Iodine Promoted Ultralow Zn Nucleation Overpotential and Zn-Rich Cathode for Low-Cost, Fast-Production and High-Energy Density Anode-Free Zn-Iodine Batteries
Corresponding Author: Hongbin Lu
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 208
Abstract
The anode-free design is a promising strategy to increase the energy density of aqueous Zn metal batteries (AZMBs). However, the scarcity of Zn-rich cathodes and the rapid loss of limited Zn greatly hinder their commercial applications. To address these issues, a novel anode-free Zn-iodine battery (AFZIB) was designed via a simple, low-cost and scalable approach. Iodine plays bifunctional roles in improving the AFZIB overall performance: enabling high-performance Zn-rich cathode and modulating Zn deposition behavior. On the cathode side, the ZnI2 serves as Zn-rich cathode material. The graphene/polyvinyl pyrrolidone heterostructure was employed as an efficient host for ZnI2 to enhance electron conductivity and suppress the shuttle effect of iodine species. On the anode side, trace I3− additive in the electrolyte creates surface reconstruction on the commercial Cu foil. The in situ formed zincophilic Cu nanocluster allows ultralow-overpotential and uniform Zn deposition and superior reversibility (average coulombic efficiency > 99.91% over 7,000 cycles). Based on such a configuration, AFZIB exhibits significantly increased energy density (162 Wh kg−1) and durable cycle stability (63.8% capacity retention after 200 cycles) under practical application conditions. Considering the low cost and simple preparation methods of the electrode materials, this work paves the way for the practical application of AZMBs.
Highlights:
1 The I3− additive promoted in situ formation of zincophilic Cu nanoclusters on commercial Cu foil, which achieves uniform Zn deposition with ultralow nucleation overpotential and high reversibility.
2 The Zn-rich ZnI2 cathode confined by graphene/polyvinyl pyrrolidone heterostructure shows enhanced conductivity and shuttle effect suppression, providing sufficient Zn2+ for the anode stably.
3 The assembled anode-free Zn-iodine battery exhibits attractive features for commercialization: low cost, fast production, significantly increased energy density and durable cycle stability under practical application conditions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3(10), 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
- M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28(41), 1802564 (2018). https://doi.org/10.1002/adfm.201802564
- X. Jia, C. Liu, Z.G. Neale, J. Yang, G. Cao, Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 120(15), 7795–7866 (2020). https://doi.org/10.1021/acs.chemrev.9b00628
- J. Cao, D. Zhang, X. Zhang, Z. Zeng, J. Qin et al., Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy Environ. Sci. 15(2), 499–528 (2022). https://doi.org/10.1039/d1ee03377h
- L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4(4), 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
- B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14, 6 (2021). https://doi.org/10.1007/s40820-021-00764-7
- W. Du, S. Huang, Y. Zhang, M. Ye, C.C. Li, Enable commercial zinc powders for dendrite-free zinc anode with improved utilization rate by pristine graphene hybridization. Energy Storage Mater. 45, 465–473 (2022). https://doi.org/10.1016/j.ensm.2021.12.007
- C. Zhang, W. Shin, L. Zhu, C. Chen, J.C. Neuefeind et al., The electrolyte comprising more robust water and superhalides transforms Zn-metal anode reversibly and dendrite-free. Carbon Energy 3(2), 339–348 (2020). https://doi.org/10.1002/cey2.70
- F. Ming, Y. Zhu, G. Huang, A.H. Emwas, H. Liang et al., Co-solvent electrolyte engineering for stable anode-free zinc metal batteries. J. Am. Chem. Soc. 144(16), 7160–7170 (2022). https://doi.org/10.1021/jacs.1c12764
- W. Yao, P. Zou, M. Wang, H. Zhan, F. Kang et al., Design principle, optimization strategies, and future perspectives of anode-free configurations for high-energy rechargeable metal batteries. Electrochem. Energy Rev. 4(3), 601–631 (2021). https://doi.org/10.1007/s41918-021-00106-6
- Y. Li, L. Wu, C. Dong, X. Wang, Y. Dong et al., Manipulating horizontal Zn deposition with graphene interpenetrated Zn hybrid foils for dendrite-free aqueous zinc ion batteries. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12423
- Y. Zeng, P.X. Sun, Z. Pei, Q. Jin, X. Zhang et al., Nitrogen-doped carbon fibers embedded with zincophilic cu nanoboxes for stable Zn-metal anodes. Adv. Mater. 34(18), e2200342 (2022). https://doi.org/10.1002/adma.202200342
- Y. An, Y. Tian, K. Zhang, Y. Liu, C. Liu et al., Stable aqueous anode-free zinc batteries enabled by interfacial engineering. Adv. Funct. Mater. 31(26), 2101886 (2021). https://doi.org/10.1002/adfm.202101886
- L. Lin, K. Qin, Y.S. Hu, H. Li, X. Huang et al., A better choice to achieve high volumetric energy density: anode-free lithium-metal batteries. Adv. Mater. 34(23), e2110323 (2022). https://doi.org/10.1002/adma.202110323
- J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14, 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
- Y. Zhu, Y. Cui, H.N. Alshareef, An anode-free Zn-MnO2 battery. Nano Lett. 21(3), 1446–1453 (2021). https://doi.org/10.1021/acs.nanolett.0c04519
- G. Wang, M. Zhu, G. Chen, Z. Qu, B. Kohn et al., An anode-free Zn-graphite battery. Adv. Mater. 34(29), 2201957 (2022). https://doi.org/10.1002/adma.202201957
- J.B. Goodenough, How we made the Li-ion rechargeable battery. Nat. Electron. 1(3), 204–204 (2018). https://doi.org/10.1038/s41928-018-0048-6
- J. Wu, Q. Kuang, K. Zhang, J. Feng, C. Huang et al., Spinel Zn3V3O8: a high-capacity zinc supplied cathode for aqueous Zn-ion batteries. Energy Storage Mater. 41, 297–309 (2021). https://doi.org/10.1016/j.ensm.2021.06.006
- J.C. Knight, S. Therese, A. Manthiram, Chemical extraction of Zn from ZnMn2O4-based spinels. J. Mater. Chem. A 3(42), 21077–21082 (2015). https://doi.org/10.1039/c5ta06482a
- C. Pan, R.G. Nuzzo, A.A. Gewirth, ZnAlxCo2–xO4 spinels as cathode materials for non-aqueous Zn batteries with an open circuit voltage of ≤2 V. Chem. Mater. 29(21), 9351–9359 (2017). https://doi.org/10.1021/acs.chemmater.7b03340
- J. Zhang, Q. Liu, Y. Ruan, S. Lin, K. Wang et al., Monolithic crystalline swelling of graphite oxide: a bridge to ultralarge graphene oxide with high scalability. Chem. Mater. 30(6), 1888–1897 (2018). https://doi.org/10.1021/acs.chemmater.7b04458
- Z. Cai, Y. Ou, J. Wang, R. Xiao, L. Fu et al., Chemically resistant Cu–Zn/Zn composite anode for long cycling aqueous batteries. Energy Storage Mater. 27, 205–211 (2020). https://doi.org/10.1016/j.ensm.2020.01.032
- S. Xie, Y. Li, X. Li, Y. Zhou, Z. Dang et al., Stable zinc anodes enabled by zincophilic Cu nanowire networks. Nano-Micro Lett. 14, 39 (2021). https://doi.org/10.1007/s40820-021-00783-4
- L. Zhou, F. Yang, S. Zeng, X. Gao, X. Liu et al., Zincophilic Cu sites induce dendrite-free Zn anodes for robust alkaline/neutral aqueous batteries. Adv. Funct. Mater. 32(15), 2110829 (2021). https://doi.org/10.1002/adfm.202110829
- S. Liu, W. Shang, Y. Yang, D. Kang, C. Li et al., Effects of I3- electrolyte additive on the electrochemical performance of Zn anodes and Zn/MnO2 batteries. Batteries Supercaps 5(1), 202100221 (2021). https://doi.org/10.1002/batt.202100221
- J. Meng, Z. Yang, L. Chen, X. Zeng, H. Chen et al., The investigation on the electrochemical performance of CuI as cathode material for zinc storage. Electrochim. Acta 338, 135915 (2020). https://doi.org/10.1016/j.electacta.2020.135915
- T. Ghodselahi, M.A. Vesaghi, A. Shafiekhani, A. Baghizadeh, M. Lameii, XPS study of the Cu@Cu2O core-shell nanops. Appl. Surf. Sci. 255(5), 2730–2734 (2008). https://doi.org/10.1016/j.apsusc.2008.08.110
- J. Hao, L. Yuan, B. Johannessen, Y. Zhu, Y. Jiao et al., Studying the conversion mechanism to broaden cathode options in aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 60(47), 25114–25121 (2021). https://doi.org/10.1002/anie.202111398
- Y. Zhang, J.D. Howe, S. Ben-Yoseph, Y. Wu, N. Liu, Unveiling the origin of alloy-seeded and nondendritic growth of Zn for rechargeable aqueous Zn batteries. ACS Energy Lett. 6(2), 404–412 (2021). https://doi.org/10.1021/acsenergylett.0c02343
- Q. Zhao, Y. Wang, W. Liu, X. Liu, H. Wang et al., An in-depth study of regulable zincophilic alloy matrix toward stable zinc metal batteries. Adv. Mater. Interfaces 9(7), 2102254 (2022). https://doi.org/10.1002/admi.202102254
- H. Meng, Q. Ran, T.Y. Dai, H. Shi, S.P. Zeng et al., Surface-alloyed nanoporous zinc as reversible and stable anodes for high-performance aqueous zinc-ion battery. Nano-Micro Lett. 14, 128 (2022). https://doi.org/10.1007/s40820-022-00867-9
- Z. Zhao, R. Wang, C. Peng, W. Chen, T. Wu et al., Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nat. Commun. 12, 6606 (2021). https://doi.org/10.1038/s41467-021-26947-9
- J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng et al., Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 30(30), 2001263 (2020). https://doi.org/10.1002/adfm.202001263
- X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13(2), 503–510 (2020). https://doi.org/10.1039/c9ee03545a
- Z. Wang, J. Huang, Z. Guo, X. Dong, Y. Liu et al., A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3(5), 1289–1300 (2019). https://doi.org/10.1016/j.joule.2019.02.012
- X. Li, N. Li, Z. Huang, Z. Chen, G. Liang et al., Enhanced redox kinetics and duration of aqueous I2/I- conversion chemistry by MXene confinement. Adv. Mater. 33(8), 2006897 (2021). https://doi.org/10.1002/adma.202006897
- J. Ma, M. Liu, Y. He, J. Zhang, Iodine redox chemistry in rechargeable batteries. Angew. Chem. Int. Ed. 60(23), 12636–12647 (2021). https://doi.org/10.1002/anie.202009871
- D. Lin, Y. Li, Recent advances of aqueous rechargeable zinc-iodine batteries: challenges, solutions, and prospects. Adv. Mater. 34(23), 2108856 (2022). https://doi.org/10.1002/adma.202108856
- Y. Yang, S. Liang, J. Zhou, Progress and prospect of the zinc–iodine battery. Curr. Opi. Electrochem. 30, 100761 (2021). https://doi.org/10.1016/j.coelec.2021.100761
- Y. Gu, Y. Sun, Y. Zhang, H. Chi, W. Zhang et al., Highly efficient adsorption of copper ions by a PVP-reduced graphene oxide based on a new adsorptions mechanism. Nano-Micro Lett. 6, 80–87 (2014). https://doi.org/10.1007/bf03353772
- Y. Wu, P. Deng, Y. Tian, J. Feng, J. Xiao et al., Simultaneous and sensitive determination of ascorbic acid, dopamine and uric acid via an electrochemical sensor based on PVP-graphene composite. J. Nanobiotechnol. 18(1), 112 (2020). https://doi.org/10.1186/s12951-020-00672-9
- H. Tian, S. Zhang, Z. Meng, W. He, W.Q. Han, Rechargeable aluminum/iodine battery redox chemistry in ionic liquid electrolyte. ACS Energy Lett. 2(5), 1170–1176 (2017). https://doi.org/10.1021/acsenergylett.7b00160
- R. Pažout, J. Housková, M. Dušek, J. Maixner, P. Kačer, Platinum precursor of anticancer drug: a structure fixed by long intermolecular N–H···I and C–H···I hydrogen bonds. Struct. Chem. 22(6), 1325–1330 (2011). https://doi.org/10.1007/s11224-011-9826-8
- Y. Zhang, D. Tao, F. Xu, T. Li, A low-cost and high-performance rechargeable magnesium battery based on povidone iodine cathode. Chem. Eng. J. 427, 131592 (2022). https://doi.org/10.1016/j.cej.2021.131592
- W. Shang, Q. Li, F. Jiang, B. Huang, J. Song, B. Zn et al., I2 battery’s performance by coating a zeolite-based cation-exchange protecting layer. Nano-Micro Lett. 14, 82 (2022). https://doi.org/10.1007/s40820-022-00825-5
References
G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3(10), 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28(41), 1802564 (2018). https://doi.org/10.1002/adfm.201802564
X. Jia, C. Liu, Z.G. Neale, J. Yang, G. Cao, Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 120(15), 7795–7866 (2020). https://doi.org/10.1021/acs.chemrev.9b00628
J. Cao, D. Zhang, X. Zhang, Z. Zeng, J. Qin et al., Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy Environ. Sci. 15(2), 499–528 (2022). https://doi.org/10.1039/d1ee03377h
L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4(4), 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14, 6 (2021). https://doi.org/10.1007/s40820-021-00764-7
W. Du, S. Huang, Y. Zhang, M. Ye, C.C. Li, Enable commercial zinc powders for dendrite-free zinc anode with improved utilization rate by pristine graphene hybridization. Energy Storage Mater. 45, 465–473 (2022). https://doi.org/10.1016/j.ensm.2021.12.007
C. Zhang, W. Shin, L. Zhu, C. Chen, J.C. Neuefeind et al., The electrolyte comprising more robust water and superhalides transforms Zn-metal anode reversibly and dendrite-free. Carbon Energy 3(2), 339–348 (2020). https://doi.org/10.1002/cey2.70
F. Ming, Y. Zhu, G. Huang, A.H. Emwas, H. Liang et al., Co-solvent electrolyte engineering for stable anode-free zinc metal batteries. J. Am. Chem. Soc. 144(16), 7160–7170 (2022). https://doi.org/10.1021/jacs.1c12764
W. Yao, P. Zou, M. Wang, H. Zhan, F. Kang et al., Design principle, optimization strategies, and future perspectives of anode-free configurations for high-energy rechargeable metal batteries. Electrochem. Energy Rev. 4(3), 601–631 (2021). https://doi.org/10.1007/s41918-021-00106-6
Y. Li, L. Wu, C. Dong, X. Wang, Y. Dong et al., Manipulating horizontal Zn deposition with graphene interpenetrated Zn hybrid foils for dendrite-free aqueous zinc ion batteries. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12423
Y. Zeng, P.X. Sun, Z. Pei, Q. Jin, X. Zhang et al., Nitrogen-doped carbon fibers embedded with zincophilic cu nanoboxes for stable Zn-metal anodes. Adv. Mater. 34(18), e2200342 (2022). https://doi.org/10.1002/adma.202200342
Y. An, Y. Tian, K. Zhang, Y. Liu, C. Liu et al., Stable aqueous anode-free zinc batteries enabled by interfacial engineering. Adv. Funct. Mater. 31(26), 2101886 (2021). https://doi.org/10.1002/adfm.202101886
L. Lin, K. Qin, Y.S. Hu, H. Li, X. Huang et al., A better choice to achieve high volumetric energy density: anode-free lithium-metal batteries. Adv. Mater. 34(23), e2110323 (2022). https://doi.org/10.1002/adma.202110323
J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14, 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
Y. Zhu, Y. Cui, H.N. Alshareef, An anode-free Zn-MnO2 battery. Nano Lett. 21(3), 1446–1453 (2021). https://doi.org/10.1021/acs.nanolett.0c04519
G. Wang, M. Zhu, G. Chen, Z. Qu, B. Kohn et al., An anode-free Zn-graphite battery. Adv. Mater. 34(29), 2201957 (2022). https://doi.org/10.1002/adma.202201957
J.B. Goodenough, How we made the Li-ion rechargeable battery. Nat. Electron. 1(3), 204–204 (2018). https://doi.org/10.1038/s41928-018-0048-6
J. Wu, Q. Kuang, K. Zhang, J. Feng, C. Huang et al., Spinel Zn3V3O8: a high-capacity zinc supplied cathode for aqueous Zn-ion batteries. Energy Storage Mater. 41, 297–309 (2021). https://doi.org/10.1016/j.ensm.2021.06.006
J.C. Knight, S. Therese, A. Manthiram, Chemical extraction of Zn from ZnMn2O4-based spinels. J. Mater. Chem. A 3(42), 21077–21082 (2015). https://doi.org/10.1039/c5ta06482a
C. Pan, R.G. Nuzzo, A.A. Gewirth, ZnAlxCo2–xO4 spinels as cathode materials for non-aqueous Zn batteries with an open circuit voltage of ≤2 V. Chem. Mater. 29(21), 9351–9359 (2017). https://doi.org/10.1021/acs.chemmater.7b03340
J. Zhang, Q. Liu, Y. Ruan, S. Lin, K. Wang et al., Monolithic crystalline swelling of graphite oxide: a bridge to ultralarge graphene oxide with high scalability. Chem. Mater. 30(6), 1888–1897 (2018). https://doi.org/10.1021/acs.chemmater.7b04458
Z. Cai, Y. Ou, J. Wang, R. Xiao, L. Fu et al., Chemically resistant Cu–Zn/Zn composite anode for long cycling aqueous batteries. Energy Storage Mater. 27, 205–211 (2020). https://doi.org/10.1016/j.ensm.2020.01.032
S. Xie, Y. Li, X. Li, Y. Zhou, Z. Dang et al., Stable zinc anodes enabled by zincophilic Cu nanowire networks. Nano-Micro Lett. 14, 39 (2021). https://doi.org/10.1007/s40820-021-00783-4
L. Zhou, F. Yang, S. Zeng, X. Gao, X. Liu et al., Zincophilic Cu sites induce dendrite-free Zn anodes for robust alkaline/neutral aqueous batteries. Adv. Funct. Mater. 32(15), 2110829 (2021). https://doi.org/10.1002/adfm.202110829
S. Liu, W. Shang, Y. Yang, D. Kang, C. Li et al., Effects of I3- electrolyte additive on the electrochemical performance of Zn anodes and Zn/MnO2 batteries. Batteries Supercaps 5(1), 202100221 (2021). https://doi.org/10.1002/batt.202100221
J. Meng, Z. Yang, L. Chen, X. Zeng, H. Chen et al., The investigation on the electrochemical performance of CuI as cathode material for zinc storage. Electrochim. Acta 338, 135915 (2020). https://doi.org/10.1016/j.electacta.2020.135915
T. Ghodselahi, M.A. Vesaghi, A. Shafiekhani, A. Baghizadeh, M. Lameii, XPS study of the Cu@Cu2O core-shell nanops. Appl. Surf. Sci. 255(5), 2730–2734 (2008). https://doi.org/10.1016/j.apsusc.2008.08.110
J. Hao, L. Yuan, B. Johannessen, Y. Zhu, Y. Jiao et al., Studying the conversion mechanism to broaden cathode options in aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 60(47), 25114–25121 (2021). https://doi.org/10.1002/anie.202111398
Y. Zhang, J.D. Howe, S. Ben-Yoseph, Y. Wu, N. Liu, Unveiling the origin of alloy-seeded and nondendritic growth of Zn for rechargeable aqueous Zn batteries. ACS Energy Lett. 6(2), 404–412 (2021). https://doi.org/10.1021/acsenergylett.0c02343
Q. Zhao, Y. Wang, W. Liu, X. Liu, H. Wang et al., An in-depth study of regulable zincophilic alloy matrix toward stable zinc metal batteries. Adv. Mater. Interfaces 9(7), 2102254 (2022). https://doi.org/10.1002/admi.202102254
H. Meng, Q. Ran, T.Y. Dai, H. Shi, S.P. Zeng et al., Surface-alloyed nanoporous zinc as reversible and stable anodes for high-performance aqueous zinc-ion battery. Nano-Micro Lett. 14, 128 (2022). https://doi.org/10.1007/s40820-022-00867-9
Z. Zhao, R. Wang, C. Peng, W. Chen, T. Wu et al., Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nat. Commun. 12, 6606 (2021). https://doi.org/10.1038/s41467-021-26947-9
J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng et al., Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 30(30), 2001263 (2020). https://doi.org/10.1002/adfm.202001263
X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13(2), 503–510 (2020). https://doi.org/10.1039/c9ee03545a
Z. Wang, J. Huang, Z. Guo, X. Dong, Y. Liu et al., A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3(5), 1289–1300 (2019). https://doi.org/10.1016/j.joule.2019.02.012
X. Li, N. Li, Z. Huang, Z. Chen, G. Liang et al., Enhanced redox kinetics and duration of aqueous I2/I- conversion chemistry by MXene confinement. Adv. Mater. 33(8), 2006897 (2021). https://doi.org/10.1002/adma.202006897
J. Ma, M. Liu, Y. He, J. Zhang, Iodine redox chemistry in rechargeable batteries. Angew. Chem. Int. Ed. 60(23), 12636–12647 (2021). https://doi.org/10.1002/anie.202009871
D. Lin, Y. Li, Recent advances of aqueous rechargeable zinc-iodine batteries: challenges, solutions, and prospects. Adv. Mater. 34(23), 2108856 (2022). https://doi.org/10.1002/adma.202108856
Y. Yang, S. Liang, J. Zhou, Progress and prospect of the zinc–iodine battery. Curr. Opi. Electrochem. 30, 100761 (2021). https://doi.org/10.1016/j.coelec.2021.100761
Y. Gu, Y. Sun, Y. Zhang, H. Chi, W. Zhang et al., Highly efficient adsorption of copper ions by a PVP-reduced graphene oxide based on a new adsorptions mechanism. Nano-Micro Lett. 6, 80–87 (2014). https://doi.org/10.1007/bf03353772
Y. Wu, P. Deng, Y. Tian, J. Feng, J. Xiao et al., Simultaneous and sensitive determination of ascorbic acid, dopamine and uric acid via an electrochemical sensor based on PVP-graphene composite. J. Nanobiotechnol. 18(1), 112 (2020). https://doi.org/10.1186/s12951-020-00672-9
H. Tian, S. Zhang, Z. Meng, W. He, W.Q. Han, Rechargeable aluminum/iodine battery redox chemistry in ionic liquid electrolyte. ACS Energy Lett. 2(5), 1170–1176 (2017). https://doi.org/10.1021/acsenergylett.7b00160
R. Pažout, J. Housková, M. Dušek, J. Maixner, P. Kačer, Platinum precursor of anticancer drug: a structure fixed by long intermolecular N–H···I and C–H···I hydrogen bonds. Struct. Chem. 22(6), 1325–1330 (2011). https://doi.org/10.1007/s11224-011-9826-8
Y. Zhang, D. Tao, F. Xu, T. Li, A low-cost and high-performance rechargeable magnesium battery based on povidone iodine cathode. Chem. Eng. J. 427, 131592 (2022). https://doi.org/10.1016/j.cej.2021.131592
W. Shang, Q. Li, F. Jiang, B. Huang, J. Song, B. Zn et al., I2 battery’s performance by coating a zeolite-based cation-exchange protecting layer. Nano-Micro Lett. 14, 82 (2022). https://doi.org/10.1007/s40820-022-00825-5