Toward Enhancing Wearability and Fashion of Wearable Supercapacitor with Modified Polyurethane Artificial Leather Electrolyte
Corresponding Author: Chunyi Zhi
Nano-Micro Letters,
Vol. 10 No. 3 (2018), Article Number: 38
Abstract
Inspired by the sophisticated artificial leather garment industry and toward enhancing wearability of energy storage devices, we demonstrate a polyurethane artificial leather supercapacitor with large sheet electrodes embedded in the leather layer simultaneously working as a polyelectrolyte. This design totally reserves textiles underneath and thus addresses the well-known challenge of wearing comfortability. It provides a revolutionary configuration of wearable supercapacitors: the artificial leather on garment is also a supercapacitor. Unlike the polyvinyl alcohol-based acidic electrolytes, which are widely used, sodium chloride is used to modify the intrinsically fluorescent polyurethane leather for ionic transportation, which has no harm to human. The fluorescent leather supercapacitor is easily transferrable from any arbitrary substrates to form various patterns, enabling multifunctionalities of practical wearability, fashion, and energy storage.
Highlights:
1 Practically wearable, easily transferrable, and fluorescent artificial leather supercapacitor was fabricated by combining energy storage technology with leather garment industry, solving the intrinsic problem of wearing comfortability in conventional yarn and textile supercapacitors.
2 Polyurethane as an important artificial leather is modified to be ion conductive by the incorporation of ionic groups and non-hazardous sodium chloride. The modified polyurethane artificial leather serves as a polyelectrolyte simultaneously.
3 The intrinsically fluorescent artificial leather supercapacitor is easily transferrable from any arbitrary substrates to form various patterns, enabling multifunctionalities of practical wearability, fashion, and energy storage.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, X.M. Tao, Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv. Mater. 26(31), 5310–5336 (2014). https://doi.org/10.1002/adma.201400633
- T. Chen, L.M. Dai, Carbon nanomaterials for high-performance supercapacitors. Mater. Today 16(7–8), 272–280 (2013). https://doi.org/10.1016/j.mattod.2013.07.002
- L.B. Dong, C.J. Xu, Y. Li, C.L. Wu, B.Z. Jiang, Q. Yang, E.L. Zhou, F.Y. Kang, Q.H. Yang, Simultaneous production of high-performance flexible textile electrodes and fiber electrodes for wearable energy storage. Adv. Mater. 28(8), 1675–1681 (2016). https://doi.org/10.1002/adma.201504747
- Y.B. Wang, C.J. Chen, H. Xie, T.T. Gao, Y.G. Yao et al., 3D-printed all-fiber Li–ion battery toward wearable energy storage. Adv. Funct. Mater. 27(43), 1703140 (2017). https://doi.org/10.1002/Adfm.201703140
- Q.Y. Huang, D.R. Wang, Z.J. Zheng, Textile-based electrochemical energy storage devices. Adv. Energy Mater. 6(22), 1600783 (2016). https://doi.org/10.1002/Aenm.201600783
- D.S. Yu, K. Goh, H. Wang, L. Wei, W.C. Jiang, Q. Zhang, L.M. Dai, Y. Chen, Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat. Nanotechnol. 9(7), 555–562 (2014). https://doi.org/10.1038/Nnano.2014.93
- D.H. Zhang, M.H. Miao, H.T. Niu, Z.X. Wei, Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles. ACS Nano 8(5), 4571–4579 (2014). https://doi.org/10.1021/Nn5001386
- Q.H. Meng, H.P. Wu, Y.N. Meng, K. Xie, Z.X. Wei, Z.X. Guo, High-performance all-carbon yarn micro-supercapacitor for an integrated energy system. Adv. Mater. 26(24), 4100–4106 (2014). https://doi.org/10.1002/adma.201400399
- Q.H. Meng, K. Wang, W. Guo, J. Fang, Z.X. Wei, X.L. She, Thread-like supercapacitors based on one-step spun nanocomposite yarns. Small 10(15), 3187–3193 (2014). https://doi.org/10.1002/smll.201303419
- J.A. Lee, M.K. Shin, S.H. Kim, H.U. Cho, G.M. Spinks et al., Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat. Commun. 4, 1970 (2013). https://doi.org/10.1038/Ncomms2970
- C.Z. Wei, Q. Xu, Z.Q. Chen, W.D. Rao, L.L. Fan, Y. Yuan, Z.K. Bai, J. Xu, An all-solid-state yarn supercapacitor using cotton yarn electrodes coated with polypyrrole nanotubes. Carbohydr. Polym. 169, 50–57 (2017). https://doi.org/10.1016/j.carbpol.2017.04.002
- X.B. Wang, Y.J. Zhang, C.Y. Zhi, X. Wang, D.M. Tang et al., Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nat. Commun. 4, 2905 (2013). https://doi.org/10.1038/Ncomms3905
- X.F. Wang, B. Liu, R. Liu, Q.F. Wang, X.J. Hou, D. Chen, R.M. Wang, G.Z. Shen, Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angew. Chem. Int. Ed. 53(7), 1849–1853 (2014). https://doi.org/10.1002/anie.201307581
- X.H. Cao, Z.Y. Yin, H. Zhang, Three-dimensional graphene materials: preparation, structures and application in supercapacitors. Energy Environ. Sci. 7(6), 1850–1865 (2014). https://doi.org/10.1039/C4ee00050a
- V.L. Pushparaj, M.M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, R.J. Linhardt, O. Nalamasu, P.M. Ajayan, Flexible energy storage devices based on nanocomposite paper. PNAS 104(34), 13574–13577 (2007). https://doi.org/10.1073/pnas.0706508104
- H. Kim, J.H. Ahn, Graphene for flexible and wearable device applications. Carbon 120, 244–257 (2017). https://doi.org/10.1016/j.carbon.2017.05.041
- Y. Huang, J.Y. Tao, W.J. Meng, M.S. Zhu, Y. Huang, Y.Q. Fu, Y.H. Gao, C.Y. Zhi, Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy 11, 518–525 (2015). https://doi.org/10.1016/j.nanoen.2014.10.031
- Y. Huang, H. Hu, Y. Huang, M.S. Zhu, W.J. Meng, C. Liu, Z.X. Pei, C.L. Hao, Z.K. Wang, C.Y. Zhi, From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles. ACS Nano 9(5), 4766–4775 (2015). https://doi.org/10.1021/acsnano.5b00860
- Y. Huang, Y. Huang, W.J. Meng, M.S. Zhu, H.T. Xue, C.S. Lee, C.Y. Zhi, Enhanced tolerance to stretch-induced performance degradation of stretchable MnO2-based supercapacitors. ACS Appl. Mater. Interfaces 7(4), 2569–2574 (2015). https://doi.org/10.1021/Am507588p
- Y. Huang, M. Zhong, Y. Huang, M.S. Zhu, Z.X. Pei, Z.F. Wang, Q. Xue, X.M. Xie, C.Y. Zhi, A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat. Commun. 6, 10310 (2015). https://doi.org/10.1038/Ncomms10310
- Y. Huang, M.S. Zhu, Z.X. Pei, Y. Huang, H.Y. Geng, C.Y. Zhi, Extremely stable polypyrrole achieved via molecular ordering for highly flexible supercapacitors. ACS Appl. Mater. Interfaces 8(3), 2435–2440 (2016). https://doi.org/10.1021/acsami.5b11815
- B.B. Yue, C.Y. Wang, X. Ding, G.G. Wallace, Polypyrrole coated nylon lycra fabric as stretchable electrode for supercapacitor applications. Electrochim. Acta 68, 18–24 (2012). https://doi.org/10.1016/j.electacta.2012.01.109
- T. Liu, L. Finn, M. Yu, H. Wang, T. Zhai, X. Lu, Y. Tong, Y. Li, Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability. Nano Lett. 14(5), 2522–2527 (2014). https://doi.org/10.1021/nl500255v
- H. Fu, Z.J. Du, W. Zou, H.Q. Li, C. Zhang, Carbon nanotube reinforced polypyrrole nanowire network as a high-performance supercapacitor electrode. J. Mater. Chem. A 1(47), 14943–14950 (2013). https://doi.org/10.1039/C3ta12844j
- D. Zhang, Q.Q. Dong, X. Wang, W. Yan, W. Deng, L.Y. Shi, Preparation of a three-dimensional ordered macroporous carbon nanotube/polypyrrole composite for supercapacitors and diffusion modeling. J. Phys. Chem. C 117(40), 20446–20455 (2013). https://doi.org/10.1021/Jp405850w
- H.P. de Oliveira, S.A. Sydlik, T.M. Swager, Supercapacitors from free-standing polypyrrole/graphene nanocomposites. J. Phys. Chem. C 117(20), 10270–10276 (2013). https://doi.org/10.1021/Jp400344u
- S. Biswas, L.T. Drzal, Multi layered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chem. Mater. 22(20), 5667–5671 (2010). https://doi.org/10.1021/Cm101132g
- Y. Huang, Y. Huang, M.S. Zhu, W.J. Meng, Z.X. Pei, C. Liu, H. Hu, C.Y. Zhi, Magnetic-assisted, self-healable, yarn-based supercapacitor. ACS Nano 9(6), 6242–6251 (2015). https://doi.org/10.1021/acsnano.5b01602
References
W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, X.M. Tao, Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv. Mater. 26(31), 5310–5336 (2014). https://doi.org/10.1002/adma.201400633
T. Chen, L.M. Dai, Carbon nanomaterials for high-performance supercapacitors. Mater. Today 16(7–8), 272–280 (2013). https://doi.org/10.1016/j.mattod.2013.07.002
L.B. Dong, C.J. Xu, Y. Li, C.L. Wu, B.Z. Jiang, Q. Yang, E.L. Zhou, F.Y. Kang, Q.H. Yang, Simultaneous production of high-performance flexible textile electrodes and fiber electrodes for wearable energy storage. Adv. Mater. 28(8), 1675–1681 (2016). https://doi.org/10.1002/adma.201504747
Y.B. Wang, C.J. Chen, H. Xie, T.T. Gao, Y.G. Yao et al., 3D-printed all-fiber Li–ion battery toward wearable energy storage. Adv. Funct. Mater. 27(43), 1703140 (2017). https://doi.org/10.1002/Adfm.201703140
Q.Y. Huang, D.R. Wang, Z.J. Zheng, Textile-based electrochemical energy storage devices. Adv. Energy Mater. 6(22), 1600783 (2016). https://doi.org/10.1002/Aenm.201600783
D.S. Yu, K. Goh, H. Wang, L. Wei, W.C. Jiang, Q. Zhang, L.M. Dai, Y. Chen, Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat. Nanotechnol. 9(7), 555–562 (2014). https://doi.org/10.1038/Nnano.2014.93
D.H. Zhang, M.H. Miao, H.T. Niu, Z.X. Wei, Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles. ACS Nano 8(5), 4571–4579 (2014). https://doi.org/10.1021/Nn5001386
Q.H. Meng, H.P. Wu, Y.N. Meng, K. Xie, Z.X. Wei, Z.X. Guo, High-performance all-carbon yarn micro-supercapacitor for an integrated energy system. Adv. Mater. 26(24), 4100–4106 (2014). https://doi.org/10.1002/adma.201400399
Q.H. Meng, K. Wang, W. Guo, J. Fang, Z.X. Wei, X.L. She, Thread-like supercapacitors based on one-step spun nanocomposite yarns. Small 10(15), 3187–3193 (2014). https://doi.org/10.1002/smll.201303419
J.A. Lee, M.K. Shin, S.H. Kim, H.U. Cho, G.M. Spinks et al., Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat. Commun. 4, 1970 (2013). https://doi.org/10.1038/Ncomms2970
C.Z. Wei, Q. Xu, Z.Q. Chen, W.D. Rao, L.L. Fan, Y. Yuan, Z.K. Bai, J. Xu, An all-solid-state yarn supercapacitor using cotton yarn electrodes coated with polypyrrole nanotubes. Carbohydr. Polym. 169, 50–57 (2017). https://doi.org/10.1016/j.carbpol.2017.04.002
X.B. Wang, Y.J. Zhang, C.Y. Zhi, X. Wang, D.M. Tang et al., Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nat. Commun. 4, 2905 (2013). https://doi.org/10.1038/Ncomms3905
X.F. Wang, B. Liu, R. Liu, Q.F. Wang, X.J. Hou, D. Chen, R.M. Wang, G.Z. Shen, Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angew. Chem. Int. Ed. 53(7), 1849–1853 (2014). https://doi.org/10.1002/anie.201307581
X.H. Cao, Z.Y. Yin, H. Zhang, Three-dimensional graphene materials: preparation, structures and application in supercapacitors. Energy Environ. Sci. 7(6), 1850–1865 (2014). https://doi.org/10.1039/C4ee00050a
V.L. Pushparaj, M.M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, R.J. Linhardt, O. Nalamasu, P.M. Ajayan, Flexible energy storage devices based on nanocomposite paper. PNAS 104(34), 13574–13577 (2007). https://doi.org/10.1073/pnas.0706508104
H. Kim, J.H. Ahn, Graphene for flexible and wearable device applications. Carbon 120, 244–257 (2017). https://doi.org/10.1016/j.carbon.2017.05.041
Y. Huang, J.Y. Tao, W.J. Meng, M.S. Zhu, Y. Huang, Y.Q. Fu, Y.H. Gao, C.Y. Zhi, Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy 11, 518–525 (2015). https://doi.org/10.1016/j.nanoen.2014.10.031
Y. Huang, H. Hu, Y. Huang, M.S. Zhu, W.J. Meng, C. Liu, Z.X. Pei, C.L. Hao, Z.K. Wang, C.Y. Zhi, From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles. ACS Nano 9(5), 4766–4775 (2015). https://doi.org/10.1021/acsnano.5b00860
Y. Huang, Y. Huang, W.J. Meng, M.S. Zhu, H.T. Xue, C.S. Lee, C.Y. Zhi, Enhanced tolerance to stretch-induced performance degradation of stretchable MnO2-based supercapacitors. ACS Appl. Mater. Interfaces 7(4), 2569–2574 (2015). https://doi.org/10.1021/Am507588p
Y. Huang, M. Zhong, Y. Huang, M.S. Zhu, Z.X. Pei, Z.F. Wang, Q. Xue, X.M. Xie, C.Y. Zhi, A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat. Commun. 6, 10310 (2015). https://doi.org/10.1038/Ncomms10310
Y. Huang, M.S. Zhu, Z.X. Pei, Y. Huang, H.Y. Geng, C.Y. Zhi, Extremely stable polypyrrole achieved via molecular ordering for highly flexible supercapacitors. ACS Appl. Mater. Interfaces 8(3), 2435–2440 (2016). https://doi.org/10.1021/acsami.5b11815
B.B. Yue, C.Y. Wang, X. Ding, G.G. Wallace, Polypyrrole coated nylon lycra fabric as stretchable electrode for supercapacitor applications. Electrochim. Acta 68, 18–24 (2012). https://doi.org/10.1016/j.electacta.2012.01.109
T. Liu, L. Finn, M. Yu, H. Wang, T. Zhai, X. Lu, Y. Tong, Y. Li, Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability. Nano Lett. 14(5), 2522–2527 (2014). https://doi.org/10.1021/nl500255v
H. Fu, Z.J. Du, W. Zou, H.Q. Li, C. Zhang, Carbon nanotube reinforced polypyrrole nanowire network as a high-performance supercapacitor electrode. J. Mater. Chem. A 1(47), 14943–14950 (2013). https://doi.org/10.1039/C3ta12844j
D. Zhang, Q.Q. Dong, X. Wang, W. Yan, W. Deng, L.Y. Shi, Preparation of a three-dimensional ordered macroporous carbon nanotube/polypyrrole composite for supercapacitors and diffusion modeling. J. Phys. Chem. C 117(40), 20446–20455 (2013). https://doi.org/10.1021/Jp405850w
H.P. de Oliveira, S.A. Sydlik, T.M. Swager, Supercapacitors from free-standing polypyrrole/graphene nanocomposites. J. Phys. Chem. C 117(20), 10270–10276 (2013). https://doi.org/10.1021/Jp400344u
S. Biswas, L.T. Drzal, Multi layered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chem. Mater. 22(20), 5667–5671 (2010). https://doi.org/10.1021/Cm101132g
Y. Huang, Y. Huang, M.S. Zhu, W.J. Meng, Z.X. Pei, C. Liu, H. Hu, C.Y. Zhi, Magnetic-assisted, self-healable, yarn-based supercapacitor. ACS Nano 9(6), 6242–6251 (2015). https://doi.org/10.1021/acsnano.5b01602