Direct Regeneration of Spent Lithium-Ion Battery Cathodes: From Theoretical Study to Production Practice
Corresponding Author: Xubiao Luo
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 207
Abstract
Direct regeneration method has been widely concerned by researchers in the field of battery recycling because of its advantages of in situ regeneration, short process and less pollutant emission. In this review, we firstly analyze the primary causes for the failure of three representative battery cathodes (lithium iron phosphate, layered lithium transition metal oxide and lithium cobalt oxide), targeting at illustrating their underlying regeneration mechanism and applicability. Efficient stripping of material from the collector to obtain pure cathode material has become a first challenge in recycling, for which we report several pretreatment methods currently available for subsequent regeneration processes. We review and discuss emphatically the research progress of five direct regeneration methods, including solid-state sintering, hydrothermal, eutectic molten salt, electrochemical and chemical lithiation methods. Finally, the application of direct regeneration technology in production practice is introduced, the problems exposed at the early stage of the industrialization of direct regeneration technology are revealed, and the prospect of future large-scale commercial production is proposed. It is hoped that this review will give readers a comprehensive and basic understanding of direct regeneration methods for used lithium-ion batteries and promote the industrial application of direct regeneration technology.
Highlights:
1 This review systematically summarizes the source of electricity, the key choice of catalyst, and the potentiality of electrolyte for prospective hydrogen generation.
2 Each section provides comprehensive overview, detailed comparison and obvious advantages in these system configurations.
3 The problems of hydrogen generation from electrolytic water splitting and directions of next-generation green hydrogen in the future are discussed and outlooked.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.M. Abdalla, M.F. Abdullah, M.K. Dawood, B. Wei, Y. Subramanian et al., Innovative lithium-ion battery recycling: sustainable process for recovery of critical materials from lithium-ion batteries. J. Energy Storage 67, 107551 (2023). https://doi.org/10.1016/j.est.2023.107551
- G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater et al., Recycling lithium-ion batteries from electric vehicles. Nature 575, 75–86 (2019). https://doi.org/10.1038/s41586-019-1682-5
- H.-J. Kim, T. Krishna, K. Zeb, V. Rajangam, C.V.V.M. Gopi et al., A comprehensive review of Li-ion battery materials and their recycling techniques. Electronics 9, 1161 (2020). https://doi.org/10.3390/electronics9071161
- C. Chen, C.-S. Lee, Y. Tang, Fundamental understanding and optimization strategies for dual-ion batteries: a review. Nano-Micro Lett. 15, 121 (2023). https://doi.org/10.1007/s40820-023-01086-6
- K. Chen, Y. Ding, L. Yang, Z. Wang, H. Yu et al., Recycling of spent lithium–ion battery graphite anodes via a targeted repair scheme. Resour. Conserv. Recycl. 201, 107326 (2024). https://doi.org/10.1016/j.resconrec.2023.107326
- L. Fu, Y. Hu, X. Lin, Q. Wang, L. Yang et al., Engineering Multi-field-coupled synergistic ion transport system based on the heterogeneous nanofluidic membrane for high-efficient lithium extraction. Nano-Micro Lett. 15, 130 (2023). https://doi.org/10.1007/s40820-023-01106-5
- X. Fan, M. Tebyetekerwa, Y. Wu, R.R. Gaddam, X.S. Zhao, Origin of excellent charge storage properties of defective tin disulphide in magnesium/lithium-ion hybrid batteries. Nano-Micro Lett. 14, 177 (2022). https://doi.org/10.1007/s40820-022-00914-5
- S. Lei, W. Sun, Y. Yang, Solvent extraction for recycling of spent lithium-ion batteries. J. Hazard. Mater. 424, 127654 (2022). https://doi.org/10.1016/j.jhazmat.2021.127654
- J. Piątek, S. Afyon, T.M. Budnyak, S. Budnyk, M.H. Sipponen et al., Sustainable Li-ion batteries: chemistry and recycling. Adv. Energy Mater. 11, 2003456 (2021). https://doi.org/10.1002/aenm.202003456
- Y.E. Milian, N. Jamett, C. Cruz, S. Herrera-León, J. Chacana-Olivares, A comprehensive review of emerging technologies for recycling spent lithium-ion batteries. Sci. Total. Environ. 910, 168543 (2024). https://doi.org/10.1016/j.scitotenv.2023.168543
- R. Rautela, B.R. Yadav, S. Kumar, A review on technologies for recovery of metals from waste lithium-ion batteries. J. Power. Sources 580, 233428 (2023). https://doi.org/10.1016/j.jpowsour.2023.233428
- X. Ma, L. Azhari, Y. Wang, Li-ion battery recycling challenges. Chem 7, 2843–2847 (2021). https://doi.org/10.1016/j.chempr.2021.09.013
- P. Li, S. Luo, L. Zhang, Q. Liu, Y. Wang et al., Progress, challenges, and prospects of spent lithium-ion batteries recycling: a review. J. Energy Chem. 89, 144–171 (2024). https://doi.org/10.1016/j.jechem.2023.10.012
- J. Ordoñez, E.J. Gago, A. Girard, Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renew. Sustain. Energy Rev. 60, 195–205 (2016). https://doi.org/10.1016/j.rser.2015.12.363
- DOE, National blueprint for lithium batteries 2021–2030 (2021)
- H. Ali, H.A. Khan, M. Pecht, Preprocessing of spent lithium-ion batteries for recycling: need, methods, and trends. Renew. Sustain. Energy Rev. 168, 112809 (2022). https://doi.org/10.1016/j.rser.2022.112809
- B. Zhou, H. Xie, S. Zhou, X. Sheng, L. Chen et al., Construction of AuNPs/reduced graphene nanoribbons co-modified molecularly imprinted electrochemical sensor for the detection of Zearalenone. Food Chem. 423, 136294 (2023). https://doi.org/10.1016/j.foodchem.2023.136294
- M. Chen, X. Ma, B. Chen, R. Arsenault, P. Karlson et al., Recycling end-of-life electric vehicle lithium-ion batteries. Joule 3, 2622–2646 (2019). https://doi.org/10.1016/j.joule.2019.09.014
- C. Pan, Y. Shen, Pyrometallurgical recycling of spent lithium-ion batteries from conventional roasting to synergistic pyrolysis with organic wastes. J. Energy Chem. 85, 547–561 (2023). https://doi.org/10.1016/j.jechem.2023.06.040
- M. Zhou, B. Li, J. Li, Z. Xu, Pyrometallurgical technology in the recycling of a spent lithium ion battery: evolution and the challenge. ACS EST Eng. 1, 1369–1382 (2021). https://doi.org/10.1021/acsestengg.1c00067
- X. Li, S. Liu, J. Yang, Z. He, J. Zheng et al., Electrochemical methods contribute to the recycling and regeneration path of lithium-ion batteries. Energy Storage Mater. 55, 606–630 (2023). https://doi.org/10.1016/j.ensm.2022.12.022
- Z.J. Baum, R.E. Bird, X. Yu, J. Ma, Lithium-ion battery recycling-overview of techniques and trends. ACS Energy Lett. 7, 712–719 (2022). https://doi.org/10.1021/acsenergylett.1c02602
- J.C.-Y. Jung, P.-C. Sui, J. Zhang, A review of recycling spent lithium-ion battery cathode materials using hydrometallurgical treatments. J. Energy Storage 35, 102217 (2021). https://doi.org/10.1016/j.est.2020.102217
- Y. Tao, C.D. Rahn, L.A. Archer, F. You, Second life and recycling: energy and environmental sustainability perspectives for high-performance lithium-ion batteries. Sci. Adv. 7, eabi7633 (2021). https://doi.org/10.1126/sciadv.abi7633
- E. Mossali, N. Picone, L. Gentilini, O. Rodrìguez, J.M. Pérez et al., Lithium-ion batteries towards circular economy: a literature review of opportunities and issues of recycling treatments. J. Environ. Manag. 264, 110500 (2020). https://doi.org/10.1016/j.jenvman.2020.110500
- T. Or, S.W.D. Gourley, K. Kaliyappan, A. Yu, Z. Chen, Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook. Carbon Energy 2, 6–43 (2020). https://doi.org/10.1002/cey2.29
- R. Tao, P. Xing, H. Li, Z. Sun, Y. Wu, Recovery of spent LiCoO2 lithium-ion battery via environmentally friendly pyrolysis and hydrometallurgical leaching. Resour. Conserv. Recycl. 176, 105921 (2022). https://doi.org/10.1016/j.resconrec.2021.105921
- H. Gao, D. Tran, Z. Chen, Seeking direct cathode regeneration for more efficient lithium-ion battery recycling. Curr. Opin. Electrochem. 31, 100875 (2022). https://doi.org/10.1016/j.coelec.2021.100875
- B. Makuza, Q. Tian, X. Guo, K. Chattopadhyay, D. Yu, Pyrometallurgical options for recycling spent lithium-ion batteries: a comprehensive review. J. Power. Sources 491, 229622 (2021). https://doi.org/10.1016/j.jpowsour.2021.229622
- J. Wu, M. Zheng, T. Liu, Y. Wang, Y. Liu et al., Direct recovery: a sustainable recycling technology for spent lithium-ion battery. Energy Storage Mater. 54, 120–134 (2023). https://doi.org/10.1016/j.ensm.2022.09.029
- R.E. Ciez, J.F. Whitacre, Examining different recycling processes for lithium-ion batteries. Nat. Sustain. 2, 148–156 (2019). https://doi.org/10.1038/s41893-019-0222-5
- H. Ji, J. Wang, J. Ma, H.-M. Cheng, G. Zhou, Fundamentals, status and challenges of direct recycling technologies for lithium ion batteries. Chem. Soc. Rev. 52, 8194–8244 (2023). https://doi.org/10.1039/d3cs00254c
- H. Liao, S. Zhao, M. Cai, Y. Dong, F. Huang, Direct conversion of waste battery cathodes to high-volumetric-capacity anodes with assembled secondary-p morphology. Adv. Energy Mater. 13, 2300596 (2023). https://doi.org/10.1002/aenm.202300596
- Y. Lu, K. Peng, L. Zhang, Sustainable recycling of electrode materials in spent Li-ion batteries through direct regeneration processes. ACS EST Eng. 2, 586–605 (2022). https://doi.org/10.1021/acsestengg.1c00425
- E. Fan, J. Lin, X. Zhang, R. Chen, F. Wu et al., Resolving the structural defects of spent Li1−x CoO2 ps to directly reconstruct high voltage performance cathode for lithium-ion batteries. Small Methods 5, e2100672 (2021). https://doi.org/10.1002/smtd.202100672
- Y.-P. Liu, C.-X. Xu, W.-Q. Ren, L.-Y. Hu, W.-B. Fu et al., Self-template synthesis of peapod-like MnO@N-doped hollow carbon nanotubes as an advanced anode for lithium-ion batteries. Rare Met. 42, 929–939 (2023). https://doi.org/10.1007/s12598-022-02203-x
- Y. Li, W. Lv, H. Huang, W. Yan, X. Li et al., Recycling of spent lithium-ion batteries in view of green chemistry. Green Chem. 23, 6139–6171 (2021). https://doi.org/10.1039/d1gc01639c
- C.R. Birkl, M.R. Roberts, E. McTurk, P.G. Bruce, D.A. Howey, Degradation diagnostics for lithium ion cells. J. Power. Sources 341, 373–386 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.011
- Y. Yang, J. Zhang, H. Zhang, Y. Wang, Y. Chen et al., Simultaneous anodic de-lithiation/cathodic lithium-embedded regeneration method for recycling of spent LiFePO4 battery. Energy Storage Mater. 65, 103081 (2024). https://doi.org/10.1016/j.ensm.2023.103081
- Y.Z. Dong, Y.M. Zhao, H. Duan, Crystal structure and lithium electrochemical extraction properties of olivine type LiFePO4. Mater. Chem. Phys. 129, 756–760 (2011). https://doi.org/10.1016/j.matchemphys.2011.04.076
- M. Wang, K. Liu, S. Dutta, D.S. Alessi, J. Rinklebe et al., Recycling of lithium iron phosphate batteries: status, technologies, challenges, and prospects. Renew. Sustain. Energy Rev. 163, 112515 (2022). https://doi.org/10.1016/j.rser.2022.112515
- Y. Xu, B. Zhang, Z. Ge, H. Wang, N. Hong et al., Direct recovery of degraded LiFePO4 cathode via mild chemical relithiation strategy. Chem. Eng. J. 477, 147201 (2023). https://doi.org/10.1016/j.cej.2023.147201
- D. Tang, G. Ji, J. Wang, Z. Liang, W. Chen et al., A multifunctional amino acid enables direct recycling of spent LiFePO4 cathode material. Adv. Mater. 36, e2309722 (2024). https://doi.org/10.1002/adma.202309722
- K. Jia, J. Ma, J. Wang, Z. Liang, G. Ji et al., Long-life regenerated LiFePO4 from spent cathode by elevating the d-band center of Fe. Adv. Mater. 35, e2208034 (2023). https://doi.org/10.1002/adma.202208034
- C. Li, Y. Xie, N. Zhang, L. Ai, Y. Liang et al., Optimization of LiFePO4 cathode material based on phosphorus doped graphite network structure for lithium ion batteries. Ionics 25, 927–937 (2019). https://doi.org/10.1007/s11581-018-2744-7
- P. Xu, Q. Dai, H. Gao, H. Liu, M. Zhang et al., Efficient direct recycling of lithium-ion battery cathodes by targeted healing. Joule 4, 2609–2626 (2020). https://doi.org/10.1016/j.joule.2020.10.008
- Z. Qin, T. Zhang, X. Gao, W. Luo, J. Han et al., Self-reconstruction of highly degraded LiNi0.8Co0.1Mn0.1O2 toward stable single-crystalline cathode. Adv. Mater. 36, e2307091 (2024). https://doi.org/10.1002/adma.202307091
- Z. Qin, Z. Wen, Y. Xu, Z. Zheng, M. Bai et al., A ternary molten salt approach for direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode. Small 18, e2106719 (2022). https://doi.org/10.1002/smll.202106719
- X. He, J. Shen, B. Zhang, Z. Xiao, L. Ye et al., Surface Li+/Ni2+ antisite defects construction for achieving high-voltage stable single-crystal Ni-rich cathode by anion/cation co-doping. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202401300
- Y. Yan, Q. Fang, X. Kuai, S. Zhou, J. Chen et al., One-step surface-to-bulk modification of high-voltage and long-life LiCoO2 cathode with concentration gradient architecture. Adv. Mater. 36, e2308656 (2024). https://doi.org/10.1002/adma.202308656
- Z. Liu, H. Li, M. Han, L. Fang, Z. Fu et al., Upcycling of degraded LiCoO2 cathodes into high-performance lithium-ion batteries via a three-In-one strategy. Adv. Energy Mater. 13, 2302058 (2023). https://doi.org/10.1002/aenm.202302058
- Y.-C. Yin, C. Li, X. Hu, D. Zuo, L. Yang et al., Rapid, direct regeneration of spent LiCoO2 cathodes for Li-ion batteries. ACS Energy Lett. 8, 3005–3012 (2023). https://doi.org/10.1021/acsenergylett.3c00635
- D. Hou, Z. Xu, Z. Yang, C. Kuai, Z. Du et al., Effect of the grain arrangements on the thermal stability of polycrystalline nickel-rich lithium-based battery cathodes. Nat. Commun. 13, 3437 (2022). https://doi.org/10.1038/s41467-022-30935-y
- G.-T. Park, H.-H. Ryu, T.-C. Noh, G.-C. Kang, Y.-K. Sun, Microstructure-optimized concentration-gradient NCM cathode for long-life Li-ion batteries. Mater. Today 52, 9–18 (2022). https://doi.org/10.1016/j.mattod.2021.11.018
- L. de Biasi, B. Schwarz, T. Brezesinski, P. Hartmann, J. Janek et al., Chemical, structural, and electronic aspects of formation and degradation behavior on different length scales of Ni-rich NCM and Li-rich HE-NCM cathode materials in Li-ion batteries. Adv. Mater. 31, e1900985 (2019). https://doi.org/10.1002/adma.201900985
- X. Deng, R. Zhang, K. Zhou, Z. Gao, W. He et al., A comparative investigation of single crystal and polycrystalline Ni-rich NCMs as cathodes for lithium-ion batteries. Energy Environ. Mater. 6, 12331 (2023). https://doi.org/10.1002/eem2.12331
- K. Jia, J. Wang, Z. Zhuang, Z. Piao, M. Zhang et al., Topotactic transformation of surface structure enabling direct regeneration of spent lithium-ion battery cathodes. J. Am. Chem. Soc. 145, 7288–7300 (2023). https://doi.org/10.1021/jacs.2c13151
- D. Liang, J. Wei, Y. Ji, B. Chen, X. Li et al., Improved rate performance of nanoscale cross-linked polyacrylonitrile-surface-modified LiNi0.8Co0.1Mn0.1O2 lithium-ion cathode material with ion and electron transmission channels. Nanoscale 14, 17331–17344 (2022). https://doi.org/10.1039/d2nr04773j
- Y. Zhou, H. Zhang, Y. Wang, T. Wan, P. Guan et al., Relieving stress concentration through anion-cation codoping toward highly stable nickel-rich cathode. ACS Nano 17, 20621–20633 (2023). https://doi.org/10.1021/acsnano.3c07655
- X. Fan, G. Hu, B. Zhang, X. Ou, J. Zhang et al., Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries. Nano Energy 70, 104450 (2020). https://doi.org/10.1016/j.nanoen.2020.104450
- Z. Lin, K. Fan, T. Liu, Z. Xu, G. Chen et al., Mitigating lattice distortion of high-voltage LiCoO2 via core-shell structure induced by cationic heterogeneous co-doping for lithium-ion batteries. Nano-Micro Lett. 16, 48 (2023). https://doi.org/10.1007/s40820-023-01269-1
- S.Y. Xu, X.H. Tan, W.Y. Ding, W.J. Ren, Q. Zhao et al., Promoting surface electric conductivity for high–rate LiCoO2. Angew. Chem. Int. Ed. 62, e202218595 (2023). https://doi.org/10.1002/anie.202218595
- J. Wang, K. Jia, J. Ma, Z. Liang, Z. Zhuang et al., Sustainable upcycling of spent LiCoO2 to an ultra-stable battery cathode at high voltage. Nat. Sustain. 6, 797–805 (2023). https://doi.org/10.1038/s41893-023-01094-9
- N. Qin, Q. Gan, Z. Zhuang, Y. Wang, Y. Li et al., Hierarchical doping engineering with active/inert dual elements stabilizes LiCoO2 to 4.6 V. Adv. Energy Mater. 12, 2201549 (2022). https://doi.org/10.1002/aenm.202201549
- J. Yang, W. Wang, H. Yang, D. Wang, One-pot compositional and structural regeneration of degraded LiCoO2 for directly reusing it as a high-performance lithium-ion battery cathode. Green Chem. 22, 6489–6496 (2020). https://doi.org/10.1039/D0GC02662J
- Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
- C. Qin, Y. Jiang, P. Yan, M. Sui, Revealing the minor Li-ion blocking effect of LiCoO2 surface phase transition layer. J. Power. Sources 460, 228126 (2020). https://doi.org/10.1016/j.jpowsour.2020.228126
- C. Lin, J. Li, Z.-W. Yin, W. Huang, Q. Zhao et al., Structural understanding for high-voltage stabilization of lithium cobalt oxide. Adv. Mater. 36, e2307404 (2024). https://doi.org/10.1002/adma.202307404
- C. Guo, L. He, Y. Yao, W. Lin, Y. Zhang et al., Bifunctional liquid metals allow electrical insulating phase change materials to dual-mode thermal manage the Li-ion batteries. Nano-Micro Lett. 14, 202 (2022). https://doi.org/10.1007/s40820-022-00947-w
- X. Zhong, W. Liu, J. Han, F. Jiao, W. Qin et al., Pretreatment for the recovery of spent lithium ion batteries: theoretical and practical aspects. J. Clean. Prod. 263, 121439 (2020). https://doi.org/10.1016/j.jclepro.2020.121439
- Z. Wang, H. Yang, Y. Li, G. Wang, J. Wang, Thermal runaway and fire behaviors of large-scale lithium ion batteries with different heating methods. J. Hazard. Mater. 379, 120730 (2019). https://doi.org/10.1016/j.jhazmat.2019.06.007
- J. Shaw-Stewart, A. Alvarez-Reguera, A. Greszta, J. Marco, M. Masood et al., Aqueous solution discharge of cylindrical lithium-ion cells. Sustain. Mater. Technol. 22, e00110 (2019). https://doi.org/10.1016/j.susmat.2019.e00110
- S. Ojanen, M. Lundström, A. Santasalo-Aarnio, R. Serna-Guerrero, Challenging the concept of electrochemical discharge using salt solutions for lithium-ion batteries recycling. Waste Manag. 76, 242–249 (2018). https://doi.org/10.1016/j.wasman.2018.03.045
- L. Wu, F.-S. Zhang, Z.-Y. Zhang, C.-C. Zhang, Corrosion behavior and corrosion inhibition performance of spent lithium-ion battery during discharge. Sep. Purif. Technol. 306, 122640 (2023). https://doi.org/10.1016/j.seppur.2022.122640
- Y. Bai, R. Essehli, C.J. Jafta, K.M. Livingston, I. Belharouak, Recovery of cathode materials and aluminum foil using a green solvent. ACS Sustain. Chem. Eng. 9, 6048–6055 (2021). https://doi.org/10.1021/acssuschemeng.1c01293
- Z.Y. Qin, J.Q. Li, T. Zhang, Z.X. Wen, Z.C. Zheng et al., Effective separation of LiNi0.5Co0.2Mn0.3O2 cathode material and Al foil via digestion of PVDF enabling a closed–loop recycle. J. Mater. Chem. A 10, 23905–23914 (2022). https://doi.org/10.1039/d2ta06959h
- X. Zhang, Q. Xue, L. Li, E. Fan, F. Wu et al., Sustainable recycling and regeneration of cathode scraps from industrial production of lithium-ion batteries. ACS Sustain. Chem. Eng. 4, 7041–7049 (2016). https://doi.org/10.1021/acssuschemeng.6b01948
- X. Zhu, C. Zhang, P. Feng, X. Yang, X. Yang, A novel pulsated pneumatic separation with variable-diameter structure and its application in the recycling spent lithium-ion batteries. Waste Manag. 131, 20–30 (2021). https://doi.org/10.1016/j.wasman.2021.05.027
- T. Yang, Y. Lu, L. Li, D. Ge, H. Yang et al., An effective relithiation process for recycling lithium-ion battery cathode materials. Adv. Sustain. Syst. 4, 1900088 (2020). https://doi.org/10.1002/adsu.201900088
- D. Jin, J. Park, M.-H. Ryou, Y.M. Lee, Structure-controlled Li metal electrodes for post-Li-ion batteries: recent progress and perspectives. Adv. Mater. Interfaces 7, 1902113 (2020). https://doi.org/10.1002/admi.201902113
- J.J. Bozell, G.R. Petersen, Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem. 12, 539–554 (2010). https://doi.org/10.1039/B922014C
- O. Buken, K. Mancini, A. Sarkar, A sustainable approach to cathode delamination using a green solvent. RSC Adv. 11, 27356–27368 (2021). https://doi.org/10.1039/d1ra04922d
- Y. Ji, C.T. Jafvert, F. Zhao, Recovery of cathode materials from spent lithium-ion batteries using eutectic system of lithium compounds. Resour. Conserv. Recycl. 170, 105551 (2021). https://doi.org/10.1016/j.resconrec.2021.105551
- X. Chen, S. Li, Y. Wang, Y. Jiang, X. Tan et al., Recycling of LiFePO4 cathode materials from spent lithium-ion batteries through ultrasound-assisted Fenton reaction and lithium compensation. Waste Manag. 136, 67–75 (2021). https://doi.org/10.1016/j.wasman.2021.09.026
- H. Wang, C. Liu, G. Qu, S. Zhou, B. Li et al., Study on pyrolysis pretreatment characteristics of spent lithium-ion batteries. Separations 10, 259 (2023). https://doi.org/10.3390/separations10040259
- Z. Hu, N. Zhu, X. Wei, S. Zhang, F. Li et al., Efficient separation of aluminum foil from mixed-type spent lithium-ion power batteries. J. Environ. Manag. 298, 113500 (2021). https://doi.org/10.1016/j.jenvman.2021.113500
- M.M. Wang, Q.Y. Tan, L.L. Liu, J.H. Li, A facile, environmentally friendly, and low–temperature approach for decomposition of polyvinylidene fluoride from the cathode electrode of spent lithium–ion batteries. ACS Sustain. Chem Eng. 7, 12799–12806 (2019). https://doi.org/10.1021/acssuschemeng.9b01546
- M. Wang, K. Liu, J. Yu, Q. Zhang, Y. Zhang et al., Challenges in recycling spent lithium-ion batteries: spotlight on polyvinylidene fluoride removal. Glob. Chall. 7, 2200237 (2023). https://doi.org/10.1002/gch2.202200237
- H. Wang, J. Liu, X. Bai, S. Wang, D. Yang et al., Separation of the cathode materials from the Al foil in spent lithium-ion batteries by cryogenic grinding. Waste Manag. 91, 89–98 (2019). https://doi.org/10.1016/j.wasman.2019.04.058
- C. Lei, I. Aldous, J.M. Hartley, D.L. Thompson, S. Scott et al., Lithium ion battery recycling using high-intensity ultrasonication. Green Chem. 23, 4710–4715 (2021). https://doi.org/10.1039/d1gc01623g
- C. Xing, H. Da, P. Yang, J. Huang, M. Gan et al., Aluminum impurity from current collectors reactivates degraded NCM cathode materials toward superior electrochemical performance. ACS Nano 17, 3194–3203 (2023). https://doi.org/10.1021/acsnano.3c00270
- Y. Jin, T. Zhang, M. Zhang, Advances in intelligent regeneration of cathode materials for sustainable lithium-ion batteries. Adv. Energy Mater. 12, 2201526 (2022). https://doi.org/10.1002/aenm.202201526
- X. Fan, C. Tan, Y. Li, Z. Chen, Y. Li et al., A green, efficient, closed-loop direct regeneration technology for reconstructing of the LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries. J. Hazard. Mater. 410, 124610 (2021). https://doi.org/10.1016/j.jhazmat.2020.124610
- Q. Zhou, Z. Huang, J. Liu, Y. Zhao, J.C.-Y. Jung et al., A closed-loop regeneration of LiNi0.6Co0.2Mn0.2O2 and graphite from spent batteries via efficient lithium supplementation and structural remodelling. Sustain. Energy Fuels 5, 4981–4991 (2021). https://doi.org/10.1039/D1SE01114F
- X. Tang, Q. Guo, M. Zhou, S. Zhong, Direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries. Chin. J. Chem. Eng. 40, 278–286 (2021). https://doi.org/10.1016/j.cjche.2021.10.012
- C. Qi, S. Wang, X. Zhu, T. Zhang, Y. Gou et al., Environmental-friendly low-cost direct regeneration of cathode material from spent LiFePO4. J. Alloys Compd. 924, 166612 (2022). https://doi.org/10.1016/j.jallcom.2022.166612
- L.Y. Kong, Z. Li, W.H. Zhu, C.R. Ratwani, N. Fernando et al., Sustainable regeneration of high–performance LiCoO2 from completely failed lithium–ion batteries. J. Colloid Interface Sci. 640, 1080–1088 (2023). https://doi.org/10.1016/j.jcis.2023.03.021
- Z. Chi, J. Li, L. Wang, T. Li, Y. Wang et al., Direct regeneration method of spent LiNi1/3Co1/3Mn1/3O2 cathode materials via surface lithium residues. Green Chem. 23, 9099–9108 (2021). https://doi.org/10.1039/d1gc03526f
- G. Ji, J. Wang, Z. Liang, K. Jia, J. Ma et al., Direct regeneration of degraded lithium-ion battery cathodes with a multifunctional organic lithium salt. Nat. Commun. 14, 584 (2023). https://doi.org/10.1038/s41467-023-36197-6
- L. Song, C. Qi, S. Wang, X. Zhu, T. Zhang et al., Direct regeneration of waste LiFePO4 cathode materials with a solid-phase method promoted by activated CNTs. Waste Manag. 157, 141–148 (2023). https://doi.org/10.1016/j.wasman.2022.12.002
- X. Li, J. Zhang, D. Song, J. Song, L. Zhang, Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries. J. Power. Sources 345, 78–84 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.118
- J. Li, Y. Wang, L. Wang, B. Liu, H. Zhou, A facile recycling and regeneration process for spent LiFePO4 batteries. J. Mater. Sci. Mater. Electron. 30, 14580–14588 (2019). https://doi.org/10.1007/s10854-019-01830-y
- Q. Sun, X. Li, H. Zhang, D. Song, X. Shi et al., Resynthesizing LiFePO4/C materials from the recycled cathode via a green full-solid route. J. Alloys Compd. 818, 153292 (2020). https://doi.org/10.1016/j.jallcom.2019.153292
- S. Chen, T. He, Y. Lu, Y. Su, J. Tian et al., Renovation of LiCoO2 with outstanding cycling stability by thermal treatment with Li2CO3 from spent Li-ion batteries. J. Energy Storage 8, 262–273 (2016). https://doi.org/10.1016/j.est.2016.10.008
- J. Li, S. Zhong, D. Xiong, H. Chen, Synthesis and electrochemical performances of LiCoO2 recycled from the incisors bound of Li-ion batteries. Rare Met. 28, 328–332 (2009). https://doi.org/10.1007/s12598-009-0064-9
- J. Wang, J. Ma, K. Jia, Z. Liang, G. Ji et al., Efficient extraction of lithium from anode for direct regeneration of cathode materials of spent Li-ion batteries. ACS Energy Lett. 7, 2816–2824 (2022). https://doi.org/10.1021/acsenergylett.2c01539
- H. Nie, L. Xu, D. Song, J. Song, X. Shi et al., LiCoO2: recycling from spent batteries and regeneration with solid state synthesis. Green Chem. 17, 1276–1280 (2015). https://doi.org/10.1039/C4GC01951B
- S.Y. Zhou, Z.T. Fei, Q. Meng, P. Dong, Y.J. Zhang et al., Collaborative regeneration of structural evolution for high–performance of LiCoO2 materials from spent lithium–ion batteries. ACS Appl. Energy Mater. 4, 12677–12687 (2021). https://doi.org/10.1021/acsaem.1c02396
- Y.Q. Han, Y. You, C. Hou, X. Xiao, Y. Xing et al., Regeneration of single–crystal LiNi0.5Co0.2Mn0.3O2 cathode materials from spent power lithium–ion batteries. J. Electrochem. Soc. 168, 040525 (2021)
- H.Y. Dong, H. Wang, J.L. Qi, J. Wang, W.J. Ji et al., Single–crystal materials regenerated and modified by spent NCM523 as a high–voltage stable cycling cathode material. ACS Sustain. Chem. Eng. 10, 11587–11596 (2022). https://doi.org/10.1021/acssuschemeng.2c03268
- X. Meng, J. Hao, H. Cao, X. Lin, P. Ning et al., Recycling of LiNi1/3Co1/3Mn1/3O2 cathode materials from spent lithium-ion batteries using mechanochemical activation and solid-state sintering. Waste Manag. 84, 54–63 (2019). https://doi.org/10.1016/j.wasman.2018.11.034
- X. Yang, Y.J. Zhang, J. Xiao, Y.Y. Zhang, P. Dong, Q. Meng, M.Y. Zhang, Restoring surface defect crystal of Li–lacking LiNi0.6Co0.2Mn0.2O2 material ms toward more efficient recycling of lithium–ion batteries. ACS Sustain. Chem Eng. 9, 16997–17006 (2021). https://doi.org/10.1021/acssuschemeng.1c05809
- Y. Guo, C. Guo, P. Huang, Q. Han, F. Wang et al., Rejuvenating LiNi0.5Co0.2Mn0.3O2 cathode directly from battery scraps. eScience 3, 100091 (2023). https://doi.org/10.1016/j.esci.2023.100091
- M. Fan, X. Chang, Y.-J. Guo, W.-P. Chen, Y.-X. Yin et al., Increased residual lithium compounds guided design for green recycling of spent lithium-ion cathodes. Energy Environ. Sci. 14, 1461–1468 (2021). https://doi.org/10.1039/d0ee03914d
- H. Gao, Q. Yan, P. Xu, H. Liu, M. Li et al., Efficient direct recycling of degraded LiMn2O4 cathodes by one-step hydrothermal relithiation. ACS Appl. Mater. Interfaces 12, 51546–51554 (2020). https://doi.org/10.1021/acsami.0c15704
- Y. Shi, G. Chen, Z. Chen, Effective regeneration of LiCoO2 from spent lithium-ion batteries: a direct approach towards high-performance active ps. Green Chem. 20, 851–862 (2018). https://doi.org/10.1039/C7GC02831H
- Y. Shi, G. Chen, F. Liu, X. Yue, Z. Chen, Resolving the compositional and structural defects of degraded LiNixCoyMnzO2 ps to directly regenerate high-performance lithium-ion battery cathodes. ACS Energy Lett. 3, 1683–1692 (2018). https://doi.org/10.1021/acsenergylett.8b00833
- P.P. Xu, Z.Z. Yang, X.L. Yu, J. Holoubek, H.P. Gao et al., Design and optimization of the direct recycling of spent Li–ion battery cathode materials. ACS Sustain. Chem Eng. 9, 4543–4553 (2021). https://doi.org/10.1021/acssuschemeng.0c09017
- Q. Jing, J. Zhang, Y. Liu, W. Zhang, Y. Chen et al., Direct regeneration of spent LiFePO4 cathode material by a green and efficient one-step hydrothermal method. ACS Sustain. Chem. Eng. 8, 17622–17628 (2020). https://doi.org/10.1021/acssuschemeng.0c07166
- Y. Liu, H. Yu, Y. Wang, D. Tang, W. Qiu et al., Microwave hydrothermal renovating and reassembling spent lithium cobalt oxide for lithium-ion battery. Waste Manag. 143, 186–194 (2022). https://doi.org/10.1016/j.wasman.2022.02.024
- Y. Wang, H. Yu, Y. Liu, Y. Wang, Z. Chen et al., Sustainable regenerating of high-voltage performance LiCoO2 from spent lithium-ion batteries by interface engineering. Electrochim. Acta 407, 139863 (2022). https://doi.org/10.1016/j.electacta.2022.139863
- N. Zhang, W. Deng, Z. Xu, X. Wang, Upcycling of spent LiCoO2 cathodes via nickel- and manganese-doping. Carbon Energy 5, e231 (2023). https://doi.org/10.1002/cey2.231
- X. Yu, S. Yu, Z. Yang, H. Gao, P. Xu et al., Achieving low-temperature hydrothermal relithiation by redox mediation for direct recycling of spent lithium-ion battery cathodes. Energy Storage Mater. 51, 54–62 (2022). https://doi.org/10.1016/j.ensm.2022.06.017
- V. Gupta, X. Yu, H. Gao, C. Brooks, W. Li et al., Scalable direct recycling of cathode black mass from spent lithium-ion batteries. Adv. Energy Mater. 13, 2203093 (2023). https://doi.org/10.1002/aenm.202203093
- Y. Guo, X. Liao, P. Huang, P. Lou, Y. Su et al., High reversibility of layered oxide cathode enabled by direct re-generation. Energy Storage Mater. 43, 348–357 (2021). https://doi.org/10.1016/j.ensm.2021.09.016
- Y. Shi, M. Zhang, Y.S. Meng, Z. Chen, Ambient-pressure relithiation of degraded LixNi0.5Co0.2Mn0.3O2 (0 < x < 1) via eutectic solutions for direct regeneration of lithium-ion battery cathodes. Adv. Energy Mater. 9, 1900454 (2019). https://doi.org/10.1002/aenm.201900454
- G.H. Jiang, Y.N. Zhang, Q. Meng, Y.J. Zhang, P. Dong et al., Direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode from spent lithium–ion batteries by the molten salts method. ACS Sustain. Chem. Eng. 8, 18138–18147 (2020). https://doi.org/10.1021/acssuschemeng.0c06514
- J. Ma, J.X. Wang, K. Jia, Z. Liang, G.J. Ji et al., Adaptable eutectic salt for the direct recycling of highly degraded layer cathodes. J. Am. Chem. Soc. 144, 20306–20314 (2022). https://doi.org/10.1021/jacs.2c07860
- X. Liu, M. Wang, L. Deng, Y.-J. Cheng, J. Gao et al., Direct regeneration of spent lithium iron phosphate via a low-temperature molten salt process coupled with a reductive environment. Ind. Eng. Chem. Res. 61, 3831–3839 (2022). https://doi.org/10.1021/acs.iecr.1c05034
- Z. Wang, H. Xu, Z. Liu, M. Jin, L. Deng et al., A recrystallization approach to repairing spent LiFePO4 black mass. J. Mater. Chem. A 11, 9057–9065 (2023). https://doi.org/10.1039/D3TA00655G
- L. Liu, Y. Zhang, Y. Zhao, G. Jiang, R. Gong et al., Surface growth and intergranular separation of polycrystalline ps for regeneration of stable single-crystal cathode materials. ACS Appl. Mater. Interfaces 14, 29886–29895 (2022). https://doi.org/10.1021/acsami.2c06351
- H. Yang, B. Deng, X. Jing, W. Li, D. Wang, Direct recovery of degraded LiCoO2 cathode material from spent lithium-ion batteries: Efficient impurity removal toward practical applications. Waste Manag. 129, 85–94 (2021). https://doi.org/10.1016/j.wasman.2021.04.052
- M. Fan, Q. Meng, X. Chang, C.-F. Gu, X.-H. Meng et al., In situ electrochemical regeneration of degraded LiFePO4 electrode with functionalized prelithiation separator. Adv. Energy Mater. 12, 2103630 (2022). https://doi.org/10.1002/aenm.202103630
- T. Wang, X. Yu, M. Fan, Q. Meng, Y. Xiao et al., Direct regeneration of spent LiFePO4 via a graphite prelithiation strategy. Chem. Commun. 56, 245–248 (2020). https://doi.org/10.1039/c9cc08155k
- D. Peng, X. Wang, S. Wang, B. Zhang, X. Lu et al., Efficient regeneration of retired LiFePO4 cathode by combining spontaneous and electrically driven processes. Green Chem. 24, 4544–4556 (2022). https://doi.org/10.1039/D2GC01007K
- L. Zhang, Z. Xu, Z. He, Electrochemical relithiation for direct regeneration of LiCoO2 materials from spent lithium-ion battery electrodes. ACS Sustain. Chem. Eng. 8, 11596–11605 (2020). https://doi.org/10.1021/acssuschemeng.0c02854
- S. Zhou, J. Du, X. Xiong, L. Liu, J. Wang et al., Direct recovery of scrapped LiFePO4 by a green and low-cost electrochemical re-lithiation method. Green Chem. 24, 6278–6286 (2022). https://doi.org/10.1039/d2gc01640k
- Z.Z. Liu, C. Zhang, M.X. Ye, H.M. Li, Z. Fu et al., Closed–loop regeneration of a spent LiFePO4 cathode by integrating oxidative leaching and electrochemical relithiation. ACS Appl Energy Mater. 5, 14323–14334 (2022). https://doi.org/10.1021/acsaem.2c02883
- C. Wu, J. Hu, L. Ye, Z. Su, X. Fang et al., Direct regeneration of spent Li-ion battery cathodes via chemical relithiation reaction. ACS Sustain. Chem. Eng. 9, 16384–16393 (2021). https://doi.org/10.1021/acssuschemeng.1c06278
- Z. Fei, Y. Zhang, Q. Meng, P. Dong, Y. Li et al., The auto-oxidative relithiation of spent cathode materials at low temperature environment for efficient and sustainable regeneration. J. Hazard. Mater. 432, 128664 (2022). https://doi.org/10.1016/j.jhazmat.2022.128664
- J. Wang, Q. Zhang, J. Sheng, Z. Liang, J. Ma et al., Direct and green repairing of degraded LiCoO2 for reuse in lithium-ion batteries. Natl. Sci. Rev. 9, nwac097 (2022). https://doi.org/10.1093/nsr/nwac097
- M.J. Ganter, B.J. Landi, C.W. Babbitt, A. Anctil, G. Gaustad, Cathode refunctionalization as a lithium ion battery recycling alternative. J. Power. Sources 256, 274–280 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.078
- K. Park, J. Yu, J. Coyle, Q. Dai, S. Frisco et al., Direct cathode recycling of end–of–life Li–ion batteries enabled by redox mediation. ACS Sustain. Chem. Eng. 9, 8214–8221 (2021). https://doi.org/10.1021/acssuschemeng.1c02133
- T. Wang, H. Luo, Y. Bai, J. Li, I. Belharouak et al., Direct recycling of spent NCM cathodes through ionothermal lithiation. Adv. Energy Mater. 10, 2001204 (2020). https://doi.org/10.1002/aenm.202001204
- Z. Fei, Y. Su, Q. Meng, P. Dong, Y. Zhang, Direct regeneration of spent cathode materials by deep eutectic solvent. Energy Storage Mater. 60, 102833 (2023). https://doi.org/10.1016/j.ensm.2023.102833
References
A.M. Abdalla, M.F. Abdullah, M.K. Dawood, B. Wei, Y. Subramanian et al., Innovative lithium-ion battery recycling: sustainable process for recovery of critical materials from lithium-ion batteries. J. Energy Storage 67, 107551 (2023). https://doi.org/10.1016/j.est.2023.107551
G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater et al., Recycling lithium-ion batteries from electric vehicles. Nature 575, 75–86 (2019). https://doi.org/10.1038/s41586-019-1682-5
H.-J. Kim, T. Krishna, K. Zeb, V. Rajangam, C.V.V.M. Gopi et al., A comprehensive review of Li-ion battery materials and their recycling techniques. Electronics 9, 1161 (2020). https://doi.org/10.3390/electronics9071161
C. Chen, C.-S. Lee, Y. Tang, Fundamental understanding and optimization strategies for dual-ion batteries: a review. Nano-Micro Lett. 15, 121 (2023). https://doi.org/10.1007/s40820-023-01086-6
K. Chen, Y. Ding, L. Yang, Z. Wang, H. Yu et al., Recycling of spent lithium–ion battery graphite anodes via a targeted repair scheme. Resour. Conserv. Recycl. 201, 107326 (2024). https://doi.org/10.1016/j.resconrec.2023.107326
L. Fu, Y. Hu, X. Lin, Q. Wang, L. Yang et al., Engineering Multi-field-coupled synergistic ion transport system based on the heterogeneous nanofluidic membrane for high-efficient lithium extraction. Nano-Micro Lett. 15, 130 (2023). https://doi.org/10.1007/s40820-023-01106-5
X. Fan, M. Tebyetekerwa, Y. Wu, R.R. Gaddam, X.S. Zhao, Origin of excellent charge storage properties of defective tin disulphide in magnesium/lithium-ion hybrid batteries. Nano-Micro Lett. 14, 177 (2022). https://doi.org/10.1007/s40820-022-00914-5
S. Lei, W. Sun, Y. Yang, Solvent extraction for recycling of spent lithium-ion batteries. J. Hazard. Mater. 424, 127654 (2022). https://doi.org/10.1016/j.jhazmat.2021.127654
J. Piątek, S. Afyon, T.M. Budnyak, S. Budnyk, M.H. Sipponen et al., Sustainable Li-ion batteries: chemistry and recycling. Adv. Energy Mater. 11, 2003456 (2021). https://doi.org/10.1002/aenm.202003456
Y.E. Milian, N. Jamett, C. Cruz, S. Herrera-León, J. Chacana-Olivares, A comprehensive review of emerging technologies for recycling spent lithium-ion batteries. Sci. Total. Environ. 910, 168543 (2024). https://doi.org/10.1016/j.scitotenv.2023.168543
R. Rautela, B.R. Yadav, S. Kumar, A review on technologies for recovery of metals from waste lithium-ion batteries. J. Power. Sources 580, 233428 (2023). https://doi.org/10.1016/j.jpowsour.2023.233428
X. Ma, L. Azhari, Y. Wang, Li-ion battery recycling challenges. Chem 7, 2843–2847 (2021). https://doi.org/10.1016/j.chempr.2021.09.013
P. Li, S. Luo, L. Zhang, Q. Liu, Y. Wang et al., Progress, challenges, and prospects of spent lithium-ion batteries recycling: a review. J. Energy Chem. 89, 144–171 (2024). https://doi.org/10.1016/j.jechem.2023.10.012
J. Ordoñez, E.J. Gago, A. Girard, Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renew. Sustain. Energy Rev. 60, 195–205 (2016). https://doi.org/10.1016/j.rser.2015.12.363
DOE, National blueprint for lithium batteries 2021–2030 (2021)
H. Ali, H.A. Khan, M. Pecht, Preprocessing of spent lithium-ion batteries for recycling: need, methods, and trends. Renew. Sustain. Energy Rev. 168, 112809 (2022). https://doi.org/10.1016/j.rser.2022.112809
B. Zhou, H. Xie, S. Zhou, X. Sheng, L. Chen et al., Construction of AuNPs/reduced graphene nanoribbons co-modified molecularly imprinted electrochemical sensor for the detection of Zearalenone. Food Chem. 423, 136294 (2023). https://doi.org/10.1016/j.foodchem.2023.136294
M. Chen, X. Ma, B. Chen, R. Arsenault, P. Karlson et al., Recycling end-of-life electric vehicle lithium-ion batteries. Joule 3, 2622–2646 (2019). https://doi.org/10.1016/j.joule.2019.09.014
C. Pan, Y. Shen, Pyrometallurgical recycling of spent lithium-ion batteries from conventional roasting to synergistic pyrolysis with organic wastes. J. Energy Chem. 85, 547–561 (2023). https://doi.org/10.1016/j.jechem.2023.06.040
M. Zhou, B. Li, J. Li, Z. Xu, Pyrometallurgical technology in the recycling of a spent lithium ion battery: evolution and the challenge. ACS EST Eng. 1, 1369–1382 (2021). https://doi.org/10.1021/acsestengg.1c00067
X. Li, S. Liu, J. Yang, Z. He, J. Zheng et al., Electrochemical methods contribute to the recycling and regeneration path of lithium-ion batteries. Energy Storage Mater. 55, 606–630 (2023). https://doi.org/10.1016/j.ensm.2022.12.022
Z.J. Baum, R.E. Bird, X. Yu, J. Ma, Lithium-ion battery recycling-overview of techniques and trends. ACS Energy Lett. 7, 712–719 (2022). https://doi.org/10.1021/acsenergylett.1c02602
J.C.-Y. Jung, P.-C. Sui, J. Zhang, A review of recycling spent lithium-ion battery cathode materials using hydrometallurgical treatments. J. Energy Storage 35, 102217 (2021). https://doi.org/10.1016/j.est.2020.102217
Y. Tao, C.D. Rahn, L.A. Archer, F. You, Second life and recycling: energy and environmental sustainability perspectives for high-performance lithium-ion batteries. Sci. Adv. 7, eabi7633 (2021). https://doi.org/10.1126/sciadv.abi7633
E. Mossali, N. Picone, L. Gentilini, O. Rodrìguez, J.M. Pérez et al., Lithium-ion batteries towards circular economy: a literature review of opportunities and issues of recycling treatments. J. Environ. Manag. 264, 110500 (2020). https://doi.org/10.1016/j.jenvman.2020.110500
T. Or, S.W.D. Gourley, K. Kaliyappan, A. Yu, Z. Chen, Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook. Carbon Energy 2, 6–43 (2020). https://doi.org/10.1002/cey2.29
R. Tao, P. Xing, H. Li, Z. Sun, Y. Wu, Recovery of spent LiCoO2 lithium-ion battery via environmentally friendly pyrolysis and hydrometallurgical leaching. Resour. Conserv. Recycl. 176, 105921 (2022). https://doi.org/10.1016/j.resconrec.2021.105921
H. Gao, D. Tran, Z. Chen, Seeking direct cathode regeneration for more efficient lithium-ion battery recycling. Curr. Opin. Electrochem. 31, 100875 (2022). https://doi.org/10.1016/j.coelec.2021.100875
B. Makuza, Q. Tian, X. Guo, K. Chattopadhyay, D. Yu, Pyrometallurgical options for recycling spent lithium-ion batteries: a comprehensive review. J. Power. Sources 491, 229622 (2021). https://doi.org/10.1016/j.jpowsour.2021.229622
J. Wu, M. Zheng, T. Liu, Y. Wang, Y. Liu et al., Direct recovery: a sustainable recycling technology for spent lithium-ion battery. Energy Storage Mater. 54, 120–134 (2023). https://doi.org/10.1016/j.ensm.2022.09.029
R.E. Ciez, J.F. Whitacre, Examining different recycling processes for lithium-ion batteries. Nat. Sustain. 2, 148–156 (2019). https://doi.org/10.1038/s41893-019-0222-5
H. Ji, J. Wang, J. Ma, H.-M. Cheng, G. Zhou, Fundamentals, status and challenges of direct recycling technologies for lithium ion batteries. Chem. Soc. Rev. 52, 8194–8244 (2023). https://doi.org/10.1039/d3cs00254c
H. Liao, S. Zhao, M. Cai, Y. Dong, F. Huang, Direct conversion of waste battery cathodes to high-volumetric-capacity anodes with assembled secondary-p morphology. Adv. Energy Mater. 13, 2300596 (2023). https://doi.org/10.1002/aenm.202300596
Y. Lu, K. Peng, L. Zhang, Sustainable recycling of electrode materials in spent Li-ion batteries through direct regeneration processes. ACS EST Eng. 2, 586–605 (2022). https://doi.org/10.1021/acsestengg.1c00425
E. Fan, J. Lin, X. Zhang, R. Chen, F. Wu et al., Resolving the structural defects of spent Li1−x CoO2 ps to directly reconstruct high voltage performance cathode for lithium-ion batteries. Small Methods 5, e2100672 (2021). https://doi.org/10.1002/smtd.202100672
Y.-P. Liu, C.-X. Xu, W.-Q. Ren, L.-Y. Hu, W.-B. Fu et al., Self-template synthesis of peapod-like MnO@N-doped hollow carbon nanotubes as an advanced anode for lithium-ion batteries. Rare Met. 42, 929–939 (2023). https://doi.org/10.1007/s12598-022-02203-x
Y. Li, W. Lv, H. Huang, W. Yan, X. Li et al., Recycling of spent lithium-ion batteries in view of green chemistry. Green Chem. 23, 6139–6171 (2021). https://doi.org/10.1039/d1gc01639c
C.R. Birkl, M.R. Roberts, E. McTurk, P.G. Bruce, D.A. Howey, Degradation diagnostics for lithium ion cells. J. Power. Sources 341, 373–386 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.011
Y. Yang, J. Zhang, H. Zhang, Y. Wang, Y. Chen et al., Simultaneous anodic de-lithiation/cathodic lithium-embedded regeneration method for recycling of spent LiFePO4 battery. Energy Storage Mater. 65, 103081 (2024). https://doi.org/10.1016/j.ensm.2023.103081
Y.Z. Dong, Y.M. Zhao, H. Duan, Crystal structure and lithium electrochemical extraction properties of olivine type LiFePO4. Mater. Chem. Phys. 129, 756–760 (2011). https://doi.org/10.1016/j.matchemphys.2011.04.076
M. Wang, K. Liu, S. Dutta, D.S. Alessi, J. Rinklebe et al., Recycling of lithium iron phosphate batteries: status, technologies, challenges, and prospects. Renew. Sustain. Energy Rev. 163, 112515 (2022). https://doi.org/10.1016/j.rser.2022.112515
Y. Xu, B. Zhang, Z. Ge, H. Wang, N. Hong et al., Direct recovery of degraded LiFePO4 cathode via mild chemical relithiation strategy. Chem. Eng. J. 477, 147201 (2023). https://doi.org/10.1016/j.cej.2023.147201
D. Tang, G. Ji, J. Wang, Z. Liang, W. Chen et al., A multifunctional amino acid enables direct recycling of spent LiFePO4 cathode material. Adv. Mater. 36, e2309722 (2024). https://doi.org/10.1002/adma.202309722
K. Jia, J. Ma, J. Wang, Z. Liang, G. Ji et al., Long-life regenerated LiFePO4 from spent cathode by elevating the d-band center of Fe. Adv. Mater. 35, e2208034 (2023). https://doi.org/10.1002/adma.202208034
C. Li, Y. Xie, N. Zhang, L. Ai, Y. Liang et al., Optimization of LiFePO4 cathode material based on phosphorus doped graphite network structure for lithium ion batteries. Ionics 25, 927–937 (2019). https://doi.org/10.1007/s11581-018-2744-7
P. Xu, Q. Dai, H. Gao, H. Liu, M. Zhang et al., Efficient direct recycling of lithium-ion battery cathodes by targeted healing. Joule 4, 2609–2626 (2020). https://doi.org/10.1016/j.joule.2020.10.008
Z. Qin, T. Zhang, X. Gao, W. Luo, J. Han et al., Self-reconstruction of highly degraded LiNi0.8Co0.1Mn0.1O2 toward stable single-crystalline cathode. Adv. Mater. 36, e2307091 (2024). https://doi.org/10.1002/adma.202307091
Z. Qin, Z. Wen, Y. Xu, Z. Zheng, M. Bai et al., A ternary molten salt approach for direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode. Small 18, e2106719 (2022). https://doi.org/10.1002/smll.202106719
X. He, J. Shen, B. Zhang, Z. Xiao, L. Ye et al., Surface Li+/Ni2+ antisite defects construction for achieving high-voltage stable single-crystal Ni-rich cathode by anion/cation co-doping. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202401300
Y. Yan, Q. Fang, X. Kuai, S. Zhou, J. Chen et al., One-step surface-to-bulk modification of high-voltage and long-life LiCoO2 cathode with concentration gradient architecture. Adv. Mater. 36, e2308656 (2024). https://doi.org/10.1002/adma.202308656
Z. Liu, H. Li, M. Han, L. Fang, Z. Fu et al., Upcycling of degraded LiCoO2 cathodes into high-performance lithium-ion batteries via a three-In-one strategy. Adv. Energy Mater. 13, 2302058 (2023). https://doi.org/10.1002/aenm.202302058
Y.-C. Yin, C. Li, X. Hu, D. Zuo, L. Yang et al., Rapid, direct regeneration of spent LiCoO2 cathodes for Li-ion batteries. ACS Energy Lett. 8, 3005–3012 (2023). https://doi.org/10.1021/acsenergylett.3c00635
D. Hou, Z. Xu, Z. Yang, C. Kuai, Z. Du et al., Effect of the grain arrangements on the thermal stability of polycrystalline nickel-rich lithium-based battery cathodes. Nat. Commun. 13, 3437 (2022). https://doi.org/10.1038/s41467-022-30935-y
G.-T. Park, H.-H. Ryu, T.-C. Noh, G.-C. Kang, Y.-K. Sun, Microstructure-optimized concentration-gradient NCM cathode for long-life Li-ion batteries. Mater. Today 52, 9–18 (2022). https://doi.org/10.1016/j.mattod.2021.11.018
L. de Biasi, B. Schwarz, T. Brezesinski, P. Hartmann, J. Janek et al., Chemical, structural, and electronic aspects of formation and degradation behavior on different length scales of Ni-rich NCM and Li-rich HE-NCM cathode materials in Li-ion batteries. Adv. Mater. 31, e1900985 (2019). https://doi.org/10.1002/adma.201900985
X. Deng, R. Zhang, K. Zhou, Z. Gao, W. He et al., A comparative investigation of single crystal and polycrystalline Ni-rich NCMs as cathodes for lithium-ion batteries. Energy Environ. Mater. 6, 12331 (2023). https://doi.org/10.1002/eem2.12331
K. Jia, J. Wang, Z. Zhuang, Z. Piao, M. Zhang et al., Topotactic transformation of surface structure enabling direct regeneration of spent lithium-ion battery cathodes. J. Am. Chem. Soc. 145, 7288–7300 (2023). https://doi.org/10.1021/jacs.2c13151
D. Liang, J. Wei, Y. Ji, B. Chen, X. Li et al., Improved rate performance of nanoscale cross-linked polyacrylonitrile-surface-modified LiNi0.8Co0.1Mn0.1O2 lithium-ion cathode material with ion and electron transmission channels. Nanoscale 14, 17331–17344 (2022). https://doi.org/10.1039/d2nr04773j
Y. Zhou, H. Zhang, Y. Wang, T. Wan, P. Guan et al., Relieving stress concentration through anion-cation codoping toward highly stable nickel-rich cathode. ACS Nano 17, 20621–20633 (2023). https://doi.org/10.1021/acsnano.3c07655
X. Fan, G. Hu, B. Zhang, X. Ou, J. Zhang et al., Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries. Nano Energy 70, 104450 (2020). https://doi.org/10.1016/j.nanoen.2020.104450
Z. Lin, K. Fan, T. Liu, Z. Xu, G. Chen et al., Mitigating lattice distortion of high-voltage LiCoO2 via core-shell structure induced by cationic heterogeneous co-doping for lithium-ion batteries. Nano-Micro Lett. 16, 48 (2023). https://doi.org/10.1007/s40820-023-01269-1
S.Y. Xu, X.H. Tan, W.Y. Ding, W.J. Ren, Q. Zhao et al., Promoting surface electric conductivity for high–rate LiCoO2. Angew. Chem. Int. Ed. 62, e202218595 (2023). https://doi.org/10.1002/anie.202218595
J. Wang, K. Jia, J. Ma, Z. Liang, Z. Zhuang et al., Sustainable upcycling of spent LiCoO2 to an ultra-stable battery cathode at high voltage. Nat. Sustain. 6, 797–805 (2023). https://doi.org/10.1038/s41893-023-01094-9
N. Qin, Q. Gan, Z. Zhuang, Y. Wang, Y. Li et al., Hierarchical doping engineering with active/inert dual elements stabilizes LiCoO2 to 4.6 V. Adv. Energy Mater. 12, 2201549 (2022). https://doi.org/10.1002/aenm.202201549
J. Yang, W. Wang, H. Yang, D. Wang, One-pot compositional and structural regeneration of degraded LiCoO2 for directly reusing it as a high-performance lithium-ion battery cathode. Green Chem. 22, 6489–6496 (2020). https://doi.org/10.1039/D0GC02662J
Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
C. Qin, Y. Jiang, P. Yan, M. Sui, Revealing the minor Li-ion blocking effect of LiCoO2 surface phase transition layer. J. Power. Sources 460, 228126 (2020). https://doi.org/10.1016/j.jpowsour.2020.228126
C. Lin, J. Li, Z.-W. Yin, W. Huang, Q. Zhao et al., Structural understanding for high-voltage stabilization of lithium cobalt oxide. Adv. Mater. 36, e2307404 (2024). https://doi.org/10.1002/adma.202307404
C. Guo, L. He, Y. Yao, W. Lin, Y. Zhang et al., Bifunctional liquid metals allow electrical insulating phase change materials to dual-mode thermal manage the Li-ion batteries. Nano-Micro Lett. 14, 202 (2022). https://doi.org/10.1007/s40820-022-00947-w
X. Zhong, W. Liu, J. Han, F. Jiao, W. Qin et al., Pretreatment for the recovery of spent lithium ion batteries: theoretical and practical aspects. J. Clean. Prod. 263, 121439 (2020). https://doi.org/10.1016/j.jclepro.2020.121439
Z. Wang, H. Yang, Y. Li, G. Wang, J. Wang, Thermal runaway and fire behaviors of large-scale lithium ion batteries with different heating methods. J. Hazard. Mater. 379, 120730 (2019). https://doi.org/10.1016/j.jhazmat.2019.06.007
J. Shaw-Stewart, A. Alvarez-Reguera, A. Greszta, J. Marco, M. Masood et al., Aqueous solution discharge of cylindrical lithium-ion cells. Sustain. Mater. Technol. 22, e00110 (2019). https://doi.org/10.1016/j.susmat.2019.e00110
S. Ojanen, M. Lundström, A. Santasalo-Aarnio, R. Serna-Guerrero, Challenging the concept of electrochemical discharge using salt solutions for lithium-ion batteries recycling. Waste Manag. 76, 242–249 (2018). https://doi.org/10.1016/j.wasman.2018.03.045
L. Wu, F.-S. Zhang, Z.-Y. Zhang, C.-C. Zhang, Corrosion behavior and corrosion inhibition performance of spent lithium-ion battery during discharge. Sep. Purif. Technol. 306, 122640 (2023). https://doi.org/10.1016/j.seppur.2022.122640
Y. Bai, R. Essehli, C.J. Jafta, K.M. Livingston, I. Belharouak, Recovery of cathode materials and aluminum foil using a green solvent. ACS Sustain. Chem. Eng. 9, 6048–6055 (2021). https://doi.org/10.1021/acssuschemeng.1c01293
Z.Y. Qin, J.Q. Li, T. Zhang, Z.X. Wen, Z.C. Zheng et al., Effective separation of LiNi0.5Co0.2Mn0.3O2 cathode material and Al foil via digestion of PVDF enabling a closed–loop recycle. J. Mater. Chem. A 10, 23905–23914 (2022). https://doi.org/10.1039/d2ta06959h
X. Zhang, Q. Xue, L. Li, E. Fan, F. Wu et al., Sustainable recycling and regeneration of cathode scraps from industrial production of lithium-ion batteries. ACS Sustain. Chem. Eng. 4, 7041–7049 (2016). https://doi.org/10.1021/acssuschemeng.6b01948
X. Zhu, C. Zhang, P. Feng, X. Yang, X. Yang, A novel pulsated pneumatic separation with variable-diameter structure and its application in the recycling spent lithium-ion batteries. Waste Manag. 131, 20–30 (2021). https://doi.org/10.1016/j.wasman.2021.05.027
T. Yang, Y. Lu, L. Li, D. Ge, H. Yang et al., An effective relithiation process for recycling lithium-ion battery cathode materials. Adv. Sustain. Syst. 4, 1900088 (2020). https://doi.org/10.1002/adsu.201900088
D. Jin, J. Park, M.-H. Ryou, Y.M. Lee, Structure-controlled Li metal electrodes for post-Li-ion batteries: recent progress and perspectives. Adv. Mater. Interfaces 7, 1902113 (2020). https://doi.org/10.1002/admi.201902113
J.J. Bozell, G.R. Petersen, Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem. 12, 539–554 (2010). https://doi.org/10.1039/B922014C
O. Buken, K. Mancini, A. Sarkar, A sustainable approach to cathode delamination using a green solvent. RSC Adv. 11, 27356–27368 (2021). https://doi.org/10.1039/d1ra04922d
Y. Ji, C.T. Jafvert, F. Zhao, Recovery of cathode materials from spent lithium-ion batteries using eutectic system of lithium compounds. Resour. Conserv. Recycl. 170, 105551 (2021). https://doi.org/10.1016/j.resconrec.2021.105551
X. Chen, S. Li, Y. Wang, Y. Jiang, X. Tan et al., Recycling of LiFePO4 cathode materials from spent lithium-ion batteries through ultrasound-assisted Fenton reaction and lithium compensation. Waste Manag. 136, 67–75 (2021). https://doi.org/10.1016/j.wasman.2021.09.026
H. Wang, C. Liu, G. Qu, S. Zhou, B. Li et al., Study on pyrolysis pretreatment characteristics of spent lithium-ion batteries. Separations 10, 259 (2023). https://doi.org/10.3390/separations10040259
Z. Hu, N. Zhu, X. Wei, S. Zhang, F. Li et al., Efficient separation of aluminum foil from mixed-type spent lithium-ion power batteries. J. Environ. Manag. 298, 113500 (2021). https://doi.org/10.1016/j.jenvman.2021.113500
M.M. Wang, Q.Y. Tan, L.L. Liu, J.H. Li, A facile, environmentally friendly, and low–temperature approach for decomposition of polyvinylidene fluoride from the cathode electrode of spent lithium–ion batteries. ACS Sustain. Chem Eng. 7, 12799–12806 (2019). https://doi.org/10.1021/acssuschemeng.9b01546
M. Wang, K. Liu, J. Yu, Q. Zhang, Y. Zhang et al., Challenges in recycling spent lithium-ion batteries: spotlight on polyvinylidene fluoride removal. Glob. Chall. 7, 2200237 (2023). https://doi.org/10.1002/gch2.202200237
H. Wang, J. Liu, X. Bai, S. Wang, D. Yang et al., Separation of the cathode materials from the Al foil in spent lithium-ion batteries by cryogenic grinding. Waste Manag. 91, 89–98 (2019). https://doi.org/10.1016/j.wasman.2019.04.058
C. Lei, I. Aldous, J.M. Hartley, D.L. Thompson, S. Scott et al., Lithium ion battery recycling using high-intensity ultrasonication. Green Chem. 23, 4710–4715 (2021). https://doi.org/10.1039/d1gc01623g
C. Xing, H. Da, P. Yang, J. Huang, M. Gan et al., Aluminum impurity from current collectors reactivates degraded NCM cathode materials toward superior electrochemical performance. ACS Nano 17, 3194–3203 (2023). https://doi.org/10.1021/acsnano.3c00270
Y. Jin, T. Zhang, M. Zhang, Advances in intelligent regeneration of cathode materials for sustainable lithium-ion batteries. Adv. Energy Mater. 12, 2201526 (2022). https://doi.org/10.1002/aenm.202201526
X. Fan, C. Tan, Y. Li, Z. Chen, Y. Li et al., A green, efficient, closed-loop direct regeneration technology for reconstructing of the LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries. J. Hazard. Mater. 410, 124610 (2021). https://doi.org/10.1016/j.jhazmat.2020.124610
Q. Zhou, Z. Huang, J. Liu, Y. Zhao, J.C.-Y. Jung et al., A closed-loop regeneration of LiNi0.6Co0.2Mn0.2O2 and graphite from spent batteries via efficient lithium supplementation and structural remodelling. Sustain. Energy Fuels 5, 4981–4991 (2021). https://doi.org/10.1039/D1SE01114F
X. Tang, Q. Guo, M. Zhou, S. Zhong, Direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries. Chin. J. Chem. Eng. 40, 278–286 (2021). https://doi.org/10.1016/j.cjche.2021.10.012
C. Qi, S. Wang, X. Zhu, T. Zhang, Y. Gou et al., Environmental-friendly low-cost direct regeneration of cathode material from spent LiFePO4. J. Alloys Compd. 924, 166612 (2022). https://doi.org/10.1016/j.jallcom.2022.166612
L.Y. Kong, Z. Li, W.H. Zhu, C.R. Ratwani, N. Fernando et al., Sustainable regeneration of high–performance LiCoO2 from completely failed lithium–ion batteries. J. Colloid Interface Sci. 640, 1080–1088 (2023). https://doi.org/10.1016/j.jcis.2023.03.021
Z. Chi, J. Li, L. Wang, T. Li, Y. Wang et al., Direct regeneration method of spent LiNi1/3Co1/3Mn1/3O2 cathode materials via surface lithium residues. Green Chem. 23, 9099–9108 (2021). https://doi.org/10.1039/d1gc03526f
G. Ji, J. Wang, Z. Liang, K. Jia, J. Ma et al., Direct regeneration of degraded lithium-ion battery cathodes with a multifunctional organic lithium salt. Nat. Commun. 14, 584 (2023). https://doi.org/10.1038/s41467-023-36197-6
L. Song, C. Qi, S. Wang, X. Zhu, T. Zhang et al., Direct regeneration of waste LiFePO4 cathode materials with a solid-phase method promoted by activated CNTs. Waste Manag. 157, 141–148 (2023). https://doi.org/10.1016/j.wasman.2022.12.002
X. Li, J. Zhang, D. Song, J. Song, L. Zhang, Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries. J. Power. Sources 345, 78–84 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.118
J. Li, Y. Wang, L. Wang, B. Liu, H. Zhou, A facile recycling and regeneration process for spent LiFePO4 batteries. J. Mater. Sci. Mater. Electron. 30, 14580–14588 (2019). https://doi.org/10.1007/s10854-019-01830-y
Q. Sun, X. Li, H. Zhang, D. Song, X. Shi et al., Resynthesizing LiFePO4/C materials from the recycled cathode via a green full-solid route. J. Alloys Compd. 818, 153292 (2020). https://doi.org/10.1016/j.jallcom.2019.153292
S. Chen, T. He, Y. Lu, Y. Su, J. Tian et al., Renovation of LiCoO2 with outstanding cycling stability by thermal treatment with Li2CO3 from spent Li-ion batteries. J. Energy Storage 8, 262–273 (2016). https://doi.org/10.1016/j.est.2016.10.008
J. Li, S. Zhong, D. Xiong, H. Chen, Synthesis and electrochemical performances of LiCoO2 recycled from the incisors bound of Li-ion batteries. Rare Met. 28, 328–332 (2009). https://doi.org/10.1007/s12598-009-0064-9
J. Wang, J. Ma, K. Jia, Z. Liang, G. Ji et al., Efficient extraction of lithium from anode for direct regeneration of cathode materials of spent Li-ion batteries. ACS Energy Lett. 7, 2816–2824 (2022). https://doi.org/10.1021/acsenergylett.2c01539
H. Nie, L. Xu, D. Song, J. Song, X. Shi et al., LiCoO2: recycling from spent batteries and regeneration with solid state synthesis. Green Chem. 17, 1276–1280 (2015). https://doi.org/10.1039/C4GC01951B
S.Y. Zhou, Z.T. Fei, Q. Meng, P. Dong, Y.J. Zhang et al., Collaborative regeneration of structural evolution for high–performance of LiCoO2 materials from spent lithium–ion batteries. ACS Appl. Energy Mater. 4, 12677–12687 (2021). https://doi.org/10.1021/acsaem.1c02396
Y.Q. Han, Y. You, C. Hou, X. Xiao, Y. Xing et al., Regeneration of single–crystal LiNi0.5Co0.2Mn0.3O2 cathode materials from spent power lithium–ion batteries. J. Electrochem. Soc. 168, 040525 (2021)
H.Y. Dong, H. Wang, J.L. Qi, J. Wang, W.J. Ji et al., Single–crystal materials regenerated and modified by spent NCM523 as a high–voltage stable cycling cathode material. ACS Sustain. Chem. Eng. 10, 11587–11596 (2022). https://doi.org/10.1021/acssuschemeng.2c03268
X. Meng, J. Hao, H. Cao, X. Lin, P. Ning et al., Recycling of LiNi1/3Co1/3Mn1/3O2 cathode materials from spent lithium-ion batteries using mechanochemical activation and solid-state sintering. Waste Manag. 84, 54–63 (2019). https://doi.org/10.1016/j.wasman.2018.11.034
X. Yang, Y.J. Zhang, J. Xiao, Y.Y. Zhang, P. Dong, Q. Meng, M.Y. Zhang, Restoring surface defect crystal of Li–lacking LiNi0.6Co0.2Mn0.2O2 material ms toward more efficient recycling of lithium–ion batteries. ACS Sustain. Chem Eng. 9, 16997–17006 (2021). https://doi.org/10.1021/acssuschemeng.1c05809
Y. Guo, C. Guo, P. Huang, Q. Han, F. Wang et al., Rejuvenating LiNi0.5Co0.2Mn0.3O2 cathode directly from battery scraps. eScience 3, 100091 (2023). https://doi.org/10.1016/j.esci.2023.100091
M. Fan, X. Chang, Y.-J. Guo, W.-P. Chen, Y.-X. Yin et al., Increased residual lithium compounds guided design for green recycling of spent lithium-ion cathodes. Energy Environ. Sci. 14, 1461–1468 (2021). https://doi.org/10.1039/d0ee03914d
H. Gao, Q. Yan, P. Xu, H. Liu, M. Li et al., Efficient direct recycling of degraded LiMn2O4 cathodes by one-step hydrothermal relithiation. ACS Appl. Mater. Interfaces 12, 51546–51554 (2020). https://doi.org/10.1021/acsami.0c15704
Y. Shi, G. Chen, Z. Chen, Effective regeneration of LiCoO2 from spent lithium-ion batteries: a direct approach towards high-performance active ps. Green Chem. 20, 851–862 (2018). https://doi.org/10.1039/C7GC02831H
Y. Shi, G. Chen, F. Liu, X. Yue, Z. Chen, Resolving the compositional and structural defects of degraded LiNixCoyMnzO2 ps to directly regenerate high-performance lithium-ion battery cathodes. ACS Energy Lett. 3, 1683–1692 (2018). https://doi.org/10.1021/acsenergylett.8b00833
P.P. Xu, Z.Z. Yang, X.L. Yu, J. Holoubek, H.P. Gao et al., Design and optimization of the direct recycling of spent Li–ion battery cathode materials. ACS Sustain. Chem Eng. 9, 4543–4553 (2021). https://doi.org/10.1021/acssuschemeng.0c09017
Q. Jing, J. Zhang, Y. Liu, W. Zhang, Y. Chen et al., Direct regeneration of spent LiFePO4 cathode material by a green and efficient one-step hydrothermal method. ACS Sustain. Chem. Eng. 8, 17622–17628 (2020). https://doi.org/10.1021/acssuschemeng.0c07166
Y. Liu, H. Yu, Y. Wang, D. Tang, W. Qiu et al., Microwave hydrothermal renovating and reassembling spent lithium cobalt oxide for lithium-ion battery. Waste Manag. 143, 186–194 (2022). https://doi.org/10.1016/j.wasman.2022.02.024
Y. Wang, H. Yu, Y. Liu, Y. Wang, Z. Chen et al., Sustainable regenerating of high-voltage performance LiCoO2 from spent lithium-ion batteries by interface engineering. Electrochim. Acta 407, 139863 (2022). https://doi.org/10.1016/j.electacta.2022.139863
N. Zhang, W. Deng, Z. Xu, X. Wang, Upcycling of spent LiCoO2 cathodes via nickel- and manganese-doping. Carbon Energy 5, e231 (2023). https://doi.org/10.1002/cey2.231
X. Yu, S. Yu, Z. Yang, H. Gao, P. Xu et al., Achieving low-temperature hydrothermal relithiation by redox mediation for direct recycling of spent lithium-ion battery cathodes. Energy Storage Mater. 51, 54–62 (2022). https://doi.org/10.1016/j.ensm.2022.06.017
V. Gupta, X. Yu, H. Gao, C. Brooks, W. Li et al., Scalable direct recycling of cathode black mass from spent lithium-ion batteries. Adv. Energy Mater. 13, 2203093 (2023). https://doi.org/10.1002/aenm.202203093
Y. Guo, X. Liao, P. Huang, P. Lou, Y. Su et al., High reversibility of layered oxide cathode enabled by direct re-generation. Energy Storage Mater. 43, 348–357 (2021). https://doi.org/10.1016/j.ensm.2021.09.016
Y. Shi, M. Zhang, Y.S. Meng, Z. Chen, Ambient-pressure relithiation of degraded LixNi0.5Co0.2Mn0.3O2 (0 < x < 1) via eutectic solutions for direct regeneration of lithium-ion battery cathodes. Adv. Energy Mater. 9, 1900454 (2019). https://doi.org/10.1002/aenm.201900454
G.H. Jiang, Y.N. Zhang, Q. Meng, Y.J. Zhang, P. Dong et al., Direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode from spent lithium–ion batteries by the molten salts method. ACS Sustain. Chem. Eng. 8, 18138–18147 (2020). https://doi.org/10.1021/acssuschemeng.0c06514
J. Ma, J.X. Wang, K. Jia, Z. Liang, G.J. Ji et al., Adaptable eutectic salt for the direct recycling of highly degraded layer cathodes. J. Am. Chem. Soc. 144, 20306–20314 (2022). https://doi.org/10.1021/jacs.2c07860
X. Liu, M. Wang, L. Deng, Y.-J. Cheng, J. Gao et al., Direct regeneration of spent lithium iron phosphate via a low-temperature molten salt process coupled with a reductive environment. Ind. Eng. Chem. Res. 61, 3831–3839 (2022). https://doi.org/10.1021/acs.iecr.1c05034
Z. Wang, H. Xu, Z. Liu, M. Jin, L. Deng et al., A recrystallization approach to repairing spent LiFePO4 black mass. J. Mater. Chem. A 11, 9057–9065 (2023). https://doi.org/10.1039/D3TA00655G
L. Liu, Y. Zhang, Y. Zhao, G. Jiang, R. Gong et al., Surface growth and intergranular separation of polycrystalline ps for regeneration of stable single-crystal cathode materials. ACS Appl. Mater. Interfaces 14, 29886–29895 (2022). https://doi.org/10.1021/acsami.2c06351
H. Yang, B. Deng, X. Jing, W. Li, D. Wang, Direct recovery of degraded LiCoO2 cathode material from spent lithium-ion batteries: Efficient impurity removal toward practical applications. Waste Manag. 129, 85–94 (2021). https://doi.org/10.1016/j.wasman.2021.04.052
M. Fan, Q. Meng, X. Chang, C.-F. Gu, X.-H. Meng et al., In situ electrochemical regeneration of degraded LiFePO4 electrode with functionalized prelithiation separator. Adv. Energy Mater. 12, 2103630 (2022). https://doi.org/10.1002/aenm.202103630
T. Wang, X. Yu, M. Fan, Q. Meng, Y. Xiao et al., Direct regeneration of spent LiFePO4 via a graphite prelithiation strategy. Chem. Commun. 56, 245–248 (2020). https://doi.org/10.1039/c9cc08155k
D. Peng, X. Wang, S. Wang, B. Zhang, X. Lu et al., Efficient regeneration of retired LiFePO4 cathode by combining spontaneous and electrically driven processes. Green Chem. 24, 4544–4556 (2022). https://doi.org/10.1039/D2GC01007K
L. Zhang, Z. Xu, Z. He, Electrochemical relithiation for direct regeneration of LiCoO2 materials from spent lithium-ion battery electrodes. ACS Sustain. Chem. Eng. 8, 11596–11605 (2020). https://doi.org/10.1021/acssuschemeng.0c02854
S. Zhou, J. Du, X. Xiong, L. Liu, J. Wang et al., Direct recovery of scrapped LiFePO4 by a green and low-cost electrochemical re-lithiation method. Green Chem. 24, 6278–6286 (2022). https://doi.org/10.1039/d2gc01640k
Z.Z. Liu, C. Zhang, M.X. Ye, H.M. Li, Z. Fu et al., Closed–loop regeneration of a spent LiFePO4 cathode by integrating oxidative leaching and electrochemical relithiation. ACS Appl Energy Mater. 5, 14323–14334 (2022). https://doi.org/10.1021/acsaem.2c02883
C. Wu, J. Hu, L. Ye, Z. Su, X. Fang et al., Direct regeneration of spent Li-ion battery cathodes via chemical relithiation reaction. ACS Sustain. Chem. Eng. 9, 16384–16393 (2021). https://doi.org/10.1021/acssuschemeng.1c06278
Z. Fei, Y. Zhang, Q. Meng, P. Dong, Y. Li et al., The auto-oxidative relithiation of spent cathode materials at low temperature environment for efficient and sustainable regeneration. J. Hazard. Mater. 432, 128664 (2022). https://doi.org/10.1016/j.jhazmat.2022.128664
J. Wang, Q. Zhang, J. Sheng, Z. Liang, J. Ma et al., Direct and green repairing of degraded LiCoO2 for reuse in lithium-ion batteries. Natl. Sci. Rev. 9, nwac097 (2022). https://doi.org/10.1093/nsr/nwac097
M.J. Ganter, B.J. Landi, C.W. Babbitt, A. Anctil, G. Gaustad, Cathode refunctionalization as a lithium ion battery recycling alternative. J. Power. Sources 256, 274–280 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.078
K. Park, J. Yu, J. Coyle, Q. Dai, S. Frisco et al., Direct cathode recycling of end–of–life Li–ion batteries enabled by redox mediation. ACS Sustain. Chem. Eng. 9, 8214–8221 (2021). https://doi.org/10.1021/acssuschemeng.1c02133
T. Wang, H. Luo, Y. Bai, J. Li, I. Belharouak et al., Direct recycling of spent NCM cathodes through ionothermal lithiation. Adv. Energy Mater. 10, 2001204 (2020). https://doi.org/10.1002/aenm.202001204
Z. Fei, Y. Su, Q. Meng, P. Dong, Y. Zhang, Direct regeneration of spent cathode materials by deep eutectic solvent. Energy Storage Mater. 60, 102833 (2023). https://doi.org/10.1016/j.ensm.2023.102833