Regulating Thermogalvanic Effect and Mechanical Robustness via Redox Ions for Flexible Quasi-Solid-State Thermocells
Corresponding Author: Guangming Chen
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 81
Abstract
The design of power supply systems for wearable applications requires both flexibility and durability. Thermoelectrochemical cells (TECs) with large Seebeck coefficient can efficiently convert low-grade heat into electricity, thus having attracted considerable attention in recent years. Utilizing hydrogel electrolyte essentially addresses the electrolyte leakage and complicated packaging issues existing in conventional liquid-based TECs, which well satisfies the need for flexibility. Whereas, the concern of mechanical robustness to ensure stable energy output remains yet to be addressed. Herein, a flexible quasi-solid-state TEC is proposed based on the rational design of a hydrogel electrolyte, of which the thermogalvanic effect and mechanical robustness are simultaneously regulated via the multivalent ions of a redox couple. The introduced redox ions not only endow the hydrogel with excellent heat-to-electricity conversion capability, but also act as ionic crosslinks to afford a dual-crosslinked structure, resulting in reversible bonds for effective energy dissipation. The optimized TEC exhibits a high Seebeck coefficient of 1.43 mV K−1 and a significantly improved fracture toughness of 3555 J m−2, thereby can maintain a stable thermoelectrochemical performance against various harsh mechanical stimuli. This study reveals the high potential of the quasi-solid-state TEC as a flexible and durable energy supply system for wearable applications.
Highlights:
1 A redox couple is employed to fulfill the dual-function of both heat-to-electricity conversion and ionic crosslinking.
2 High thermoelectrochemical performance can be achieved at optimized redox concentration, and dual-crosslinked network ensures remarkable mechanical flexibility and robustness.
3 The hydrogel-based quasi-solid-state thermocell can provide stable energy output under harsh mechanical stress and deformations.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- I. Jeerapan, J.R. Sempionatto, J. Wang, On-body bioelectronics: wearable biofuel cells for bioenergy harvesting and self-powered biosensing. Adv. Funct. Mater. 30(29), 1906243 (2020). https://doi.org/10.1002/adfm.201906243
- C.G. Nunez, L. Manjakkal, R. Dahiya, Energy autonomous electronic skin. npj Flex. Electron. (2019). https://doi.org/10.1038/s41528-018-0045-x
- Z. Liu, D. Wang, Z. Tang, G. Liang, Q. Yang et al., A mechanically durable and device-level tough Zn-MnO2 battery with high flexibility. Energy Storage Mater. 23, 636–645 (2019). https://doi.org/10.1016/j.ensm.2019.03.007
- M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna et al., Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1, 16070 (2016). https://doi.org/10.1038/NENERGY.2016.70
- Z. Shen, L. Luo, C. Li, J. Pu, J. Xie et al., Stratified zinc-binding strategy toward prolonged cycling and flexibility of aqueous fibrous zinc metal batteries. Adv. Energy Mater. 11(16), 2100214 (2021). https://doi.org/10.1002/aenm.202100214
- K. Zhu, P. Xue, G. Cheng, M. Wang, H. Wang et al., Thermo-managing and flame-retardant scaffolds suppressing dendritic growth and polysulfide shuttling toward high-safety lithium-sulfur batteries. Energy Storage Mater. 43, 130–142 (2021). https://doi.org/10.1016/j.ensm.2021.08.031
- S.A. Hashemi, S. Ramakrishna, A.G. Aberle, Recent progress in flexible-wearable solar cells for self-powered electronic devices. Energy Environ. Sci. 13(3), 685–743 (2020). https://doi.org/10.1039/c9ee03046h
- R.J.M. Vullers, R. Schaijk, I. Doms, C.V. Hoof, R. Mertens, Micropower energy harvesting. Solid State Electron. 53(7), 684–693 (2009). https://doi.org/10.1016/j.sse.2008.12.011
- R.M. Tian, Y.Q. Liu, K. Koumoto, J. Chen, Body heat powers future electronic skins. Joule 3(6), 1399–1403 (2019). https://doi.org/10.1016/j.joule.2019.03.011
- S.D. Kang, G.J. Snyder, Charge-transport model for conducting polymers. Nat. Mater. 16, 252–257 (2017). https://doi.org/10.1038/nmat4784
- J.S. Liang, T. Wang, P.F. Qiu, S.Q. Yang, C. Ming et al., Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices. Energy Environ. Sci. 12(10), 2983–2990 (2019). https://doi.org/10.1039/c9ee01777a
- R.A. Kishore, A. Nozariasbmarz, B. Poudel, M. Sanghadasa, S. Priya, Ultra-high performance wearable thermoelectric coolers with less materials. Nat. Commun. 10, 1765 (2019). https://doi.org/10.1038/s41467-019-09707-8
- S. Hong, Y. Gu, J.K. Seo, J. Wang, P. Liu et al., Wearable thermoelectrics for personalized thermoregulation. Sci. Adv. 5(5), eaaw0536 (2019). https://doi.org/10.1126/sciadv.aaw0536
- A.R. Li, C.G. Fu, X.B. Zhao, T.J. Zhu, High-performance Mg3Sb2-xBix thermoelectrics: progress and perspective. Research 2020, 1934848 (2020). https://doi.org/10.34133/2020/1934848
- B.B. Jiang, Y. Yu, J. Cui, X.X. Liu, L. Xie et al., High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 371(6531), 830–834 (2021). https://doi.org/10.1126/science.abe1292
- T.J. Abraham, D.R. MacFarlane, J.M. Pringle, Seebeck coefficients in ionic liquids -prospects for thermo-electrochemical cells. Chem. Commun. 47(22), 6260–6262 (2011). https://doi.org/10.1039/c1cc11501d
- Z. Liu, G. Chen, Advancing flexible thermoelectric devices with polymer composites. Adv. Mater. Technol. 5(7), 2000049 (2020). https://doi.org/10.1002/admt.202000049
- Y. Fan, Z. Liu, G. Chen, Recent progress in designing thermoelectric metal-organic frameworks. Small 17(38), 2100505 (2021). https://doi.org/10.1002/smll.202100505
- N. Kim, S. Lienemann, I. Petsagkourakis, D.A. Mengistie, S. Kee et al., Elastic conducting polymer composites in thermoelectric modules. Nat. Commun. 11, 1424 (2020). https://doi.org/10.1038/s41467-020-15135-w
- Y. Yang, H.J. Hu, Z.Y. Chen, Z.Y. Wang, L.M. Jiang et al., Stretchable nanolayered thermoelectric energy harvester on complex and dynamic surfaces. Nano Lett. 20(6), 4445–4453 (2020). https://doi.org/10.1021/acs.nanolett.0c01225
- Z. Liu, X. Wang, S. Wei, H. Lv, J. Zhou et al., A wavy-structured highly stretchable thermoelectric generator with stable energy output and self-rescuing capability. CCS Chem. 3(10), 2404–2414 (2021). https://doi.org/10.31635/ccschem.021.202101077
- H. Lv, L. Liang, Y. Zhang, L. Deng, Z. Chen et al., A flexible spring-shaped architecture with optimized thermal design for wearable thermoelectric energy harvesting. Nano Energy 88, 106260 (2021). https://doi.org/10.1016/j.nanoen.2021.106260
- T.J. Abraham, D.R. MacFarlane, J.M. Pringle, High Seebeck coefficient redox ionic liquid electrolytes for thermal energy harvesting. Energy Environ. Sci. 6(9), 2639–2645 (2013). https://doi.org/10.1039/c3ee41608a
- R. Hu, B.A. Cola, N. Haram, J.N. Barisci, S. Lee et al., Harvesting waste thermal energy using carbon-nanotube-based thermo-electrochemical cell. Nano Lett. 10(3), 838–846 (2010). https://doi.org/10.1021/nl903267n
- Y. Liu, H. Wang, P.C. Sherrell, L. Liu, Y. Wang et al., Potentially wearable thermo-electrochemical cells for body heat harvesting: from mechanism, materials, strategies to applications. Adv. Sci. 8(13), 2100669 (2021). https://doi.org/10.1002/advs.202100669
- T.I. Quickenden, C.F. Vernon, Thermogalvanic conversion of heat to electricity. Sol. Energy 36(1), 63–72 (1986). https://doi.org/10.1016/0038-092X(86)90061-7
- E.L. Yee, R.J. Cave, K.L. Guyer, P.D. Tyma, M.J. Weaver, A survey of ligand effects upon the reaction entropies of some transition metal redox couples. J. Am. Chem. Soc. 101(5), 1131–1137 (1979). https://doi.org/10.1021/ja00499a013
- B. Yu, J. Duan, H. Cong, W. Xie, R. Liu et al., Thermosensitive crystallization-boosted liquid thermocells for low-grade heat harvesting. Science 370(6514), 342–346 (2020). https://doi.org/10.1126/science.abd6749
- J. Duan, G. Feng, B. Yu, J. Li, M. Chen et al., Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest. Nat. Commun. 9, 5146 (2018). https://doi.org/10.1038/s41467-018-07625-9
- M.S. Romano, N. Li, D. Antiohos, J.M. Razal, A. Nattestad et al., Carbon nanotube - reduced graphene oxide composites for thermal energy harvesting applications. Adv. Mater. 25(45), 6602–6606 (2013). https://doi.org/10.1002/adma.201303295
- B. Guo, Y. Hoshino, F. Gao, K. Hayashi, Y. Miura et al., Thermocells driven by phase transition of hydrogel nanops. J. Am. Chem. Soc. 142(41), 17318–17322 (2020). https://doi.org/10.1021/jacs.0c08600
- K. Kim, H. Lee, Thermoelectrochemical cells based on Li+/Li redox couples in LiFSI glyme electrolytes. Phys. Chem. Chem. Phys. 20(36), 23433–23440 (2018). https://doi.org/10.1039/c8cp03155j
- D.R. MacFarlane, M. Forsyth, P.C. Howlett, M. Kar, S. Passerini et al., Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nat. Rev. Mater. 1, 15005 (2016). https://doi.org/10.1038/natrevmats.2015.5
- S. Pu, Y. Liao, K. Chen, J. Fu, S. Zhang et al., Thermogalvanic hydrogel for synchronous evaporative cooling and low-grade heat energy harvesting. Nano Lett. 20(5), 3791–3797 (2020). https://doi.org/10.1021/acs.nanolett.0c00800
- G. Wu, Y. Xue, L. Wang, X. Wang, G. Chen, Flexible gel-state thermoelectrochemical materials with excellent mechanical and thermoelectric performances based on incorporating Sn2+/Sn4+ electrolyte into polymer/carbon nanotube composites. J. Mater. Chem. A 6(8), 3376–3380 (2018). https://doi.org/10.1039/c7ta11146k
- P. Yang, K. Liu, Q. Chen, X. Mo, Y. Zhou et al., Wearable thermocells based on gel electrolytes for the utilization of body heat. Angew. Chem. Int. Ed. 55(39), 12050–12053 (2016). https://doi.org/10.1002/anie.201606314
- L. Jin, G.W. Greene, D.R. MacFarlane, J.M. Pringle, Redox-active quasi-solid-state electrolytes for thermal energy harvesting. ACS Energy Lett. 1(4), 654–658 (2016). https://doi.org/10.1021/acsenergylett.6b00305
- Y. Liu, S. Zhang, Y. Zhou, M.A. Buckingham, L. Aldous et al., Advanced wearable thermocells for body heat harvesting. Adv. Energy Mater. 10(48), 2002539 (2020). https://doi.org/10.1002/aenm.202002539
- Y. Zhou, Y. Liu, M.A. Buckingham, S. Zhang, L. Aldous et al., The significance of supporting electrolyte on poly (vinyl alcohol)–iron(II)/iron(III) solid-state electrolytes for wearable thermo-electrochemical cells. Electrochem. Commun. 124, 106938 (2021). https://doi.org/10.1016/j.elecom.2021.106938
- Z. Liu, Q. Yang, D. Wang, G. Liang, Y. Zhu et al., A flexible solid-state aqueous Zinc hybrid battery with flat and high-voltage discharge plateau. Adv. Energy Mater. 9(46), 1902473 (2019). https://doi.org/10.1002/aenm.201902473
- Z. Wang, H. Li, Z. Tang, Z. Liu, Z. Ruan et al., Hydrogel electrolytes for flexible aqueous energy storage devices. Adv. Funct. Mater. 28(48), 1804560 (2018). https://doi.org/10.1002/adfm.201804560
- C.G. Han, X. Qian, Q. Li, B. Deng, Y. Zhu et al., Giant thermopower of ionic gelatin near room temperature. Science 368(6495), 1091–1098 (2020). https://doi.org/10.1126/science.aaz5045
- Y. Huang, Z. Li, Z. Pei, Z. Liu, H. Li et al., Solid-state rechargeable Zn//NiCo and Zn-air batteries with ultralong lifetime and high capacity: the role of a sodium polyacrylate hydrogel electrolyte. Adv. Energy Mater. 8(31), 1802288 (2018). https://doi.org/10.1002/aenm.201802288
- M. Chen, J. Chen, W. Zhou, X. Han, Y. Yao et al., Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn-MnO2 batteries. Adv. Mater. 33(9), 2007559 (2021). https://doi.org/10.1002/adma.202007559
- J. Ma, J. Lee, S.S. Han, K.H. Oh, K.T. Nam et al., Highly stretchable and notch-insensitive hydrogel based on polyacrylamide and milk protein. ACS Appl. Mater. Interfaces 8(43), 29220–29226 (2016). https://doi.org/10.1021/acsami.6b10912
- J.P. Gong, Why are double network hydrogels so tough? Soft Matter 6(12), 2583–2590 (2010). https://doi.org/10.1039/b924290b
- R.S. Rivlin, A.G. Thomas, Rupture of rubber. I. Characteristic energy for tearing. J. Polym. Sci. 10(3), 291–318 (1953). https://doi.org/10.1002/pol.1953.120100303
- S.H. Shaikh, S.A. Kumar, Polyhydroxamic acid functionalized sorbent for effective removal of chromium from ground water and chromic acid cleaning bath. Chem. Eng. J. 326, 318–328 (2017). https://doi.org/10.1016/j.cej.2017.05.151
- R. Niu, Z.H. Qin, F. Ji, M. Xu, X.L. Tian et al., Hybrid pectin-Fe3+/polyacrylamide double network hydrogels with excellent strength, high stiffness, superior toughness and notch-insensitivity. Soft Matter 13(48), 9237–9245 (2017). https://doi.org/10.1039/c7sm02005h
- J.Y. Sun, X. Zhao, W.R.K. Illeperuma, O. Chaudhuri, K.H. Oh et al., Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012). https://doi.org/10.1038/nature11409
- M.A. Buckingham, S. Hammoud, H. Li, C.J. Beale, J.T. Sengel et al., A fundamental study of the thermoelectrochemistry of ferricyanide/ferrocyanide: cation, concentration, ratio, and heterogeneous and homogeneous electrocatalysis effects in thermogalvanic cells. Sustain. Energy Fuels 4(7), 3388–3399 (2020). https://doi.org/10.1039/d0se00440e
- Y.V. Kuzminskii, V.A. Zasukha, G.Y. Kuzminskaya, Thermoelectric effects in electrochemical systems. Nonconventional thermogalvanic cells. J. Power Sources 52(2), 231–242 (1994). https://doi.org/10.1016/0378-7753(94)02015-9
- M. Rahimi, A.P. Straub, F. Zhang, X. Zhu, M. Elimelech et al., Emerging electrochemical and membrane-based systems to convert low-grade heat to electricity. Energy Environ. Sci. 11(2), 276–285 (2018). https://doi.org/10.1039/c7ee03026f
- T. Matsuda, T. Nakajima, Y. Fukuda, W. Hong, T. Sakai et al., Yielding criteria of double network hydrogels. Macromolecules 49(5), 1865–1872 (2016). https://doi.org/10.1021/acs.macromol.5b02592
- T. Sakai, Y. Akagi, S. Kond, U. Chung, Experimental verification of fracture mechanism for polymer gels with controlled network structure. Soft Matter 10(35), 6658–6665 (2014). https://doi.org/10.1039/c4sm00709c
- G.J. Lake, A.G. Thomas, The strength of highly elastic materials. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 300, 108–119 (1967). https://doi.org/10.1098/rspa.1967.0160
- W. Lim, I. Lee, D. Sylvester, D. Blaauw, 8.2 batteryless sub-nW Cortex-M0+ processor with dynamic leakage-suppression logic. In: 2015 IEEE ISSCC Digest Technic. Pap. (2015). https://doi.org/10.1109/ISSCC.2015.7062968
- P.P. Mercier, S. Bandyopadhyay, A.C. Lysaght, K.M. Stankovic, A.P. Chandrakasan, A sub-nW 2.4 GHz transmitter for low data-rate sensing applications. IEEE J. Solid State Circ. 49(7), 1463–1474 (2014). https://doi.org/10.1109/JSSC.2014.2316237
- L. Liang, H. Lv, X.L. Shi, Z. Liu, G. Chen et al., A flexible quasi-solid-state thermoelectrochemical cell with high stretchability as an energy-autonomous strain sensor. Mater. Horiz. 8(10), 2750–2760 (2021)
References
I. Jeerapan, J.R. Sempionatto, J. Wang, On-body bioelectronics: wearable biofuel cells for bioenergy harvesting and self-powered biosensing. Adv. Funct. Mater. 30(29), 1906243 (2020). https://doi.org/10.1002/adfm.201906243
C.G. Nunez, L. Manjakkal, R. Dahiya, Energy autonomous electronic skin. npj Flex. Electron. (2019). https://doi.org/10.1038/s41528-018-0045-x
Z. Liu, D. Wang, Z. Tang, G. Liang, Q. Yang et al., A mechanically durable and device-level tough Zn-MnO2 battery with high flexibility. Energy Storage Mater. 23, 636–645 (2019). https://doi.org/10.1016/j.ensm.2019.03.007
M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna et al., Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1, 16070 (2016). https://doi.org/10.1038/NENERGY.2016.70
Z. Shen, L. Luo, C. Li, J. Pu, J. Xie et al., Stratified zinc-binding strategy toward prolonged cycling and flexibility of aqueous fibrous zinc metal batteries. Adv. Energy Mater. 11(16), 2100214 (2021). https://doi.org/10.1002/aenm.202100214
K. Zhu, P. Xue, G. Cheng, M. Wang, H. Wang et al., Thermo-managing and flame-retardant scaffolds suppressing dendritic growth and polysulfide shuttling toward high-safety lithium-sulfur batteries. Energy Storage Mater. 43, 130–142 (2021). https://doi.org/10.1016/j.ensm.2021.08.031
S.A. Hashemi, S. Ramakrishna, A.G. Aberle, Recent progress in flexible-wearable solar cells for self-powered electronic devices. Energy Environ. Sci. 13(3), 685–743 (2020). https://doi.org/10.1039/c9ee03046h
R.J.M. Vullers, R. Schaijk, I. Doms, C.V. Hoof, R. Mertens, Micropower energy harvesting. Solid State Electron. 53(7), 684–693 (2009). https://doi.org/10.1016/j.sse.2008.12.011
R.M. Tian, Y.Q. Liu, K. Koumoto, J. Chen, Body heat powers future electronic skins. Joule 3(6), 1399–1403 (2019). https://doi.org/10.1016/j.joule.2019.03.011
S.D. Kang, G.J. Snyder, Charge-transport model for conducting polymers. Nat. Mater. 16, 252–257 (2017). https://doi.org/10.1038/nmat4784
J.S. Liang, T. Wang, P.F. Qiu, S.Q. Yang, C. Ming et al., Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices. Energy Environ. Sci. 12(10), 2983–2990 (2019). https://doi.org/10.1039/c9ee01777a
R.A. Kishore, A. Nozariasbmarz, B. Poudel, M. Sanghadasa, S. Priya, Ultra-high performance wearable thermoelectric coolers with less materials. Nat. Commun. 10, 1765 (2019). https://doi.org/10.1038/s41467-019-09707-8
S. Hong, Y. Gu, J.K. Seo, J. Wang, P. Liu et al., Wearable thermoelectrics for personalized thermoregulation. Sci. Adv. 5(5), eaaw0536 (2019). https://doi.org/10.1126/sciadv.aaw0536
A.R. Li, C.G. Fu, X.B. Zhao, T.J. Zhu, High-performance Mg3Sb2-xBix thermoelectrics: progress and perspective. Research 2020, 1934848 (2020). https://doi.org/10.34133/2020/1934848
B.B. Jiang, Y. Yu, J. Cui, X.X. Liu, L. Xie et al., High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 371(6531), 830–834 (2021). https://doi.org/10.1126/science.abe1292
T.J. Abraham, D.R. MacFarlane, J.M. Pringle, Seebeck coefficients in ionic liquids -prospects for thermo-electrochemical cells. Chem. Commun. 47(22), 6260–6262 (2011). https://doi.org/10.1039/c1cc11501d
Z. Liu, G. Chen, Advancing flexible thermoelectric devices with polymer composites. Adv. Mater. Technol. 5(7), 2000049 (2020). https://doi.org/10.1002/admt.202000049
Y. Fan, Z. Liu, G. Chen, Recent progress in designing thermoelectric metal-organic frameworks. Small 17(38), 2100505 (2021). https://doi.org/10.1002/smll.202100505
N. Kim, S. Lienemann, I. Petsagkourakis, D.A. Mengistie, S. Kee et al., Elastic conducting polymer composites in thermoelectric modules. Nat. Commun. 11, 1424 (2020). https://doi.org/10.1038/s41467-020-15135-w
Y. Yang, H.J. Hu, Z.Y. Chen, Z.Y. Wang, L.M. Jiang et al., Stretchable nanolayered thermoelectric energy harvester on complex and dynamic surfaces. Nano Lett. 20(6), 4445–4453 (2020). https://doi.org/10.1021/acs.nanolett.0c01225
Z. Liu, X. Wang, S. Wei, H. Lv, J. Zhou et al., A wavy-structured highly stretchable thermoelectric generator with stable energy output and self-rescuing capability. CCS Chem. 3(10), 2404–2414 (2021). https://doi.org/10.31635/ccschem.021.202101077
H. Lv, L. Liang, Y. Zhang, L. Deng, Z. Chen et al., A flexible spring-shaped architecture with optimized thermal design for wearable thermoelectric energy harvesting. Nano Energy 88, 106260 (2021). https://doi.org/10.1016/j.nanoen.2021.106260
T.J. Abraham, D.R. MacFarlane, J.M. Pringle, High Seebeck coefficient redox ionic liquid electrolytes for thermal energy harvesting. Energy Environ. Sci. 6(9), 2639–2645 (2013). https://doi.org/10.1039/c3ee41608a
R. Hu, B.A. Cola, N. Haram, J.N. Barisci, S. Lee et al., Harvesting waste thermal energy using carbon-nanotube-based thermo-electrochemical cell. Nano Lett. 10(3), 838–846 (2010). https://doi.org/10.1021/nl903267n
Y. Liu, H. Wang, P.C. Sherrell, L. Liu, Y. Wang et al., Potentially wearable thermo-electrochemical cells for body heat harvesting: from mechanism, materials, strategies to applications. Adv. Sci. 8(13), 2100669 (2021). https://doi.org/10.1002/advs.202100669
T.I. Quickenden, C.F. Vernon, Thermogalvanic conversion of heat to electricity. Sol. Energy 36(1), 63–72 (1986). https://doi.org/10.1016/0038-092X(86)90061-7
E.L. Yee, R.J. Cave, K.L. Guyer, P.D. Tyma, M.J. Weaver, A survey of ligand effects upon the reaction entropies of some transition metal redox couples. J. Am. Chem. Soc. 101(5), 1131–1137 (1979). https://doi.org/10.1021/ja00499a013
B. Yu, J. Duan, H. Cong, W. Xie, R. Liu et al., Thermosensitive crystallization-boosted liquid thermocells for low-grade heat harvesting. Science 370(6514), 342–346 (2020). https://doi.org/10.1126/science.abd6749
J. Duan, G. Feng, B. Yu, J. Li, M. Chen et al., Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest. Nat. Commun. 9, 5146 (2018). https://doi.org/10.1038/s41467-018-07625-9
M.S. Romano, N. Li, D. Antiohos, J.M. Razal, A. Nattestad et al., Carbon nanotube - reduced graphene oxide composites for thermal energy harvesting applications. Adv. Mater. 25(45), 6602–6606 (2013). https://doi.org/10.1002/adma.201303295
B. Guo, Y. Hoshino, F. Gao, K. Hayashi, Y. Miura et al., Thermocells driven by phase transition of hydrogel nanops. J. Am. Chem. Soc. 142(41), 17318–17322 (2020). https://doi.org/10.1021/jacs.0c08600
K. Kim, H. Lee, Thermoelectrochemical cells based on Li+/Li redox couples in LiFSI glyme electrolytes. Phys. Chem. Chem. Phys. 20(36), 23433–23440 (2018). https://doi.org/10.1039/c8cp03155j
D.R. MacFarlane, M. Forsyth, P.C. Howlett, M. Kar, S. Passerini et al., Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nat. Rev. Mater. 1, 15005 (2016). https://doi.org/10.1038/natrevmats.2015.5
S. Pu, Y. Liao, K. Chen, J. Fu, S. Zhang et al., Thermogalvanic hydrogel for synchronous evaporative cooling and low-grade heat energy harvesting. Nano Lett. 20(5), 3791–3797 (2020). https://doi.org/10.1021/acs.nanolett.0c00800
G. Wu, Y. Xue, L. Wang, X. Wang, G. Chen, Flexible gel-state thermoelectrochemical materials with excellent mechanical and thermoelectric performances based on incorporating Sn2+/Sn4+ electrolyte into polymer/carbon nanotube composites. J. Mater. Chem. A 6(8), 3376–3380 (2018). https://doi.org/10.1039/c7ta11146k
P. Yang, K. Liu, Q. Chen, X. Mo, Y. Zhou et al., Wearable thermocells based on gel electrolytes for the utilization of body heat. Angew. Chem. Int. Ed. 55(39), 12050–12053 (2016). https://doi.org/10.1002/anie.201606314
L. Jin, G.W. Greene, D.R. MacFarlane, J.M. Pringle, Redox-active quasi-solid-state electrolytes for thermal energy harvesting. ACS Energy Lett. 1(4), 654–658 (2016). https://doi.org/10.1021/acsenergylett.6b00305
Y. Liu, S. Zhang, Y. Zhou, M.A. Buckingham, L. Aldous et al., Advanced wearable thermocells for body heat harvesting. Adv. Energy Mater. 10(48), 2002539 (2020). https://doi.org/10.1002/aenm.202002539
Y. Zhou, Y. Liu, M.A. Buckingham, S. Zhang, L. Aldous et al., The significance of supporting electrolyte on poly (vinyl alcohol)–iron(II)/iron(III) solid-state electrolytes for wearable thermo-electrochemical cells. Electrochem. Commun. 124, 106938 (2021). https://doi.org/10.1016/j.elecom.2021.106938
Z. Liu, Q. Yang, D. Wang, G. Liang, Y. Zhu et al., A flexible solid-state aqueous Zinc hybrid battery with flat and high-voltage discharge plateau. Adv. Energy Mater. 9(46), 1902473 (2019). https://doi.org/10.1002/aenm.201902473
Z. Wang, H. Li, Z. Tang, Z. Liu, Z. Ruan et al., Hydrogel electrolytes for flexible aqueous energy storage devices. Adv. Funct. Mater. 28(48), 1804560 (2018). https://doi.org/10.1002/adfm.201804560
C.G. Han, X. Qian, Q. Li, B. Deng, Y. Zhu et al., Giant thermopower of ionic gelatin near room temperature. Science 368(6495), 1091–1098 (2020). https://doi.org/10.1126/science.aaz5045
Y. Huang, Z. Li, Z. Pei, Z. Liu, H. Li et al., Solid-state rechargeable Zn//NiCo and Zn-air batteries with ultralong lifetime and high capacity: the role of a sodium polyacrylate hydrogel electrolyte. Adv. Energy Mater. 8(31), 1802288 (2018). https://doi.org/10.1002/aenm.201802288
M. Chen, J. Chen, W. Zhou, X. Han, Y. Yao et al., Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn-MnO2 batteries. Adv. Mater. 33(9), 2007559 (2021). https://doi.org/10.1002/adma.202007559
J. Ma, J. Lee, S.S. Han, K.H. Oh, K.T. Nam et al., Highly stretchable and notch-insensitive hydrogel based on polyacrylamide and milk protein. ACS Appl. Mater. Interfaces 8(43), 29220–29226 (2016). https://doi.org/10.1021/acsami.6b10912
J.P. Gong, Why are double network hydrogels so tough? Soft Matter 6(12), 2583–2590 (2010). https://doi.org/10.1039/b924290b
R.S. Rivlin, A.G. Thomas, Rupture of rubber. I. Characteristic energy for tearing. J. Polym. Sci. 10(3), 291–318 (1953). https://doi.org/10.1002/pol.1953.120100303
S.H. Shaikh, S.A. Kumar, Polyhydroxamic acid functionalized sorbent for effective removal of chromium from ground water and chromic acid cleaning bath. Chem. Eng. J. 326, 318–328 (2017). https://doi.org/10.1016/j.cej.2017.05.151
R. Niu, Z.H. Qin, F. Ji, M. Xu, X.L. Tian et al., Hybrid pectin-Fe3+/polyacrylamide double network hydrogels with excellent strength, high stiffness, superior toughness and notch-insensitivity. Soft Matter 13(48), 9237–9245 (2017). https://doi.org/10.1039/c7sm02005h
J.Y. Sun, X. Zhao, W.R.K. Illeperuma, O. Chaudhuri, K.H. Oh et al., Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012). https://doi.org/10.1038/nature11409
M.A. Buckingham, S. Hammoud, H. Li, C.J. Beale, J.T. Sengel et al., A fundamental study of the thermoelectrochemistry of ferricyanide/ferrocyanide: cation, concentration, ratio, and heterogeneous and homogeneous electrocatalysis effects in thermogalvanic cells. Sustain. Energy Fuels 4(7), 3388–3399 (2020). https://doi.org/10.1039/d0se00440e
Y.V. Kuzminskii, V.A. Zasukha, G.Y. Kuzminskaya, Thermoelectric effects in electrochemical systems. Nonconventional thermogalvanic cells. J. Power Sources 52(2), 231–242 (1994). https://doi.org/10.1016/0378-7753(94)02015-9
M. Rahimi, A.P. Straub, F. Zhang, X. Zhu, M. Elimelech et al., Emerging electrochemical and membrane-based systems to convert low-grade heat to electricity. Energy Environ. Sci. 11(2), 276–285 (2018). https://doi.org/10.1039/c7ee03026f
T. Matsuda, T. Nakajima, Y. Fukuda, W. Hong, T. Sakai et al., Yielding criteria of double network hydrogels. Macromolecules 49(5), 1865–1872 (2016). https://doi.org/10.1021/acs.macromol.5b02592
T. Sakai, Y. Akagi, S. Kond, U. Chung, Experimental verification of fracture mechanism for polymer gels with controlled network structure. Soft Matter 10(35), 6658–6665 (2014). https://doi.org/10.1039/c4sm00709c
G.J. Lake, A.G. Thomas, The strength of highly elastic materials. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 300, 108–119 (1967). https://doi.org/10.1098/rspa.1967.0160
W. Lim, I. Lee, D. Sylvester, D. Blaauw, 8.2 batteryless sub-nW Cortex-M0+ processor with dynamic leakage-suppression logic. In: 2015 IEEE ISSCC Digest Technic. Pap. (2015). https://doi.org/10.1109/ISSCC.2015.7062968
P.P. Mercier, S. Bandyopadhyay, A.C. Lysaght, K.M. Stankovic, A.P. Chandrakasan, A sub-nW 2.4 GHz transmitter for low data-rate sensing applications. IEEE J. Solid State Circ. 49(7), 1463–1474 (2014). https://doi.org/10.1109/JSSC.2014.2316237
L. Liang, H. Lv, X.L. Shi, Z. Liu, G. Chen et al., A flexible quasi-solid-state thermoelectrochemical cell with high stretchability as an energy-autonomous strain sensor. Mater. Horiz. 8(10), 2750–2760 (2021)