y. Liu, D. Yang et al., Challenges and strategies for ultrafast aqueous zinc-ion batteries. Rare Met. 40, 309–328 (2020). https://doi.org/10.1007/s12598-020-01588-x
W. Zhou, D. Zhu, J. He, J. Li, H. Chen et al., A scalable top-down strategy toward practical metrics of Ni–Zn aqueous batteries with total energy densities of 165 wh kg−1 and 506 wh L−1. Energy Environ. Sci. 13, 4157–4167 (2020). https://doi.org/10.1039/D0EE01221A
J. Ji, H. Wan, B. Zhang, C. Wang, Y. Gan et al., Co2+/3+/4+-regulated electron state of Mn–O for superb aqueous zinc-manganese oxide batteries. Adv. Energy Mater. 11, 2003203 (2020). https://doi.org/10.1002/aenm.202003203
Y. Zhang, L. Tao, C. Xie, D. Wang, Y. Zou et al., Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 32, 1905923 (2020). https://doi.org/10.1002/adma.201905923
W. Liu, Y. Chen, Y. Wang, Q. Zhao, L. Chen et al., Influence of anion substitution on 3D-architectured Ni-Co-A (A = H, O, P) as efficient cathode materials towards rechargeable Zn-based battery. Energy Storage Mater. 37, 336–344 (2021). https://doi.org/10.1016/j.ensm.2021.02.026
G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid–metal–amorphous–semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994). https://doi.org/10.1103/PhysRevB.49.14251
P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964). https://doi.org/10.1103/PhysRev.136.B864
W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965). https://doi.org/10.1103/PhysRev.140.A1133
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1998). https://doi.org/10.1103/PhysRevLett.77.3865
A.I. Liechtenstein, V.V. Anisimov, J. Zaanen, Density-functional theory and strong interactions: orbital ordering in mott-hubbard insulators. Phys. Rev. B 52, R5467–R5470 (1995). https://doi.org/10.1103/PhysRevB.52.R5467
S.L. Dudarev, A.I. Liechtenstein, M.R. Castell, G. Briggs, A.P. Sutton, Surface states on NiO(100) and the origin of the contrast reversal in atomically resolved scanning tunneling microscope images. Phys. Rev. B 56, 4900 (1997). https://doi.org/10.1103/PhysRevB.56.4900
A. Jain, G. Hautier, C.J. Moore, S. Ping Ong, C.C. Fischer et al., A high-throughput infrastructure for density functional theory calculations. Comput. Mater. Sci. 50, 2295–2310 (2011). https://doi.org/10.1016/j.commatsci.2011.02.023
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344
H.J. Monkhorst, J.D. Pack, Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188
K. Momma, F. Izumi, Vesta: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653–658 (2008). https://doi.org/10.1107/S0021889808012016
S.H. Kim, J.M. Kim, D.B. Ahn, S.Y. Lee, Cellulose nanofiber/carbon nanotube-based bicontinuous ion/electron conduction networks for high-performance aqueous Zn-ion batteries. Small 16, 2002837 (2020). https://doi.org/10.1002/smll.202002837
C. Hu, L. Miao, Q. Yang, X. Yu, L. Song et al., Self-assembly of CNTs on Ni foam for enhanced performance of NiCoO2@CNT@NF supercapacitor electrode. Chem. Eng. J. 410, 128317 (2020). https://doi.org/10.1016/j.cej.2020.128317
L. Kang, M. Zhang, J. Zhang, S. Liu, N. Zhang et al., Dual-defect surface engineering of bimetallic sulfide nanotubes towards flexible asymmetric solid-state supercapacitors. J. Mater. Chem. A 8, 24053–24064 (2020). https://doi.org/10.1039/D0TA08979F
C. Wang, Z. Song, H. Wan, X. Chen, Q. Tan et al., Ni–Co selenide nanowires supported on conductive wearable textile as cathode for flexible battery-supercapacitor hybrid devices. Chem. Eng. J. 400, 125955 (2020). https://doi.org/10.1016/j.cej.2020.125955
X. Zhang, F. Yang, H. Chen, K. Wang, J. Chen et al., In situ growth of 2D ultrathin NiCo2O4 nanosheet arrays on Ni foam for high performance and flexible solid-state supercapacitors. Small 16, 2004188 (2020). https://doi.org/10.1002/smll.202004188
Q. Tan, X. Li, B. Zhang, X. Chen, Y. Tian et al., Valence engineering via in situ carbon reduction on octahedron sites Mn3O4 for ultra-long cycle life aqueous Zn-ion battery. Adv. Energy Mater. 10, 2001050 (2020). https://doi.org/10.1002/aenm.202001050
R.F.W. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, Oxford, 1990)
X. Zhao, H. Wan, P. Liang, N. Wang, C. Wang et al., Favorable anion adsorption/desorption of high rate NiSe2 nanosheets/hollow mesoporous carbon for battery-supercapacitor hybrid devices. Nano Res. 66, 1–10 (2020). https://doi.org/10.1007/s12274-020-3257-z
Y. Gan, C. Wang, X. Chen, P. Liang, H. Wang, High conductivity Ni12P5 nanowires as high-rate electrode material for battery-supercapacitor hybrid devices. Chem. Eng. J. 392, 123661 (2019). https://doi.org/10.1016/j.cej.2019.123661
M. Gong, Y. Li, H. Zhang, B. Zhang, W. Zhou et al., Ultrafast high-capacity NiZn battery with NiAlCo-layered double hydroxide. Energy Environ. Sci. 7, 2025–2032 (2014). https://doi.org/10.1039/C4EE00317A
Y. Zeng, Z. Lin, Y. Meng, Y. Wang, M. Yu et al., Flexible ultrafast aqueous rechargeable Ni//Bi battery based on highly durable single-crystalline bismuth nanostructured anode. Adv. Mater. 28, 9188–9195 (2016). https://doi.org/10.1002/adma.201603304
J. Liu, M. Chen, L. Zhang, J. Jiang, J. Yan et al., A flexible alkaline rechargeable Ni/Fe battery based on graphene foam/carbon nanotubes hybrid film. Nano Lett. 14, 7180–7187 (2014). https://doi.org/10.1021/nl503852m
H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 1–7 (2016). https://doi.org/10.1038/nenergy.2016.39
S. Liu, H. Zhu, B. Zhang, G. Li, H. Zhu et al., Tuning the kinetics of zinc-ion insertion/extraction in V2O5 by in situ polyaniline intercalation enables improved aqueous zinc-ion storage performance. Adv. Mater. 32, 2001113 (2020). https://doi.org/10.1002/adma.202001113
X. Jiang, Z. Li, G. Lu, N. Hu, G. Ji et al., Pores enriched CoNiO2 nanosheets on graphene hollow fibers for high performance supercapacitor-battery hybrid energy storage. Electrochim. Acta 358, 136857 (2020). https://doi.org/10.1016/j.electacta.2020.136857