Room-Temperature Gas Sensors Under Photoactivation: From Metal Oxides to 2D Materials
Corresponding Author: Mahesh Kumar
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 164
Abstract
Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap, low power consumption and portable sensors for rapidly growing Internet of things applications. As an important approach, light illumination has been exploited for room-temperature operation with improving gas sensor’s attributes including sensitivity, speed and selectivity. This review provides an overview of the utilization of photoactivated nanomaterials in gas sensing field. First, recent advances in gas sensing of some exciting different nanostructures and hybrids of metal oxide semiconductors under light illumination are highlighted. Later, excellent gas sensing performance of emerging two-dimensional materials-based sensors under light illumination is discussed in details with proposed gas sensing mechanism. Originated impressive features from the interaction of photons with sensing materials are elucidated in the context of modulating sensing characteristics. Finally, the review concludes with key and constructive insights into current and future perspectives in the light-activated nanomaterials for optoelectronic gas sensor applications.
Highlights:
1 Operations of metal oxide semiconductors gas sensors at room temperature under photoactivation are discussed.
2 Emerging two-dimensional (2D) materials-based gas sensors under light illumination are summarized.
3 The advantages and limitations of metal oxides and 2D-materials-based sensors in gas sensing at room temperature under photoactivation are highlighted.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Yunusa, M.N. Hamidon, A. Kaiser, Z. Awang, Gas sensors: a review. Sens. Transducers 4, 61–75 (2014)
- Google Scholar
- K. Arshak, E. Moore, G.M. Lyons, J. Harris, S. Clifford, A review of gas sensors employed in electronic nose applications. Sens. Rev. 24(2), 181–198 (2004). https://doi.org/10.1108/02602280410525977
- N. Yamazoe, Toward innovations of gas sensor technology. Sens. Actuat. B Chem. 108(1–2), 2–14 (2005). https://doi.org/10.1016/j.snb.2004.12.075
- J. Hodgkinson, R.P. Tatam, Optical gas sensing: a review. Meas. Sci. Technol. 24, 012004 (2013). https://doi.org/10.1088/0957-0233/24/1/012004
- J.R. Stetter, J. Li, Amperometric gas sensors-a review. Chem. Rev. 108(2), 352–366 (2008). https://doi.org/10.1021/cr0681039
- S. Lakkis, R. Younes, Y. Alayli, M. Sawan, Review of recent trends in gas sensing technologies and their miniaturization potential. Sens. Rev. 34(1), 24–35 (2014). https://doi.org/10.1108/SR-11-2012-724
- Z. Meng, R.M. Stolz, L. Mendecki, K.A. Mirica, Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 119(1), 478–598 (2019). https://doi.org/10.1021/acs.chemrev.8b00311
- J. Zhang, X. Liu, G. Neri, N. Pinna, Nanostructured materials for room-temperature gas sensors. Adv. Mater. 28, 795–831 (2016). https://doi.org/10.1002/adma.201503825
- S.W. Chiu, K.T. Tang, Towards a chemiresistive sensor-integrated electronic nose: a review. Sensors 13(10), 14214–14247 (2013). https://doi.org/10.3390/s131014214
- Y. Jiang, N. Tang, C. Zhou, Z. Han, H. Qu, X. Duan, A chemiresistive sensor array from conductive polymer nanowires fabricated by nanoscale soft lithography. Nanoscale 10(44), 20578–20586 (2018). https://doi.org/10.1039/c8nr04198a
- J. Shin, Y. Hong, M. Wu, Y. Jang, J.S. Kim et al., Highly improved response and recovery characteristics of Si FET-type gas sensor using pre-bias. IEEE Int. Electron Devices Meet. IEDM, San Francisco, CA, USA. (2016). https://doi.org/10.1109/IEDM.2016.7838443
- S.J. Choi, I.D. Kim, Recent developments in 2D nanomaterials for chemiresistive-type gas sensors. Electron. Mater. Lett. 14, 221–260 (2018). https://doi.org/10.1007/s13391-018-0044-z
- X. Liu, T. Ma, N. Pinna, J. Zhang, Two-dimensional nanostructured materials for gas sensing. Adv. Funct. Mater. 27, 1–30 (2017). https://doi.org/10.1002/adfm.201702168
- R. Kumar, N. Goel, A.V. Agrawal, R. Raliya, S. Rajamani et al., Boosting sensing performance of vacancy-containing vertically aligned MoS2 using rGO particles. IEEE Sens. J. 19(22), 10214–10220 (2019). https://doi.org/10.1109/jsen.2019.2932106
- N. Barsan, D. Koziej, U. Weimar, Metal oxide-based gas sensor research: how to? Sens. Actuat. B Chem. 121(1), 18–35 (2007). https://doi.org/10.1016/j.snb.2006.09.047
- N. Joshi, T. Hayasaka, Y. Liu, H. Liu, O.N. Oliveira, L. Lin, A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim. Acta 185, 213 (2018). https://doi.org/10.1007/s00604-018-2750-5
- N. Taguchi, Gas detecting device, US Patent (1971)
- N. Barsan, U. Weimar, Conduction model of metal oxide gas sensors. J. Electroceramics 7, 143–167 (2001). https://doi.org/10.1023/A:1014405811371
- Y.F. Sun, S.B. Liu, F.L. Meng, J.Y. Liu, Z. Jin, L.T. Kong, J.H. Liu, Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12(3), 2610–2631 (2012). https://doi.org/10.3390/s120302610
- C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10(3), 2088–2106 (2010). https://doi.org/10.3390/s100302088
- E. Espid, F. Taghipour, UV-LED photo-activated chemical gas sensors: a review. Crit. Rev. Solid State Mater. Sci. 42(5), 416–432 (2017). https://doi.org/10.1080/10408436.2016.1226161
- F. Xu, H.P. Ho, Light-activated metal oxide gas sensors: a review. Micromachines 8(11), 333 (2017). https://doi.org/10.3390/mi8110333
- K. Aguir, S. Bernardini, B. Lawson, T. Fiorido, 8 - Trends in Metal Oxide Thin Films: Synthesis and Applications of Tin Oxide. M.O. Orlandi (Ed.), Tin Oxide Mater., (Elsevier, 2020) pp. 219–246. https://doi.org/10.1016/B978-0-12-815924-8.00008-6
- R. Kumar, W. Zheng, X. Liu, J. Zhang, M. Kumar, MoS2-based nanomaterials for room-temperature gas sensors. Adv. Mater. Technol. 5(5), 1901062 (2020). https://doi.org/10.1002/admt.201901062
- S. Yang, C. Jiang, S. Huai Wei, Gas sensing in 2D materials. Appl. Phys. Rev. (2017). https://doi.org/10.1063/1.4983310
- C. Anichini, W. Czepa, D. Pakulski, A. Aliprandi, A. Ciesielski, P. Samorì, Chemical sensing with 2D materials. Chem. Soc. Rev. 47(13), 4860–4908 (2018). https://doi.org/10.1039/c8cs00417j
- E. Lee, Y.S. Yoon, D.J. Kim, Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing. ACS Sens. 3(10), 2045–2060 (2018). https://doi.org/10.1021/acssensors.8b01077
- F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652 (2007). https://doi.org/10.1038/nmat1967
- R. Kumar, N. Goel, M. Hojamberdiev, M. Kumar, Transition metal dichalcogenides-based flexible gas sensors. Sens. Actuat. A Phys. 303, 111875 (2020). https://doi.org/10.1016/j.sna.2020.111875
- S. Cui, H. Pu, S.A. Wells, Z. Wen, S. Mao et al., Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nat. Commun. 6, 8632 (2015). https://doi.org/10.1038/ncomms9632
- G. Oxide, M. Donarelli, 2D materials for gas sensing applications: a review. Sensors 18, 3638 (2018). https://doi.org/10.3390/s18113638
- R. Kumar, P.K. Kulriya, M. Mishra, F. Singh, G. Gupta, M. Kumar, Highly selective and reversible NO2 gas sensor using vertically aligned MoS2 flake networks. Nanotechnology 29, 46 (2018). https://doi.org/10.1088/1361-6528/aade20
- H. Long, A. Harley-Trochimczyk, T. Pham, Z. Tang, T. Shi et al., High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection. Adv. Funct. Mater. 26, 5158–5165 (2016). https://doi.org/10.1002/adfm.201601562
- R. Kumar, N. Goel, M. Kumar, High performance NO2 sensor using MoS2 nanowires network. Appl. Phys. Lett. 112, 053502 (2018). https://doi.org/10.1063/1.5019296
- J.D. Fowler, M.J. Allen, V.C. Tung, Y. Yang, R.B. Kaner, B.H. Weiller, Practical chemical sensors from chemically derived graphene. ACS Nano 3, 301–306 (2009). https://doi.org/10.1021/nn800593m
- N.D. Chinh, T.T. Hien, L. Van Do, N.M. Hieu, N.D. Quang, S.M. Lee, C. Kim, D. Kim, Adsorption/desorption kinetics of nitric oxide on zinc oxide nano film sensor enhanced by light irradiation and gold-nanoparticles decoration. Sens. Actuat. B Chem. 281, 262–272 (2019). https://doi.org/10.1016/j.snb.2018.10.113
- R. Chen, J. Wang, Y. Xia, L. Xiang, Near infrared light enhanced room-temperature NO2 gas sensing by hierarchical ZnO nanorods functionalized with PbS quantum dots. Sens. Actuat. B Chem. 255, 2538–2545 (2018). https://doi.org/10.1016/j.snb.2017.09.059
- J. Gong, Y. Li, X. Chai, Z. Hu, Y. Deng, UV-light-activated ZnO fibers for organic gas sensing at room temperature. J. Phys. Chem. C 114(2), 1293–1298 (2010). https://doi.org/10.1021/jp906043k
- J. Li, D. Gu, Y. Yang, H. Du, X. Li, UV light activated SnO2/ZnO nanofibers for gas sensing at room temperature. Front. Mater. 6, 158 (2019). https://doi.org/10.3389/fmats.2019.00158
- E. Wu, Y. Xie, B. Yuan, D. Hao, C. An et al., Specific and highly sensitive detection of ketone compounds based on p-type MoTe2 under ultraviolet illumination. ACS Appl. Mater. Interfaces. 10(41), 35664–35669 (2018). https://doi.org/10.1021/acsami.8b14142
- Q.H. Li, Q. Wan, Y.X. Liang, T.H. Wang, Electronic transport through individual ZnO nanowires. Appl. Phys. Lett. 84, 4556 (2004). https://doi.org/10.1063/1.1759071
- B.P.J. De Lacy Costello, R.J. Ewen, N.M. Ratcliffe, M. Richards, Highly sensitive room temperature sensors based on the UV-LED activation of zinc oxide nanoparticles. Sens. Actuat. B Chem. 134(2), 945–952 (2008). https://doi.org/10.1016/j.snb.2008.06.055
- S.W. Fan, A.K. Srivastava, V.P. Dravid, UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Appl. Phys. Lett. 95, 142106 (2009). https://doi.org/10.1063/1.3243458
- X. Su, G. Duan, Z. Xu, F. Zhou, W. Cai, Structure and thickness-dependent gas sensing responses to NO2 under UV irradiation for the multilayered ZnO micro/nanostructured porous thin films. J. Colloid Interface Sci. 503, 150–158 (2017). https://doi.org/10.1016/j.jcis.2017.04.055
- J. Cui, L. Shi, T. Xie, D. Wang, Y. Lin, UV-light illumination room temperature HCHO gas-sensing mechanism of ZnO with different nanostructures. Sens. Actuat. B Chem. 227, 220–226 (2016). https://doi.org/10.1016/j.snb.2015.12.010
- L. Peng, Q. Zhao, D. Wang, J. Zhai, P. Wang, S. Pang, T. Xie, Ultraviolet-assisted gas sensing: a potential formaldehyde detection approach at room temperature based on zinc oxide nanorods. Sens. Actuat. B Chem. 136(1), 80–85 (2009). https://doi.org/10.1016/j.snb.2008.10.057
- L. Peng, J. Zhai, D. Wang, Y. Zhang, P. Wang, Q. Zhao, T. Xie, Size- and photoelectric characteristics-dependent formaldehyde sensitivity of ZnO irradiated with UV light. Sens. Actuat. B Chem. 148(1), 66–73 (2010). https://doi.org/10.1016/j.snb.2010.04.045
- M. Kumar, R. Kumar, S. Rajamani, S. Ranwa, M. Fanetti, M. Valant, M. Kumar, Efficient room temperature hydrogen sensor based on UV-activated ZnO nano-network. Nanotechnology 28, 36 (2017). https://doi.org/10.1088/1361-6528/aa7cad
- C.B. Jacobs, A.B. Maksov, E.S. Muckley, L. Collins, M. Mahjouri-Samani et al., UV-activated ZnO films on a flexible substrate for room temperature O2 and H2O sensing. Sci. Rep. 7, 6053 (2017). https://doi.org/10.1038/s41598-017-05265-5
- N. Joshi, L.F. da Silva, F.M. Shimizu, V.R. Mastelaro, J.C. M’Peko, L. Lin, O.N. Oliveira, UV-assisted chemiresistors made with gold-modified ZnO nanorods to detect ozone gas at room temperature. Microchim. Acta 186, 418 (2019). https://doi.org/10.1007/s00604-019-3532-4
- L. Han, D. Wang, J. Cui, L. Chen, T. Jiang, Y. Lin, Study on formaldehyde gas-sensing of In2O3-sensitized ZnO nanoflowers under visible light irradiation at room temperature. J. Mater. Chem. 22(25), 12915–12920 (2012). https://doi.org/10.1039/c2jm16105b
- C. Zhang, A. Boudiba, P. De Marco, R. Snyders, M.G. Olivier, M. Debliquy, Room temperature responses of visible-light illuminated WO3 sensors to NO2 in sub-ppm range. Sens. Actuat. B Chem. 181, 395–401 (2013). https://doi.org/10.1016/j.snb.2013.01.082
- P. Chakrabarty, M. Banik, N. Gogurla, S. Santra, S.K. Ray, R. Mukherjee, Light trapping-mediated room-temperature gas sensing by ordered ZnO nano structures decorated with plasmonic Au nanoparticles. ACS Omega 4(7), 12071–12080 (2019). https://doi.org/10.1021/acsomega.9b01116
- F. Xu, H.F. Lv, S.Y. Wu, H.P. HO, Light-activated gas sensing activity of ZnO nanotetrapods enhanced by plasmonic resonant energy from Au nanoparticles. Sens. Actuat. B Chem. 259, 709–716 (2018). https://doi.org/10.1016/j.snb.2017.12.128
- Q. Zhang, G. Xie, M. Xu, Y. Su, H. Tai, H. Du, Y. Jiang, Visible light-assisted room temperature gas sensing with ZnO-Ag heterostructure nanoparticles. Sens. Actuat. B Chem. 259, 269–281 (2018). https://doi.org/10.1016/j.snb.2017.12.052
- A.S. Chizhov, M.N. Rumyantseva, R.B. Vasiliev, D.G. Filatova, K.A. Drozdov et al., Visible light activated room temperature gas sensors based on nanocrystalline ZnO sensitized with CdSe quantum dots. Sens. Actuat. B Chem. 205, 305–312 (2014). https://doi.org/10.1016/j.snb.2014.08.091
- A.S. Chizhov, M.N. Rumyantseva, R.B. Vasiliev, D.G. Filatova, K.A. Drozdov et al., Visible light activation of room temperature NO2 gas sensors based on ZnO, SnO2 and In2O3 sensitized with CdSe quantum dots. Thin Solid Films 618, 253–262 (2016). https://doi.org/10.1016/j.tsf.2016.09.029
- H. Wang, L. Zhou, Y. Liu, F. Liu, X. Liang et al., UV-activated ultrasensitive and fast reversible ppb NO2 sensing based on ZnO nanorod modified by constructing interfacial electric field with In2O3 nanoparticles. Sens. Actuat. B Chem. 305, 127498 (2020). https://doi.org/10.1016/j.snb.2019.127498
- H. Wang, J. Bai, M. Dai, K. Liu, Y. Liu et al., Visible light activated excellent NO2 sensing based on 2D/2D ZnO/g-C3N4 heterojunction composites. Sens. Actuat. B Chem. 304, 127287 (2020). https://doi.org/10.1016/j.snb.2019.127287
- O. Casals, N. Markiewicz, C. Fabrega, I. Gràcia, C. Cane et al., A parts per billion (ppb) sensor for NO2 with microwatt (μW) power requirements based on micro light plates. ACS Sens. 4(4), 822–826 (2019). https://doi.org/10.1021/acssensors.9b00150
- I. Cho, Y.C. Sim, M. Cho, Y.H. Cho, I. Park, Monolithic micro light-emitting diode/metal oxide nanowire gas sensor with microwatt-level power consumption. ACS Sens. 5(2), 563–570 (2020). https://doi.org/10.1021/acssensors.9b02487
- J. Saura, Gas-sensing properties of SnO2 pyrolytic films subjected to ultraviolet radiation. Sens. Actuat. B Chem. 17(3), 211–214 (1994). https://doi.org/10.1016/0925-4005(93)00874-X
- E. Comini, G. Faglia, G. Sberveglieri, UV light activation of tin oxide thin films for NO2 sensing at low temperatures. Sens. Actuat. B Chem. 78, 73–77 (2001). https://doi.org/10.1016/S0925-4005(01)00796-1
- K. Anothainart, Light enhanced NO2 gas sensing with tin oxide at room temperature: conductance and work function measurements. Sens. Actuat. B Chem. 93, 580–584 (2003). https://doi.org/10.1016/S0925-4005(03)00220-X
- T. Hyodo, K. Urata, K. Kamada, T. Ueda, Y. Shimizu, Semiconductor-type SnO2-based NO2 sensors operated at room temperature under UV-light irradiation. Sens. Actuat. B Chem. 253, 630–640 (2017). https://doi.org/10.1016/j.snb.2017.06.155
- F.H. Saboor, T. Ueda, K. Kamada, T. Hyodo, Y. Mortazavi, A.A. Khodadadi, Y. Shimizu, Enhanced NO2 gas sensing performance of bare and Pd-loaded SnO2 thick film sensors under UV-light irradiation at room temperature. Sens. Actuat. B Chem. 223, 429–439 (2016). https://doi.org/10.1016/j.snb.2015.09.075
- B. Liu, Y. Luo, K. Li, H. Wang, L. Gao, G. Duan, Room-temperature NO2 Gas sensing with ultra-sensitivity activated by ultraviolet light based on SnO2 monolayer array film. Adv. Mater. Interfaces 6(12), 1900376 (2019). https://doi.org/10.1002/admi.201900376
- L.F. da Silva, J.C. M’Peko, A.C. Catto, S. Bernardini, V.R. Mastelaro, K. Aguir, C. Ribeiro, E. Longo, UV-enhanced ozone gas sensing response of ZnO-SnO2 heterojunctions at room temperature. Sens. Actuat. B Chem. 240, 573–579 (2017). https://doi.org/10.1016/j.snb.2016.08.158
- S. Park, S. An, Y. Mun, C. Lee, UV-enhanced NO2 gas sensing properties of SnO2-Core/ZnO-shell nanowires at room temperature. ACS Appl. Mater. Interfaces. 5(10), 4285–4292 (2013). https://doi.org/10.1021/am400500a
- L. Zhao, Y. Chen, X. Li, X. Li, S. Lin, T. Li, M.N. Rumyantseva, A.M. Gaskov, Room temperature formaldehyde sensing of hollow SnO2/ZnO heterojunctions under uv-led activation. IEEE Sens. J. 19(17), 7207–7214 (2019). https://doi.org/10.1109/JSEN.2019.2916879
- Y. Xiong, W. Lu, D. Ding, L. Zhu, X. Li, C. Ling, Q. Xue, Enhanced room temperature oxygen sensing properties of LaOCl-SnO2 hollow spheres by UV light illumination. ACS Sens. 2(5), 679–686 (2017). https://doi.org/10.1021/acssensors.7b00129
- A. Nasriddinov, M. Rumyantseva, T. Shatalova, S. Tokarev, P. Yaltseva et al., Organic-inorganic hybrid materials for room temperature light-activated sub-ppm no detection. Nanomaterials 10(1), 70 (2020). https://doi.org/10.3390/nano10010070
- X. Tian, X. Yang, F. Yang, T. Qi, A visible-light activated gas sensor based on perylenediimide-sensitized SnO2 for NO2 detection at room temperature. Colloids Surfaces A Physicochem. Eng. Asp. 578, 123621 (2019). https://doi.org/10.1016/j.colsurfa.2019.123621
- W. Li, J. Guo, L. Cai, W. Qi, Y. Sun et al., UV light irradiation enhanced gas sensor selectivity of NO2 and SO2 using rGO functionalized with hollow SnO2 nanofibers. Sens. Actuat. B Chem. 290, 443–452 (2019). https://doi.org/10.1016/j.snb.2019.03.133
- X. Li, X. Li, J. Wang, S. Lin, Highly sensitive and selective room-temperature formaldehyde sensors using hollow TiO2 microspheres. Sens. Actuat. B Chem. 219, 158–163 (2015). https://doi.org/10.1016/j.snb.2015.05.031
- G. Murali, M. Reddeppa, C. Seshendra Reddy, S. Park, T. Chandrakalavathi, M.D. Kim, I. In, Enhancing the charge carrier separation and transport via nitrogen-doped graphene quantum dot-TiO2 nanoplate hybrid structure for an efficient NO gas sensor. ACS Appl. Mater. Interfaces 12(11), 13428–13436 (2020). https://doi.org/10.1021/acsami.9b19896
- S. Trocino, P. Frontera, A. Donato, C. Busacca, L.A. Scarpino, P. Antonucci, G. Neri, Gas sensing properties under UV radiation of In2O3 nanostructures processed by electrospinning. Mater. Chem. Phys. 147(1–2), 35–41 (2014). https://doi.org/10.1016/j.matchemphys.2014.03.057
- N.D. Chinh, N.D. Quang, H. Lee, T.T. Hien, N.M. Hieu et al., NO gas sensing kinetics at room temperature under UV light irradiation of In2O3 nanostructures. Sci. Rep. 6, 35066 (2016). https://doi.org/10.1038/srep35066
- Y. Shen, X. Zhong, J. Zhang, T. Li, S. Zhao et al., In-situ growth of mesoporous In2O3 nanorod arrays on a porous ceramic substrate for ppb-level NO2 detection at room temperature. Appl. Surf. Sci. 498, 143873 (2019). https://doi.org/10.1016/j.apsusc.2019.143873
- H. Ma, L. Yu, X. Yuan, Y. Li, C. Li, M. Yin, X. Fan, Room temperature photoelectric NO2 gas sensor based on direct growth of walnut-like In2O3 nanostructures. J. Alloys Compd. 782, 1121–1126 (2019). https://doi.org/10.1016/j.jallcom.2018.12.180
- A. Giberti, C. Malag, V. Guidi, WO3 sensing properties enhanced by UV illumination: an evidence of surface effect. Sens. Actuat. B Chem. 165(1), 59–61 (2012). https://doi.org/10.1016/j.snb.2012.02.012
- L. Giancaterini, S.M. Emamjomeh, A. De Marcellis, E. Palange, C. Cantalini, NO2 gas response of WO3 nanofibers by light and thermal activation. Procedia Eng. 120, 791–794 (2015). https://doi.org/10.1016/j.proeng.2015.08.824
- X. Geng, Y. Luo, B. Zheng, C. Zhang, Photon assisted room-temperature hydrogen sensors using PdO loaded WO3 nanohybrids. Int. J. Hydrogen Energy 42(9), 6425–6434 (2017). https://doi.org/10.1016/j.ijhydene.2016.12.117
- A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009). https://doi.org/10.1126/science.1158877
- K.S. Novoselov, V.I. Fal’Ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene. Nature 490, 192–200 (2012). https://doi.org/10.1038/nature11458
- A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 182 (2007). https://doi.org/10.1038/nmat1849
- X. Yan, Y. Wu, R. Li, C. Shi, R. Moro, Y. Ma, L. Ma, High-performance UV-assisted NO2 sensor based on chemical vapor deposition graphene at room temperature. ACS Omega. 4(10), 14179–14187 (2019). https://doi.org/10.1021/acsomega.9b00935
- M.G. Chung, D.H. Kim, H.M. Lee, T. Kim, J.H. Choi et al., Highly sensitive NO2 gas sensor based on ozone treated graphene. Sens. Actuat. B Chem. 166–167, 172–176 (2012). https://doi.org/10.1016/j.snb.2012.02.036
- G. Chen, T.M. Paronyan, A.R. Harutyunyan, Sub-ppt gas detection with pristine graphene. Appl. Phys. Lett. 101, 053119 (2012). https://doi.org/10.1063/1.4742327
- C.M. Yang, T.C. Chen, Y.C. Yang, M. Meyyappan, C.S. Lai, Enhanced acetone sensing properties of monolayer graphene at room temperature by electrode spacing effect and UV illumination. Sens. Actuat. B Chem. 253, 77–84 (2017). https://doi.org/10.1016/j.snb.2017.06.116
- C.M. Yang, T.C. Chen, Y.C. Yang, M. Meyyappan, Annealing effect on UV-illuminated recovery in gas response of graphene-based NO2 sensors. RSC Adv. 9(40), 23343–23351 (2019). https://doi.org/10.1039/c9ra01295h
- M. Zhao, L. Yan, X. Zhang, L. Xu, Z. Song et al., Room temperature NH3 detection of Ti/graphene devices promoted by visible light illumination. J. Mater. Chem. C 5, 1113–1120 (2017). https://doi.org/10.1039/c6tc04416f
- H. Fei, G. Wu, W.Y. Cheng, W. Yan, H. Xu et al., Enhanced NO2 sensing at room temperature with graphene via monodisperse polystyrene bead decoration. ACS Omega 4(2), 3812–3819 (2019). https://doi.org/10.1021/acsomega.8b03540
- J. Azizi Jarmoshti, A. Nikfarjam, H. Hajghassem, S.M. Banihashemian, Visible light enhancement of ammonia detection using silver nanoparticles decorated on reduced graphene oxide. Mater. Res. Express 6, 066306 (2019). https://doi.org/10.1088/2053-1591/ab0bbf
- X. An, J.C. Yu, Y. Wang, Y. Hu, X. Yu, G. Zhang, WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. J. Mater. Chem. 22(17), 8525–8531 (2012). https://doi.org/10.1039/c2jm16709c
- J.E. Ellis, D.C. Sorescu, S.C. Burkert, D.L. White, A. Star, Uncondensed graphitic carbon nitride on reduced graphene oxide for oxygen sensing via a photoredox mechanism. ACS Appl. Mater. Interfaces. 9(32), 27142–27151 (2017). https://doi.org/10.1021/acsami.7b06017
- J. Hu, C. Zou, Y. Su, M. Li, X. Ye et al., Light-assisted recovery for a highly-sensitive NO2 sensor based on RGO-CeO2 hybrids. Sens. Actuat. B Chem. 270, 119–129 (2018). https://doi.org/10.1016/j.snb.2018.05.027
- X. Geng, J. You, J. Wang, C. Zhang, Visible light assisted nitrogen dioxide sensing using tungsten oxide-Graphene oxide nanocomposite sensors. Mater. Chem. Phys. 191, 114–120 (2017). https://doi.org/10.1016/j.matchemphys.2017.01.046
- J. Wang, H. Deng, X. Li, C. Yang, Y. Xia, Visible-light photocatalysis enhanced room-temperature formaldehyde gas sensing by MoS2/rGO hybrids. Sens. Actuat. B Chem. 304, 127317 (2020). https://doi.org/10.1016/j.snb.2019.127317
- M. Reddeppa, T. Chandrakalavathi, B.G. Park, G. Murali, R. Siranjeevi et al., UV-light enhanced CO gas sensors based on InGaN nanorods decorated with p-Phenylenediamine-graphene oxide composite. Sens. Actuat. B Chem. 307, 127649 (2020). https://doi.org/10.1016/j.snb.2019.127649
- Y. Xia, J. Wang, L. Xu, X. Li, S. Huang, A room-temperature methane sensor based on Pd-decorated ZnO/rGO hybrids enhanced by visible light photocatalysis. Sens. Actuat. B Chem. 304, 127334 (2020). https://doi.org/10.1016/j.snb.2019.127334
- M. Chen, L. Zou, Z. Zhang, J. Shen, D. Li et al., Tandem gasochromic-Pd-WO3/graphene/Si device for room-temperature high-performance optoelectronic hydrogen sensors. Carbon 130, 281–287 (2018). https://doi.org/10.1016/j.carbon.2018.01.013
- A. Chen, R. Liu, X. Peng, Q. Chen, J. Wu, 2D Hybrid Nanomaterials for Selective Detection of NO2 and SO2 Using “light on and Off” Strategy. ACS Appl. Mater. Interfaces. 9(42), 37191–37200 (2017). https://doi.org/10.1021/acsami.7b11244
- S. Kumar, S. Kaushik, R. Pratap, S. Raghavan, Graphene on paper: a simple, low-cost chemical sensing platform. ACS Appl. Mater. Interfaces. 7, 2189–2194 (2015). https://doi.org/10.1021/am5084122
- D. Lee, H. Park, S.D. Han, S.H. Kim, W. Huh et al., Self-powered chemical sensing driven by graphene-based photovoltaic heterojunctions with chemically tunable built-in potentials. Small 15(2), 1804303 (2019). https://doi.org/10.1002/smll.201804303
- R. Ganatra, Q. Zhang, Few-layer MoS2: a promising layered semiconductor. ACS Nano 8(5), 4074–4099 (2014). https://doi.org/10.1021/nn405938z
- B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147 (2011). https://doi.org/10.1038/nnano.2010.279
- T. Mueller, E. Malic, Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors. Npj 2D Mater. Appl. 2 (2018). https://doi.org/10.1038/s41699-018-0074-2
- S.Y. Cho, H.J. Koh, H.W. Yoo, J.S. Kim, H.T. Jung, Tunable volatile-organic-compound sensor by using Au nanoparticle incorporation on MoS2. ACS Sens. 2, 183–189 (2017). https://doi.org/10.1021/acssensors.6b00801
- M. Donarelli, L. Ottaviano, 2d materials for gas sensing applications: a review on graphene oxide, MoS2, WS2 and phosphorene. Sensors 18(11), 3638 (2018). https://doi.org/10.3390/s18113638
- F.K. Perkins, A.L. Friedman, E. Cobas, P.M. Campbell, G.G. Jernigan, B.T. Jonker, Chemical vapor sensing with monolayer MoS2. Nano Lett. 13, 668–673 (2013). https://doi.org/10.1021/nl3043079
- D.J. Late, Y.K. Huang, B. Liu, J. Acharya, S.N. Shirodkar et al., Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7, 4879–4891 (2013). https://doi.org/10.1021/nn400026u
- A.L. Friedman, F. Keith Perkins, E. Cobas, G.G. Jernigan, P.M. Campbell, A.T. Hanbicki, B.T. Jonker, Chemical vapor sensing of two-dimensional MoS2 field effect transistor devices. Solid State. Electron. 101, 2–7 (2014). https://doi.org/10.1016/j.sse.2014.06.013
- R. Kumar, N. Goel, M. Kumar, UV-activated MoS2 based fast and reversible NO2 sensor at room temperature. ACS Sensors 2, 1744–1752 (2017). https://doi.org/10.1021/acssensors.7b00731
- R. Kumar, P.K. Kulriya, M. Mishra, F. Singh, G. Gupta, M. Kumar, Highly selective and reversible NO2 gas sensor using vertically aligned MoS2 flake networks. Nanotechnology 29(46), 464001 (2018). https://doi.org/10.1088/1361-6528/aade20
- B. Cho, M.G. Hahm, M. Choi, J. Yoon, A.R. Kim et al., Charge-transfer-based gas sensing using atomic-layer MoS2. Sci. Rep. 5, 80525 (2015). https://doi.org/10.1038/srep08052
- S. Ramu, T. Chandrakalavathi, G. Murali, K.S. Kumar, A. Sudharani et al., UV enhanced NO gas sensing properties of the MoS2 monolayer gas sensor. Mater. Res. Express. 6, 85075 (2019). https://doi.org/10.1088/2053-1591/ab20b7
- Y. Kang, S. Pyo, E. Jo, J. Kim, Light-assisted recovery of reacted MoS2 for reversible NO2 sensing at room temperature. Nanotechnology 30, 355504 (2019). https://doi.org/10.1088/1361-6528/ab2277
- Y.Z. Chen, S.W. Wang, C.C. Yang, C.H. Chung, Y.C. Wang et al., An indoor light-activated 3D cone-shaped MoS2 bilayer-based NO gas sensor with PPb-level detection at room-temperature. Nanoscale 11(21), 10410–10419 (2019). https://doi.org/10.1039/c8nr10157d
- T. Pham, G. Li, E. Bekyarova, M.E. Itkis, A. Mulchandani, MoS2 -based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano 13(3), 3196–3205 (2019). https://doi.org/10.1021/acsnano.8b08778
- R. Kumar, N. Goel, M. Mishra, G. Gupta, M. Fanetti, M. Valant, M. Kumar, Growth of MoS2–MoO3 hybrid microflowers via controlled vapor transport process for efficient gas sensing at room temperature. Adv. Mater. Interfaces 5(10), 1800071 (2018). https://doi.org/10.1002/admi.201800071
- J.-S. Kim, H.-W. Yoo, H.O. Choi, H.-T. Jung, Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS2. Nano Lett. 14, 5941–5947 (2014). https://doi.org/10.1021/nl502906a
- Y. Zhou, C. Zou, X. Lin, Y. Guo, UV light activated NO2 gas sensing based on Au nanoparticles decorated few-layer MoS2 thin film at room temperature. Appl. Phys. Lett. 113, 1–7 (2018). https://doi.org/10.1063/1.5042061
- Y. Zhou, C. Gao, Y. Guo, UV assisted ultrasensitive trace NO2 gas sensing based on few-layer MoS2 nanosheet-ZnO nanowire heterojunctions at room temperature. J. Mater. Chem. A 6, 10286–10296 (2018). https://doi.org/10.1039/c8ta02679c
- Y. Xia, C. Hu, S. Guo, L. Zhang, M. Wang et al., Sulfur-vacancy-enriched MoS2 nanosheets based heterostructures for near-infrared optoelectronic NO2 sensing. ACS Appl. Nano Mater. 3(1), 665–673 (2020). https://doi.org/10.1021/acsanm.9b02180
- W. Zheng, Y. Xu, L. Zheng, C. Yang, N. Pinna, X. Liu, J. Zhang, MoS2 van der waals p–n junctions enabling highly selective room-temperature NO2 sensor. Adv. Funct. Mater. 30(19), 2000435 (2020). https://doi.org/10.1002/adfm.202000435
- M. Reddeppa, B.G. Park, G. Murali, S.H. Choi, N.D. Chinh et al., NOx gas sensors based on layer-transferred n-MoS2/p-GaN heterojunction at room temperature: study of UV light illuminations and humidity. Sens. Actuat. B Chem. 308, 127700 (2020). https://doi.org/10.1016/j.snb.2020.127700
- N. Goel, R. Kumar, S.K. Jain, S. Rajamani, B. Roul et al., A high-performance hydrogen sensor based on a reverse-biased MoS2/GaN heterojunction. Nanotechnology 30, 314001 (2019). https://doi.org/10.1088/1361-6528/ab1102
- J. Guo, R. Wen, J. Zhai, Z.L. Wang, Enhanced NO2 gas sensing of a single-layer MoS2 by photogating and piezo-phototronic effects. Sci. Bull. 64, 128–135 (2019). https://doi.org/10.1016/j.scib.2018.12.009
- L. Zhou, K. Xu, A. Zubair, A.D. Liao, W. Fang et al., Large-area synthesis of high-quality uniform few-layer MoTe2. J. Am. Chem. Soc. 137(37), 11892–11895 (2015). https://doi.org/10.1021/jacs.5b07452
- T.J. Octon, V.K. Nagareddy, S. Russo, M.F. Craciun, C.D. Wright, Fast high-responsivity few-layer MoTe2 photodetectors. Adv. Opt. Mater. 4(11), 1750–1754 (2016). https://doi.org/10.1002/adom.201600290
- Z. Feng, Y. Xie, E. Wu, Y. Yu, S. Zheng et al., Enhanced sensitivity of MoTe2 chemical sensor through light illumination. Micromachines 8(5), 155 (2017). https://doi.org/10.3390/mi8050155
- E. Wu, Y. Xie, B. Yuan, H. Zhang, X. Hu, J. Liu, D. Zhang, Ultrasensitive and fully reversible NO2 gas sensing based on p-type MoTe2 under ultraviolet illumination. ACS Sens. 3(9), 1719–1726 (2018). https://doi.org/10.1021/acssensors.8b00461
- H.S. Kim, M. Patel, J. Kim, M.S. Jeong, Growth of wafer-scale standing layers of WS2 for self-biased high-speed UV-visible-NIR optoelectronic devices. ACS Appl. Mater. Interfaces. 10, 3964–3974 (2018). https://doi.org/10.1021/acsami.7b16397
- N. Huo, S. Yang, Z. Wei, S.S. Li, J.B. Xia, J. Li, Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Sci. Rep. 4, 5209 (2014). https://doi.org/10.1038/srep05209
- D. Gu, X. Li, H. Wang, M. Li, Y. Xi et al., Light enhanced VOCs sensing of WS2 microflakes based chemiresistive sensors powered by triboelectronic nangenerators. Sens. Actuat. B Chem. 256, 992–1000 (2018). https://doi.org/10.1016/j.snb.2017.10.045
- A.Y. Polyakov, D.A. Kozlov, V.A. Lebedev, R.G. Chumakov, A.S. Frolov et al., Gold decoration and photoresistive response to nitrogen dioxide of WS2 nanotubes. Chem. A Eur. J. 24(71), 18952–18962 (2018). https://doi.org/10.1002/chem.201803502
- V. Paolucci, S.M. Emamjomeh, L. Ottaviano, C. Cantalini, Near room temperature light-activated WS2-decorated rGO as NO2 gas sensor. Sensors 19(11), 2617 (2019). https://doi.org/10.3390/s19112617
- L.A. Burton, D. Colombara, R.D. Abellon, F.C. Grozema, L.M. Peter et al., Synthesis, characterization, and electronic structure of single-crystal SnS, Sn2S3, and SnS2. Chem. Mater. 25(24), 4908–4916 (2013). https://doi.org/10.1021/cm403046m
- Y. Huang, E. Sutter, J.T. Sadowski, M. Cotlet, O.L.A. Monti et al., Tin disulfide-an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics. ACS Nano 8(10), 10743–10755 (2014). https://doi.org/10.1021/nn504481r
- G. Su, V.G. Hadjiev, P.E. Loya, J. Zhang, S. Lei et al., Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application. Nano Lett. 15, 506–513 (2015). https://doi.org/10.1021/nl503857r
- T.J. Whittles, L.A. Burton, J.M. Skelton, A. Walsh, T.D. Veal, V.R. Dhanak, Band alignments, valence bands, and core levels in the tin sulfides SnS, SnS2, and Sn2S3: experiment and theory. Chem. Mater. 28(11), 3718–3726 (2016). https://doi.org/10.1021/acs.chemmater.6b00397
- D. Gu, X. Wang, W. Liu, X. Li, S. Lin et al., Visible-light activated room temperature NO2 sensing of SnS2 nanosheets based chemiresistive sensors. Sens. Actuat. B Chem. 305, 127455 (2020). https://doi.org/10.1016/j.snb.2019.127455
- W.J. Yan, D.Y. Chen, H.R. Fuh, Y.L. Li, D. Zhang et al., Photo-enhanced gas sensing of SnS2 with nanoscale defects. RSC Adv. 9(2), 626–635 (2019). https://doi.org/10.1039/c8ra08857h
- H. Chen, Y. Chen, H. Zhang, D.W. Zhang, P. Zhou, J. Huang, Suspended SnS2 layers by light assistance for ultrasensitive ammonia detection at room temperature. Adv. Funct. Mater. 28(20), 1801035 (2018). https://doi.org/10.1002/adfm.201801035
- Y. Huang, W. Jiao, Z. Chu, G. Ding, M. Yan, X. Zhong, R. Wang, Ultrasensitive room temperature ppb-level NO2 gas sensors based on SnS2/rGO nanohybrids with P-N transition and optoelectronic visible light enhancement performance. J. Mater. Chem. C 7(28), 8616–8625 (2019). https://doi.org/10.1039/c9tc02436k
- S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan et al., Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 5, 3252 (2014). https://doi.org/10.1038/ncomms4252
- S. Yang, J. Kang, Q. Yue, J.M.D. Coey, C. Jiang, Defect-modulated transistors and gas-enhanced photodetectors on ReS2 nanosheets. Adv. Mater. Interfaces 3(6), 1500707 (2016). https://doi.org/10.1002/admi.201500707
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta, T. Gemming, H. Liu, Z. Liu, M.H. Rummeli et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48(1), 72–133 (2019). https://doi.org/10.1039/c8cs00324f
- J. Zhu, E. Ha, G. Zhao, Y. Zhou, D. Huang et al., Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption. Coord. Chem. Rev. 352, 306–327 (2017). https://doi.org/10.1016/j.ccr.2017.09.012
- S. Chertopalov, V.N. Mochalin, Environment-sensitive photoresponse of spontaneously partially oxidized Ti3C2 MXene thin films. ACS Nano 12(6), 6109–6116 (2018). https://doi.org/10.1021/acsnano.8b02379
References
Z. Yunusa, M.N. Hamidon, A. Kaiser, Z. Awang, Gas sensors: a review. Sens. Transducers 4, 61–75 (2014)
Google Scholar
K. Arshak, E. Moore, G.M. Lyons, J. Harris, S. Clifford, A review of gas sensors employed in electronic nose applications. Sens. Rev. 24(2), 181–198 (2004). https://doi.org/10.1108/02602280410525977
N. Yamazoe, Toward innovations of gas sensor technology. Sens. Actuat. B Chem. 108(1–2), 2–14 (2005). https://doi.org/10.1016/j.snb.2004.12.075
J. Hodgkinson, R.P. Tatam, Optical gas sensing: a review. Meas. Sci. Technol. 24, 012004 (2013). https://doi.org/10.1088/0957-0233/24/1/012004
J.R. Stetter, J. Li, Amperometric gas sensors-a review. Chem. Rev. 108(2), 352–366 (2008). https://doi.org/10.1021/cr0681039
S. Lakkis, R. Younes, Y. Alayli, M. Sawan, Review of recent trends in gas sensing technologies and their miniaturization potential. Sens. Rev. 34(1), 24–35 (2014). https://doi.org/10.1108/SR-11-2012-724
Z. Meng, R.M. Stolz, L. Mendecki, K.A. Mirica, Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 119(1), 478–598 (2019). https://doi.org/10.1021/acs.chemrev.8b00311
J. Zhang, X. Liu, G. Neri, N. Pinna, Nanostructured materials for room-temperature gas sensors. Adv. Mater. 28, 795–831 (2016). https://doi.org/10.1002/adma.201503825
S.W. Chiu, K.T. Tang, Towards a chemiresistive sensor-integrated electronic nose: a review. Sensors 13(10), 14214–14247 (2013). https://doi.org/10.3390/s131014214
Y. Jiang, N. Tang, C. Zhou, Z. Han, H. Qu, X. Duan, A chemiresistive sensor array from conductive polymer nanowires fabricated by nanoscale soft lithography. Nanoscale 10(44), 20578–20586 (2018). https://doi.org/10.1039/c8nr04198a
J. Shin, Y. Hong, M. Wu, Y. Jang, J.S. Kim et al., Highly improved response and recovery characteristics of Si FET-type gas sensor using pre-bias. IEEE Int. Electron Devices Meet. IEDM, San Francisco, CA, USA. (2016). https://doi.org/10.1109/IEDM.2016.7838443
S.J. Choi, I.D. Kim, Recent developments in 2D nanomaterials for chemiresistive-type gas sensors. Electron. Mater. Lett. 14, 221–260 (2018). https://doi.org/10.1007/s13391-018-0044-z
X. Liu, T. Ma, N. Pinna, J. Zhang, Two-dimensional nanostructured materials for gas sensing. Adv. Funct. Mater. 27, 1–30 (2017). https://doi.org/10.1002/adfm.201702168
R. Kumar, N. Goel, A.V. Agrawal, R. Raliya, S. Rajamani et al., Boosting sensing performance of vacancy-containing vertically aligned MoS2 using rGO particles. IEEE Sens. J. 19(22), 10214–10220 (2019). https://doi.org/10.1109/jsen.2019.2932106
N. Barsan, D. Koziej, U. Weimar, Metal oxide-based gas sensor research: how to? Sens. Actuat. B Chem. 121(1), 18–35 (2007). https://doi.org/10.1016/j.snb.2006.09.047
N. Joshi, T. Hayasaka, Y. Liu, H. Liu, O.N. Oliveira, L. Lin, A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim. Acta 185, 213 (2018). https://doi.org/10.1007/s00604-018-2750-5
N. Taguchi, Gas detecting device, US Patent (1971)
N. Barsan, U. Weimar, Conduction model of metal oxide gas sensors. J. Electroceramics 7, 143–167 (2001). https://doi.org/10.1023/A:1014405811371
Y.F. Sun, S.B. Liu, F.L. Meng, J.Y. Liu, Z. Jin, L.T. Kong, J.H. Liu, Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12(3), 2610–2631 (2012). https://doi.org/10.3390/s120302610
C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10(3), 2088–2106 (2010). https://doi.org/10.3390/s100302088
E. Espid, F. Taghipour, UV-LED photo-activated chemical gas sensors: a review. Crit. Rev. Solid State Mater. Sci. 42(5), 416–432 (2017). https://doi.org/10.1080/10408436.2016.1226161
F. Xu, H.P. Ho, Light-activated metal oxide gas sensors: a review. Micromachines 8(11), 333 (2017). https://doi.org/10.3390/mi8110333
K. Aguir, S. Bernardini, B. Lawson, T. Fiorido, 8 - Trends in Metal Oxide Thin Films: Synthesis and Applications of Tin Oxide. M.O. Orlandi (Ed.), Tin Oxide Mater., (Elsevier, 2020) pp. 219–246. https://doi.org/10.1016/B978-0-12-815924-8.00008-6
R. Kumar, W. Zheng, X. Liu, J. Zhang, M. Kumar, MoS2-based nanomaterials for room-temperature gas sensors. Adv. Mater. Technol. 5(5), 1901062 (2020). https://doi.org/10.1002/admt.201901062
S. Yang, C. Jiang, S. Huai Wei, Gas sensing in 2D materials. Appl. Phys. Rev. (2017). https://doi.org/10.1063/1.4983310
C. Anichini, W. Czepa, D. Pakulski, A. Aliprandi, A. Ciesielski, P. Samorì, Chemical sensing with 2D materials. Chem. Soc. Rev. 47(13), 4860–4908 (2018). https://doi.org/10.1039/c8cs00417j
E. Lee, Y.S. Yoon, D.J. Kim, Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing. ACS Sens. 3(10), 2045–2060 (2018). https://doi.org/10.1021/acssensors.8b01077
F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652 (2007). https://doi.org/10.1038/nmat1967
R. Kumar, N. Goel, M. Hojamberdiev, M. Kumar, Transition metal dichalcogenides-based flexible gas sensors. Sens. Actuat. A Phys. 303, 111875 (2020). https://doi.org/10.1016/j.sna.2020.111875
S. Cui, H. Pu, S.A. Wells, Z. Wen, S. Mao et al., Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nat. Commun. 6, 8632 (2015). https://doi.org/10.1038/ncomms9632
G. Oxide, M. Donarelli, 2D materials for gas sensing applications: a review. Sensors 18, 3638 (2018). https://doi.org/10.3390/s18113638
R. Kumar, P.K. Kulriya, M. Mishra, F. Singh, G. Gupta, M. Kumar, Highly selective and reversible NO2 gas sensor using vertically aligned MoS2 flake networks. Nanotechnology 29, 46 (2018). https://doi.org/10.1088/1361-6528/aade20
H. Long, A. Harley-Trochimczyk, T. Pham, Z. Tang, T. Shi et al., High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection. Adv. Funct. Mater. 26, 5158–5165 (2016). https://doi.org/10.1002/adfm.201601562
R. Kumar, N. Goel, M. Kumar, High performance NO2 sensor using MoS2 nanowires network. Appl. Phys. Lett. 112, 053502 (2018). https://doi.org/10.1063/1.5019296
J.D. Fowler, M.J. Allen, V.C. Tung, Y. Yang, R.B. Kaner, B.H. Weiller, Practical chemical sensors from chemically derived graphene. ACS Nano 3, 301–306 (2009). https://doi.org/10.1021/nn800593m
N.D. Chinh, T.T. Hien, L. Van Do, N.M. Hieu, N.D. Quang, S.M. Lee, C. Kim, D. Kim, Adsorption/desorption kinetics of nitric oxide on zinc oxide nano film sensor enhanced by light irradiation and gold-nanoparticles decoration. Sens. Actuat. B Chem. 281, 262–272 (2019). https://doi.org/10.1016/j.snb.2018.10.113
R. Chen, J. Wang, Y. Xia, L. Xiang, Near infrared light enhanced room-temperature NO2 gas sensing by hierarchical ZnO nanorods functionalized with PbS quantum dots. Sens. Actuat. B Chem. 255, 2538–2545 (2018). https://doi.org/10.1016/j.snb.2017.09.059
J. Gong, Y. Li, X. Chai, Z. Hu, Y. Deng, UV-light-activated ZnO fibers for organic gas sensing at room temperature. J. Phys. Chem. C 114(2), 1293–1298 (2010). https://doi.org/10.1021/jp906043k
J. Li, D. Gu, Y. Yang, H. Du, X. Li, UV light activated SnO2/ZnO nanofibers for gas sensing at room temperature. Front. Mater. 6, 158 (2019). https://doi.org/10.3389/fmats.2019.00158
E. Wu, Y. Xie, B. Yuan, D. Hao, C. An et al., Specific and highly sensitive detection of ketone compounds based on p-type MoTe2 under ultraviolet illumination. ACS Appl. Mater. Interfaces. 10(41), 35664–35669 (2018). https://doi.org/10.1021/acsami.8b14142
Q.H. Li, Q. Wan, Y.X. Liang, T.H. Wang, Electronic transport through individual ZnO nanowires. Appl. Phys. Lett. 84, 4556 (2004). https://doi.org/10.1063/1.1759071
B.P.J. De Lacy Costello, R.J. Ewen, N.M. Ratcliffe, M. Richards, Highly sensitive room temperature sensors based on the UV-LED activation of zinc oxide nanoparticles. Sens. Actuat. B Chem. 134(2), 945–952 (2008). https://doi.org/10.1016/j.snb.2008.06.055
S.W. Fan, A.K. Srivastava, V.P. Dravid, UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Appl. Phys. Lett. 95, 142106 (2009). https://doi.org/10.1063/1.3243458
X. Su, G. Duan, Z. Xu, F. Zhou, W. Cai, Structure and thickness-dependent gas sensing responses to NO2 under UV irradiation for the multilayered ZnO micro/nanostructured porous thin films. J. Colloid Interface Sci. 503, 150–158 (2017). https://doi.org/10.1016/j.jcis.2017.04.055
J. Cui, L. Shi, T. Xie, D. Wang, Y. Lin, UV-light illumination room temperature HCHO gas-sensing mechanism of ZnO with different nanostructures. Sens. Actuat. B Chem. 227, 220–226 (2016). https://doi.org/10.1016/j.snb.2015.12.010
L. Peng, Q. Zhao, D. Wang, J. Zhai, P. Wang, S. Pang, T. Xie, Ultraviolet-assisted gas sensing: a potential formaldehyde detection approach at room temperature based on zinc oxide nanorods. Sens. Actuat. B Chem. 136(1), 80–85 (2009). https://doi.org/10.1016/j.snb.2008.10.057
L. Peng, J. Zhai, D. Wang, Y. Zhang, P. Wang, Q. Zhao, T. Xie, Size- and photoelectric characteristics-dependent formaldehyde sensitivity of ZnO irradiated with UV light. Sens. Actuat. B Chem. 148(1), 66–73 (2010). https://doi.org/10.1016/j.snb.2010.04.045
M. Kumar, R. Kumar, S. Rajamani, S. Ranwa, M. Fanetti, M. Valant, M. Kumar, Efficient room temperature hydrogen sensor based on UV-activated ZnO nano-network. Nanotechnology 28, 36 (2017). https://doi.org/10.1088/1361-6528/aa7cad
C.B. Jacobs, A.B. Maksov, E.S. Muckley, L. Collins, M. Mahjouri-Samani et al., UV-activated ZnO films on a flexible substrate for room temperature O2 and H2O sensing. Sci. Rep. 7, 6053 (2017). https://doi.org/10.1038/s41598-017-05265-5
N. Joshi, L.F. da Silva, F.M. Shimizu, V.R. Mastelaro, J.C. M’Peko, L. Lin, O.N. Oliveira, UV-assisted chemiresistors made with gold-modified ZnO nanorods to detect ozone gas at room temperature. Microchim. Acta 186, 418 (2019). https://doi.org/10.1007/s00604-019-3532-4
L. Han, D. Wang, J. Cui, L. Chen, T. Jiang, Y. Lin, Study on formaldehyde gas-sensing of In2O3-sensitized ZnO nanoflowers under visible light irradiation at room temperature. J. Mater. Chem. 22(25), 12915–12920 (2012). https://doi.org/10.1039/c2jm16105b
C. Zhang, A. Boudiba, P. De Marco, R. Snyders, M.G. Olivier, M. Debliquy, Room temperature responses of visible-light illuminated WO3 sensors to NO2 in sub-ppm range. Sens. Actuat. B Chem. 181, 395–401 (2013). https://doi.org/10.1016/j.snb.2013.01.082
P. Chakrabarty, M. Banik, N. Gogurla, S. Santra, S.K. Ray, R. Mukherjee, Light trapping-mediated room-temperature gas sensing by ordered ZnO nano structures decorated with plasmonic Au nanoparticles. ACS Omega 4(7), 12071–12080 (2019). https://doi.org/10.1021/acsomega.9b01116
F. Xu, H.F. Lv, S.Y. Wu, H.P. HO, Light-activated gas sensing activity of ZnO nanotetrapods enhanced by plasmonic resonant energy from Au nanoparticles. Sens. Actuat. B Chem. 259, 709–716 (2018). https://doi.org/10.1016/j.snb.2017.12.128
Q. Zhang, G. Xie, M. Xu, Y. Su, H. Tai, H. Du, Y. Jiang, Visible light-assisted room temperature gas sensing with ZnO-Ag heterostructure nanoparticles. Sens. Actuat. B Chem. 259, 269–281 (2018). https://doi.org/10.1016/j.snb.2017.12.052
A.S. Chizhov, M.N. Rumyantseva, R.B. Vasiliev, D.G. Filatova, K.A. Drozdov et al., Visible light activated room temperature gas sensors based on nanocrystalline ZnO sensitized with CdSe quantum dots. Sens. Actuat. B Chem. 205, 305–312 (2014). https://doi.org/10.1016/j.snb.2014.08.091
A.S. Chizhov, M.N. Rumyantseva, R.B. Vasiliev, D.G. Filatova, K.A. Drozdov et al., Visible light activation of room temperature NO2 gas sensors based on ZnO, SnO2 and In2O3 sensitized with CdSe quantum dots. Thin Solid Films 618, 253–262 (2016). https://doi.org/10.1016/j.tsf.2016.09.029
H. Wang, L. Zhou, Y. Liu, F. Liu, X. Liang et al., UV-activated ultrasensitive and fast reversible ppb NO2 sensing based on ZnO nanorod modified by constructing interfacial electric field with In2O3 nanoparticles. Sens. Actuat. B Chem. 305, 127498 (2020). https://doi.org/10.1016/j.snb.2019.127498
H. Wang, J. Bai, M. Dai, K. Liu, Y. Liu et al., Visible light activated excellent NO2 sensing based on 2D/2D ZnO/g-C3N4 heterojunction composites. Sens. Actuat. B Chem. 304, 127287 (2020). https://doi.org/10.1016/j.snb.2019.127287
O. Casals, N. Markiewicz, C. Fabrega, I. Gràcia, C. Cane et al., A parts per billion (ppb) sensor for NO2 with microwatt (μW) power requirements based on micro light plates. ACS Sens. 4(4), 822–826 (2019). https://doi.org/10.1021/acssensors.9b00150
I. Cho, Y.C. Sim, M. Cho, Y.H. Cho, I. Park, Monolithic micro light-emitting diode/metal oxide nanowire gas sensor with microwatt-level power consumption. ACS Sens. 5(2), 563–570 (2020). https://doi.org/10.1021/acssensors.9b02487
J. Saura, Gas-sensing properties of SnO2 pyrolytic films subjected to ultraviolet radiation. Sens. Actuat. B Chem. 17(3), 211–214 (1994). https://doi.org/10.1016/0925-4005(93)00874-X
E. Comini, G. Faglia, G. Sberveglieri, UV light activation of tin oxide thin films for NO2 sensing at low temperatures. Sens. Actuat. B Chem. 78, 73–77 (2001). https://doi.org/10.1016/S0925-4005(01)00796-1
K. Anothainart, Light enhanced NO2 gas sensing with tin oxide at room temperature: conductance and work function measurements. Sens. Actuat. B Chem. 93, 580–584 (2003). https://doi.org/10.1016/S0925-4005(03)00220-X
T. Hyodo, K. Urata, K. Kamada, T. Ueda, Y. Shimizu, Semiconductor-type SnO2-based NO2 sensors operated at room temperature under UV-light irradiation. Sens. Actuat. B Chem. 253, 630–640 (2017). https://doi.org/10.1016/j.snb.2017.06.155
F.H. Saboor, T. Ueda, K. Kamada, T. Hyodo, Y. Mortazavi, A.A. Khodadadi, Y. Shimizu, Enhanced NO2 gas sensing performance of bare and Pd-loaded SnO2 thick film sensors under UV-light irradiation at room temperature. Sens. Actuat. B Chem. 223, 429–439 (2016). https://doi.org/10.1016/j.snb.2015.09.075
B. Liu, Y. Luo, K. Li, H. Wang, L. Gao, G. Duan, Room-temperature NO2 Gas sensing with ultra-sensitivity activated by ultraviolet light based on SnO2 monolayer array film. Adv. Mater. Interfaces 6(12), 1900376 (2019). https://doi.org/10.1002/admi.201900376
L.F. da Silva, J.C. M’Peko, A.C. Catto, S. Bernardini, V.R. Mastelaro, K. Aguir, C. Ribeiro, E. Longo, UV-enhanced ozone gas sensing response of ZnO-SnO2 heterojunctions at room temperature. Sens. Actuat. B Chem. 240, 573–579 (2017). https://doi.org/10.1016/j.snb.2016.08.158
S. Park, S. An, Y. Mun, C. Lee, UV-enhanced NO2 gas sensing properties of SnO2-Core/ZnO-shell nanowires at room temperature. ACS Appl. Mater. Interfaces. 5(10), 4285–4292 (2013). https://doi.org/10.1021/am400500a
L. Zhao, Y. Chen, X. Li, X. Li, S. Lin, T. Li, M.N. Rumyantseva, A.M. Gaskov, Room temperature formaldehyde sensing of hollow SnO2/ZnO heterojunctions under uv-led activation. IEEE Sens. J. 19(17), 7207–7214 (2019). https://doi.org/10.1109/JSEN.2019.2916879
Y. Xiong, W. Lu, D. Ding, L. Zhu, X. Li, C. Ling, Q. Xue, Enhanced room temperature oxygen sensing properties of LaOCl-SnO2 hollow spheres by UV light illumination. ACS Sens. 2(5), 679–686 (2017). https://doi.org/10.1021/acssensors.7b00129
A. Nasriddinov, M. Rumyantseva, T. Shatalova, S. Tokarev, P. Yaltseva et al., Organic-inorganic hybrid materials for room temperature light-activated sub-ppm no detection. Nanomaterials 10(1), 70 (2020). https://doi.org/10.3390/nano10010070
X. Tian, X. Yang, F. Yang, T. Qi, A visible-light activated gas sensor based on perylenediimide-sensitized SnO2 for NO2 detection at room temperature. Colloids Surfaces A Physicochem. Eng. Asp. 578, 123621 (2019). https://doi.org/10.1016/j.colsurfa.2019.123621
W. Li, J. Guo, L. Cai, W. Qi, Y. Sun et al., UV light irradiation enhanced gas sensor selectivity of NO2 and SO2 using rGO functionalized with hollow SnO2 nanofibers. Sens. Actuat. B Chem. 290, 443–452 (2019). https://doi.org/10.1016/j.snb.2019.03.133
X. Li, X. Li, J. Wang, S. Lin, Highly sensitive and selective room-temperature formaldehyde sensors using hollow TiO2 microspheres. Sens. Actuat. B Chem. 219, 158–163 (2015). https://doi.org/10.1016/j.snb.2015.05.031
G. Murali, M. Reddeppa, C. Seshendra Reddy, S. Park, T. Chandrakalavathi, M.D. Kim, I. In, Enhancing the charge carrier separation and transport via nitrogen-doped graphene quantum dot-TiO2 nanoplate hybrid structure for an efficient NO gas sensor. ACS Appl. Mater. Interfaces 12(11), 13428–13436 (2020). https://doi.org/10.1021/acsami.9b19896
S. Trocino, P. Frontera, A. Donato, C. Busacca, L.A. Scarpino, P. Antonucci, G. Neri, Gas sensing properties under UV radiation of In2O3 nanostructures processed by electrospinning. Mater. Chem. Phys. 147(1–2), 35–41 (2014). https://doi.org/10.1016/j.matchemphys.2014.03.057
N.D. Chinh, N.D. Quang, H. Lee, T.T. Hien, N.M. Hieu et al., NO gas sensing kinetics at room temperature under UV light irradiation of In2O3 nanostructures. Sci. Rep. 6, 35066 (2016). https://doi.org/10.1038/srep35066
Y. Shen, X. Zhong, J. Zhang, T. Li, S. Zhao et al., In-situ growth of mesoporous In2O3 nanorod arrays on a porous ceramic substrate for ppb-level NO2 detection at room temperature. Appl. Surf. Sci. 498, 143873 (2019). https://doi.org/10.1016/j.apsusc.2019.143873
H. Ma, L. Yu, X. Yuan, Y. Li, C. Li, M. Yin, X. Fan, Room temperature photoelectric NO2 gas sensor based on direct growth of walnut-like In2O3 nanostructures. J. Alloys Compd. 782, 1121–1126 (2019). https://doi.org/10.1016/j.jallcom.2018.12.180
A. Giberti, C. Malag, V. Guidi, WO3 sensing properties enhanced by UV illumination: an evidence of surface effect. Sens. Actuat. B Chem. 165(1), 59–61 (2012). https://doi.org/10.1016/j.snb.2012.02.012
L. Giancaterini, S.M. Emamjomeh, A. De Marcellis, E. Palange, C. Cantalini, NO2 gas response of WO3 nanofibers by light and thermal activation. Procedia Eng. 120, 791–794 (2015). https://doi.org/10.1016/j.proeng.2015.08.824
X. Geng, Y. Luo, B. Zheng, C. Zhang, Photon assisted room-temperature hydrogen sensors using PdO loaded WO3 nanohybrids. Int. J. Hydrogen Energy 42(9), 6425–6434 (2017). https://doi.org/10.1016/j.ijhydene.2016.12.117
A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009). https://doi.org/10.1126/science.1158877
K.S. Novoselov, V.I. Fal’Ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene. Nature 490, 192–200 (2012). https://doi.org/10.1038/nature11458
A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 182 (2007). https://doi.org/10.1038/nmat1849
X. Yan, Y. Wu, R. Li, C. Shi, R. Moro, Y. Ma, L. Ma, High-performance UV-assisted NO2 sensor based on chemical vapor deposition graphene at room temperature. ACS Omega. 4(10), 14179–14187 (2019). https://doi.org/10.1021/acsomega.9b00935
M.G. Chung, D.H. Kim, H.M. Lee, T. Kim, J.H. Choi et al., Highly sensitive NO2 gas sensor based on ozone treated graphene. Sens. Actuat. B Chem. 166–167, 172–176 (2012). https://doi.org/10.1016/j.snb.2012.02.036
G. Chen, T.M. Paronyan, A.R. Harutyunyan, Sub-ppt gas detection with pristine graphene. Appl. Phys. Lett. 101, 053119 (2012). https://doi.org/10.1063/1.4742327
C.M. Yang, T.C. Chen, Y.C. Yang, M. Meyyappan, C.S. Lai, Enhanced acetone sensing properties of monolayer graphene at room temperature by electrode spacing effect and UV illumination. Sens. Actuat. B Chem. 253, 77–84 (2017). https://doi.org/10.1016/j.snb.2017.06.116
C.M. Yang, T.C. Chen, Y.C. Yang, M. Meyyappan, Annealing effect on UV-illuminated recovery in gas response of graphene-based NO2 sensors. RSC Adv. 9(40), 23343–23351 (2019). https://doi.org/10.1039/c9ra01295h
M. Zhao, L. Yan, X. Zhang, L. Xu, Z. Song et al., Room temperature NH3 detection of Ti/graphene devices promoted by visible light illumination. J. Mater. Chem. C 5, 1113–1120 (2017). https://doi.org/10.1039/c6tc04416f
H. Fei, G. Wu, W.Y. Cheng, W. Yan, H. Xu et al., Enhanced NO2 sensing at room temperature with graphene via monodisperse polystyrene bead decoration. ACS Omega 4(2), 3812–3819 (2019). https://doi.org/10.1021/acsomega.8b03540
J. Azizi Jarmoshti, A. Nikfarjam, H. Hajghassem, S.M. Banihashemian, Visible light enhancement of ammonia detection using silver nanoparticles decorated on reduced graphene oxide. Mater. Res. Express 6, 066306 (2019). https://doi.org/10.1088/2053-1591/ab0bbf
X. An, J.C. Yu, Y. Wang, Y. Hu, X. Yu, G. Zhang, WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. J. Mater. Chem. 22(17), 8525–8531 (2012). https://doi.org/10.1039/c2jm16709c
J.E. Ellis, D.C. Sorescu, S.C. Burkert, D.L. White, A. Star, Uncondensed graphitic carbon nitride on reduced graphene oxide for oxygen sensing via a photoredox mechanism. ACS Appl. Mater. Interfaces. 9(32), 27142–27151 (2017). https://doi.org/10.1021/acsami.7b06017
J. Hu, C. Zou, Y. Su, M. Li, X. Ye et al., Light-assisted recovery for a highly-sensitive NO2 sensor based on RGO-CeO2 hybrids. Sens. Actuat. B Chem. 270, 119–129 (2018). https://doi.org/10.1016/j.snb.2018.05.027
X. Geng, J. You, J. Wang, C. Zhang, Visible light assisted nitrogen dioxide sensing using tungsten oxide-Graphene oxide nanocomposite sensors. Mater. Chem. Phys. 191, 114–120 (2017). https://doi.org/10.1016/j.matchemphys.2017.01.046
J. Wang, H. Deng, X. Li, C. Yang, Y. Xia, Visible-light photocatalysis enhanced room-temperature formaldehyde gas sensing by MoS2/rGO hybrids. Sens. Actuat. B Chem. 304, 127317 (2020). https://doi.org/10.1016/j.snb.2019.127317
M. Reddeppa, T. Chandrakalavathi, B.G. Park, G. Murali, R. Siranjeevi et al., UV-light enhanced CO gas sensors based on InGaN nanorods decorated with p-Phenylenediamine-graphene oxide composite. Sens. Actuat. B Chem. 307, 127649 (2020). https://doi.org/10.1016/j.snb.2019.127649
Y. Xia, J. Wang, L. Xu, X. Li, S. Huang, A room-temperature methane sensor based on Pd-decorated ZnO/rGO hybrids enhanced by visible light photocatalysis. Sens. Actuat. B Chem. 304, 127334 (2020). https://doi.org/10.1016/j.snb.2019.127334
M. Chen, L. Zou, Z. Zhang, J. Shen, D. Li et al., Tandem gasochromic-Pd-WO3/graphene/Si device for room-temperature high-performance optoelectronic hydrogen sensors. Carbon 130, 281–287 (2018). https://doi.org/10.1016/j.carbon.2018.01.013
A. Chen, R. Liu, X. Peng, Q. Chen, J. Wu, 2D Hybrid Nanomaterials for Selective Detection of NO2 and SO2 Using “light on and Off” Strategy. ACS Appl. Mater. Interfaces. 9(42), 37191–37200 (2017). https://doi.org/10.1021/acsami.7b11244
S. Kumar, S. Kaushik, R. Pratap, S. Raghavan, Graphene on paper: a simple, low-cost chemical sensing platform. ACS Appl. Mater. Interfaces. 7, 2189–2194 (2015). https://doi.org/10.1021/am5084122
D. Lee, H. Park, S.D. Han, S.H. Kim, W. Huh et al., Self-powered chemical sensing driven by graphene-based photovoltaic heterojunctions with chemically tunable built-in potentials. Small 15(2), 1804303 (2019). https://doi.org/10.1002/smll.201804303
R. Ganatra, Q. Zhang, Few-layer MoS2: a promising layered semiconductor. ACS Nano 8(5), 4074–4099 (2014). https://doi.org/10.1021/nn405938z
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147 (2011). https://doi.org/10.1038/nnano.2010.279
T. Mueller, E. Malic, Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors. Npj 2D Mater. Appl. 2 (2018). https://doi.org/10.1038/s41699-018-0074-2
S.Y. Cho, H.J. Koh, H.W. Yoo, J.S. Kim, H.T. Jung, Tunable volatile-organic-compound sensor by using Au nanoparticle incorporation on MoS2. ACS Sens. 2, 183–189 (2017). https://doi.org/10.1021/acssensors.6b00801
M. Donarelli, L. Ottaviano, 2d materials for gas sensing applications: a review on graphene oxide, MoS2, WS2 and phosphorene. Sensors 18(11), 3638 (2018). https://doi.org/10.3390/s18113638
F.K. Perkins, A.L. Friedman, E. Cobas, P.M. Campbell, G.G. Jernigan, B.T. Jonker, Chemical vapor sensing with monolayer MoS2. Nano Lett. 13, 668–673 (2013). https://doi.org/10.1021/nl3043079
D.J. Late, Y.K. Huang, B. Liu, J. Acharya, S.N. Shirodkar et al., Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7, 4879–4891 (2013). https://doi.org/10.1021/nn400026u
A.L. Friedman, F. Keith Perkins, E. Cobas, G.G. Jernigan, P.M. Campbell, A.T. Hanbicki, B.T. Jonker, Chemical vapor sensing of two-dimensional MoS2 field effect transistor devices. Solid State. Electron. 101, 2–7 (2014). https://doi.org/10.1016/j.sse.2014.06.013
R. Kumar, N. Goel, M. Kumar, UV-activated MoS2 based fast and reversible NO2 sensor at room temperature. ACS Sensors 2, 1744–1752 (2017). https://doi.org/10.1021/acssensors.7b00731
R. Kumar, P.K. Kulriya, M. Mishra, F. Singh, G. Gupta, M. Kumar, Highly selective and reversible NO2 gas sensor using vertically aligned MoS2 flake networks. Nanotechnology 29(46), 464001 (2018). https://doi.org/10.1088/1361-6528/aade20
B. Cho, M.G. Hahm, M. Choi, J. Yoon, A.R. Kim et al., Charge-transfer-based gas sensing using atomic-layer MoS2. Sci. Rep. 5, 80525 (2015). https://doi.org/10.1038/srep08052
S. Ramu, T. Chandrakalavathi, G. Murali, K.S. Kumar, A. Sudharani et al., UV enhanced NO gas sensing properties of the MoS2 monolayer gas sensor. Mater. Res. Express. 6, 85075 (2019). https://doi.org/10.1088/2053-1591/ab20b7
Y. Kang, S. Pyo, E. Jo, J. Kim, Light-assisted recovery of reacted MoS2 for reversible NO2 sensing at room temperature. Nanotechnology 30, 355504 (2019). https://doi.org/10.1088/1361-6528/ab2277
Y.Z. Chen, S.W. Wang, C.C. Yang, C.H. Chung, Y.C. Wang et al., An indoor light-activated 3D cone-shaped MoS2 bilayer-based NO gas sensor with PPb-level detection at room-temperature. Nanoscale 11(21), 10410–10419 (2019). https://doi.org/10.1039/c8nr10157d
T. Pham, G. Li, E. Bekyarova, M.E. Itkis, A. Mulchandani, MoS2 -based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano 13(3), 3196–3205 (2019). https://doi.org/10.1021/acsnano.8b08778
R. Kumar, N. Goel, M. Mishra, G. Gupta, M. Fanetti, M. Valant, M. Kumar, Growth of MoS2–MoO3 hybrid microflowers via controlled vapor transport process for efficient gas sensing at room temperature. Adv. Mater. Interfaces 5(10), 1800071 (2018). https://doi.org/10.1002/admi.201800071
J.-S. Kim, H.-W. Yoo, H.O. Choi, H.-T. Jung, Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS2. Nano Lett. 14, 5941–5947 (2014). https://doi.org/10.1021/nl502906a
Y. Zhou, C. Zou, X. Lin, Y. Guo, UV light activated NO2 gas sensing based on Au nanoparticles decorated few-layer MoS2 thin film at room temperature. Appl. Phys. Lett. 113, 1–7 (2018). https://doi.org/10.1063/1.5042061
Y. Zhou, C. Gao, Y. Guo, UV assisted ultrasensitive trace NO2 gas sensing based on few-layer MoS2 nanosheet-ZnO nanowire heterojunctions at room temperature. J. Mater. Chem. A 6, 10286–10296 (2018). https://doi.org/10.1039/c8ta02679c
Y. Xia, C. Hu, S. Guo, L. Zhang, M. Wang et al., Sulfur-vacancy-enriched MoS2 nanosheets based heterostructures for near-infrared optoelectronic NO2 sensing. ACS Appl. Nano Mater. 3(1), 665–673 (2020). https://doi.org/10.1021/acsanm.9b02180
W. Zheng, Y. Xu, L. Zheng, C. Yang, N. Pinna, X. Liu, J. Zhang, MoS2 van der waals p–n junctions enabling highly selective room-temperature NO2 sensor. Adv. Funct. Mater. 30(19), 2000435 (2020). https://doi.org/10.1002/adfm.202000435
M. Reddeppa, B.G. Park, G. Murali, S.H. Choi, N.D. Chinh et al., NOx gas sensors based on layer-transferred n-MoS2/p-GaN heterojunction at room temperature: study of UV light illuminations and humidity. Sens. Actuat. B Chem. 308, 127700 (2020). https://doi.org/10.1016/j.snb.2020.127700
N. Goel, R. Kumar, S.K. Jain, S. Rajamani, B. Roul et al., A high-performance hydrogen sensor based on a reverse-biased MoS2/GaN heterojunction. Nanotechnology 30, 314001 (2019). https://doi.org/10.1088/1361-6528/ab1102
J. Guo, R. Wen, J. Zhai, Z.L. Wang, Enhanced NO2 gas sensing of a single-layer MoS2 by photogating and piezo-phototronic effects. Sci. Bull. 64, 128–135 (2019). https://doi.org/10.1016/j.scib.2018.12.009
L. Zhou, K. Xu, A. Zubair, A.D. Liao, W. Fang et al., Large-area synthesis of high-quality uniform few-layer MoTe2. J. Am. Chem. Soc. 137(37), 11892–11895 (2015). https://doi.org/10.1021/jacs.5b07452
T.J. Octon, V.K. Nagareddy, S. Russo, M.F. Craciun, C.D. Wright, Fast high-responsivity few-layer MoTe2 photodetectors. Adv. Opt. Mater. 4(11), 1750–1754 (2016). https://doi.org/10.1002/adom.201600290
Z. Feng, Y. Xie, E. Wu, Y. Yu, S. Zheng et al., Enhanced sensitivity of MoTe2 chemical sensor through light illumination. Micromachines 8(5), 155 (2017). https://doi.org/10.3390/mi8050155
E. Wu, Y. Xie, B. Yuan, H. Zhang, X. Hu, J. Liu, D. Zhang, Ultrasensitive and fully reversible NO2 gas sensing based on p-type MoTe2 under ultraviolet illumination. ACS Sens. 3(9), 1719–1726 (2018). https://doi.org/10.1021/acssensors.8b00461
H.S. Kim, M. Patel, J. Kim, M.S. Jeong, Growth of wafer-scale standing layers of WS2 for self-biased high-speed UV-visible-NIR optoelectronic devices. ACS Appl. Mater. Interfaces. 10, 3964–3974 (2018). https://doi.org/10.1021/acsami.7b16397
N. Huo, S. Yang, Z. Wei, S.S. Li, J.B. Xia, J. Li, Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Sci. Rep. 4, 5209 (2014). https://doi.org/10.1038/srep05209
D. Gu, X. Li, H. Wang, M. Li, Y. Xi et al., Light enhanced VOCs sensing of WS2 microflakes based chemiresistive sensors powered by triboelectronic nangenerators. Sens. Actuat. B Chem. 256, 992–1000 (2018). https://doi.org/10.1016/j.snb.2017.10.045
A.Y. Polyakov, D.A. Kozlov, V.A. Lebedev, R.G. Chumakov, A.S. Frolov et al., Gold decoration and photoresistive response to nitrogen dioxide of WS2 nanotubes. Chem. A Eur. J. 24(71), 18952–18962 (2018). https://doi.org/10.1002/chem.201803502
V. Paolucci, S.M. Emamjomeh, L. Ottaviano, C. Cantalini, Near room temperature light-activated WS2-decorated rGO as NO2 gas sensor. Sensors 19(11), 2617 (2019). https://doi.org/10.3390/s19112617
L.A. Burton, D. Colombara, R.D. Abellon, F.C. Grozema, L.M. Peter et al., Synthesis, characterization, and electronic structure of single-crystal SnS, Sn2S3, and SnS2. Chem. Mater. 25(24), 4908–4916 (2013). https://doi.org/10.1021/cm403046m
Y. Huang, E. Sutter, J.T. Sadowski, M. Cotlet, O.L.A. Monti et al., Tin disulfide-an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics. ACS Nano 8(10), 10743–10755 (2014). https://doi.org/10.1021/nn504481r
G. Su, V.G. Hadjiev, P.E. Loya, J. Zhang, S. Lei et al., Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application. Nano Lett. 15, 506–513 (2015). https://doi.org/10.1021/nl503857r
T.J. Whittles, L.A. Burton, J.M. Skelton, A. Walsh, T.D. Veal, V.R. Dhanak, Band alignments, valence bands, and core levels in the tin sulfides SnS, SnS2, and Sn2S3: experiment and theory. Chem. Mater. 28(11), 3718–3726 (2016). https://doi.org/10.1021/acs.chemmater.6b00397
D. Gu, X. Wang, W. Liu, X. Li, S. Lin et al., Visible-light activated room temperature NO2 sensing of SnS2 nanosheets based chemiresistive sensors. Sens. Actuat. B Chem. 305, 127455 (2020). https://doi.org/10.1016/j.snb.2019.127455
W.J. Yan, D.Y. Chen, H.R. Fuh, Y.L. Li, D. Zhang et al., Photo-enhanced gas sensing of SnS2 with nanoscale defects. RSC Adv. 9(2), 626–635 (2019). https://doi.org/10.1039/c8ra08857h
H. Chen, Y. Chen, H. Zhang, D.W. Zhang, P. Zhou, J. Huang, Suspended SnS2 layers by light assistance for ultrasensitive ammonia detection at room temperature. Adv. Funct. Mater. 28(20), 1801035 (2018). https://doi.org/10.1002/adfm.201801035
Y. Huang, W. Jiao, Z. Chu, G. Ding, M. Yan, X. Zhong, R. Wang, Ultrasensitive room temperature ppb-level NO2 gas sensors based on SnS2/rGO nanohybrids with P-N transition and optoelectronic visible light enhancement performance. J. Mater. Chem. C 7(28), 8616–8625 (2019). https://doi.org/10.1039/c9tc02436k
S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan et al., Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 5, 3252 (2014). https://doi.org/10.1038/ncomms4252
S. Yang, J. Kang, Q. Yue, J.M.D. Coey, C. Jiang, Defect-modulated transistors and gas-enhanced photodetectors on ReS2 nanosheets. Adv. Mater. Interfaces 3(6), 1500707 (2016). https://doi.org/10.1002/admi.201500707
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta, T. Gemming, H. Liu, Z. Liu, M.H. Rummeli et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48(1), 72–133 (2019). https://doi.org/10.1039/c8cs00324f
J. Zhu, E. Ha, G. Zhao, Y. Zhou, D. Huang et al., Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption. Coord. Chem. Rev. 352, 306–327 (2017). https://doi.org/10.1016/j.ccr.2017.09.012
S. Chertopalov, V.N. Mochalin, Environment-sensitive photoresponse of spontaneously partially oxidized Ti3C2 MXene thin films. ACS Nano 12(6), 6109–6116 (2018). https://doi.org/10.1021/acsnano.8b02379