Construction of Electrocatalytic and Heat-Resistant Self-Supporting Electrodes for High-Performance Lithium–Sulfur Batteries
Corresponding Author: Hao Wu
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 78
Abstract
Boosting the utilization efficiency of sulfur electrodes and suppressing the “shuttle effect” of intermediate polysulfides remain the critical challenge for high-performance lithium–sulfur batteries (LSBs). However, most of reported sulfur electrodes are not competent to realize the fast conversion of polysulfides into insoluble lithium sulfides when applied with high sulfur loading, as well as to mitigate the more serious shuttle effect of polysulfides, especially when worked at an elevated temperature. Herein, we reported a unique structural engineering strategy of crafting a unique hierarchical multifunctional electrode architecture constructed by rooting MOF-derived CoS2/carbon nanoleaf arrays (CoS2–CNA) into a nitrogen-rich 3D conductive scaffold (CTNF@CoS2–CNA) for LSBs. An accelerated electrocatalytic effect and improved polysulfide redox kinetics arising from CoS2–CNA were investigated. Besides, the strong capillarity effect and chemisorption of CTNF@CoS2–CNA to polysulfides enable high loading and efficient utilization of sulfur, thus leading to high-performance LIBs performed not only at room temperature but also up to an elevated temperature (55 °C). Even with the ultrahigh sulfur loading of 7.19 mg cm−2, the CTNF@CoS2–CNA/S cathode still exhibits high rate capacity at 55 °C.
Highlights:
1 Flexible hierarchical electrode architecture was constructed by rooting MOF-derived CoS2/carbon nanoleaf arrays into a nitrogen-rich 3D conductive scaffold.
2 An accelerated electrocatalytic effect and improved polysulfide redox kinetics arising from the structure advantages were investigated.
3 As-prepared composite delivers a significantly improved electrochemical performance not only at room temperature but also at elevated temperature.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Wei, H. Chen, H. Jiang, B. Wang, H. Liu, Y. Zhang, H. Wu, Biotemplate-based engineering of high-temperature stable anatase TiO2 nanofiber bundles with impregnated CeO2 nanocrystals for enhanced lithium storage. ACS Sustain. Chem. Eng. 7, 7823–7832 (2019). https://doi.org/10.1021/acssuschemeng.9b00012
- N. Wu, X. Qiao, J. Shen, G. Liu, T. Sun et al., Anatase inverse opal TiO2−x@N-doped C induced the dominant pseudocapacitive effect for durable and fast lithium/sodium storage. Electrochim. Acta 299, 540–548 (2019). https://doi.org/10.1016/j.electacta.2019.01.040
- Y. Zhang, P. Chen, X. Gao, B. Wang, H. Liu et al., Nitrogen-doped graphene ribbon assembled core-sheath MnO@graphene scrolls as hierarchically ordered 3D porous electrodes for fast and durable lithium storage. Adv. Funct. Mater. 26(43), 7754–7765 (2016). https://doi.org/10.1002/adfm.201603716
- X. Gao, B. Wang, Y. Zhang, H. Liu, H. Liu, H. Wu, S. Dou, Graphene-scroll-sheathed α-MnS coaxial nanocables embedded in N, S Co-doped graphene foam as 3D hierarchically ordered electrodes for enhanced lithium storage. Energy Storage Mater. 16, 46–55 (2019). https://doi.org/10.1016/j.ensm.2018.04.027
- L. Huang, J. Cheng, X. Li, D. Yuan, W. Ni et al., Sulfur quantum dots wrapped by conductive polymer shell with internal void spaces for high-performance lithium–sulfur batteries. J. Mater. Chem. A 3(7), 4049–4057 (2015). https://doi.org/10.1039/C4TA06609J
- X. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8(6), 500–506 (2009). https://doi.org/10.1038/nmat2460
- G. Zheng, Y. Yang, J.J. Cha, S.S. Hong, Y. Cui, Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 11(10), 4462–4467 (2011). https://doi.org/10.1021/nl2027684
- G. Jiang, N. Zheng, X. Chen, G. Ding, Y. Li, F. Sun, Y. Li, In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li–S batteries. Chem. Eng. J. 373, 1309–1318 (2019). https://doi.org/10.1016/j.cej.2019.05.119
- M.R. Kaiser, S. Chou, H.K. Liu, S.X. Dou, C. Wang, J. Wang, Structure–property relationships of organic electrolytes and their effects on Li/S battery performance. Adv. Mater. 29(48), 1700449 (2017). https://doi.org/10.1002/adma.201700449
- R. Fang, G. Li, S. Zhao, L. Yin, K. Du et al., Single-wall carbon nanotube network enabled ultrahigh sulfur-content electrodes for high-performance lithium–sulfur batteries. Nano Energy 42, 205–214 (2017). https://doi.org/10.1016/j.nanoen.2017.10.053
- Z. Wang, J. Shen, J. Liu, X. Xu, Z. Liu et al., Self-supported and flexible sulfur cathode enabled via synergistic confinement for high-energy-density lithium–sulfur batteries. Adv. Mater. 31(33), e1902228 (2019). https://doi.org/10.1002/adma.201902228
- J. Sun, Y. Sun, M. Pasta, G. Zhou, Y. Li, W. Liu, F. Xiong, Y. Cui, Entrapment of polysulfides by a black-phosphorus-modified separator for lithium–sulfur batteries. Adv. Mater. 28(44), 9797–9803 (2016). https://doi.org/10.1002/adma.201602172
- Y. Guo, G. Zhao, N. Wu, Y. Zhang, M. Xiang, B. Wang, H. Liu, H. Wu, Efficient synthesis of graphene nanoscrolls for fabricating sulfur-loaded cathode and flexible hybrid interlayer toward high-performance Li–S batteries. ACS Appl. Mater. Interfaces 8(50), 34185–34193 (2016). https://doi.org/10.1021/acsami.6b13455
- X. Ji, L.F. Nazar, Advances in Li–S batteries. J. Mater. Chem. 20(44), 9821–9826 (2010). https://doi.org/10.1039/b925751a
- M. Yu, S. Zhou, Z. Wang, Y. Wang, N. Zhang, S. Wang, J. Zhao, J. Qiu, Accelerating polysulfide redox conversion on bifunctional electrocatalytic electrode for stable Li–S batteries. Energy Storage Mater. 20, 98–107 (2018). https://doi.org/10.1016/j.ensm.2018.11.028
- Y. Pan, Y. Zhou, Q. Zhao, Y. Dou, S. Chou et al., Introducing ion-transport-regulating nanochannels to lithium–sulfur batteries. Nano Energy 33, 205–212 (2017). https://doi.org/10.1016/j.nanoen.2017.01.025
- D.R. Deng, F. Xue, Y.J. Jia, J.C. Ye, C.D. Bai, M.S. Zheng, Q.F. Dong, Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium–sulfur batteries. ACS Nano 11(6), 6031–6039 (2017). https://doi.org/10.1021/acsnano.7b01945
- Y. Guo, Y. Zhang, Y. Zhang, M. Xiang, H. Wu, H. Liu, S. Dou, Interwoven V2O5 nanowire/graphene nanoscroll hybrid assembled as efficient polysulfide-trapping-conversion interlayer for long-life lithium–sulfur batteries. J. Mater. Chem. A 6(40), 19358–19370 (2018). https://doi.org/10.1039/C8TA06610H
- H.J. Peng, J.Q. Huang, M.Q. Zhao, Q. Zhang, X.B. Cheng, X.Y. Liu, W.Z. Qian, F. Wei, Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium–sulfur batteries. Adv. Funct. Mater. 24(19), 2772–2781 (2014). https://doi.org/10.1002/adfm.201303296
- M. Xiang, Y. Wang, J. Wu, Y. Guo, H. Wu, Y. Zhang, H. Liu, Natural silk cocoon derived nitrogen-doped porous carbon nanosheets for high performance lithium–sulfur batteries. Electrochim. Acta 227, 7–16 (2017). https://doi.org/10.1016/j.electacta.2016.11.139
- J. Schuster, G. He, B. Mandlmeier, T. Yim, K.T. Lee, T. Bein, L.F. Nazar, Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. Angew. Chem. Int. Ed. 51(15), 3591–3595 (2012). https://doi.org/10.1002/anie.201107817
- H. Xu, Y. Liu, Q. Bai, R. Wu, Discarded cigarette filter-derived hierarchically porous carbon@graphene composites for lithium–sulfur batteries. J. Mater. Chem. A 7(8), 3558–3562 (2019). https://doi.org/10.1039/C8TA11615F
- Z. Wei Seh, W. Li, J.J. Cha, G. Zheng, Y. Yang, M.T. McDowell, P.C. Hsu, Y. Cui, Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat. Commun. 4, 1331 (2013). https://doi.org/10.1038/ncomms2327
- C. Zha, F. Yang, J. Zhang, T. Zhang, S. Dong, H. Chen, Promoting polysulfide redox reactions and improving electronic conductivity in lithium–sulfur batteries via hierarchical cathode materials of graphene-wrapped porous TiO2 microspheres with exposed (001) facets. J. Mater. Chem. A 6, 16574–16582 (2018). https://doi.org/10.1039/C8TA05573D
- W.Z. Yingze Song, N. Wei, L. Zhang, F. Ding, Z. Liu, J. Sun, In-situ PECVD-enabled graphene–V2O3 hybrid host for lithium–sulfur batteries. Nano Energy 543, 432–439 (2018). https://doi.org/10.1016/j.nanoen.2018.09.002
- S. Wang, J. Liao, X. Yang, J. Liang, Q. Sun et al., Designing a highly efficient polysulfide conversion catalyst with paramontroseite for high-performance and long-life lithium–sulfur batteries. Nano Energy 57, 230–240 (2018). https://doi.org/10.1016/j.nanoen.2018.12.020
- W. Kong, L. Yan, Y. Luo, D. Wang, K. Jiang, Q. Li, S. Fan, J. Wang, Ultrathin MnO2/graphene oxide/carbon nanotube interlayer as efficient polysulfide-trapping shield for high-performance Li–S batteries. Adv. Funct. Mater. 27(18), 1606663 (2017). https://doi.org/10.1002/adfm.201606663
- L. Ma, W. Zhang, L. Wang, Y. Hu, G. Zhu et al., Strong capillarity, chemisorption, and electrocatalytic capability of crisscrossed nanostraws enabled flexible, high-rate, and long-cycling lithium–sulfur batteries. ACS Nano 12(5), 4868–4876 (2018). https://doi.org/10.1021/acsnano.8b01763
- C. Dai, J.-M. Lim, M. Wang, L. Hu, Y. Chen et al., Honeycomb-like spherical cathode host constructed from hollow metallic and polar Co9S8 tubules for advanced lithium–sulfur batteries. Adv. Funct. Mater. 28(14), 1704443 (2018). https://doi.org/10.1002/adfm.201704443
- L. Luo, S.-H. Chung, A. Manthiram, Rational design of a dual-function hybrid cathode substrate for lithium–sulfur batteries. Adv. Energy Mater. 8, 1801014 (2018). https://doi.org/10.1002/aenm.201801014
- T. Lei, W. Chen, J. Huang, C. Yan, H. Sun et al., Multi-functional layered WS2 nanosheets for enhancing the performance of lithium–sulfur batteries. Adv. Energy Mater. 7(4), 1601843 (2017). https://doi.org/10.1002/aenm.201601843
- M. Zhao, H.J. Peng, Z.W. Zhang, B.Q. Li, X. Chen et al., Activating inert metallic compounds for high-rate lithium–sulfur batteries through in situ etching of extrinsic metal. Angew. Chem. Int. Ed. 131(12), 3819–3823 (2018). https://doi.org/10.1002/ange.201812062
- Z.-W. Zhang, H.-J. Peng, M. Zhao, J.-Q. Huang, Heterogeneous/homogeneous mediators for high-energy-density lithium–sulfur batteries: progress and prospects. Adv. Funct. Mater. 28(38), 1707536 (2018). https://doi.org/10.1002/adfm.201707536
- M. Zhao, H.J. Peng, J.Y. Wei, J.Q. Huang, B.Q. Li, H. Yuan, Q. Zhang, dictating high-capacity lithium–sulfur batteries through redox-mediated lithium sulfide growth. Small Methods 3(6), 1900344 (2019). https://doi.org/10.1002/smtd.201900344
- C. Guan, W. Zhao, Y. Hu, Z. Lai, X. Li et al., Cobalt oxide and N-doped carbon nanosheets derived from a single two-dimensional metal-organic framework precursor and their application in flexible asymmetric supercapacitors. Nanoscale Horizons 2(2), 99–105 (2017). https://doi.org/10.1039/C6NH00224B
- Y. Zhong, X. Xia, S. Deng, D. Xie, S. Shen et al., Spore carbon from Aspergillus oryzae for advanced electrochemical energy storage. Adv. Mater. 30(46), 1805165 (2018). https://doi.org/10.1002/adma.201805165
- M. Xiang, H. Wu, H. Liu, J. Huang, Y. Zheng et al., A flexible 3D multifunctional MgO-decorated carbon foam@CNTs hybrid as self-supported cathode for high-performance lithium–sulfur batteries. Adv. Funct. Mater. 27(37), 1702573 (2017). https://doi.org/10.1002/adfm.201702573
- M. Xiang, L. Yang, Y. Zheng, J. Huang, P. Jing, H. Wu, Y. Zhang, H. Liu, A freestanding and flexible nitrogen-doped carbon foam/sulfur cathode composited with reduced graphene oxide for high sulfur loading lithium–sulfur batteries. J. Mater. Chem. A 5(34), 18020–18028 (2017). https://doi.org/10.1039/C7TA04962E
- J. He, Y. Chen, W. Lv, K. Wen, C. Xu et al., From metal-organic framework to Li2S@C–Co–N nanoporous architecture: a high-capacity cathode for lithium–sulfur batteries. ACS Nano 10(12), 10981–10987 (2016). https://doi.org/10.1021/acsnano.6b05696
- G. Jiang, N. Jiang, N. Zheng, X. Chen, J. Mao et al., MOF-derived porous Co3O4–NC nanoflake arrays on carbon fiber cloth as stable hosts for dendrite-free Li metal anodes. Energy Storage Mater. 1, 11 (2019). https://doi.org/10.1016/j.ensm.2019.05.014
- B.Y. Xia, Y. Yan, N. Li, H.B. Wu, X.W. Lou, X. Wang, A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 1(1), 15006 (2016). https://doi.org/10.1038/nenergy.2015.6
- Y. Wang, J. Zeng, Y. Peng, J. Li, Y. Zhang, H. Li, J. Zhao, Ultrafast one-pot air atmospheric solution combustion approach to fabricate mesoporous metal sulfide/carbon composites with enhanced lithium storage properties. ACS Appl. Energy Mater. 1(11), 6190–6197 (2018). https://doi.org/10.1021/acsaem.8b01241
- J. Zhang, C.P. Yang, Y.X. Yin, L.J. Wan, Y.G. Guo, Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium–sulfur batteries. Adv. Mater. 28(43), 9539–9544 (2016). https://doi.org/10.1002/adma.201602913
- Y. Wang, R. Zhang, Y.-C. Pang, X. Chen, J. Lang et al., Carbon@titanium nitride dual shell nanospheres as multi-functional hosts for lithium sulfur batteries. Energy Storage Mater. 16, 228–235 (2019). https://doi.org/10.1016/j.ensm.2018.05.019
- Z. Yuan, H.J. Peng, T.Z. Hou, J.Q. Huang, C.M. Chen et al., Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 16(1), 519–527 (2016). https://doi.org/10.1021/acs.nanolett.5b04166
- Z. Du, X. Chen, W. Hu, C. Chuang, S. Xie et al., Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium–sulfur batteries. J. Am. Chem. Soc. 141(9), 3977–3985 (2019). https://doi.org/10.1021/jacs.8b12973
- J. Xu, W. Zhang, H. Fan, F. Cheng, D. Su, G. Wang, Promoting lithium polysulfide/sulfide redox kinetics by the catalyzing of zinc sulfide for high performance lithium–sulfur battery. Nano Energy 51, 73–82 (2018). https://doi.org/10.1016/j.nanoen.2018.06.046
- J.-Y. Hwang, H.M. Kim, S. Shin, Y.-K. Sun, Designing a high-performance lithium–sulfur batteries based on layered double hydroxides-carbon nanotubes composite cathode and a dual-functional graphene–polypropylene–Al2O3 separator. Adv. Funct. Mater. 28(3), 1704294 (2018). https://doi.org/10.1002/adfm.201704294
- J.-Q. Huang, X.-F. Liu, Q. Zhang, C.-M. Chen, M.-Q. Zhao et al., Entrapment of sulfur in hierarchical porous graphene for lithium–sulfur batteries with high rate performance from −40 to 60 °C. Nano Energy 2(2), 314–321 (2013). https://doi.org/10.1016/j.nanoen.2012.10.003
- D.R. Deng, F. Xue, C.D. Bai, J. Lei, R. Yuan, M.S. Zheng, Q.F. Dong, Enhanced adsorptions to polysulfides on graphene-supported BN nanosheets with excellent Li–S battery performance in a wide temperature range. ACS Nano 12(11), 11120–11129 (2018). https://doi.org/10.1021/acsnano.8b05534
- X. Li, M. Banis, A. Lushington, X. Yang, Q. Sun et al., A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium–sulfur transformation. Nat. Commun. 9(1), 4509 (2018). https://doi.org/10.1038/s41467-018-06877-9
- J. Kulisch, H. Sommer, T. Brezesinski, J. Janek, Simple cathode design for Li–S batteries: cell performance and mechanistic insights by in operando X-ray diffraction. Phys. Chem. Chem. Phys. 16(35), 18765–18771 (2014). https://doi.org/10.1039/C4CP02220C
- T. Chen, Z. Zhang, B. Cheng, R. Chen, Y. Hu et al., Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium–sulfur batteries. J. Am. Chem. Soc. 139(36), 12710–12715 (2017). https://doi.org/10.1021/jacs.7b06973
- M.R. Busche, P. Adelhelm, H. Sommer, H. Schneider, K. Leitner, J. Janek, Systematical electrochemical study on the parasitic shuttle-effect in lithium–sulfur-cells at different temperatures and different rates. J. Power Sources 259, 289–299 (2014). https://doi.org/10.1016/j.jpowsour.2014.02.075
References
Y. Wei, H. Chen, H. Jiang, B. Wang, H. Liu, Y. Zhang, H. Wu, Biotemplate-based engineering of high-temperature stable anatase TiO2 nanofiber bundles with impregnated CeO2 nanocrystals for enhanced lithium storage. ACS Sustain. Chem. Eng. 7, 7823–7832 (2019). https://doi.org/10.1021/acssuschemeng.9b00012
N. Wu, X. Qiao, J. Shen, G. Liu, T. Sun et al., Anatase inverse opal TiO2−x@N-doped C induced the dominant pseudocapacitive effect for durable and fast lithium/sodium storage. Electrochim. Acta 299, 540–548 (2019). https://doi.org/10.1016/j.electacta.2019.01.040
Y. Zhang, P. Chen, X. Gao, B. Wang, H. Liu et al., Nitrogen-doped graphene ribbon assembled core-sheath MnO@graphene scrolls as hierarchically ordered 3D porous electrodes for fast and durable lithium storage. Adv. Funct. Mater. 26(43), 7754–7765 (2016). https://doi.org/10.1002/adfm.201603716
X. Gao, B. Wang, Y. Zhang, H. Liu, H. Liu, H. Wu, S. Dou, Graphene-scroll-sheathed α-MnS coaxial nanocables embedded in N, S Co-doped graphene foam as 3D hierarchically ordered electrodes for enhanced lithium storage. Energy Storage Mater. 16, 46–55 (2019). https://doi.org/10.1016/j.ensm.2018.04.027
L. Huang, J. Cheng, X. Li, D. Yuan, W. Ni et al., Sulfur quantum dots wrapped by conductive polymer shell with internal void spaces for high-performance lithium–sulfur batteries. J. Mater. Chem. A 3(7), 4049–4057 (2015). https://doi.org/10.1039/C4TA06609J
X. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8(6), 500–506 (2009). https://doi.org/10.1038/nmat2460
G. Zheng, Y. Yang, J.J. Cha, S.S. Hong, Y. Cui, Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 11(10), 4462–4467 (2011). https://doi.org/10.1021/nl2027684
G. Jiang, N. Zheng, X. Chen, G. Ding, Y. Li, F. Sun, Y. Li, In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li–S batteries. Chem. Eng. J. 373, 1309–1318 (2019). https://doi.org/10.1016/j.cej.2019.05.119
M.R. Kaiser, S. Chou, H.K. Liu, S.X. Dou, C. Wang, J. Wang, Structure–property relationships of organic electrolytes and their effects on Li/S battery performance. Adv. Mater. 29(48), 1700449 (2017). https://doi.org/10.1002/adma.201700449
R. Fang, G. Li, S. Zhao, L. Yin, K. Du et al., Single-wall carbon nanotube network enabled ultrahigh sulfur-content electrodes for high-performance lithium–sulfur batteries. Nano Energy 42, 205–214 (2017). https://doi.org/10.1016/j.nanoen.2017.10.053
Z. Wang, J. Shen, J. Liu, X. Xu, Z. Liu et al., Self-supported and flexible sulfur cathode enabled via synergistic confinement for high-energy-density lithium–sulfur batteries. Adv. Mater. 31(33), e1902228 (2019). https://doi.org/10.1002/adma.201902228
J. Sun, Y. Sun, M. Pasta, G. Zhou, Y. Li, W. Liu, F. Xiong, Y. Cui, Entrapment of polysulfides by a black-phosphorus-modified separator for lithium–sulfur batteries. Adv. Mater. 28(44), 9797–9803 (2016). https://doi.org/10.1002/adma.201602172
Y. Guo, G. Zhao, N. Wu, Y. Zhang, M. Xiang, B. Wang, H. Liu, H. Wu, Efficient synthesis of graphene nanoscrolls for fabricating sulfur-loaded cathode and flexible hybrid interlayer toward high-performance Li–S batteries. ACS Appl. Mater. Interfaces 8(50), 34185–34193 (2016). https://doi.org/10.1021/acsami.6b13455
X. Ji, L.F. Nazar, Advances in Li–S batteries. J. Mater. Chem. 20(44), 9821–9826 (2010). https://doi.org/10.1039/b925751a
M. Yu, S. Zhou, Z. Wang, Y. Wang, N. Zhang, S. Wang, J. Zhao, J. Qiu, Accelerating polysulfide redox conversion on bifunctional electrocatalytic electrode for stable Li–S batteries. Energy Storage Mater. 20, 98–107 (2018). https://doi.org/10.1016/j.ensm.2018.11.028
Y. Pan, Y. Zhou, Q. Zhao, Y. Dou, S. Chou et al., Introducing ion-transport-regulating nanochannels to lithium–sulfur batteries. Nano Energy 33, 205–212 (2017). https://doi.org/10.1016/j.nanoen.2017.01.025
D.R. Deng, F. Xue, Y.J. Jia, J.C. Ye, C.D. Bai, M.S. Zheng, Q.F. Dong, Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium–sulfur batteries. ACS Nano 11(6), 6031–6039 (2017). https://doi.org/10.1021/acsnano.7b01945
Y. Guo, Y. Zhang, Y. Zhang, M. Xiang, H. Wu, H. Liu, S. Dou, Interwoven V2O5 nanowire/graphene nanoscroll hybrid assembled as efficient polysulfide-trapping-conversion interlayer for long-life lithium–sulfur batteries. J. Mater. Chem. A 6(40), 19358–19370 (2018). https://doi.org/10.1039/C8TA06610H
H.J. Peng, J.Q. Huang, M.Q. Zhao, Q. Zhang, X.B. Cheng, X.Y. Liu, W.Z. Qian, F. Wei, Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium–sulfur batteries. Adv. Funct. Mater. 24(19), 2772–2781 (2014). https://doi.org/10.1002/adfm.201303296
M. Xiang, Y. Wang, J. Wu, Y. Guo, H. Wu, Y. Zhang, H. Liu, Natural silk cocoon derived nitrogen-doped porous carbon nanosheets for high performance lithium–sulfur batteries. Electrochim. Acta 227, 7–16 (2017). https://doi.org/10.1016/j.electacta.2016.11.139
J. Schuster, G. He, B. Mandlmeier, T. Yim, K.T. Lee, T. Bein, L.F. Nazar, Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. Angew. Chem. Int. Ed. 51(15), 3591–3595 (2012). https://doi.org/10.1002/anie.201107817
H. Xu, Y. Liu, Q. Bai, R. Wu, Discarded cigarette filter-derived hierarchically porous carbon@graphene composites for lithium–sulfur batteries. J. Mater. Chem. A 7(8), 3558–3562 (2019). https://doi.org/10.1039/C8TA11615F
Z. Wei Seh, W. Li, J.J. Cha, G. Zheng, Y. Yang, M.T. McDowell, P.C. Hsu, Y. Cui, Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat. Commun. 4, 1331 (2013). https://doi.org/10.1038/ncomms2327
C. Zha, F. Yang, J. Zhang, T. Zhang, S. Dong, H. Chen, Promoting polysulfide redox reactions and improving electronic conductivity in lithium–sulfur batteries via hierarchical cathode materials of graphene-wrapped porous TiO2 microspheres with exposed (001) facets. J. Mater. Chem. A 6, 16574–16582 (2018). https://doi.org/10.1039/C8TA05573D
W.Z. Yingze Song, N. Wei, L. Zhang, F. Ding, Z. Liu, J. Sun, In-situ PECVD-enabled graphene–V2O3 hybrid host for lithium–sulfur batteries. Nano Energy 543, 432–439 (2018). https://doi.org/10.1016/j.nanoen.2018.09.002
S. Wang, J. Liao, X. Yang, J. Liang, Q. Sun et al., Designing a highly efficient polysulfide conversion catalyst with paramontroseite for high-performance and long-life lithium–sulfur batteries. Nano Energy 57, 230–240 (2018). https://doi.org/10.1016/j.nanoen.2018.12.020
W. Kong, L. Yan, Y. Luo, D. Wang, K. Jiang, Q. Li, S. Fan, J. Wang, Ultrathin MnO2/graphene oxide/carbon nanotube interlayer as efficient polysulfide-trapping shield for high-performance Li–S batteries. Adv. Funct. Mater. 27(18), 1606663 (2017). https://doi.org/10.1002/adfm.201606663
L. Ma, W. Zhang, L. Wang, Y. Hu, G. Zhu et al., Strong capillarity, chemisorption, and electrocatalytic capability of crisscrossed nanostraws enabled flexible, high-rate, and long-cycling lithium–sulfur batteries. ACS Nano 12(5), 4868–4876 (2018). https://doi.org/10.1021/acsnano.8b01763
C. Dai, J.-M. Lim, M. Wang, L. Hu, Y. Chen et al., Honeycomb-like spherical cathode host constructed from hollow metallic and polar Co9S8 tubules for advanced lithium–sulfur batteries. Adv. Funct. Mater. 28(14), 1704443 (2018). https://doi.org/10.1002/adfm.201704443
L. Luo, S.-H. Chung, A. Manthiram, Rational design of a dual-function hybrid cathode substrate for lithium–sulfur batteries. Adv. Energy Mater. 8, 1801014 (2018). https://doi.org/10.1002/aenm.201801014
T. Lei, W. Chen, J. Huang, C. Yan, H. Sun et al., Multi-functional layered WS2 nanosheets for enhancing the performance of lithium–sulfur batteries. Adv. Energy Mater. 7(4), 1601843 (2017). https://doi.org/10.1002/aenm.201601843
M. Zhao, H.J. Peng, Z.W. Zhang, B.Q. Li, X. Chen et al., Activating inert metallic compounds for high-rate lithium–sulfur batteries through in situ etching of extrinsic metal. Angew. Chem. Int. Ed. 131(12), 3819–3823 (2018). https://doi.org/10.1002/ange.201812062
Z.-W. Zhang, H.-J. Peng, M. Zhao, J.-Q. Huang, Heterogeneous/homogeneous mediators for high-energy-density lithium–sulfur batteries: progress and prospects. Adv. Funct. Mater. 28(38), 1707536 (2018). https://doi.org/10.1002/adfm.201707536
M. Zhao, H.J. Peng, J.Y. Wei, J.Q. Huang, B.Q. Li, H. Yuan, Q. Zhang, dictating high-capacity lithium–sulfur batteries through redox-mediated lithium sulfide growth. Small Methods 3(6), 1900344 (2019). https://doi.org/10.1002/smtd.201900344
C. Guan, W. Zhao, Y. Hu, Z. Lai, X. Li et al., Cobalt oxide and N-doped carbon nanosheets derived from a single two-dimensional metal-organic framework precursor and their application in flexible asymmetric supercapacitors. Nanoscale Horizons 2(2), 99–105 (2017). https://doi.org/10.1039/C6NH00224B
Y. Zhong, X. Xia, S. Deng, D. Xie, S. Shen et al., Spore carbon from Aspergillus oryzae for advanced electrochemical energy storage. Adv. Mater. 30(46), 1805165 (2018). https://doi.org/10.1002/adma.201805165
M. Xiang, H. Wu, H. Liu, J. Huang, Y. Zheng et al., A flexible 3D multifunctional MgO-decorated carbon foam@CNTs hybrid as self-supported cathode for high-performance lithium–sulfur batteries. Adv. Funct. Mater. 27(37), 1702573 (2017). https://doi.org/10.1002/adfm.201702573
M. Xiang, L. Yang, Y. Zheng, J. Huang, P. Jing, H. Wu, Y. Zhang, H. Liu, A freestanding and flexible nitrogen-doped carbon foam/sulfur cathode composited with reduced graphene oxide for high sulfur loading lithium–sulfur batteries. J. Mater. Chem. A 5(34), 18020–18028 (2017). https://doi.org/10.1039/C7TA04962E
J. He, Y. Chen, W. Lv, K. Wen, C. Xu et al., From metal-organic framework to Li2S@C–Co–N nanoporous architecture: a high-capacity cathode for lithium–sulfur batteries. ACS Nano 10(12), 10981–10987 (2016). https://doi.org/10.1021/acsnano.6b05696
G. Jiang, N. Jiang, N. Zheng, X. Chen, J. Mao et al., MOF-derived porous Co3O4–NC nanoflake arrays on carbon fiber cloth as stable hosts for dendrite-free Li metal anodes. Energy Storage Mater. 1, 11 (2019). https://doi.org/10.1016/j.ensm.2019.05.014
B.Y. Xia, Y. Yan, N. Li, H.B. Wu, X.W. Lou, X. Wang, A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 1(1), 15006 (2016). https://doi.org/10.1038/nenergy.2015.6
Y. Wang, J. Zeng, Y. Peng, J. Li, Y. Zhang, H. Li, J. Zhao, Ultrafast one-pot air atmospheric solution combustion approach to fabricate mesoporous metal sulfide/carbon composites with enhanced lithium storage properties. ACS Appl. Energy Mater. 1(11), 6190–6197 (2018). https://doi.org/10.1021/acsaem.8b01241
J. Zhang, C.P. Yang, Y.X. Yin, L.J. Wan, Y.G. Guo, Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium–sulfur batteries. Adv. Mater. 28(43), 9539–9544 (2016). https://doi.org/10.1002/adma.201602913
Y. Wang, R. Zhang, Y.-C. Pang, X. Chen, J. Lang et al., Carbon@titanium nitride dual shell nanospheres as multi-functional hosts for lithium sulfur batteries. Energy Storage Mater. 16, 228–235 (2019). https://doi.org/10.1016/j.ensm.2018.05.019
Z. Yuan, H.J. Peng, T.Z. Hou, J.Q. Huang, C.M. Chen et al., Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 16(1), 519–527 (2016). https://doi.org/10.1021/acs.nanolett.5b04166
Z. Du, X. Chen, W. Hu, C. Chuang, S. Xie et al., Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium–sulfur batteries. J. Am. Chem. Soc. 141(9), 3977–3985 (2019). https://doi.org/10.1021/jacs.8b12973
J. Xu, W. Zhang, H. Fan, F. Cheng, D. Su, G. Wang, Promoting lithium polysulfide/sulfide redox kinetics by the catalyzing of zinc sulfide for high performance lithium–sulfur battery. Nano Energy 51, 73–82 (2018). https://doi.org/10.1016/j.nanoen.2018.06.046
J.-Y. Hwang, H.M. Kim, S. Shin, Y.-K. Sun, Designing a high-performance lithium–sulfur batteries based on layered double hydroxides-carbon nanotubes composite cathode and a dual-functional graphene–polypropylene–Al2O3 separator. Adv. Funct. Mater. 28(3), 1704294 (2018). https://doi.org/10.1002/adfm.201704294
J.-Q. Huang, X.-F. Liu, Q. Zhang, C.-M. Chen, M.-Q. Zhao et al., Entrapment of sulfur in hierarchical porous graphene for lithium–sulfur batteries with high rate performance from −40 to 60 °C. Nano Energy 2(2), 314–321 (2013). https://doi.org/10.1016/j.nanoen.2012.10.003
D.R. Deng, F. Xue, C.D. Bai, J. Lei, R. Yuan, M.S. Zheng, Q.F. Dong, Enhanced adsorptions to polysulfides on graphene-supported BN nanosheets with excellent Li–S battery performance in a wide temperature range. ACS Nano 12(11), 11120–11129 (2018). https://doi.org/10.1021/acsnano.8b05534
X. Li, M. Banis, A. Lushington, X. Yang, Q. Sun et al., A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium–sulfur transformation. Nat. Commun. 9(1), 4509 (2018). https://doi.org/10.1038/s41467-018-06877-9
J. Kulisch, H. Sommer, T. Brezesinski, J. Janek, Simple cathode design for Li–S batteries: cell performance and mechanistic insights by in operando X-ray diffraction. Phys. Chem. Chem. Phys. 16(35), 18765–18771 (2014). https://doi.org/10.1039/C4CP02220C
T. Chen, Z. Zhang, B. Cheng, R. Chen, Y. Hu et al., Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium–sulfur batteries. J. Am. Chem. Soc. 139(36), 12710–12715 (2017). https://doi.org/10.1021/jacs.7b06973
M.R. Busche, P. Adelhelm, H. Sommer, H. Schneider, K. Leitner, J. Janek, Systematical electrochemical study on the parasitic shuttle-effect in lithium–sulfur-cells at different temperatures and different rates. J. Power Sources 259, 289–299 (2014). https://doi.org/10.1016/j.jpowsour.2014.02.075