Harness High-Temperature Thermal Energy via Elastic Thermoelectric Aerogels
Corresponding Author: Guangming Chen
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 151
Abstract
Despite notable progress in thermoelectric (TE) materials and devices, developing TE aerogels with high-temperature resistance, superior TE performance and excellent elasticity to enable self-powered high-temperature monitoring/warning in industrial and wearable applications remains a great challenge. Herein, a highly elastic, flame-retardant and high-temperature-resistant TE aerogel, made of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/single-walled carbon nanotube (PEDOT:PSS/SWCNT) composites, has been fabricated, displaying attractive compression-induced power factor enhancement. The as-fabricated sensors with the aerogel can achieve accurately pressure stimuli detection and wide temperature range monitoring. Subsequently, a flexible TE generator is assembled, consisting of 25 aerogels connected in series, capable of delivering a maximum output power of 400 μW when subjected to a temperature difference of 300 K. This demonstrates its outstanding high-temperature heat harvesting capability and promising application prospects for real-time temperature monitoring on industrial high-temperature pipelines. Moreover, the designed self-powered wearable sensing glove can realize precise wide-range temperature detection, high-temperature warning and accurate recognition of human hand gestures. The aerogel-based intelligent wearable sensing system developed for firefighters demonstrates the desired self-powered and highly sensitive high-temperature fire warning capability. Benefitting from these desirable properties, the elastic and high-temperature-resistant aerogels present various promising applications including self-powered high-temperature monitoring, industrial overheat warning, waste heat energy recycling and even wearable healthcare.
Highlights:
1 A thermoelectric aerogel of highly elastic, flame-retardant and high-temperature-resistant PEDOT:PSS/SWCNT composite is fabricated.
2 The assembled thermoelectric generator generates a maximum output power of 400 μW at a temperature difference of 300 K.
3 The self-powered wearable sensing glove can achieve wide-range temperature detection, complex hand motion recognition and high-temperature warning.
4 The intelligent fire warning system enables highly sensitive and repeatable monitoring and alarm capabilities for high-temperature fire sources.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L.-Y. Lv, C.-F. Cao, Y.-X. Qu, G.-D. Zhang, L. Zhao et al., Smart fire-warning materials and sensors: design principle, performances, and applications. Mater. Sci. Eng. R. Rep. 150, 100690 (2022). https://doi.org/10.1016/j.mser.2022.100690
- Y. Fang, G. Chen, M. Bick, J. Chen, Smart textiles for personalized thermoregulation. Chem. Soc. Rev. 50, 9357–9374 (2021). https://doi.org/10.1039/d1cs00003a
- H. He, Y. Qin, Z. Zhu, Q. Jiang, S. Ouyang et al., Temperature-arousing self-powered fire warning E-textile based on p-n segment coaxial aerogel fibers for active fire protection in firefighting clothing. Nano-Micro Lett. 15, 226 (2023). https://doi.org/10.1007/s40820-023-01200-8
- Z. Ding, C. Du, W. Long, C.-F. Cao, L. Liang et al., Thermoelectrics and thermocells for fire warning applications. Sci. Bull. 68, 3261–3277 (2023). https://doi.org/10.1016/j.scib.2023.08.057
- X. Wang, P. Liu, Q. Jiang, W. Zhou, J. Xu et al., Efficient DMSO-vapor annealing for enhancing thermoelectric performance of PEDOT:PSS-based aerogel. ACS Appl. Mater. Interfaces 11, 2408–2417 (2019). https://doi.org/10.1021/acsami.8b19168
- N. Okada, K. Sato, M. Yokoo, E. Kodama, S. Kanehashi et al., Thermoelectric properties of poly(3-hexylthiophene) nanofiber aerogels with a giant seebeck coefficient. ACS Appl. Polym. Mater. 3, 455–463 (2021). https://doi.org/10.1021/acsapm.0c01185
- S. Han, N.U.H. Alvi, L. Granlöf, H. Granberg, M. Berggren et al., A multiparameter pressure-temperature-humidity sensor based on mixed ionic-electronic cellulose aerogels. Adv. Sci. 6, 1802128 (2019). https://doi.org/10.1002/advs.201802128
- L. Liang, X. Wang, Z. Liu, G. Sun, G. Chen, Recent advances in organic, inorganic, and hybrid thermoelectric aerogels. Chin. Phys. B 31, 027903 (2022). https://doi.org/10.1088/1674-1056/ac2802
- Z. Fan, Y. Zhang, L. Pan, J. Ouyang, Q. Zhang, Recent developments in flexible thermoelectrics: from materials to devices. Renewable Sustainable Energy Rev. 137, 110448 (2021). https://doi.org/10.1016/j.rser.2020.110448
- Q. Zhu, S. Wang, X. Wang, A. Suwardi, M.H. Chua et al., Bottom-up engineering strategies for high-performance thermoelectric materials. Nano-Micro Lett. 13, 119 (2021). https://doi.org/10.1007/s40820-021-00637-z
- N. Yanagishima, S. Kanehashi, H. Saito, K. Ogino, T. Shimomura, Thermoelectric properties of PEDOT:PSS aerogel secondary-doped in supercritical CO2 atmosphere with low thermal conductivity. Polymer 206, 122912 (2020). https://doi.org/10.1016/j.polymer.2020.122912
- L. Wang, H. Bi, Q. Yao, D. Ren, S. Qu et al., Three-dimensional tubular graphene/polyaniline composites as high-performance elastic thermoelectrics. Compos. Sci. Technol. 150, 135–140 (2017). https://doi.org/10.1016/j.compscitech.2017.07.001
- C. Yu, H. Kim, J.R. Youn, Y.S. Song, Enhancement of structural stability of graphene aerogel for thermal energy harvesting. ACS Appl. Energy Mater. 4, 11666–11674 (2021). https://doi.org/10.1021/acsaem.1c02390
- C. Yu, Y.S. Song, Analysis of thermoelectric energy harvesting with graphene aerogel-supported form-stable phase change materials. Nanomaterials 11, 2192 (2021). https://doi.org/10.3390/nano11092192
- X. Qi, T. Miao, C. Chi, G. Zhang, C. Zhang et al., Ultralight PEDOT:PSS/graphene oxide composite aerogel sponges for electric power harvesting from thermal fluctuations and moist environment. Nano Energy 77, 105096 (2020). https://doi.org/10.1016/j.nanoen.2020.105096
- F. Jia, R. Wu, C. Liu, J. Lan, Y.-H. Lin et al., High thermoelectric and flexible PEDOT/SWCNT/BC nanoporous films derived from aerogels. ACS Sustainable Chem. Eng. 7(14), 12591–12600 (2019). https://doi.org/10.1021/acssuschemeng.9b02518
- X. Sun, Y. Wei, J. Li, J. Zhao, L. Zhao et al., Ultralight conducting PEDOT:PSS/carbon nanotube aerogels doped with silver for thermoelectric materials. Sci. China Mater. 60, 159–166 (2017). https://doi.org/10.1007/s40843-016-5132-8
- H. He, J. Liu, Y. Wang, Y. Zhao, Y. Qin et al., An ultralight self-powered fire alarm e-textile based on conductive aerogel fiber with repeatable temperature monitoring performance used in firefighting clothing. ACS Nano 16, 2953–2967 (2022). https://doi.org/10.1021/acsnano.1c10144
- J. Kim, E.J. Bae, Y.H. Kang, C. Lee, S.Y. Cho, Elastic thermoelectric sponge for pressure-induced enhancement of power generation. Nano Energy 74, 104824 (2020). https://doi.org/10.1016/j.nanoen.2020.104824
- X.-Z. Gao, F.-L. Gao, J. Liu, Y. Li, P. Wan et al., Self-powered resilient porous sensors with thermoelectric poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and carbon nanotubes for sensitive temperature and pressure dual-mode sensing. ACS Appl. Mater. Interfaces 14, 43783–43791 (2022). https://doi.org/10.1021/acsami.2c12892
- Y. Wang, H. Mao, Y. Wang, P. Zhu, C. Liu et al., 3D geometrically structured PANI/CNT-decorated polydimethylsiloxane active pressure and temperature dual-parameter sensors for man–machine interaction applications. J. Mater. Chem. A 8, 15167–15176 (2020). https://doi.org/10.1039/D0TA05651K
- X. He, Y. Hao, M. He, X. Qin, L. Wang et al., Stretchable thermoelectric-based self-powered dual-parameter sensors with decoupled temperature and strain sensing. ACS Appl. Mater. Interfaces 13, 60498–60507 (2021). https://doi.org/10.1021/acsami.1c20456
- F.-L. Gao, P. Min, X.-Z. Gao, C. Li, T. Zhang et al., Integrated temperature and pressure dual-mode sensors based on elastic PDMS foams decorated with thermoelectric PEDOT:PSS and carbon nanotubes for human energy harvesting and electronic-skin. J. Mater. Chem. A 10, 18256–18266 (2022). https://doi.org/10.1039/D2TA04862K
- D. Zhang, Y. Mao, P. Bai, Q. Li, W. He et al., Multifunctional superelastic graphene-based thermoelectric sponges for wearable and thermal management devices. Nano Lett. 22, 3417–3424 (2022). https://doi.org/10.1021/acs.nanolett.2c00696
- X. Wang, L. Liang, H. Lv, Y. Zhang, G. Chen, Elastic aerogel thermoelectric generator with vertical temperature-difference architecture and compression-induced power enhancement. Nano Energy 90, 106577 (2021). https://doi.org/10.1016/j.nanoen.2021.106577
- F. Zhang, Y. Zang, D. Huang, C.-A. Di, D. Zhu, Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat. Commun. 6, 8356 (2015). https://doi.org/10.1038/ncomms9356
- W. Deng, L. Deng, Z. Li, Y. Zhang, G. Chen, Synergistically boosting thermoelectric performance of PEDOT:PSS/SWCNT composites via the ion-exchange effect and promoting SWCNT dispersion by the ionic liquid. ACS Appl. Mater. Interfaces 13, 12131–12140 (2021). https://doi.org/10.1021/acsami.1c01059
- L. Wang, J. Zhang, Y. Guo, X. Chen, X. Jin et al., Fabrication of core-shell structured poly(3,4-ethylenedioxythiophene)/carbon nanotube hybrids with enhanced thermoelectric power factors. Carbon 148, 290–296 (2019). https://doi.org/10.1016/j.carbon.2019.03.088
- S. Han, P. Wang, Y. Zhou, Q. Meng, M. Aakyiir et al., Flexible, mechanically robust, multifunctional and sustainable cellulose/graphene nanocomposite films for wearable human-motion monitoring. Compos. Sci. Technol. 230, 109451 (2022). https://doi.org/10.1016/j.compscitech.2022.109451
- X. Zhao, W. Wang, Z. Wang, J. Wang, T. Huang et al., Flexible PEDOT:PSS/polyimide aerogels with linearly responsive and stable properties for piezoresistive sensor applications. Chem. Eng. J. 395, 125115 (2020). https://doi.org/10.1016/j.cej.2020.125115
- X. Zhao, Z. Chen, H. Zhuo, Y. Hu, G. Shi et al., Thermoelectric generator based on anisotropic wood aerogel for low-grade heat energy harvesting. J. Mater. Sci. Technol. 120, 150–158 (2022). https://doi.org/10.1016/j.jmst.2021.12.039
- H. Li, Y. Zong, J. He, Q. Ding, Y. Jiang et al., Wood-inspired high strength and lightweight aerogel based on carbon nanotube and nanocellulose fiber for heat collection. Carbohydr. Polym. 280, 119036 (2022). https://doi.org/10.1016/j.carbpol.2021.119036
- U. Ail, Z.U. Khan, H. Granberg, F. Berthold, R. Parasuraman et al., Room temperature synthesis of transition metal silicide-conducting polymer micro-composites for thermoelectric applications. Synth. Met. 225, 55–63 (2017). https://doi.org/10.1016/j.synthmet.2017.01.007
- Y. Wang, H. Wu, L. Xu, H. Zhang, Y. Yang et al., Hierarchically patterned self-powered sensors for multifunctional tactile sensing. Sci. Adv. 6, eabb9083 (2020). https://doi.org/10.1126/sciadv.abb9083
- Y. Yin, Y. Wang, H. Li, J. Xu, C. Zhang et al., A flexible dual parameter sensor with hierarchical porous structure for fully decoupled pressure–temperature sensing. Chem. Eng. J. 430, 133158 (2022). https://doi.org/10.1016/j.cej.2021.133158
- C. Zhang, S. Song, Q. Li, J. Wang, Z. Liu et al., One-pot facile fabrication of covalently cross-linked carbon nanotube/PDMS composite foam as a pressure/temperature sensor with high sensitivity and stability. J. Mater. Chem. C 9, 15337–15345 (2021). https://doi.org/10.1039/D1TC03523A
- C. Jiang, J. Chen, X. Lai, H. Li, X. Zeng et al., Mechanically robust and multifunctional polyimide/MXene composite aerogel for smart fire protection. Chem. Eng. J. 434, 134630 (2022). https://doi.org/10.1016/j.cej.2022.134630
- H. Cheng, Y. Du, B. Wang, Z. Mao, H. Xu et al., Flexible cellulose-based thermoelectric sponge towards wearable pressure sensor and energy harvesting. Chem. Eng. J. 338, 1–7 (2018). https://doi.org/10.1016/j.cej.2017.12.134
- C. Du, M. Cao, G. Li, Y. Hu, Y. Zhang et al., Toward precision recognition of complex hand motions: Wearable thermoelectrics by synergistic 2D nanostructure confinement and controlled reduction. Adv. Funct. Mater. 32, 2206083 (2022). https://doi.org/10.1002/adfm.202206083
References
L.-Y. Lv, C.-F. Cao, Y.-X. Qu, G.-D. Zhang, L. Zhao et al., Smart fire-warning materials and sensors: design principle, performances, and applications. Mater. Sci. Eng. R. Rep. 150, 100690 (2022). https://doi.org/10.1016/j.mser.2022.100690
Y. Fang, G. Chen, M. Bick, J. Chen, Smart textiles for personalized thermoregulation. Chem. Soc. Rev. 50, 9357–9374 (2021). https://doi.org/10.1039/d1cs00003a
H. He, Y. Qin, Z. Zhu, Q. Jiang, S. Ouyang et al., Temperature-arousing self-powered fire warning E-textile based on p-n segment coaxial aerogel fibers for active fire protection in firefighting clothing. Nano-Micro Lett. 15, 226 (2023). https://doi.org/10.1007/s40820-023-01200-8
Z. Ding, C. Du, W. Long, C.-F. Cao, L. Liang et al., Thermoelectrics and thermocells for fire warning applications. Sci. Bull. 68, 3261–3277 (2023). https://doi.org/10.1016/j.scib.2023.08.057
X. Wang, P. Liu, Q. Jiang, W. Zhou, J. Xu et al., Efficient DMSO-vapor annealing for enhancing thermoelectric performance of PEDOT:PSS-based aerogel. ACS Appl. Mater. Interfaces 11, 2408–2417 (2019). https://doi.org/10.1021/acsami.8b19168
N. Okada, K. Sato, M. Yokoo, E. Kodama, S. Kanehashi et al., Thermoelectric properties of poly(3-hexylthiophene) nanofiber aerogels with a giant seebeck coefficient. ACS Appl. Polym. Mater. 3, 455–463 (2021). https://doi.org/10.1021/acsapm.0c01185
S. Han, N.U.H. Alvi, L. Granlöf, H. Granberg, M. Berggren et al., A multiparameter pressure-temperature-humidity sensor based on mixed ionic-electronic cellulose aerogels. Adv. Sci. 6, 1802128 (2019). https://doi.org/10.1002/advs.201802128
L. Liang, X. Wang, Z. Liu, G. Sun, G. Chen, Recent advances in organic, inorganic, and hybrid thermoelectric aerogels. Chin. Phys. B 31, 027903 (2022). https://doi.org/10.1088/1674-1056/ac2802
Z. Fan, Y. Zhang, L. Pan, J. Ouyang, Q. Zhang, Recent developments in flexible thermoelectrics: from materials to devices. Renewable Sustainable Energy Rev. 137, 110448 (2021). https://doi.org/10.1016/j.rser.2020.110448
Q. Zhu, S. Wang, X. Wang, A. Suwardi, M.H. Chua et al., Bottom-up engineering strategies for high-performance thermoelectric materials. Nano-Micro Lett. 13, 119 (2021). https://doi.org/10.1007/s40820-021-00637-z
N. Yanagishima, S. Kanehashi, H. Saito, K. Ogino, T. Shimomura, Thermoelectric properties of PEDOT:PSS aerogel secondary-doped in supercritical CO2 atmosphere with low thermal conductivity. Polymer 206, 122912 (2020). https://doi.org/10.1016/j.polymer.2020.122912
L. Wang, H. Bi, Q. Yao, D. Ren, S. Qu et al., Three-dimensional tubular graphene/polyaniline composites as high-performance elastic thermoelectrics. Compos. Sci. Technol. 150, 135–140 (2017). https://doi.org/10.1016/j.compscitech.2017.07.001
C. Yu, H. Kim, J.R. Youn, Y.S. Song, Enhancement of structural stability of graphene aerogel for thermal energy harvesting. ACS Appl. Energy Mater. 4, 11666–11674 (2021). https://doi.org/10.1021/acsaem.1c02390
C. Yu, Y.S. Song, Analysis of thermoelectric energy harvesting with graphene aerogel-supported form-stable phase change materials. Nanomaterials 11, 2192 (2021). https://doi.org/10.3390/nano11092192
X. Qi, T. Miao, C. Chi, G. Zhang, C. Zhang et al., Ultralight PEDOT:PSS/graphene oxide composite aerogel sponges for electric power harvesting from thermal fluctuations and moist environment. Nano Energy 77, 105096 (2020). https://doi.org/10.1016/j.nanoen.2020.105096
F. Jia, R. Wu, C. Liu, J. Lan, Y.-H. Lin et al., High thermoelectric and flexible PEDOT/SWCNT/BC nanoporous films derived from aerogels. ACS Sustainable Chem. Eng. 7(14), 12591–12600 (2019). https://doi.org/10.1021/acssuschemeng.9b02518
X. Sun, Y. Wei, J. Li, J. Zhao, L. Zhao et al., Ultralight conducting PEDOT:PSS/carbon nanotube aerogels doped with silver for thermoelectric materials. Sci. China Mater. 60, 159–166 (2017). https://doi.org/10.1007/s40843-016-5132-8
H. He, J. Liu, Y. Wang, Y. Zhao, Y. Qin et al., An ultralight self-powered fire alarm e-textile based on conductive aerogel fiber with repeatable temperature monitoring performance used in firefighting clothing. ACS Nano 16, 2953–2967 (2022). https://doi.org/10.1021/acsnano.1c10144
J. Kim, E.J. Bae, Y.H. Kang, C. Lee, S.Y. Cho, Elastic thermoelectric sponge for pressure-induced enhancement of power generation. Nano Energy 74, 104824 (2020). https://doi.org/10.1016/j.nanoen.2020.104824
X.-Z. Gao, F.-L. Gao, J. Liu, Y. Li, P. Wan et al., Self-powered resilient porous sensors with thermoelectric poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and carbon nanotubes for sensitive temperature and pressure dual-mode sensing. ACS Appl. Mater. Interfaces 14, 43783–43791 (2022). https://doi.org/10.1021/acsami.2c12892
Y. Wang, H. Mao, Y. Wang, P. Zhu, C. Liu et al., 3D geometrically structured PANI/CNT-decorated polydimethylsiloxane active pressure and temperature dual-parameter sensors for man–machine interaction applications. J. Mater. Chem. A 8, 15167–15176 (2020). https://doi.org/10.1039/D0TA05651K
X. He, Y. Hao, M. He, X. Qin, L. Wang et al., Stretchable thermoelectric-based self-powered dual-parameter sensors with decoupled temperature and strain sensing. ACS Appl. Mater. Interfaces 13, 60498–60507 (2021). https://doi.org/10.1021/acsami.1c20456
F.-L. Gao, P. Min, X.-Z. Gao, C. Li, T. Zhang et al., Integrated temperature and pressure dual-mode sensors based on elastic PDMS foams decorated with thermoelectric PEDOT:PSS and carbon nanotubes for human energy harvesting and electronic-skin. J. Mater. Chem. A 10, 18256–18266 (2022). https://doi.org/10.1039/D2TA04862K
D. Zhang, Y. Mao, P. Bai, Q. Li, W. He et al., Multifunctional superelastic graphene-based thermoelectric sponges for wearable and thermal management devices. Nano Lett. 22, 3417–3424 (2022). https://doi.org/10.1021/acs.nanolett.2c00696
X. Wang, L. Liang, H. Lv, Y. Zhang, G. Chen, Elastic aerogel thermoelectric generator with vertical temperature-difference architecture and compression-induced power enhancement. Nano Energy 90, 106577 (2021). https://doi.org/10.1016/j.nanoen.2021.106577
F. Zhang, Y. Zang, D. Huang, C.-A. Di, D. Zhu, Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat. Commun. 6, 8356 (2015). https://doi.org/10.1038/ncomms9356
W. Deng, L. Deng, Z. Li, Y. Zhang, G. Chen, Synergistically boosting thermoelectric performance of PEDOT:PSS/SWCNT composites via the ion-exchange effect and promoting SWCNT dispersion by the ionic liquid. ACS Appl. Mater. Interfaces 13, 12131–12140 (2021). https://doi.org/10.1021/acsami.1c01059
L. Wang, J. Zhang, Y. Guo, X. Chen, X. Jin et al., Fabrication of core-shell structured poly(3,4-ethylenedioxythiophene)/carbon nanotube hybrids with enhanced thermoelectric power factors. Carbon 148, 290–296 (2019). https://doi.org/10.1016/j.carbon.2019.03.088
S. Han, P. Wang, Y. Zhou, Q. Meng, M. Aakyiir et al., Flexible, mechanically robust, multifunctional and sustainable cellulose/graphene nanocomposite films for wearable human-motion monitoring. Compos. Sci. Technol. 230, 109451 (2022). https://doi.org/10.1016/j.compscitech.2022.109451
X. Zhao, W. Wang, Z. Wang, J. Wang, T. Huang et al., Flexible PEDOT:PSS/polyimide aerogels with linearly responsive and stable properties for piezoresistive sensor applications. Chem. Eng. J. 395, 125115 (2020). https://doi.org/10.1016/j.cej.2020.125115
X. Zhao, Z. Chen, H. Zhuo, Y. Hu, G. Shi et al., Thermoelectric generator based on anisotropic wood aerogel for low-grade heat energy harvesting. J. Mater. Sci. Technol. 120, 150–158 (2022). https://doi.org/10.1016/j.jmst.2021.12.039
H. Li, Y. Zong, J. He, Q. Ding, Y. Jiang et al., Wood-inspired high strength and lightweight aerogel based on carbon nanotube and nanocellulose fiber for heat collection. Carbohydr. Polym. 280, 119036 (2022). https://doi.org/10.1016/j.carbpol.2021.119036
U. Ail, Z.U. Khan, H. Granberg, F. Berthold, R. Parasuraman et al., Room temperature synthesis of transition metal silicide-conducting polymer micro-composites for thermoelectric applications. Synth. Met. 225, 55–63 (2017). https://doi.org/10.1016/j.synthmet.2017.01.007
Y. Wang, H. Wu, L. Xu, H. Zhang, Y. Yang et al., Hierarchically patterned self-powered sensors for multifunctional tactile sensing. Sci. Adv. 6, eabb9083 (2020). https://doi.org/10.1126/sciadv.abb9083
Y. Yin, Y. Wang, H. Li, J. Xu, C. Zhang et al., A flexible dual parameter sensor with hierarchical porous structure for fully decoupled pressure–temperature sensing. Chem. Eng. J. 430, 133158 (2022). https://doi.org/10.1016/j.cej.2021.133158
C. Zhang, S. Song, Q. Li, J. Wang, Z. Liu et al., One-pot facile fabrication of covalently cross-linked carbon nanotube/PDMS composite foam as a pressure/temperature sensor with high sensitivity and stability. J. Mater. Chem. C 9, 15337–15345 (2021). https://doi.org/10.1039/D1TC03523A
C. Jiang, J. Chen, X. Lai, H. Li, X. Zeng et al., Mechanically robust and multifunctional polyimide/MXene composite aerogel for smart fire protection. Chem. Eng. J. 434, 134630 (2022). https://doi.org/10.1016/j.cej.2022.134630
H. Cheng, Y. Du, B. Wang, Z. Mao, H. Xu et al., Flexible cellulose-based thermoelectric sponge towards wearable pressure sensor and energy harvesting. Chem. Eng. J. 338, 1–7 (2018). https://doi.org/10.1016/j.cej.2017.12.134
C. Du, M. Cao, G. Li, Y. Hu, Y. Zhang et al., Toward precision recognition of complex hand motions: Wearable thermoelectrics by synergistic 2D nanostructure confinement and controlled reduction. Adv. Funct. Mater. 32, 2206083 (2022). https://doi.org/10.1002/adfm.202206083