High-Reliability Thermoreceptors with Minimal Temporal and Spatial Variations Through Photo-Induced Patterning Thermoelectrics
Corresponding Author: Guangming Chen
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 307
Abstract
The development of bionic sensing devices with advanced physiological functionalities has attracted significant attention in flexible electronics. In this study, we innovatively develop an air-stable photo-induced n-type dopant and a sophisticated photo-induced patterning technology to construct high-resolution joint-free p–n integrated thermoelectric devices. The exceptional stability of the photo-induced n-type dopant, combined with our meticulously engineered joint-free device architecture, results in extremely low temporal and spatial variations. These minimized variations, coupled with superior linearity, position our devices as viable candidates for artificial thermoreceptors capable of sensing external thermal noxious stimuli. By integrating them into a robotic arm with a pain perception system, we demonstrate accurate pain responses to external thermal stimuli. The system accurately discerns pain levels and initiates appropriate protective actions across varying intensities. Our findings present a novel strategy for constructing high-resolution thermoelectric sensing devices toward precise biomimetic thermoreceptors.
Highlights;
1 A novel photobase generator is specifically designed for the fabrication of high-resolution sensing devices.
2 Similarities in pain perception mechanism between thermoelectric-based artificial thermoreceptor and biological nociceptor.
3 Emulation common nociceptive behaviors and pain response under excessive temperature stimuli.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Wang, J. Xu, W. Wang, G.N. Wang, R. Rastak et al., Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555(7694), 83–88 (2018). https://doi.org/10.1038/nature25494
- A. Hosny, H.J.W.L. Aerts, Artificial intelligence for global health. Science 366(6468), 955–956 (2019). https://doi.org/10.1126/science.aay5189
- L. Li, S. Fang, W. Chen, Y. Li, M.F. Vafadar et al., Facile semiconductor p–n homojunction nanowires with strategic p-type doping engineering combined with surface reconstruction for biosensing applications. Nano-Micro Lett. 16(1), 192 (2024). https://doi.org/10.1007/s40820-024-01394-5
- H.C. Ates, P.Q. Nguyen, L. Gonzalez-Macia, E. Morales-Narváez, F. Güder et al., End-to-end design of wearable sensors. Nat. Rev. Mater. 7(11), 887–907 (2022). https://doi.org/10.1038/s41578-022-00460-x
- Y. Luo, M.R. Abidian, J.H. Ahn, D. Akinwande, A.M. Andrews et al., Technology roadmap for flexible sensors. ACS Nano 17(6), 5211–5295 (2023). https://doi.org/10.1021/acsnano.2c12606
- L. Portilla, K. Loganathan, H. Faber, A. Eid, J.G.D. Hester et al., Wirelessly powered large-area electronics for the Internet of Things. Nat. Electron. (2022). https://doi.org/10.1038/s41928-022-00898-5
- H. Liu, H. Chu, H. Yuan, D. Li, W. Deng et al., Bioinspired multifunctional self-sensing actuated gradient hydrogel for soft-hard robot remote interaction. Nano-Micro Lett. 16(1), 69 (2024). https://doi.org/10.1007/s40820-023-01287-z
- Q. Wang, S. Yang, L. Zhang, Untethered micro/nanorobots for remote sensing: toward intelligent platform. Nano-Micro Lett. 16(1), 40 (2023). https://doi.org/10.1007/s40820-023-01261-9
- R.A. John, N. Tiwari, M.I. Bin Patdillah, M.R. Kulkarni, N. Tiwari et al., Self healable neuromorphic memtransistor elements for decentralized sensory signal processing in robotics. Nat. Commun. 11(1), 4030 (2020). https://doi.org/10.1038/s41467-020-17870-6
- H. Li, Z. Ding, Q. Zhou, J. Chen, Z. Liu et al., Harness high-temperature thermal energy via elastic thermoelectric aerogels. Nano-Micro Lett. 16(1), 151 (2024). https://doi.org/10.1007/s40820-024-01370-z
- K. Pang, X. Song, Z. Xu, X. Liu, Y. Liu et al., Hydroplastic foaming of graphene aerogels and artificially intelligent tactile sensors. Sci. Adv. 6(46), eabd4045 (2020). https://doi.org/10.1126/sciadv.abd4045
- M. Wang, Z. Yan, T. Wang, P. Cai, S. Gao et al., Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. Nat. Electron. 3(9), 563–570 (2020). https://doi.org/10.1038/s41928-020-0422-z
- Z. Zhou, K. Chen, X. Li, S. Zhang, Y. Wu et al., Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 3(9), 571–578 (2020). https://doi.org/10.1038/s41928-020-0428-6
- S. Chun, J.-S. Kim, Y. Yoo, Y. Choi, S.J. Jung et al., An artificial neural tactile sensing system. Nat. Electron. 4(6), 429–438 (2021). https://doi.org/10.1038/s41928-021-00585-x
- M. Wang, Y. Luo, T. Wang, C. Wan, L. Pan et al., Artificial skin perception. Adv. Mater. 33(19), 2003014 (2021). https://doi.org/10.1002/adma.202003014
- F. Liao, Z. Zhou, B.J. Kim, J. Chen, J. Wang et al., Bioinspired in-sensor visual adaptation for accurate perception. Nat. Electron. 5(2), 84–91 (2022). https://doi.org/10.1038/s41928-022-00713-1
- H. Cho, I. Lee, J. Jang, J.-H. Kim, H. Lee et al., Real-time finger motion recognition using skin-conformable electronics. Nat. Electron. 6(8), 619–629 (2023). https://doi.org/10.1038/s41928-023-01012-z
- C. Wei, W. Lin, S. Liang, M. Chen, Y. Zheng et al., An all-In-one multifunctional touch sensor with carbon-based gradient resistance elements. Nano-Micro Lett. 14(1), 131 (2022). https://doi.org/10.1007/s40820-022-00875-9
- F. Liu, S. Deswal, A. Christou, M. Shojaei Baghini, R. Chirila et al., Printed synaptic transistor-based electronic skin for robots to feel and learn. Sci. Robot. 7(67), eabl7286 (2022). https://doi.org/10.1126/scirobotics.abl7286
- A.E. Dubin, A. Patapoutian, Nociceptors: the sensors of the pain pathway. J. Clin. Invest. 120(11), 3760–3772 (2010). https://doi.org/10.1172/jci42843
- Y. Kim, Y.J. Kwon, D.E. Kwon, K.J. Yoon, J.H. Yoon et al., Nociceptive memristor. Adv. Mater. 30, 1704320 (2018). https://doi.org/10.1002/adma.201704320
- J.H. Yoon, Z. Wang, K.M. Kim, H. Wu, V. Ravichandran et al., An artificial nociceptor based on a diffusive memristor. Nat. Commun. 9, 417 (2018). https://doi.org/10.1038/s41467-017-02572-3
- M. Kumar, H.-S. Kim, J. Kim, A highly transparent artificial photonic nociceptor. Adv. Mater. 31(19), 1900021 (2019). https://doi.org/10.1002/adma.201900021
- D. Dev, M.S. Shawkat, A. Krishnaprasad, Y. Jung, T. Roy, Artificial nociceptor using 2D MoS2 threshold switching memristor. IEEE Electron Device Lett. 41(9), 1440–1443 (2020). https://doi.org/10.1109/LED.2020.3012831
- M. Karbalaei Akbari, J. Hu, F. Verpoort, H. Lu, S. Zhuiykov, Nanoscale all-oxide-heterostructured bio-inspired optoresponsive nociceptor. Nano-Micro Lett. 12(1), 83 (2020). https://doi.org/10.1007/s40820-020-00419-z
- M.A. Rahman, S. Walia, S. Naznee, M. Taha, S. Nirantar et al., Artificial somatosensors: feedback receptors for electronic skins. Adv. Intell. Syst. 2(11), 2070106 (2020). https://doi.org/10.1002/aisy.202070106
- J. Lan, G. Cao, J. Wang, X. Yan, Artificial nociceptor based on TiO2 nanosheet memristor. Sci. China Mater. 64(7), 1703–1712 (2021). https://doi.org/10.1007/s40843-020-1564-y
- W. Xue, C. Gao, Z. Zhang, T. Han, N. Hou et al., Native drift and Mott nanochannel in layered V2O5 film for synaptic and nociceptive simulation. Sci. China Mater. 66(2), 764–771 (2023). https://doi.org/10.1007/s40843-022-2165-8
- Y. Gong, X. Xing, Z. Lv, J. Chen, P. Xie et al., Ultrasensitive flexible memory phototransistor with detectivity of 1.8 × 1013 Jones for artificial visual nociceptor. Adv. Intell. Syst. 4(8), 2100257 (2022). https://doi.org/10.1002/aisy.202100257
- S.E. Seo, S.G. Lim, K.H. Kim, J. Kim, C.J. Shin et al., Reusable electronic tongue based on transient receptor potential vanilloid 1 nanodisc-conjugated graphene field-effect transistor for a spiciness-related pain evaluation. Adv. Mater. 35(19), 2206198 (2023). https://doi.org/10.1002/adma.202206198
- O. Bubnova, Z.U. Khan, A. Malti, S. Braun, M. Fahlman et al., Optimization of the thermoelectric figure of merit in the conducting polymer poly(3, 4-ethylenedioxythiophene). Nat. Mater. 10(6), 429–433 (2011). https://doi.org/10.1038/nmat3012
- Q. Zhang, Y. Sun, W. Xu, D. Zhu, Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently. Adv. Mater. 26(40), 6829–6851 (2014). https://doi.org/10.1002/adma.201305371
- Y. Du, J. Xu, B. Paul, P. Eklund, Flexible thermoelectric materials and devices. Appl. Mater. Today 12, 366–388 (2018). https://doi.org/10.1016/j.apmt.2018.07.004
- G. Chen, Y. Li, M. Bick, J. Chen, Smart textiles for electricity generation. Chem. Rev. 120(8), 3668–3720 (2020). https://doi.org/10.1021/acs.chemrev.9b00821
- X.-L. Shi, J. Zou, Z.-G. Chen, Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 120(15), 7399–7515 (2020). https://doi.org/10.1021/acs.chemrev.0c00026
- F. Iberite, J. Muheim, O. Akouissi, S. Gallo, G. Rognini et al., Restoration of natural thermal sensation in upper-limb amputees. Science 380(6646), 731–735 (2023). https://doi.org/10.1126/science.adf6121
- J. Lee, H. Sul, Y. Jung, H. Kim, S. Han et al., Thermally controlled, active imperceptible artificial skin in visible-to-infrared range. Adv. Funct. Mater. 30(36), 2003328 (2020). https://doi.org/10.1002/adfm.202003328
- J. Lee, H. Sul, W. Lee, K.R. Pyun, I. Ha et al., Stretchable skin-like cooling/heating device for reconstruction of artificial thermal sensation in virtual reality. Adv. Funct. Mater. 30(29), 1909171 (2020). https://doi.org/10.1002/adfm.201909171
- S. Choi, S.H. Tan, Z. Li, Y. Kim, C. Choi et al., SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations. Nat. Mater. 17(4), 335–340 (2018). https://doi.org/10.1038/s41563-017-0001-5
- T. Fu, X. Liu, H. Gao, J.E. Ward, X. Liu et al., Bioinspired bio-voltage memristors. Nat. Commun. 11, 1861 (2020). https://doi.org/10.1038/s41467-020-15759-y
- J.-L. Li, X.-Y. Deng, J. Chen, P.-X. Fu, S.-Y. Tian et al., Cationic conjugated polymers with enhanced doped-state planarity for n-type organic thermoelectrics. CCS Chem. 7(5), 1449–1458 (2025). https://doi.org/10.31635/ccschem.024.202404274
- X. Dai, Y. Wang, K. Li, G. Li, J. Wang et al., Joint-free single-piece flexible thermoelectric devices with ultrahigh resolution p–n patterns toward energy harvesting and solid-state cooling. ACS Energy Lett. 6(12), 4355–4364 (2021). https://doi.org/10.1021/acsenergylett.1c02005
- J. Shin, B. Jeong, J. Kim, V.B. Nam, Y. Yoon et al., Sensitive wearable temperature sensor with seamless monolithic integration. Adv. Mater. 32(2), e1905527 (2020). https://doi.org/10.1002/adma.201905527
- J. Bang, Y. Jung, H. Kim, D. Kim, M. Cho et al., Multi-bandgap monolithic metal nanowire percolation network sensor integration by reversible selective laser-induced redox. Nano-Micro Lett. 14(1), 49 (2022). https://doi.org/10.1007/s40820-021-00786-1
- X. Dong, P. Hu, G. Zhu, Z. Li, R. Liu et al., Thioxanthone acetic acid ammonium salts: highly efficient photobase generators based on photodecarboxylation. RSC Adv. 5(66), 53342–53348 (2015). https://doi.org/10.1039/C5RA09314G
- J. Lee, W.D. Lu, On-demand reconfiguration of nanomaterials: when electronics meets ionics. Adv. Mater. 30(1), 1702770 (2018). https://doi.org/10.1002/adma.201702770
- S.-Y. Seo, G. Moon, O.F.N. Okello, M.Y. Park, C. Han et al., Reconfigurable photo-induced doping of two-dimensional van der Waals semiconductors using different photon energies. Nat. Electron. 4(1), 38–44 (2020). https://doi.org/10.1038/s41928-020-00512-6
References
S. Wang, J. Xu, W. Wang, G.N. Wang, R. Rastak et al., Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555(7694), 83–88 (2018). https://doi.org/10.1038/nature25494
A. Hosny, H.J.W.L. Aerts, Artificial intelligence for global health. Science 366(6468), 955–956 (2019). https://doi.org/10.1126/science.aay5189
L. Li, S. Fang, W. Chen, Y. Li, M.F. Vafadar et al., Facile semiconductor p–n homojunction nanowires with strategic p-type doping engineering combined with surface reconstruction for biosensing applications. Nano-Micro Lett. 16(1), 192 (2024). https://doi.org/10.1007/s40820-024-01394-5
H.C. Ates, P.Q. Nguyen, L. Gonzalez-Macia, E. Morales-Narváez, F. Güder et al., End-to-end design of wearable sensors. Nat. Rev. Mater. 7(11), 887–907 (2022). https://doi.org/10.1038/s41578-022-00460-x
Y. Luo, M.R. Abidian, J.H. Ahn, D. Akinwande, A.M. Andrews et al., Technology roadmap for flexible sensors. ACS Nano 17(6), 5211–5295 (2023). https://doi.org/10.1021/acsnano.2c12606
L. Portilla, K. Loganathan, H. Faber, A. Eid, J.G.D. Hester et al., Wirelessly powered large-area electronics for the Internet of Things. Nat. Electron. (2022). https://doi.org/10.1038/s41928-022-00898-5
H. Liu, H. Chu, H. Yuan, D. Li, W. Deng et al., Bioinspired multifunctional self-sensing actuated gradient hydrogel for soft-hard robot remote interaction. Nano-Micro Lett. 16(1), 69 (2024). https://doi.org/10.1007/s40820-023-01287-z
Q. Wang, S. Yang, L. Zhang, Untethered micro/nanorobots for remote sensing: toward intelligent platform. Nano-Micro Lett. 16(1), 40 (2023). https://doi.org/10.1007/s40820-023-01261-9
R.A. John, N. Tiwari, M.I. Bin Patdillah, M.R. Kulkarni, N. Tiwari et al., Self healable neuromorphic memtransistor elements for decentralized sensory signal processing in robotics. Nat. Commun. 11(1), 4030 (2020). https://doi.org/10.1038/s41467-020-17870-6
H. Li, Z. Ding, Q. Zhou, J. Chen, Z. Liu et al., Harness high-temperature thermal energy via elastic thermoelectric aerogels. Nano-Micro Lett. 16(1), 151 (2024). https://doi.org/10.1007/s40820-024-01370-z
K. Pang, X. Song, Z. Xu, X. Liu, Y. Liu et al., Hydroplastic foaming of graphene aerogels and artificially intelligent tactile sensors. Sci. Adv. 6(46), eabd4045 (2020). https://doi.org/10.1126/sciadv.abd4045
M. Wang, Z. Yan, T. Wang, P. Cai, S. Gao et al., Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. Nat. Electron. 3(9), 563–570 (2020). https://doi.org/10.1038/s41928-020-0422-z
Z. Zhou, K. Chen, X. Li, S. Zhang, Y. Wu et al., Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 3(9), 571–578 (2020). https://doi.org/10.1038/s41928-020-0428-6
S. Chun, J.-S. Kim, Y. Yoo, Y. Choi, S.J. Jung et al., An artificial neural tactile sensing system. Nat. Electron. 4(6), 429–438 (2021). https://doi.org/10.1038/s41928-021-00585-x
M. Wang, Y. Luo, T. Wang, C. Wan, L. Pan et al., Artificial skin perception. Adv. Mater. 33(19), 2003014 (2021). https://doi.org/10.1002/adma.202003014
F. Liao, Z. Zhou, B.J. Kim, J. Chen, J. Wang et al., Bioinspired in-sensor visual adaptation for accurate perception. Nat. Electron. 5(2), 84–91 (2022). https://doi.org/10.1038/s41928-022-00713-1
H. Cho, I. Lee, J. Jang, J.-H. Kim, H. Lee et al., Real-time finger motion recognition using skin-conformable electronics. Nat. Electron. 6(8), 619–629 (2023). https://doi.org/10.1038/s41928-023-01012-z
C. Wei, W. Lin, S. Liang, M. Chen, Y. Zheng et al., An all-In-one multifunctional touch sensor with carbon-based gradient resistance elements. Nano-Micro Lett. 14(1), 131 (2022). https://doi.org/10.1007/s40820-022-00875-9
F. Liu, S. Deswal, A. Christou, M. Shojaei Baghini, R. Chirila et al., Printed synaptic transistor-based electronic skin for robots to feel and learn. Sci. Robot. 7(67), eabl7286 (2022). https://doi.org/10.1126/scirobotics.abl7286
A.E. Dubin, A. Patapoutian, Nociceptors: the sensors of the pain pathway. J. Clin. Invest. 120(11), 3760–3772 (2010). https://doi.org/10.1172/jci42843
Y. Kim, Y.J. Kwon, D.E. Kwon, K.J. Yoon, J.H. Yoon et al., Nociceptive memristor. Adv. Mater. 30, 1704320 (2018). https://doi.org/10.1002/adma.201704320
J.H. Yoon, Z. Wang, K.M. Kim, H. Wu, V. Ravichandran et al., An artificial nociceptor based on a diffusive memristor. Nat. Commun. 9, 417 (2018). https://doi.org/10.1038/s41467-017-02572-3
M. Kumar, H.-S. Kim, J. Kim, A highly transparent artificial photonic nociceptor. Adv. Mater. 31(19), 1900021 (2019). https://doi.org/10.1002/adma.201900021
D. Dev, M.S. Shawkat, A. Krishnaprasad, Y. Jung, T. Roy, Artificial nociceptor using 2D MoS2 threshold switching memristor. IEEE Electron Device Lett. 41(9), 1440–1443 (2020). https://doi.org/10.1109/LED.2020.3012831
M. Karbalaei Akbari, J. Hu, F. Verpoort, H. Lu, S. Zhuiykov, Nanoscale all-oxide-heterostructured bio-inspired optoresponsive nociceptor. Nano-Micro Lett. 12(1), 83 (2020). https://doi.org/10.1007/s40820-020-00419-z
M.A. Rahman, S. Walia, S. Naznee, M. Taha, S. Nirantar et al., Artificial somatosensors: feedback receptors for electronic skins. Adv. Intell. Syst. 2(11), 2070106 (2020). https://doi.org/10.1002/aisy.202070106
J. Lan, G. Cao, J. Wang, X. Yan, Artificial nociceptor based on TiO2 nanosheet memristor. Sci. China Mater. 64(7), 1703–1712 (2021). https://doi.org/10.1007/s40843-020-1564-y
W. Xue, C. Gao, Z. Zhang, T. Han, N. Hou et al., Native drift and Mott nanochannel in layered V2O5 film for synaptic and nociceptive simulation. Sci. China Mater. 66(2), 764–771 (2023). https://doi.org/10.1007/s40843-022-2165-8
Y. Gong, X. Xing, Z. Lv, J. Chen, P. Xie et al., Ultrasensitive flexible memory phototransistor with detectivity of 1.8 × 1013 Jones for artificial visual nociceptor. Adv. Intell. Syst. 4(8), 2100257 (2022). https://doi.org/10.1002/aisy.202100257
S.E. Seo, S.G. Lim, K.H. Kim, J. Kim, C.J. Shin et al., Reusable electronic tongue based on transient receptor potential vanilloid 1 nanodisc-conjugated graphene field-effect transistor for a spiciness-related pain evaluation. Adv. Mater. 35(19), 2206198 (2023). https://doi.org/10.1002/adma.202206198
O. Bubnova, Z.U. Khan, A. Malti, S. Braun, M. Fahlman et al., Optimization of the thermoelectric figure of merit in the conducting polymer poly(3, 4-ethylenedioxythiophene). Nat. Mater. 10(6), 429–433 (2011). https://doi.org/10.1038/nmat3012
Q. Zhang, Y. Sun, W. Xu, D. Zhu, Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently. Adv. Mater. 26(40), 6829–6851 (2014). https://doi.org/10.1002/adma.201305371
Y. Du, J. Xu, B. Paul, P. Eklund, Flexible thermoelectric materials and devices. Appl. Mater. Today 12, 366–388 (2018). https://doi.org/10.1016/j.apmt.2018.07.004
G. Chen, Y. Li, M. Bick, J. Chen, Smart textiles for electricity generation. Chem. Rev. 120(8), 3668–3720 (2020). https://doi.org/10.1021/acs.chemrev.9b00821
X.-L. Shi, J. Zou, Z.-G. Chen, Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 120(15), 7399–7515 (2020). https://doi.org/10.1021/acs.chemrev.0c00026
F. Iberite, J. Muheim, O. Akouissi, S. Gallo, G. Rognini et al., Restoration of natural thermal sensation in upper-limb amputees. Science 380(6646), 731–735 (2023). https://doi.org/10.1126/science.adf6121
J. Lee, H. Sul, Y. Jung, H. Kim, S. Han et al., Thermally controlled, active imperceptible artificial skin in visible-to-infrared range. Adv. Funct. Mater. 30(36), 2003328 (2020). https://doi.org/10.1002/adfm.202003328
J. Lee, H. Sul, W. Lee, K.R. Pyun, I. Ha et al., Stretchable skin-like cooling/heating device for reconstruction of artificial thermal sensation in virtual reality. Adv. Funct. Mater. 30(29), 1909171 (2020). https://doi.org/10.1002/adfm.201909171
S. Choi, S.H. Tan, Z. Li, Y. Kim, C. Choi et al., SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations. Nat. Mater. 17(4), 335–340 (2018). https://doi.org/10.1038/s41563-017-0001-5
T. Fu, X. Liu, H. Gao, J.E. Ward, X. Liu et al., Bioinspired bio-voltage memristors. Nat. Commun. 11, 1861 (2020). https://doi.org/10.1038/s41467-020-15759-y
J.-L. Li, X.-Y. Deng, J. Chen, P.-X. Fu, S.-Y. Tian et al., Cationic conjugated polymers with enhanced doped-state planarity for n-type organic thermoelectrics. CCS Chem. 7(5), 1449–1458 (2025). https://doi.org/10.31635/ccschem.024.202404274
X. Dai, Y. Wang, K. Li, G. Li, J. Wang et al., Joint-free single-piece flexible thermoelectric devices with ultrahigh resolution p–n patterns toward energy harvesting and solid-state cooling. ACS Energy Lett. 6(12), 4355–4364 (2021). https://doi.org/10.1021/acsenergylett.1c02005
J. Shin, B. Jeong, J. Kim, V.B. Nam, Y. Yoon et al., Sensitive wearable temperature sensor with seamless monolithic integration. Adv. Mater. 32(2), e1905527 (2020). https://doi.org/10.1002/adma.201905527
J. Bang, Y. Jung, H. Kim, D. Kim, M. Cho et al., Multi-bandgap monolithic metal nanowire percolation network sensor integration by reversible selective laser-induced redox. Nano-Micro Lett. 14(1), 49 (2022). https://doi.org/10.1007/s40820-021-00786-1
X. Dong, P. Hu, G. Zhu, Z. Li, R. Liu et al., Thioxanthone acetic acid ammonium salts: highly efficient photobase generators based on photodecarboxylation. RSC Adv. 5(66), 53342–53348 (2015). https://doi.org/10.1039/C5RA09314G
J. Lee, W.D. Lu, On-demand reconfiguration of nanomaterials: when electronics meets ionics. Adv. Mater. 30(1), 1702770 (2018). https://doi.org/10.1002/adma.201702770
S.-Y. Seo, G. Moon, O.F.N. Okello, M.Y. Park, C. Han et al., Reconfigurable photo-induced doping of two-dimensional van der Waals semiconductors using different photon energies. Nat. Electron. 4(1), 38–44 (2020). https://doi.org/10.1038/s41928-020-00512-6