Large Energy Capacitive High-Entropy Lead-Free Ferroelectrics
Corresponding Author: Jun Chen
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 65
Abstract
Advanced lead-free energy storage ceramics play an indispensable role in next-generation pulse power capacitors market. Here, an ultrahigh energy storage density of ~ 13.8 J cm−3 and a large efficiency of ~ 82.4% are achieved in high-entropy lead-free relaxor ferroelectrics by increasing configuration entropy, named high-entropy strategy, realizing nearly ten times growth of energy storage density compared with low-entropy material. Evolution of energy storage performance and domain structure with increasing configuration entropy is systematically revealed for the first time. The achievement of excellent energy storage properties should be attributed to the enhanced random field, decreased nanodomain size, strong multiple local distortions, and improved breakdown field. Furthermore, the excellent frequency and fatigue stability as well as charge/discharge properties with superior thermal stability are also realized. The significantly enhanced comprehensive energy storage performance by increasing configuration entropy demonstrates that high entropy is an effective but convenient strategy to design new high-performance dielectrics, promoting the development of advanced capacitors
Highlights:
1 Ultrahigh energy storage density of ~ 13.8 J cm−3 and large efficiency of ~ 82.4% are achieved in high-entropy lead-free relaxor ferroelectrics via high-entropy strategy, realizing nearly ten times growth.
2 Outstanding energy storage properties are attributed to the enhanced random field and breakdown field, decreased nanodomain sizes, strong multiple local distortions coexisting in-phase and anti-phase oxygen octahedron tilts.
3 Evolution of energy storage performance and domain structure with the increase in configuration entropy is systematically revealed for the first time.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Pan, S. Lan, S. Xu, Q. Zhang, H. Yao et al., Ultrahigh energy storage in superparaelectric relaxor ferroelectrics. Science 374(6563), 100–104 (2021). https://doi.org/10.1126/science.abi7687
- J. Li, Z. Shen, X. Chen, S. Yang, W. Zhou et al., Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications. Nat. Mater. 19(9), 999–1005 (2020). https://doi.org/10.1038/s41563-020-0704-x
- L. Chen, S. Deng, H. Liu, J. Wu, H. Qi et al., Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design. Nat. Commun. 13, 3089 (2022). https://doi.org/10.1038/s41467-022-30821-7
- L. Chen, N. Wang, Z. Zhang, H. Yu, J. Wu et al., Local diverse polarization optimized comprehensive energy storage performance in lead-free superparaelectrics. Adv. Mater. 34(44), 2205787 (2022). https://doi.org/10.1002/adma.202205787
- N. Luo, K. Han, M.J. Cabral, X. Liao, S. Zhang et al., Constructing phase boundary in AgNbO3 antiferroelectrics: pathway simultaneously achieving high energy density and efficiency. Nat. Commun. 11, 4824 (2020). https://doi.org/10.1038/s41467-020-18665-5
- G. Wang, Z. Lu, Y. Li, L. Li, H. Ji et al., Electroceramics for high-energy density capacitors: current status and future perspectives. Chem. Rev. 121(10), 6124–6172 (2021). https://doi.org/10.1021/acs.chemrev.0c01264
- F. Yan, H. Bai, G. Ge, J. Lin, C. Shi et al., Composition and structure optimized BiFeO3-SrTiO3 lead-free ceramics with ultrahigh energy storage performance. Small 18(10), 2106515 (2022). https://doi.org/10.1002/smll.202106515
- H. Qi, R. Zuo, A. Xie, A. Tian, J. Fu et al., Ultrahigh energy-storage density in NaNbO3-based lead-free relaxor antiferroelectric ceramics with nanoscale domains. Adv. Funct. Mater. 29(35), 1903877 (2019). https://doi.org/10.1002/adfm.201903877
- L. Chen, F. Long, H. Qi, H. Liu, S. Deng et al., Outstanding energy storage performance in high-hardness (Bi0.5K0.5)TiO3-based lead-free relaxors via multi-scale synergistic design. Adv. Funct. Mater. 32(9), 2110478 (2022). https://doi.org/10.1002/adfm.202110478
- Z. Niu, P. Zheng, Y. Xiao, C. Luo, K. Zhang et al., Bi0.5K0.5TiO3-based lead-free relaxor ferroelectric with high energy storage performances via the grain size and bandgap engineering. Mater. Today Chem. 24, 100898 (2022). https://doi.org/10.1016/j.mtchem.2022.100898
- Z. Yang, F. Gao, H. Du, L. Jin, L. Yan et al., Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties. Nano Energy 58, 768–777 (2019). https://doi.org/10.1016/j.nanoen.2019.02.003
- M. Zhou, R. Liang, Z. Zhou, X. Dong, Superior energy storage properties and excellent stability of novel NaNbO3-based lead-free ceramics with A-site vacancy obtained via a Bi2O3 substitution strategy. J. Mater. Chem. A 6(37), 17896–17904 (2018). https://doi.org/10.1039/c8ta07303a
- L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng et al., Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 102, 72–108 (2019). https://doi.org/10.1016/j.pmatsci.2018.12.005
- H. Qi, A. Xie, A. Tian, R. Zuo, Superior energy-storage capacitors with simultaneously giant energy density and efficiency using nanodomain engineered BiFeO3-BaTiO3-NaNbO3 lead-free bulk ferroelectrics. Adv. Energy Mater. 10(6), 1903338 (2020). https://doi.org/10.1002/aenm.201903338
- H. Pan, F. Li, Y. Liu, Q. Zhang, M. Wang et al., Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design. Science 365(6453), 578–582 (2019). https://doi.org/10.1126/science.aaw8109
- M. Zhang, H. Yang, Y. Yu, Y. Lin, Energy storage performance of K05.Na0.5NbO3-based ceramics modified by Bi(Zn2/3(Nb0.85Ta0.15)1/3)O3. Chem. Eng. J. 425, 131465 (2021). https://doi.org/10.1016/j.cej.2021.131465
- F. Yan, K. Huang, T. Jiang, X. Zhou, Y. Shi et al., Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering. Energy Storage Mater. 30, 392–400 (2020). https://doi.org/10.1016/j.ensm.2020.05.026
- X. Dong, X. Li, X. Chen, H. Chen, C. Sun et al., High energy storage density and power density achieved simultaneously in NaNbO3-based lead-free ceramics via antiferroelectricity enhancement. J. Materiomics 7(3), 629–639 (2021). https://doi.org/10.1016/j.jmat.2020.11.016
- D. Yang, J. Gao, L. Shu, Y.-X. Liu, J. Yu et al., Lead-free antiferroelectric niobates AgNbO3 and NaNbO3 for energy storage applications. J. Mater. Chem. A 8(45), 23724–23737 (2020). https://doi.org/10.1039/d0ta08345c
- L. Zhao, Q. Liu, J. Gao, S. Zhang, J.-F. Li, Lead-free antiferroelectric silver niobate tantalate with high energy storage performance. Adv. Mater. 29(31), 1701824 (2017). https://doi.org/10.1002/adma.201701824
- F. Zhuo, H. Qiao, J. Zhu, S. Wang, Y. Bai et al., Perspective on antiferroelectrics for energy storage and conversion applications. Chin. Chem. Lett. 32(7), 2097–2107 (2021). https://doi.org/10.1016/j.cclet.2020.11.070
- S. Zhang, High entropy design: a new pathway to promote the piezoelectricity and dielectric energy storage in perovskite oxides. Microstructures 3, 2023003 (2023). https://doi.org/10.20517/microstructures.2022.38
- A. Sarkar, R. Djenadic, D. Wang, C. Hein, R. Kautenburger et al., Rare earth and transition metal based entropy stabilised perovskite type oxides. J. Eur. Ceram. Soc. 38(5), 2318–2327 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.12.058
- Z. Liu, Z. Tang, Y. Song, G. Yang, W. Qian et al., High-entropy perovskite oxide: a new opportunity for developing highly active and durable air electrode for reversible protonic ceramic electrochemical cells. Nano-Micro Lett. 14, 217 (2022). https://doi.org/10.1007/s40820-022-00967-6
- Y. Zhu, Z. Shen, Y. Li, B. Chai, J. Chen et al., High conduction band inorganic layers for distinct enhancement of electrical energy storage in polymer nanocomposites. Nano-Micro Lett. 14, 151 (2022). https://doi.org/10.1007/s40820-022-00902-9
- T. Cui, J. Zhang, J. Guo, X. Li, S. Guo et al., Outstanding comprehensive energy storage performance in lead-free BiFeO3-based relaxor ferroelectric ceramics by multiple optimization design. Acta Mater. 240, 118286 (2022). https://doi.org/10.1016/j.actamat.2022.118286
- T. Cui, J. Zhang, J. Guo, X. Li, S. Guo et al., Simultaneous achievement of ultrahigh energy storage density and high efficiency in BiFeO3-based relaxor ferroelectric ceramics via a highly disordered multicomponent design. J. Mater. Chem. A 10(27), 14316–14325 (2022). https://doi.org/10.1039/d2ta02893j
- J. Yao, W. Ge, Y. Yang, L. Luo, J. Li et al., Observation of partially incoherent ⟨110⟩ boundaries between polar nanodomains in Na1/2Bi1/2TiO3 single crystals. J. Appl. Phys. 108(6), 064114 (2010). https://doi.org/10.1063/1.3488879
- J. Yao, W. Ge, L. Yan, W. Reynolds, J. Li et al., The influence of Mn substitution on the local structure of Na0.5Bi0.5TiO3 crystals: increased ferroelectric ordering and coexisting octahedral tilts. J. Appl. Phys. 111(6), 064109 (2012). https://doi.org/10.1063/1.3699010
- L. Chen, F. Li, B. Gao, C. Zhou, J. Wu et al., Excellent energy storage and mechanical performance in hetero-structure BaTiO3-based relaxors. Chem. Eng. J. 452, 139222 (2023). https://doi.org/10.1016/j.cej.2022.139222
- Z. Hong, X. Ke, D. Wang, S. Yang, X. Ren et al., Role of point defects in the formation of relaxor ferroelectrics. Acta Mater. 225, 117558 (2022). https://doi.org/10.1016/j.actamat.2021.117558
- D. Fu, H. Taniguchi, M. Itoh, S. Mori, (2012) Advances in Ferroelectrics, (Ed: A. Peláiz-Barranco, InTech, Rijieka, Croatia, pp. 51–67.
- Q. Liu, Y. Zhang, J. Gao, Z. Zhou, H. Wang et al., High-performance lead-free piezoelectrics with local structural heterogeneity. Energy Environ. Sci. 11(12), 3531–3539 (2018). https://doi.org/10.1039/c8ee02758g
- A. Glazer, Simple ways of determining perovskite structures. Acta Cryst. A 31(6), 756–762 (1975). https://doi.org/10.1107/S0567739475001635
- G. Jones, P. Thomas, Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta Cryst. B 58(2), 168–178 (2002). https://doi.org/10.1107/S0108768101020845
- H. Qi, A. Xie, R. Zuo, Local structure engineered lead-free ferroic dielectrics for superior energy-storage capacitors: a review. Energy Storage Mater. 45, 541–567 (2022). https://doi.org/10.1016/j.ensm.2021.11.043
- S. Selbach, T. Tybell, M. Einarsrud, T. Grande, The ferroic phase transitions of BiFeO3. Adv. Mater. 20(19), 3692–3696 (2008). https://doi.org/10.1002/adma.200800218
- N. Wang, X. Luo, L. Han, Z. Zhang, R. Zhang et al., Structure, performance, and application of BiFeO3 nanomaterials. Nano-Micro Lett. 12, 81 (2020). https://doi.org/10.1007/s40820-020-00420-6
- B. Chu, J. Hao, P. Li, Y. Li, W. Li et al., High-energy storage properties over a broad temperature range in La-modified BNT-based lead-free ceramics. ACS Appl. Mater. Interfaces 14(17), 19683–19696 (2022). https://doi.org/10.1021/acsami.2c01863
- X. Fan, J. Wang, H. Yuan, L. Chen, L. Zhao et al., Synergic enhancement of energy storage density and efficiency in MnO2-doped AgNbO3@SiO2 ceramics via A/B-site substitutions. ACS Appl. Mater. Interfaces 14(5), 7052–7062 (2022). https://doi.org/10.1021/acsami.1c25234
- J. Jiang, X. Meng, L. Li, J. Zhang, S. Guo et al., Enhanced energy storage properties of lead-free NaNbO3-based ceramics via A/B-site substitution. Chem. Eng. J. 422(15), 130130 (2021). https://doi.org/10.1016/j.cej.2021.130130
- L. Zheng, P. Sun, P. Zheng, W. Bai, L. Li et al., Significantly tailored energy-storage performances in Bi0.5Na0.5TiO3–SrTiO3-based relaxor ferroelectric ceramics by introducing bismuth layer-structured relaxor BaBi2Nb2O9 for capacitor application. J. Mater. Chem. C 9(15), 5234–5243 (2021). https://doi.org/10.1039/d1tc00437a
- X. Dong, X. Li, X. Chen, J. Wu, H. Zhou, Simultaneous enhancement of polarization and breakdown strength in lead-free BaTiO3-based ceramics. Chem. Eng. J. 409, 128231 (2021). https://doi.org/10.1016/j.cej.2020.128231
- Z. Chen, X. Bu, B. Ruan, J. Du, P. Zheng et al., Simultaneously achieving high energy storage density and efficiency under low electric field in BiFeO3-based lead-free relaxor ferroelectric ceramics. J. Eur. Ceram. Soc. 40(15), 5450–5457 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.06.073
References
H. Pan, S. Lan, S. Xu, Q. Zhang, H. Yao et al., Ultrahigh energy storage in superparaelectric relaxor ferroelectrics. Science 374(6563), 100–104 (2021). https://doi.org/10.1126/science.abi7687
J. Li, Z. Shen, X. Chen, S. Yang, W. Zhou et al., Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications. Nat. Mater. 19(9), 999–1005 (2020). https://doi.org/10.1038/s41563-020-0704-x
L. Chen, S. Deng, H. Liu, J. Wu, H. Qi et al., Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design. Nat. Commun. 13, 3089 (2022). https://doi.org/10.1038/s41467-022-30821-7
L. Chen, N. Wang, Z. Zhang, H. Yu, J. Wu et al., Local diverse polarization optimized comprehensive energy storage performance in lead-free superparaelectrics. Adv. Mater. 34(44), 2205787 (2022). https://doi.org/10.1002/adma.202205787
N. Luo, K. Han, M.J. Cabral, X. Liao, S. Zhang et al., Constructing phase boundary in AgNbO3 antiferroelectrics: pathway simultaneously achieving high energy density and efficiency. Nat. Commun. 11, 4824 (2020). https://doi.org/10.1038/s41467-020-18665-5
G. Wang, Z. Lu, Y. Li, L. Li, H. Ji et al., Electroceramics for high-energy density capacitors: current status and future perspectives. Chem. Rev. 121(10), 6124–6172 (2021). https://doi.org/10.1021/acs.chemrev.0c01264
F. Yan, H. Bai, G. Ge, J. Lin, C. Shi et al., Composition and structure optimized BiFeO3-SrTiO3 lead-free ceramics with ultrahigh energy storage performance. Small 18(10), 2106515 (2022). https://doi.org/10.1002/smll.202106515
H. Qi, R. Zuo, A. Xie, A. Tian, J. Fu et al., Ultrahigh energy-storage density in NaNbO3-based lead-free relaxor antiferroelectric ceramics with nanoscale domains. Adv. Funct. Mater. 29(35), 1903877 (2019). https://doi.org/10.1002/adfm.201903877
L. Chen, F. Long, H. Qi, H. Liu, S. Deng et al., Outstanding energy storage performance in high-hardness (Bi0.5K0.5)TiO3-based lead-free relaxors via multi-scale synergistic design. Adv. Funct. Mater. 32(9), 2110478 (2022). https://doi.org/10.1002/adfm.202110478
Z. Niu, P. Zheng, Y. Xiao, C. Luo, K. Zhang et al., Bi0.5K0.5TiO3-based lead-free relaxor ferroelectric with high energy storage performances via the grain size and bandgap engineering. Mater. Today Chem. 24, 100898 (2022). https://doi.org/10.1016/j.mtchem.2022.100898
Z. Yang, F. Gao, H. Du, L. Jin, L. Yan et al., Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties. Nano Energy 58, 768–777 (2019). https://doi.org/10.1016/j.nanoen.2019.02.003
M. Zhou, R. Liang, Z. Zhou, X. Dong, Superior energy storage properties and excellent stability of novel NaNbO3-based lead-free ceramics with A-site vacancy obtained via a Bi2O3 substitution strategy. J. Mater. Chem. A 6(37), 17896–17904 (2018). https://doi.org/10.1039/c8ta07303a
L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng et al., Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 102, 72–108 (2019). https://doi.org/10.1016/j.pmatsci.2018.12.005
H. Qi, A. Xie, A. Tian, R. Zuo, Superior energy-storage capacitors with simultaneously giant energy density and efficiency using nanodomain engineered BiFeO3-BaTiO3-NaNbO3 lead-free bulk ferroelectrics. Adv. Energy Mater. 10(6), 1903338 (2020). https://doi.org/10.1002/aenm.201903338
H. Pan, F. Li, Y. Liu, Q. Zhang, M. Wang et al., Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design. Science 365(6453), 578–582 (2019). https://doi.org/10.1126/science.aaw8109
M. Zhang, H. Yang, Y. Yu, Y. Lin, Energy storage performance of K05.Na0.5NbO3-based ceramics modified by Bi(Zn2/3(Nb0.85Ta0.15)1/3)O3. Chem. Eng. J. 425, 131465 (2021). https://doi.org/10.1016/j.cej.2021.131465
F. Yan, K. Huang, T. Jiang, X. Zhou, Y. Shi et al., Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering. Energy Storage Mater. 30, 392–400 (2020). https://doi.org/10.1016/j.ensm.2020.05.026
X. Dong, X. Li, X. Chen, H. Chen, C. Sun et al., High energy storage density and power density achieved simultaneously in NaNbO3-based lead-free ceramics via antiferroelectricity enhancement. J. Materiomics 7(3), 629–639 (2021). https://doi.org/10.1016/j.jmat.2020.11.016
D. Yang, J. Gao, L. Shu, Y.-X. Liu, J. Yu et al., Lead-free antiferroelectric niobates AgNbO3 and NaNbO3 for energy storage applications. J. Mater. Chem. A 8(45), 23724–23737 (2020). https://doi.org/10.1039/d0ta08345c
L. Zhao, Q. Liu, J. Gao, S. Zhang, J.-F. Li, Lead-free antiferroelectric silver niobate tantalate with high energy storage performance. Adv. Mater. 29(31), 1701824 (2017). https://doi.org/10.1002/adma.201701824
F. Zhuo, H. Qiao, J. Zhu, S. Wang, Y. Bai et al., Perspective on antiferroelectrics for energy storage and conversion applications. Chin. Chem. Lett. 32(7), 2097–2107 (2021). https://doi.org/10.1016/j.cclet.2020.11.070
S. Zhang, High entropy design: a new pathway to promote the piezoelectricity and dielectric energy storage in perovskite oxides. Microstructures 3, 2023003 (2023). https://doi.org/10.20517/microstructures.2022.38
A. Sarkar, R. Djenadic, D. Wang, C. Hein, R. Kautenburger et al., Rare earth and transition metal based entropy stabilised perovskite type oxides. J. Eur. Ceram. Soc. 38(5), 2318–2327 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.12.058
Z. Liu, Z. Tang, Y. Song, G. Yang, W. Qian et al., High-entropy perovskite oxide: a new opportunity for developing highly active and durable air electrode for reversible protonic ceramic electrochemical cells. Nano-Micro Lett. 14, 217 (2022). https://doi.org/10.1007/s40820-022-00967-6
Y. Zhu, Z. Shen, Y. Li, B. Chai, J. Chen et al., High conduction band inorganic layers for distinct enhancement of electrical energy storage in polymer nanocomposites. Nano-Micro Lett. 14, 151 (2022). https://doi.org/10.1007/s40820-022-00902-9
T. Cui, J. Zhang, J. Guo, X. Li, S. Guo et al., Outstanding comprehensive energy storage performance in lead-free BiFeO3-based relaxor ferroelectric ceramics by multiple optimization design. Acta Mater. 240, 118286 (2022). https://doi.org/10.1016/j.actamat.2022.118286
T. Cui, J. Zhang, J. Guo, X. Li, S. Guo et al., Simultaneous achievement of ultrahigh energy storage density and high efficiency in BiFeO3-based relaxor ferroelectric ceramics via a highly disordered multicomponent design. J. Mater. Chem. A 10(27), 14316–14325 (2022). https://doi.org/10.1039/d2ta02893j
J. Yao, W. Ge, Y. Yang, L. Luo, J. Li et al., Observation of partially incoherent ⟨110⟩ boundaries between polar nanodomains in Na1/2Bi1/2TiO3 single crystals. J. Appl. Phys. 108(6), 064114 (2010). https://doi.org/10.1063/1.3488879
J. Yao, W. Ge, L. Yan, W. Reynolds, J. Li et al., The influence of Mn substitution on the local structure of Na0.5Bi0.5TiO3 crystals: increased ferroelectric ordering and coexisting octahedral tilts. J. Appl. Phys. 111(6), 064109 (2012). https://doi.org/10.1063/1.3699010
L. Chen, F. Li, B. Gao, C. Zhou, J. Wu et al., Excellent energy storage and mechanical performance in hetero-structure BaTiO3-based relaxors. Chem. Eng. J. 452, 139222 (2023). https://doi.org/10.1016/j.cej.2022.139222
Z. Hong, X. Ke, D. Wang, S. Yang, X. Ren et al., Role of point defects in the formation of relaxor ferroelectrics. Acta Mater. 225, 117558 (2022). https://doi.org/10.1016/j.actamat.2021.117558
D. Fu, H. Taniguchi, M. Itoh, S. Mori, (2012) Advances in Ferroelectrics, (Ed: A. Peláiz-Barranco, InTech, Rijieka, Croatia, pp. 51–67.
Q. Liu, Y. Zhang, J. Gao, Z. Zhou, H. Wang et al., High-performance lead-free piezoelectrics with local structural heterogeneity. Energy Environ. Sci. 11(12), 3531–3539 (2018). https://doi.org/10.1039/c8ee02758g
A. Glazer, Simple ways of determining perovskite structures. Acta Cryst. A 31(6), 756–762 (1975). https://doi.org/10.1107/S0567739475001635
G. Jones, P. Thomas, Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta Cryst. B 58(2), 168–178 (2002). https://doi.org/10.1107/S0108768101020845
H. Qi, A. Xie, R. Zuo, Local structure engineered lead-free ferroic dielectrics for superior energy-storage capacitors: a review. Energy Storage Mater. 45, 541–567 (2022). https://doi.org/10.1016/j.ensm.2021.11.043
S. Selbach, T. Tybell, M. Einarsrud, T. Grande, The ferroic phase transitions of BiFeO3. Adv. Mater. 20(19), 3692–3696 (2008). https://doi.org/10.1002/adma.200800218
N. Wang, X. Luo, L. Han, Z. Zhang, R. Zhang et al., Structure, performance, and application of BiFeO3 nanomaterials. Nano-Micro Lett. 12, 81 (2020). https://doi.org/10.1007/s40820-020-00420-6
B. Chu, J. Hao, P. Li, Y. Li, W. Li et al., High-energy storage properties over a broad temperature range in La-modified BNT-based lead-free ceramics. ACS Appl. Mater. Interfaces 14(17), 19683–19696 (2022). https://doi.org/10.1021/acsami.2c01863
X. Fan, J. Wang, H. Yuan, L. Chen, L. Zhao et al., Synergic enhancement of energy storage density and efficiency in MnO2-doped AgNbO3@SiO2 ceramics via A/B-site substitutions. ACS Appl. Mater. Interfaces 14(5), 7052–7062 (2022). https://doi.org/10.1021/acsami.1c25234
J. Jiang, X. Meng, L. Li, J. Zhang, S. Guo et al., Enhanced energy storage properties of lead-free NaNbO3-based ceramics via A/B-site substitution. Chem. Eng. J. 422(15), 130130 (2021). https://doi.org/10.1016/j.cej.2021.130130
L. Zheng, P. Sun, P. Zheng, W. Bai, L. Li et al., Significantly tailored energy-storage performances in Bi0.5Na0.5TiO3–SrTiO3-based relaxor ferroelectric ceramics by introducing bismuth layer-structured relaxor BaBi2Nb2O9 for capacitor application. J. Mater. Chem. C 9(15), 5234–5243 (2021). https://doi.org/10.1039/d1tc00437a
X. Dong, X. Li, X. Chen, J. Wu, H. Zhou, Simultaneous enhancement of polarization and breakdown strength in lead-free BaTiO3-based ceramics. Chem. Eng. J. 409, 128231 (2021). https://doi.org/10.1016/j.cej.2020.128231
Z. Chen, X. Bu, B. Ruan, J. Du, P. Zheng et al., Simultaneously achieving high energy storage density and efficiency under low electric field in BiFeO3-based lead-free relaxor ferroelectric ceramics. J. Eur. Ceram. Soc. 40(15), 5450–5457 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.06.073